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Abstract

The Torelli group of �푊�푔 = #�푔�푆�푛 × �푆�푛 is the group of diffeomorphisms of �푊�푔 fixing a disc that act trivially on

�퐻�푛 (�푊�푔;Z). The rational cohomology groups of the Torelli group are representations of an arithmetic subgroup of

Sp2�푔 (Z) or O�푔,�푔 (Z). In this article we prove that for 2�푛 ≥ 6 and �푔 ≥ 2, they are in fact algebraic representations.

Combined with previous work, this determines the rational cohomology of the Torelli group in a stable range. We

further prove that the classifying space of the Torelli group is nilpotent.
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1. Introduction

Let�푊�푔 denote the 2�푛-dimensional manifold #�푔�푆�푛 × �푆�푛 and Diff(�푊�푔, �퐷
2�푛) denote the topological group

of diffeomorphisms of �푊�푔 fixing an open neighbourhood of a disc �퐷2�푛 ⊂ �푊�푔 pointwise in the �퐶∞-

topology. Only certain automorphisms of �퐻�푛 (�푊�푔;Z) can be realised by diffeomorphisms: in particular,

they must respect the intersection form, giving a homomorphism

�훼�푔 : Diff(�푊�푔, �퐷
2�푛) −→ �퐺�푔 ≔

{
Sp2�푔 (Z) if �푛 is odd,

O�푔,�푔 (Z) if �푛 is even,

whose image we denote by �퐺 ′
�푔. According to Kreck, in dimension 2�푛 ≥ 6 the only additional constraint

is that the automorphism preserves a certain quadratic refinement of the intersection form [32]. Thus,

�퐺 ′
�푔 is a finite index subgroup of �퐺�푔 and hence an arithmetic subgroup associated to the algebraic group

G ∈ {Sp2�푔,O�푔,�푔}. The kernel of �훼�푔 is called the Torelli group and denoted by Tor(�푊�푔, �퐷
2�푛); it is

equipped with an outer action of �퐺 ′
�푔.

In [33] the first author proved that the rational cohomology groups of �퐵Tor(�푊�푔, �퐷
2�푛) are finite-

dimensional in each degree as long as 2�푛 ≥ 6. It is then a consequence of Margulis super-rigidity that

they are almost algebraic representations of �퐺 ′
�푔; that is, there is a finite index subgroup of �퐺 ′

�푔 such that

the restriction of the representation to this subgroup extends to a rational representation of the algebraic

group G [42, 1.3.(9)]. The purpose of this article is to show that the rational cohomology groups are

not just almost algebraic but algebraic: no restriction to a finite index subgroup is necessary.

Theorem A. For 2�푛 ≥ 6 and �푔 ≥ 2, the �퐻�푖 (�퐵Tor(�푊�푔, �퐷
2�푛);Q) are algebraic representations of �퐺 ′

�푔.

Remark 1.1. Of course in the case �푔 = 0, such a statement is trivial as �퐺 ′
�푔 = {�푒}. For �푔 = 1 and

�푛 odd, extensions of algebraic representations need no longer split and our techniques only imply

that these rational cohomology groups have a filtration whose associated graded consists of algebraic

representations. For �푔 = 1 and �푛 even, we do not obtain any information.
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Theorem A may be used in conjunction with the main result of [34]: for 2�푛 ≥ 6 that paper computes

the maximal algebraic subrepresentation of �퐻∗(�퐵Tor(�푊�푔, �퐷
2�푛);Q) in a stable range; by Theorem A

this is in fact the entire cohomology.

If �퐺 ′′
�푔 ≤ �퐺 ′

�푔 is a finite index subgroup, let us write Diff�퐺′′
�푔 (�푊�푔, �퐷

2�푛) ≔ �훼−1
�푔 (�퐺 ′′

�푔 ). Theorem A

implies that its cohomology with coefficients in any algebraic �퐺 ′
�푔-representation (as usual, these are

representations over the rationals) is independent of the choice of finite index subgroup in a stable range:

Corollary B. Let 2�푛 ≥ 6, �푔 ≥ 2,�푉 be an algebraic �퐺 ′
�푔-representation, and if �푛 is even then assume that

�퐺 ′′
�푔 is not entirely contained in SO�푔,�푔 (Z). Then the natural map

�퐻∗(�퐵Diff(�푊�푔, �퐷
2�푛);�푉) −→ �퐻∗(Diff�퐺′′

�푔 (�푊�푔, �퐷
2�푛);�푉),

which is a split injection by transfer, is an isomorphism in degrees ∗ < �푔 − �푒, with �푒 = 0 if �푛 is odd and
�푒 = 1 if �푛 is even.

Our techniques can also be used to prove a second property of Torelli groups. Recall that a based

path-connected topological space is nilpotent if its fundamental group is nilpotent and acts nilpotently

on all higher homotopy groups.

Theorem C. For 2�푛 ≥ 6, the spaces �퐵Tor(�푊�푔, �퐷
2�푛) are nilpotent.

The spaces �퐵Diff(�푊�푔, �퐷
2�푛) classify smooth fibre bundles with fibre �푊�푔 containing a trivialised disc

bundle and can be considered as moduli spaces of such manifolds. In Section 8 we prove the natural

generalisations of Theorem A, Corollary B, and Theorem C to moduli spaces of manifolds with certain

tangential structures (such as framings).

2. Algebraicity

We start by proving some qualitative results about algebraicity of representations, with the goal of passing

such properties through spectral sequences and long exact sequences. A particular role is played by the

following well-known groups. Define groups O�푔,�푔 (Q) (respectively Sp2�푔 (Q)) as those automorphisms

of Q2�푔 preserving the symmetric (respectively antisymmetric) form with matrix

[
0 id�푔

id�푔 0

]
, resp.

[
0 id�푔

−id�푔 0

]
.

These are the Q-points of algebraic groups O�푔,�푔 and Sp2�푔, respectively. The former has two connected

components, and we let SO�푔,�푔 denote that containing the identity.

In this section we shall take as given a short exact sequence of groups

1 −→ �퐽 −→ Γ −→ �퐺 −→ 1, (1)

for �퐺 an arithmetic subgroup of an algebraic group G ∈ {Sp2�푔,O�푔,�푔, SO�푔,�푔}, which in this article

will mean a finite index subgroup of G(Z) that is Zariski dense in G(Q) (in contrast with [42], which

imposes no such condition). For G ∈ {Sp2�푔, SO�푔,�푔}, any such�퐺 ≤ G(Z) of finite index is Zariski dense:

SO�푔,�푔 for �푔 ≥ 2 and Sp2�푔 for �푔 ≥ 1 are connected semisimple algebraic groups defined over Q without

compact factors, so by [7, Theorem 7.8] �퐺 is a lattice in G(R), and by the Borel density theorem [4] �퐺

is Zariski dense in G(R) and hence also in G(Q). For G = O�푔,�푔, a subgroup �퐺 ≤ G(Z) of finite index

is Zariski dense if and only if it is not contained in SO�푔,�푔 (Z). Because SO1,1 fails to be semisimple, we

will exclude it from now on.

Convention 2.1. If �푛 is even, we will assume �푔 ≥ 2.
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2.1. Some representation theory

2.1.1. Algebraic representations

Let�퐺 be an arithmetic subgroup of the algebraic group G ∈ {Sp2�푔,O�푔,�푔, SO�푔,�푔} as above. A representa-

tion �휙 : �퐺 → GL�푛 (Q) is said to be algebraic if it is the restriction of a finite-dimensional representation

of the algebraic group G in the sense that there is a morphism of algebraic groups �휑 : G → GL�푛 that

on taking Q-points and restricting to �퐺 yields �휙. An action of �퐺 on an �푛-dimensional Q-vector space �푉

is then said to be algebraic if �푉 admits a basis such that the resulting representation �퐺 → GL�푛 (Q) is

algebraic. We usually denote a representation (�휙,�푉) by �푉 , leaving the action of �퐺 on �푉 implicit. Prop-

erties (a), (b) and (c) of algebraic representations listed below are obtained in Subsection 2.1 of [34]

by combining several results in the literature, and properties (d) and (e) are direct consequences of the

definition.

Theorem 2.2. The class of algebraic �퐺-representations is closed under the following operations:

(a) subrepresentations,
(b) quotients,
(c) extensions when �푔 ≥ 2,
(d) duals,
(e) tensor products.

2.1.2. gr-algebraic representations

The vector spaces that show up in this article will often not be �퐺-representations, let alone be algebraic.

Instead, they will be Γ-representations with the following property.

Definition 2.3. A Γ-representation �푉 is �푔�푟-algebraic if it admits a finite length filtration

0 ⊂ �퐹0 (�푉) ⊂ �퐹1 (�푉) ⊂ · · · ⊂ �퐹�푝 (�푉) = �푉

of subrepresentations such that each �퐹�푖 (�푉)/�퐹�푖−1(�푉) is the restriction to Γ of an algebraic �퐺-

representation.

Remark 2.4. This class of representations has appeared before in the work of Hain (see, e.g., [26,

Section 5]); they play a role in his theory of relative unipotent completion.

By definition, a �푔�푟-algebraic Γ-representation is finite-dimensional. The class of �푔�푟-algebraic

Γ-representations has all of the closure properties of the algebraic �퐺-representations themselves.

Lemma 2.5. The class of �푔�푟-algebraic Γ-representations is closed under the following operations:

(a) subrepresentations,
(b) quotients,
(c) extensions,
(d) duals,
(e) tensor products.

Proof. For parts (a) and (b), suppose that�푉 is a �푔�푟-algebraic Γ-representation with filtration {�퐹�푖 (�푉)}
�푝

�푖=0
,

and �푊 ⊂ �푉 is a subrepresentation. Firstly, �푊 inherits a filtration �퐹�푖 (�푊) ≔ �푊 ∩ �퐹�푖 (�푉). Each filtration

quotient �퐹�푖 (�푊)/�퐹�푖−1(�푊) is a subrepresentation of �퐹�푖 (�푉)/�퐹�푖−1(�푉); this guarantees that the Γ-action

factors over �퐺 and then by Theorem 2.2 (a) the resulting �퐺-representation is algebraic. Secondly, �푉/�푊
inherits a filtration �퐹�푖 (�푉/�푊) ≔ im(�퐹�푖 (�푉) → �푉 → �푉/�푊). The filtration quotient �퐹�푖 (�푉/�푊)/�퐹�푖−1(�푉/�푊)
is the quotient of �퐹�푖 (�푉)/�퐹�푖−1(�푉) by �퐹�푖 (�푊)/�퐹�푖−1(�푊). The Γ-action thus factors over �퐺 and then by

Theorem 2.2 (b) the resulting �퐺-representation is algebraic.

For part (c), suppose that �푉 is a �푔�푟-algebraic Γ-representation with filtration {�퐹�푖 (�푉)}
�푞

�푖=0
and �푊

is a �푔�푟-algebraic Γ-representation with filtration {�퐹�푗 (�푊)}
�푝

�푗=0
, and there is a short exact sequence of
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Γ-representations

0 −→ �푊
�휄

−→ �푈
�휋

−→ �푉 −→ 0.

Then �푈 admits a filtration {�퐹�푘 (�푈)}
�푝+�푞+1

�푘=0
by stitching together the filtrations of �푊 and �푉 . That is, we

set �퐹�푘 (�푈) ≔ �휄(�퐹�푗 (�푊)) for �푘 ≤ �푝 and �퐹�푘 (�푈) ≔ �휋−1 (�퐹�푘−�푝−1(�푉)) for �푘 > �푝. The filtration quotient

�퐹�푘 (�푈)/�퐹�푘−1 (�푈) is �퐹�푘 (�푊)/�퐹�푘−1(�푊) for �푘 ≤ �푝 and �퐹�푘−�푝−1(�푉)/�퐹�푘−�푝−2(�푉) for �푘 > �푝. In particular, the

Γ-action factors over �퐺 and, as such, is algebraic.

For part (d), suppose �푉 is a �푔�푟-algebraic Γ-representation with filtration {�퐹�푖 (�푉)}
�푝

�푖=0
. Then �푉∨ is

a filtered Γ-representation by �퐹�푖 (�푉
∨) ≔ ann(�퐹�푝−�푖 (�푉)), with associated graded �퐹�푖 (�푉

∨)/�퐹�푖−1(�푉
∨) =

(�퐹�푝−�푖 (�푉)/�퐹�푝−�푖−1(�푉))
∨. Thus, the Γ-action factors over �퐺, and, as such, is algebraic.

For part (e), suppose �푉 is a �푔�푟-algebraic Γ-representation with filtration {�퐹�푖 (�푉)}
�푝

�푖=0
and �푊

is a �푔�푟-algebraic Γ-representation with filtration {�퐹�푗 (�푊)}
�푞

�푗=0
. Then we may filter �푉 ⊗ �푊 by

�퐹�푘 (�푉 ⊗ �푊) ≔
∑

�푖+ �푗=�푘 �퐹�푖 (�푉) ⊗ �퐹�푗 (�푊) so that the filtration quotient is �퐹�푘 (�푉 ⊗ �푊)/�퐹�푘−1(�푉 ⊗ �푊) =⊕
�푖+ �푗=�푘 �퐹�푖 (�푉)/�퐹�푖−1(�푉) ⊗ �퐹�푗 (�푊)/�퐹�푗−1(�푊). This means that the Γ-action factors over �퐺 and, as such,

is algebraic. �

Remark 2.6. Note that in distinction with Theorem 2.2, case (c) does not require the assumption �푔 ≥ 2.

By Convention 2.1, this is only relevant when �푛 is odd.

If�푉 is a Γ-representation, then each cohomology group �퐻�푖 (�퐽;�푉) is a Γ-representation, via the action

�훾 · ( �푗 , �푣) = (�훾 �푗�훾−1, �훾�푣) of Γ on the object (�퐽,�푉) in the category of groups equipped with a module

and functoriality of group cohomology on this category. As inner automorphisms act trivially on group

cohomology, this action of Γ descends to an action of �퐺 on �퐻�푖 (�퐽;�푉) (see [11, Corollary 8.2]). The

following lemma gives a condition under which such a �퐺-representation is algebraic.

Lemma 2.7. Suppose that �푔 ≥ 2, that each �퐺-representation �퐻�푖 (�퐽;Q) is algebraic, and that �푉 is a
�푔�푟-algebraic Γ-representation. Then each �퐺-representation �퐻�푖 (�퐽;�푉) is algebraic.

Proof. For any filtered Γ-representation �푉 with filtration {�퐹�푝 (�푉)}, there is a spectral sequence of �퐺-

representations

�퐸
�푝,�푞

1
= �퐻 �푝+�푞 (�퐽; �퐹�푝 (�푉)/�퐹�푝−1(�푉)) =⇒ �퐻 �푝+�푞 (�퐽;�푉).

If the action of Γ on �퐹�푝 (�푉)/�퐹�푝−1(�푉) factors over �퐺, then �퐽 acts trivally on �퐹�푝 (�푉)/�퐹�푝−1(�푉) and so we

can identity �퐸
�푝,�푞

1
with �퐻 �푝+�푞 (�퐽;Q) ⊗ �퐹�푝 (�푉)/�퐹�푝−1(�푉) as a �퐺-representation.

The hypotheses imply that the �퐸1-page consists of algebraic �퐺-representations. Using Theorem 2.2

(a) and (b) the �퐸∞-page consists of algebraic �퐺-representations, and using Theorem 2.2 (c) and the

assumption that �푔 ≥ 2, so does the abutment. �

2.2. Equivariant Serre classes

We will use a version of Serre’s mod C theory for spaces with actions of a group Γ.

Definition 2.8. Fix a localisation k of Z. A Serre class C of k[Γ]-modules is a collection of k[Γ]-
modules satisfying the following properties:

(i) For every short exact sequence of k[Γ]-modules

0 −→ �퐴 −→ �퐵 −→ �퐶 −→ 0,

�퐴, �퐶 ∈ C if and only if �퐵 ∈ C.

(ii) �퐴, �퐵 ∈ C implies �퐴 ⊗k �퐵 ∈ C and Tork
1
(�퐴, �퐵) ∈ C.

(iii) �퐴 ∈ C implies �퐻�푝 (�퐾 (�퐴, �푛);k) ∈ C for all �푛 ≥ 1 and �푝 ≥ 0.
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Property (iii) can be weakened to

(iii’) �퐴 ∈ C implies that �퐻�푝 (�퐾 (�퐴, 1);k) ∈ C for all �푝 ≥ 0

by the following lemma.

Lemma 2.9. Given properties (i) and (ii), property (iii’) implies property (iii).

Proof. We will prove that �퐻�푝 (�퐾 (�퐴, �푛);k) ∈ C by double induction over �푛 ≥ 1 and �푝 ≥ 0, the initial

cases �푛 = 1 being (iii’) and �푝 = 0 following from �퐻0 (�퐾 (�퐴, �푛);k) = k = �퐻0(�퐾 (�퐴, 1);k), which lies in

C by (iii’).

For the case (�푛, �푝) with �푛 > 1 and �푝 > 0, we assume that the result is proven for �푛 − 1 and all �푝 and

for �푛 and all �푝′ < �푝. We will use the Serre spectral sequence for the homotopy fibration sequence

�퐾 (�퐴, �푛 − 1) −→ ∗ −→ �퐾 (�퐴, �푛),

which takes the form

�퐸2
�푠,�푡 = �퐻�푠 (�퐾 (�퐴, �푛);�퐻�푡 (�퐾 (�퐴, �푛 − 1);k)) =⇒ �퐻�푠+�푡 (∗;k).

By the universal coefficient theorem, the group �퐸2
�푠,�푡 is an extension of

�퐻�푠 (�퐾 (�퐴, �푛);k) ⊗k �퐻�푡 (�퐾 (�퐴, �푛 − 1);k) and

Tork1 (�퐻�푠−1 (�퐾 (�퐴, �푛);k), �퐻�푡 (�퐾 (�퐴, �푛 − 1);k)).

Thus, the inductive hypothesis and property (ii) imply that �퐸2
�푝′,�푞 ∈ C for �푝′ < �푝 and for all �푞. Because

�퐸�푟
�푝′,�푞 is obtained from this by taking subquotients, by property (i) it also lies in C.

We wish to prove that �퐸2
�푝,0

∈ C. Using the exact sequences

0 −→ �퐸�푟+1
�푝,0 −→ �퐸�푟

�푝,0

�푑�푟

−→ �퐸�푟
�푝−�푟 ,�푟−1

and the fact that �퐸�푟
�푝−�푟 ,�푟−1

lies in C so the image of �푑�푟 does too, we see that �퐸�푟
�푝,0

lies in C as long as

�퐸�푟+1
�푝,0

does. Because �퐸
�푝

�푝,0
= �퐸∞

�푝,0
= 0 ∈ C, this concludes the proof of the induction step. �

Property (i) implies that belonging to the class C passes through spectral sequences in the following

sense.

Lemma 2.10. Suppose that we have a spectral sequence {�퐸�푟
�푝,�푞} of k[Γ]-modules such that

(a) each (�푝, �푞) has only finitely many nonzero differentials into and out of it,
(b) for each �푛 ∈ Z only finitely many entries �퐸∞

�푝,�푞 with �푝 + �푞 = �푛 are nonzero,
(c) for each (�푝, �푞) there exists an �푟 ≥ 1 such that �퐸�푟

�푝,�푞 ∈ C.

Then the abutment consists of k[Γ]-modules that lie in C.

Proof. We first note that property (i) implies that being in C is preserved by passing to subquotients.

Using (c) it follows that each �퐸�푟 ′

�푝,�푞 for �푟 ′ > �푟 also lies in C. By property (a), for each (�푝, �푞) there exists

an �푟 ′ such that �퐸�푟 ′

�푝,�푞 = �퐸∞
�푝,�푞 . Thus, each �퐸∞

�푝,�푞 lies in C.

Finally, the abutment in total degree �푛 has a filtration with associated graded given by the terms �퐸∞
�푝,�푞

with �푝 + �푞 = �푛, which all lie in C. This filtration is finite by (b), and using property (i) a number of times

we conclude that the abutment also lies in C. �
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Recall that a local system on a space �푋 is a functorΠ(�푋) → Ab, whereΠ(�푋) denotes the fundamental

groupoid of �푋 . If �휋 : �퐸 → �퐵 is a fibration, then there is a local system �퐻�푞 (�휋;k) on �퐵 given by

�퐻�푞 (�휋;k) : Π(�퐵) −→ Modk

�푏0 ↦−→ �퐻�푞 (�휋
−1 (�푏0);k).

If the fibres of �휋 are typically called �퐹, sometimes one writes �퐻�푞 (�퐹;Q) for this local system. Dress’s

construction [15] of the homology Serre spectral sequence for a fibration �휋 : �퐸 → �퐵 is given by

�퐸2
�푝,�푞 = �퐻�푝 (�퐵;�퐻�푞 (�휋;k)) =⇒ �퐻�푝+�푞 (�퐸 ;k)

and does not use a choice of base point in �퐵. Traditionally, for �퐵 path-connected one chooses a base point

�푏0 ∈ �퐵 and replaces this local system with the k[�휋1 (�퐵, �푏0)]-module �퐻�푞 (�휋
−1 (�푏0);k). At that point the

spectral sequence is only functorial in based maps of fibrations. The advantage of Dress’s formulation

is that it is natural in all maps of fibrations: any commutative diagram

�퐸 �퐸 ′

�퐵 �퐵′

�푔

�휋 �휋′

�푓

induces a map of Serre spectral sequence given on the �퐸2-page by

�퐻�푝 (�퐵;�퐻�푞 (�휋;k))
�푔
∗

−→ �퐻�푝 (�퐵; �푓 ∗�퐻�푞 (�휋
′;k))

�푓∗
−→ �퐻�푝 (�퐵

′;�퐻�푞 (�휋
′;k)),

where �푔
∗
: �푓 ∗�퐻�푞 (�휋;k) → �퐻�푞 (�휋

′;k) is the map of local systems induced by restricting �푔 to fibres.

We will often want to transfer results about rational homotopy groups to results about rational

cohomology and vice versa, which will only be possible if the action of the fundamental group on

higher homotopy groups is under control.

For each �푖 ≥ 2, there is a local system

�휋�푖 (�푋) : Π(�푋) −→ Ab

�푥0 ↦−→ �휋�푖 (�푋, �푥0),
(2)

and each continuous map �푓 : �푋 → �푌 induces a natural transformation �휋�푖 (�푋) → �푓 ∗�휋�푖 (�푌 ). Recall that a

path-connected space �푋 is called simple if its fundamental group is abelian and acts trivially on higher

homotopy groups (this is true for any base point if it is true for a single base point). If �푋 is simple,

not only does (2) makes sense for �푖 = 1 as well but each local system (2) for �푖 ≥ 1 has the following

property: the isomorphism �휋�푖 (�푋, �푥0) → �휋�푖 (�푋, �푥1) is independent of the choice of morphism from �푥0 to

�푥1 in Π(�푋). Equivalently, �휋�푖 (�푋) is naturally isomorphic to a constant functor on an abelian group. We

can make a canonical choice of such a group by

�휋�푖 (�푋) ≔ colim �휋�푖 (�푋).

By definition of the colimit, �휋�푖 (�푋) receives a natural map from �휋�푖 (�푋, �푥0) for any base point �푥0 ∈ �푋 ,

and this is an isomorphism. If �푓 : �푋 → �푌 is a map between simple spaces, we therefore obtain a

homomorphism �푓∗ : �휋�푖 (�푋) → �휋�푖 (�푌 ).
Suppose now that we have a Γ-action up to homotopy, given by a homomorphism Γ → [�푋, �푋] to the

monoid of homotopy classes of maps. This induces an action of Γ on the homology groups �퐻�푖 (�푋;k),
and if �푋 is simple it also induces an action of Γ on �휋�푖 (�푋) ⊗ k. We can ask for either of these to lie in C.

The following will be used in Section 6.
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Lemma 2.11. Let �푋 be a path-connected simple space with an action of Γ up to homotopy. If all k[Γ]-
modules �휋�푖 (�푋) ⊗ k lie in C, then so do all �퐻�푖 (�푋;k).

Proof. We use Postnikov towers, which can be produced functorially in all maps by first replacing �푋 by

the naturally weakly equivalent space |Sing(�푋) | and letting the �푛th stage �휏≤�푛�푋 be the �푛th coskeleton

|cosk�푛 (Sing(�푋)) | (e.g., [17]). The result is a natural tower of maps

· · ·
�푞�푛+1
−−−→ �휏≤�푛�푋

�푞�푛
−−→ �휏≤�푛−1�푋

�푞�푛−1
−−−→ · · ·

�푞1
−−→ �휏≤0�푋

under �푋 . The homotopy groups �휋�푖 (�휏≤�푛�푋) vanish for �푖 > �푛 and the map �푋 → �휏≤�푛�푋 induces an

isomorphism on �휋�푖 for �푖 ≤ �푛. Given a point �푥0 ∈ �푋 , we obtain a point in �휏�푛−1�푋 that we shall denote the

same. The homotopy fibre of �푞�푛 over this point in �휏≤�푛−1�푋 can be identified with the Eilenberg–MacLane

space �퐾 (�휋�푛 (�푋, �푥0), �푛).
We apply the above version of the Serre spectral sequence to the fibration �푞�푛 for �푛 ≥ 1 and get a

spectral sequence of Γ-modules

�퐸2
�푝,�푞 = �퐻�푝 (�휏≤�푛−1�푋;�퐻�푞 (�푞�푛;k)) =⇒ �퐻�푝+�푞 (�휏≤�푛�푋;k),

where the coefficients are taken in the local system

�퐻�푞 (�푞�푛;k) : Π(�휏≤�푛−1�푋) −→ Modk

�푥0 ↦−→ �퐻�푞 (�푞
−1
�푛 (�푥0);k).

As �푞−1
�푛 (�푥0) ≃ �퐾 (�휋�푛 (�푋, �푥0), �푛), homotopy classes of maps between these fibres are determined by their

effect on �휋�푛, so as �푋 is simple the fibre transport map from �푞−1
�푛 (�푥0) to �푞−1

�푛 (�푥1) is independent of the

choice of path from �푥0 to �푥1. Thus, �퐻�푞 (�푞�푛;k) is canonically isomorphic to the trivial coefficient system

on the abelian group

colim�퐻�푞 (�푞�푛;k) � �퐻�푞 (�퐾 (�휋�푛 (�푋), �푛);k).

Thus, the Serre spectral sequence simplifies to

�퐸2
�푝,�푞 = �퐻�푝 (�휏≤�푛−1�푋;�퐻�푞 (�퐾 (�휋�푛 (�푋), �푛);k)) =⇒ �퐻�푝+�푞 (�휏≤�푛�푋;k).

The universal coefficient theorem says that the Γ-module

�퐻�푝 (�휏≤�푛−1�푋;�퐻�푞 (�퐾 (�휋�푛 (�푋), �푛);k))

is naturally an extension of the Γ-modules

Tork1 (�퐻�푝−1(�휏≤�푛−1�푋), �퐻�푞 (�퐾 (�휋�푛 (�푋), �푛);k)) and �퐻�푝 (�휏≤�푛−1�푋;k) ⊗k �퐻�푞 (�퐾 (�휋�푛 (�푋), �푛);k).

Under this identification, the Γ-action is given diagonally by the evident action on �퐻�푝 (�휏≤�푛−1�푋;k) and

the action on �퐻�푞 (�퐾 (�휋�푛 (�푋), �푛);k) induced by the action of Γ on �휋�푛 (�푋).

After this preparation we now prove the proposition. We will show by induction over �푛 that each

of the homology groups �퐻∗(�휏≤�푛�푋;k) lies in C. The initial case �푛 = 1 follows from the identification

�휏≤1�푋 ≃ �퐾 (�휋1 (�푋), 1) as a space with Γ-action. The homology groups �퐻�푞 (�퐾 (�휋1 (�푋), 1);k) lie in C by

property (iii) of equivariant Serre classes.

For the induction step, we use the above Serre spectral sequence and again use property (iii) of

equivariant Serre classes to see that �퐻�푞 (�퐾 (�휋�푛 (�푋), �푛);k) lies in C. By property (ii) the �퐸2-page of the

Serre spectral sequence also lies in C, so by Lemma 2.10 so does its abutment. �

We will only use the full strength of the previous lemma in Section 8. In all other applications �푋 is

in fact 1-connected, and in this case any action of Γ on �푋 up to homotopy can be replaced by a based

https://doi.org/10.1017/fms.2020.41 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.41


Forum of Mathematics, Sigma 9

action up to homotopy; that is, a homomorphism Γ → [�푋, �푋]∗ to the monoid of based homotopy

classes of based maps. In this case one may ignore the technical discussion about local systems and use

the ordinary Serre spectral sequence instead. It also allows one to apply the following converse result,

which will be used in Subsection 5.4 and Section 7.

Lemma 2.12. Let �푋 be a based 1-connected space with a based action of Γ up to homotopy. If all
Γ-modules �퐻�푖 (�푋;k) lie in C, so do all �휋�푖 (�푋) ⊗ k.

Proof. We will again use a Postnikov tower and will prove by induction over �푛 that each of the homotopy

groups �휋�푞 (�휏≤�푛�푋) ⊗ k lies in C. Because �휋�푛 (�푋) � �휋�푛 (�휏≤�푛�푋), this in particular proves the lemma.

For the induction step, we suppose that the homotopy groups �휋�푖 (�휏≤�푛−1�푋) ⊗ k lie in C for all �푖. By

the previous lemma it follows that each homology group �퐻�푖 (�휏≤�푛−1�푋;k) lies in C. Form the long exact

sequence of homotopy groups for the pair (�휏≤�푛−1�푋, �푋), we obtain an isomorphism of abelian groups

�휋�푛+1 (�휏≤�푛−1�푋, �푋)
�

−→ �휋�푛 (�푋),

and because �푋 → �휏≤�푛−1�푋 is an �푛-connected map between 1-connected spaces, the Hurewicz theorem

gives us an isomorphism

�휋�푛+1 (�휏≤�푛−1�푋, �푋) ⊗ k
�

−→ �퐻�푛+1(�휏≤�푛−1�푋, �푋;k).

It thus suffices to prove that �퐻�푛+1(�휏≤�푛−1�푋, �푋;k) lies in C. This follows from the long exact sequence of

a pair

· · · → �퐻�푛+1(�푋;k) → �퐻�푛+1(�휏≤�푛−1�푋;k) → �퐻�푛+1(�휏≤�푛−1�푋, �푋;k) → �퐻�푛 (�푋;k) → · · · ,

by property (i) of equivariant Serre classes and the fact that the homology groups �퐻∗(�푋;k) and

�퐻∗(�휏≤�푛−1�푋;k) lie in C. �

If one is interested in cohomology instead of homology, one should impose a further axiom on the

Serre class C: that it is closed under k-linear duals in a derived sense. Specifically, we impose that

(iv) �퐴 ∈ C if and only if Homk (�퐴,k) ∈ C and Ext1
k
(�퐴,k) ∈ C.

The following will also be used in Subsection 5.4 and Section 7.

Lemma 2.13. Let C be an equivariant Serre class that also satisfies property (iv). Let �푋 be a space with
an action of Γ up to homotopy. Then all k[Γ]-modules �퐻�푖 (�푋;k) lie in C if and only if all �퐻�푖 (�푋;k) do.

Proof. The universal coefficient theorem gives a natural short exact sequence

0 −→ Ext1
k
(�퐻�푖−1(�푋;k),k) −→ �퐻�푖 (�푋;k) −→ Homk (�퐻�푖 (�푋;k),k) −→ 0.

The result follows from property (i) of equivariant Serre classes along with the additional property (iv).

�

2.2.1. gr-algebraic representations

The first equivariant Serre class is that of �푔�푟-algebraic representations:

Lemma 2.14. TheQ[Γ]-modules that are �푔�푟-algebraic representations form an equivariant Serre class
satisfying the additional property (iv).

Proof. Property (i) is Lemma 2.5 (a), (b) and (c), and property (iv) is (d). Property (ii) is Lemma 2.5 (e).

Property (iii) follows by dualization, which is allowed by property (18), from the identification of the

cohomology �퐻∗(�퐾 (�퐴, �푛);Q) with the free graded-commutative algebra on (�퐴 ⊗ Q)∨ [�푛], as an algebra

in Q[Γ]-modules. �
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Thus, the hypotheses of Lemmas 2.10, 2.11, 2.12 and 2.13 hold when we take k = Q and C to be the

�푔�푟-algebraic representations.

One way in which a space with a Γ-action can arise is as the universal cover �푌 〈�푒〉 of a based path-

connected space�푌 having �휋1 (�푌, �푦0) � Γ. The Torelli spaces we will be studying arise similarly as covers

�푌 〈�퐽〉 corresponding to a normal subgroup �퐽 ⊳ Γ given by the kernel of a homomorphism Γ → �퐺; that

is, the homotopy fibre of the composition �푌 → �퐵Γ → �퐵�퐺.

Lemma 2.15. In this situation, suppose that �푔 ≥ 2, each �퐺-representation �퐻�푖 (�퐽;Q) is algebraic,
and each Γ-representation �퐻�푖 (�푌 〈�푒〉;Q) is �푔�푟-algebraic. Then each �퐺-representation �퐻�푖 (�푌 〈�퐽〉;Q) is
algebraic.

Proof. Naturality of the Serre spectral sequence implies that

�퐸
�푝,�푞

2
= �퐻 �푝 (�퐽;�퐻�푞 (�푌 〈�푒〉)) =⇒ �퐻 �푝+�푞 (�푌 〈�퐽〉)

is a spectral sequence of�퐺-representations. As long as �푔 ≥ 2, we may apply Lemma 2.7 and Theorem 2.2

to obtain the conclusion. �

2.2.2. Nilpotent modules

The second equivariant Serre class we will consider is that of nilpotent Γ-modules that are finitely

generated as abelian groups.

Definition 2.16. For a group Γ, a Γ-module (i.e., Z[Γ]-module) �푀 is said to be nilpotent if it has a finite

filtration by sub-Γ-modules whose associated graded is a trivial Γ-module (i.e., has trivial Γ-action).

Lemma 2.17. The Z[Γ]-modules that are finitely generated as abelian groups and nilpotent as Γ-
modules form an equivariant Serre class.

Proof. Property (i) is straightfoward.

Now consider property (ii). Let 0 ⊂ �퐹0 (�퐴) ⊂ �퐹1 (�퐴) ⊂ · · · ⊂ �퐹�푝 (�퐴) = �퐴 be a finite filtration of �퐴

by Z[Γ]-modules such that each �퐹�푖 (�퐴)/�퐹�푖−1(�퐴) has a trivial Γ-action. Choose a resolution �퐵∗ → �퐵 by

Z[Γ]-modules that are free as abelian groups and form the filtered chain complex {�퐹�푖 (�퐴) ⊗ �퐵∗}. This

gives a spectral sequence of Z[Γ]-modules

�퐼�퐸1
�푝,�푞 = TorZ�푝+�푞 (�퐹�푞 (�퐴)/�퐹�푞−1 (�퐴), �퐵) ⇒ TorZ�푝+�푞 (�퐴, �퐵)

Similarly, letting 0 ⊂ �퐹0 (�퐵) ⊂ �퐹1 (�퐵) ⊂ · · · ⊂ �퐹�푟 (�퐵) = �퐵 be a finite filtration whose filtration quotients

have trivial Γ-action and �푄∗ → �퐹�푞 (�퐴)/�퐹�푞−1 (�퐴) be a resolution by free Z-modules gives a spectral

sequence of Z[Γ]-modules

�퐼 �퐼�퐸1
�푠,�푡 = TorZ�푠+�푡 (�퐹�푞 (�퐴)/�퐹�푞−1 (�퐴), �퐹�푡 (�퐵)/�퐹�푡−1(�퐵)) ⇒ TorZ�푠+�푡 (�퐹�푞 (�퐴)/�퐹�푞−1(�퐴), �퐵).

Now the groups �퐼 �퐼�퐸1
�푠,�푡 are finitely generated and have trivial Γ-action, so by property (i) each �퐼�퐸1

�푝,�푞

is finitely generated and has a nilpotent Γ-action, and by property (i) again each TorZ�푖 (�퐴, �퐵) is finitely-

generated and has a nilpotent Γ-action, as required.

For property (iii), we instead prove property (iii’) and invoke Lemma 2.9. We prove this by induction

over the length �푚 of the filtration 0 ⊂ �퐹0 (�퐴) ⊂ · · · �퐹�푚 (�퐴) = �퐴. In the initial case �푚 = 0, the action of

Γ on �퐴 is trivial and the result follows. For the induction step, we apply the Serre spectral sequence to

the fibration sequence

�퐾 (�퐹�푚−1(�퐴), 1) −→ �퐾 (�퐴, 1) −→ �퐾 (�퐴/�퐹�푚−1(�퐴), 1).
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The �퐸2-page is given by �퐸2
�푝,�푞 = �퐻�푝 (�퐾 (�퐴/�퐹�푚−1 (�퐴), 1);�퐻�푞 (�퐾 (�퐹�푚−1(�퐴), 1));Z), which are naturally

an extension of the Γ-modules

Tork1 (�퐻�푝−1(�퐾 (�퐴/�퐹�푚−1(�퐴), 1);Z), �퐻�푞 (�퐾 (�퐹�푚−1(�퐴), 1);k)) and

�퐻�푝 (�퐾 (�퐴/�퐹�푚−1(�퐴), 1) ⊗k �퐻�푞 (�퐾 (�퐹�푚−1(�퐴), 1);Z).

These are in C by property (ii), and hence so is the abutment by property (i). �

Thus, the hypotheses of Lemmas 2.10, 2.11 and 2.12 hold when we take k = Z and C to be

the nilpotent Γ-modules that are finitely generated as abelian groups. Furthermore, the hypothesis of

Lemma 2.13 holds by the following:

Lemma 2.18. Let C be the class of Z[Γ]-modules that are finitely generated as abelian groups and
nilpotent as Γ-modules. Then property (iv) holds.

Proof. We need to verify that �퐴 ∈ C if and only if HomZ(�퐴,Z) ∈ C and Ext1
Z
(�퐴,Z) ∈ C. Suppose first

that �퐴 ∈ C. There is a natural short exact sequence

0 −→ tors(�퐴) −→ �퐴 −→ �퐴/tors(�퐴) −→ 0,

of Z[Γ]-modules from which one obtains natural isomorphisms

HomZ(�퐴,Z)
�

−→ HomZ(�퐴/tors(�퐴),Z), Ext1Z (�퐴,Z)
�

−→ Ext1Z(tors(�퐴),Z).

Thus, it suffices to prove the result separately for the Z[Γ]-modules that are torsion or are free as abelian

groups.

First suppose �퐴 is torsion. We will use the fact that the functor Ext1
Z
(−,Z) is exact on torsion abelian

groups. A finite filtration 0 ⊂ �퐹0 (�퐴) ⊂ �퐹1 (�퐴) ⊂ · · · ⊂ �퐹�푝 (�퐴) = �퐴 by Z[Γ]-modules such that each

�퐹�푖 (�퐴)/�퐹�푖−1(�퐴) has a trivial Γ-action gives a collection of short exact sequences

0 → Ext1Z(�퐹�푖 (�퐴)/�퐹�푖−1(�퐴),Z) → Ext1Z(�퐹�푖 (�퐴),Z) → Ext1Z(�퐹�푖−1 (�퐴),Z) → 0,

where the left term has a trivial Γ-action. By applying property (i) we can then inductively prove that

Ext1
Z
(�퐹�푖 (�퐴),Z) is a nilpotent Γ-module, so Ext1

Z
(�퐴,Z) = Ext1

Z
(�퐹�푝 (�퐴),Z) is too.

Next suppose �퐴 is free and finitely generated. We will use the fact that HomZ(−,Z) is exact on free

and finitely generated abelian groups. Applying HomZ(−,Z) to the filtration as before, we get short

exact sequences

0 → HomZ(�퐹�푖 (�퐴)/�퐹�푖−1(�퐴),Z) → HomZ(�퐹�푖 (�퐴),Z) → HomZ(�퐹�푖−1 (�퐴),Z) → 0,

where the left term has a trivial Γ-action. This again shows inductively that Hom(�퐹�푖 (�퐴),Z) is a nilpotent

Γ-module, so HomZ(�퐴,Z) = HomZ(�퐹�푝 (�퐴),Z) is too.

For the reverse direction, supposing HomZ(�퐴,Z) ∈ C and Ext1
Z
(�퐴,Z) ∈ C, it suffices to prove that

tors(�퐴) and �퐴/tors(�퐴) lie in C. Now use the natural isomorphisms

tors(�퐴) � Ext1Z(Ext1Z(�퐴,Z),Z), �퐴/tors(�퐴) � HomZ(HomZ (�퐴,Z),Z),

and apply the same arguments as above. �

3. Spaces of self-embeddings

Diffeomorphisms of the manifold �푊�푔 := #�푔�푆
�푛 × �푆�푛 relative to an open neighbourhood of a disc �퐷2�푛

are the same as diffeomorphisms of �푊�푔,1 = #�푔�푆
�푛 × �푆�푛 \ int(�퐷2�푛) relative to an open neighbourhood

of its boundary �휕�푊�푔,1 � �푆2�푛−1. We shall study diffeomorphisms of �푊�푔,1 by thinking of them as self-

embeddings.
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3.1. The Weiss fibration sequence

A diffeomorphism of �푊�푔,1 fixing a neighbourhood of the boundary pointwise is the same as a self-

embedding �푊�푔,1 ↩→ �푊�푔,1 fixing a neighbourhood of the boundary pointwise. We shall relax this

boundary condition, and to do so fix an embedded disc �퐷2�푛−1 ⊂ �휕�푊�푔,1.

Definition 3.1. Let Emb�1/2�휕
(�푊�푔,1) be the group-like topological monoid of embeddings �푊�푔,1 ↩→ �푊�푔,1

that fix a neighbourhood of �퐷2�푛−1 ⊂ �휕�푊�푔,1 pointwise and are isotopic through such embeddings to

a diffeomorphism of �푊�푔,1 fixing a neighbourhood of �휕�푊�푔,1 pointwise. These are topologised in the

�퐶∞-topology.

The Weiss fibration sequence, implicit in [53], takes the form

�퐵Diff�휕 (�퐷
2�푛) −→ �퐵Diff�휕 (�푊�푔,1) −→ �퐵Emb�1/2�휕 (�푊�푔,1). (3)

In [33, Theorem 4.17] it was proven that this fibration sequence may be delooped once. In other words, (3)

is a principal �퐵Diff�휕 (�퐷
2�푛)-bundle. Its base is then �퐵2Diff�휕 (�퐷

2�푛), obtained by delooping �퐵Diff�휕 (�퐷
2�푛)

using its �퐸2�푛-algebra structure given by boundary connect-sum (see Remark 3.2 below).

We will prove algebraicity properties for �퐵Diff�휕 (�푊�푔,1) by first proving them for �퐵Emb�1/2�휕
(�푊�푔,1)

and leveraging (3). In this section we set up the background necessary to implement this strategy, which

will then be done in the remaining sections of this article.

Remark 3.2. This �퐸2�푛-structure is well known: one construction is given in [30, Lemma 6.1]. We will

have use for a version of this �퐸2�푛-algebra structure for moduli spaces of manifolds with tangential

structure, so we outline a construction.

Our preferred model for �퐵Diff�휕 (�퐷
2�푛) is the moduli spaceM�휕 (�퐷

2�푛) of submanifolds of �퐷2�푛 × R∞

that (i) coincide with �퐷2�푛 × {0} on an open neighbourhood of �휕�퐷2�푛 × R∞ and (ii) are diffeomorphic

to �퐷2�푛 rel boundary (see [19, Section 2] for details on the topology). Our preferred model for the �퐸2�푛-

operad is the little 2�푛-discs operad D2�푛, whose space D�푛 (�푟) of �푟-ary operations consists of ordered

�푟-tuples �푒 = (�푒1, . . . , �푒�푟 ) of embeddings �퐷2�푛 ↩→ �퐷2�푛 with disjoint interior that are each a composition

of translation and dilation.

The structure maps of the D2�푛-algebra structure on M�휕 (�퐷
2�푛) are then given as follows: given

(�푒; �푋1, . . . , �푋�푟 ) ∈ D2�푛 (�푟) ×M�휕 (�퐷
2�푛)�푟 we define a new element �푋 ofM�휕 (�퐷

2�푛) by ‘inserting �푋�푖 on

the image of the �푖th disc’. That is, the submanifold determined by

�푋 ∩ (�푒�푖 (�퐷
2�푛) × R∞) = (�푒�푖 × idR∞ ) (�푋�푖) for �푖 = 1, . . . , �푟,

�푋 ∩ (�퐷2�푛 \ ∪�푟
�푖=1�푒�푖 (�퐷

2�푛) × R∞) = (�퐷2�푛 × {0}) ∩ (�퐷2�푛 \ ∪�푟
�푖=1�푒�푖 (�퐷

2�푛) × R∞).

3.2. The group of path components

We start with a computation of the group of path components of Emb�1/2�휕
(�푊�푔,1). This will take the form

of a short exact sequence of groups as in (1). Recall from the introduction the homomorphism

�훼�푔 : Diff�휕 (�푊�푔,1) −→ �퐺�푔 ≔

{
Sp2�푔 (Z) if �푛 is odd,

O�푔,�푔 (Z) if �푛 is even,

recording the action of a diffeomorphism on the middle-dimensional homology group �퐻�푛 (�푊�푔,1;Z).
This lands in the symplectic or orthogonal group because the middle homology is equipped with a non-

degenerate (−1)�푛-symmetric intersection form. The intersection form is also equipped with a quadratic

refinement, given by counting self-intersections of embedded spheres representing �푛-dimensional

homology classes (see, e.g., [50, Theorem 5.2] or [20, Section 5] for details of its construction). This

quadratic refinement contains no further information unless �푛 is odd but not 1, 3, 7, in which case in
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terms of the standard hyperbolic basis �푒1, �푓1, �푒2, �푓2, . . . , �푒�푔, �푓�푔 of �퐻�푛 (�푊�푔,1;Z) � Z2�푔 it is given by

�푔∑

�푖=1

�푋�푖�푒�푖 + �푌�푖 �푓�푖 ↦−→

�푔∑

�푖=1

�푋�푖�푌�푖 ∈ Z/2. (4)

It follows from the work of Kreck [32], Theorem 3.3 below, that for 2�푛 ≥ 6, the image �퐺 ′
�푔 of �훼�푔 is

�퐺 ′
�푔 =





Sp2�푔 (Z) if �푛 is 1, 3, or 7,

Sp
�푞

2�푔
(Z) if �푛 is odd but not 1, 3, or 7,

O�푔,�푔 (Z) if �푛 is even,

where Sp
�푞

2�푔
(Z) ≤ Sp2�푔 (Z) is the proper subgroup of symplectic matrices that preserve the quadratic

form (4). (This was presumably known earlier and, as the referee pointed out, may be deduced by

combining [49, Lemma 10] with [14, Corollaire 1] and the fact that �푊�푔s have trivial inertia groups for

�푛 ≥ 3 [48, Theorem] [29, Corollary 3.2].) We will write �퐻�푛 ≔ �퐻�푛 (�푊�푔,1;Z).
The kernel of �훼�푔 was also determined by Kreck [32, Theorem 2].

Theorem 3.3 (Kreck). For 2�푛 ≥ 6, the mapping class group Γ�푔 ≔ �휋0 (Diff�휕 (�푊�푔,1)) is described by
the pair of extensions

1 −→ �퐼�푔 −→ Γ�푔

�훼�푔

−→ �퐺 ′
�푔 −→ 1,

1 −→ Θ2�푛+1 −→ �퐼�푔
�휒

−→ Hom(�퐻�푛, �푆�휋�푛 (�푆�푂 (�푛))) −→ 1.

Let us explain the groups and homomorphisms in Theorem 3.3 (the reference for the following

discussion is [32, Section 2], but see [31] for a similar explanation as well as further information about

these extensions). Recall that �푊�푔,1 is given by the connected sum #�푔�푆
�푛 × �푆�푛 \ int(�퐷2�푛) and hence has a

standard handle decomposition with a single 0-handle and 2�푔 �푛-handles. Let us introduce terminology

for the cores of the �푛-handles. Writing �푆�푛 = �퐷�푛/�푆�푛−1, we may assume that the connected sums are

performed along discs in �푆�푛 × �푆�푛 avoiding the subsets �푆�푛 × {0} and {0} × �푆�푛. Similarly, we may assume

that the disc that is removed from #�푔�푆
�푛×�푆�푛 is disjoint from these subsets. We call the 2�푔 subsets of�푊�푔,1

obtained from the subsets �푆�푛×{0} and {0}×�푆�푛 the standard cores. These come in pairs, which intersect

transversally in a single point, and we pick �푔 disjoint embedded arcs connecting these intersection points

to �휕�푊�푔,1. Up to isotopy, we may assume without loss of generality that all diffeomorphisms are the

identity on a neighbourhood of each of these arcs.

As a consequence of a result of Haefliger [25], each element �푓 ∈ �퐼�푔 is represented by a diffeomorphism

that fixes pointwise the 2�푔 standard cores. Let us choose orientation-preserving trivialisations �휏�푖 : �휈�푖 ⊕
R � �퐶�푖 ×R

�푛+1, 1 ≤ �푖 ≤ 2�푔, of the once-stabilised normal bundles of each of these cores. The derivative

of �푓 gives 2�푔 elements

[�휏�푖 ◦ (�퐷 �푓 |�휈�푖 ⊕ id) ◦ �휏−1
�푖 ] ∈ �휋�푛 (�푆�푂 (�푛 + 1)),

each of which is in the image of �휋�푛 (�푆�푂 (�푛)) under stabilisation. Because the cores represent a basis

�푎1, . . . , �푎2�푔 of�퐻�푛, we can record this data as an element of Hom(�퐻�푛, �푆�휋�푛 (�푆�푂 (�푛))), with �푆�휋�푛 (�푆�푂 (�푛)) ≔
im(�휋�푛 (�푆�푂 (�푛)) → �휋�푛 (�푆�푂 (�푛 + 1))) as given in Table 1. Kreck shows that this is independent of the

choices of trivialisations �휏�푖 and gives a homomorphism

�휒 : �퐼�푔 −→ Hom(�퐻�푛, �푆�휋�푛 (�푆�푂 (�푛))).

An element in the kernel of �휒 can be represented by a diffeomorphism that is the identity on

an open neighbourhood of each of the standard cores in addition to open neighbourhoods of each

of the aforementioned arcs. Thus, it is supported in a disc and hence represented by an element of
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Table 1. ([32, p. 644]) The abelian groups �푆�휋�푛 (�푆�푂 (�푛)) for �푛 ≥ 2, with the exception that �푆�휋6 (�푆�푂 (6)) = 0.

�푛 (mod 8) 0 1 2 3 4 5 6 7

�푆�휋�푛 (�푆�푂 (�푛)) (Z/2)2 Z/2 Z/2 Z Z/2 0 Z/2 Z

�휋0 (Diff�휕 (�퐷
2�푛)), which is identified with the group Θ2�푛+1 of homotopy (2�푛 + 1)-spheres. Finally, Kreck

proved that the homomorphism Θ2�푛+1 → �퐼�푔 is injective.

We use this to study the groupΛ�푔 ≔ �휋0 (Emb�1/2�휕
(�푊�푔,1)). By definition, the inclusion Diff�휕 (�푊�푔,1) →

Emb�1/2�휕
(�푊�푔,1) is surjective on �휋0 and there is a commutative diagram

Γ�푔 Λ�푔

�퐺 ′
�푔 .

�훼�푔 �훽�푔

We conclude that the homomorphism Λ�푔 → �퐺 ′
�푔 is surjective. By (3), the kernel of the homomorphism

Γ�푔 → Λ�푔 is Θ2�푛+1. Writing �퐽�푔 ≔ Hom(�퐻�푛, �푆�휋�푛 (�푆�푂 (�푛))), we conclude that there is a short exact

sequence of groups as in (1):

1 −→ �퐽�푔 −→ Λ�푔 −→ �퐺 ′
�푔 −→ 1. (5)

3.3. Recollection of embedding calculus

Embedding calculus is a method to study spaces of embeddings via a tower of approximations, whose

layers can be described in homotopy-theoretic terms. Our exposition mostly follows [2] but also refers to

the older paper [51, 52]. Though some of the theorems in these papers are stated for manifolds without

boundary, they also hold with boundary per [2, Section 9] and [51, Section 10]. Other models for the

embedding calculus Taylor tower can be found in [23, 47, 3].

3.3.1. The embedding calculus Taylor tower

Fix two �푑-dimensional manifolds �푀 and �푁 with the same boundary �휕�푀 = �퐾 = �휕�푁 . Then the space

Emb�퐾 (�푀, �푁) is the value on �푁 of a continuous functor Emb�퐾 (−, �푁) : Mfd
op

�푑,�퐾
→ Top (with the weak

�퐶∞-topology; cf. [2, Section 1.2]). Here Mfd�푑,�퐾 is the category enriched in topological spaces with

objects given by �푑-dimensional smooth manifolds having a boundary identified with �퐾 and morphisms

given by spaces of embeddings rel boundary, and Top is the enriched category of spaces. The category

Mfd�푑,�퐾 admits a collection of Grothendieck topologies J�푘 for �푘 ≥ 1; in J�푘 a collection {�푈�푖} of open

subsets of �푀 is a cover if every subset of the interior of �푀 of cardinality ≤ �푘 is contained in some �푈�푖 .

The �푘th Taylor approximation �푇�푘 (Emb�퐾 (−, �푁)) is the homotopy sheafification of the presheaf

Emb�퐾 (−, �푁) with respect to J�푘 . This means that up to homotopy it is the best approximation to

Emb�퐾 (�푀, �푁) built out of the restrictions of embeddings to ≤ �푘 discs in �푀 and hence is explicitly given

by a right homotopy Kan extension (cf. [2, Definition 4.2]): �푇�푘 (Emb�퐾 (�푀, �푁)) is the derived mapping

space, with respect to the objectwise weak equivalences

RmapPSh(Disc≤�푘,�퐾 ) (Emb�퐾 (−, �푀),Emb�퐾 (−, �푁)) (6)

between the objects Emb�퐾 (−, �푀) and Emb�퐾 (−, �푁) of the topological category of space-valued

presheaves on the full subcategory Disc≤�푘,�퐾 ⊂ Mfd�푑,�퐾 on �푑-dimensional manifolds diffeomorphic

rel boundary to a disjoint union of ≤ �푘 discs and a collar on �퐾 . Derived mapping spaces are only well

defined up to homotopy; if we need a point-set model we can pick the Dwyer–Kan mapping spaces [16,

3.1] or pick cofibrant-fibrant replacements in the projective model structure of [2, Section 3.0.1] and

take the strict mapping space. By [16, Corollary 4.7] these are equivalent.
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Because every J�푘 -cover is a J�푘−1-cover, there is a Taylor tower [2, Section 3.1]

...

Emb�퐾 (�푀, �푁) �푇�푘 (Emb�퐾 (�푀, �푁))

�푇�푘−1 (Emb�퐾 (�푀, �푁))

...

starting at �푇1 (Emb�퐾 (�푀, �푁)).
Using Goodwillie’s multiple disjunction results [21], Goodwillie–Weiss [24] and Goodwillie–Klein

[22] proved that if the handle dimension ℎ of �푀 rel �퐾 satisfies ℎ ≤ �푑 − 3, then the map

Emb�퐾 (�푀, �푁) −→ holim
�푘→∞

�푇�푘 (Emb�퐾 (�푀, �푁))

is a weak equivalence. More precisely, Emb�퐾 (�푀, �푁) → �푇�푘 (Emb�퐾 (�푀, �푁)) is (−(ℎ−1) + �푘 (�푑−2− ℎ))-
connected by [24, Corollary 2.5]. Strictly speaking, their results apply to an older model [51, p. 84] of the

embedding calculus tower, but by [2, Proposition 8.3] that model is equivalent to the one described here.

In the case �푀 = �푁 , the space Emb�퐾 (�푀) ≔ Emb�퐾 (�푀, �푀) has a composition law making it

into a topological monoid and in particular an �퐻-space with strict unit given by the identity map.

The functoriality of the above construction makes the Taylor tower into a tower of �퐻-spaces with

units up to homotopy. More precisely, up to homotopy there is a well-defined composition of derived

mapping spaces of objects in PSh(Disc≤�푘,�퐾 ) as in (6); taking �푀 = �푁 gives the multiplication of the

�퐻-space structure with unit up to homotopy. Furthermore, restriction gives a functor PSh(Disc≤�푘,�퐾 ) →
PSh(Disc≤�푘−1,�퐾 ); this induces a map �푇�푘 (Emb�퐾 (�푀)) → �푇�푘−1 (Emb�퐾 (�푀)) of �퐻-spaces with units up

to homotopy. In fact, if one is willing to pick models one can use the Dwyer–Kan mapping spaces of

[16] to make the tower one of unital topological monoids.

3.3.2. The layers

Fixing an embedding �휄 : �푀 → �푁 , we obtain a base point in each approximation �푇�푘 (Emb�퐾 (�푀, �푁)),
which we call �푇�푘 (�휄). We now describe more explicitly the layers

�퐿�푘 (Emb�퐾 (�푀, �푁)�휄) ≔





�푇1 (Emb�퐾 (�푀, �푁)) if �푘 = 1,

hofib
�푇�푘−1 ( �휄)

[�푇�푘 (Emb�퐾 (�푀, �푁)) → �푇�푘−1 (Emb�퐾 (�푀, �푁))] if �푘 ≥ 2.

The first layer �푇1 (Emb�퐾 (�푀, �푁)) is given by formal immersions: it is the space Bun�퐾 (�푇�푀,�푇�푁)
of bundle maps �푇�푀 → �푇�푁 that are the identity near �퐾 . This follows from [2, Proposition 7.6]. By

definition, Bun�퐾 (�푇�푀,�푇�푁) is independent of the base point �휄, so we shall write �퐿1 (Emb�퐾 (�푀, �푁))
instead of �퐿1 (Emb�퐾 (�푀, �푁)�휄).

For �푘 ≥ 2, the �푘th layer is weakly equivalent to the relative section space of a particular locally

trivial fibre bundle built from configuration spaces, which we will now describe. Let �푘 ≔ {1, . . . , �푘}
and consider the ordered configuration space Emb(�푘, �푁) of �푘 points in �푁 . For each �퐼 ⊂ �퐽 ⊂ �푘 there is

a forgetful map Emb(�푘 \ �퐼, �푁) → Emb(�푘 \ �퐽, �푁). We can combine these into a cubical diagram

Emb(�푘 \ �퐼, �푁) ∈ Top
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We will consider a space of sections of a fibre bundle whose fibres are homeomorphic to total

homotopy fibres of this cubical diagram taken over certain base points; this is the homotopy fibre of the

map

holim∅≠�퐼 ⊂�푘Emb(�푘 \ �퐼, �푁) (7)

over a certain base point. To see it is natural in �푁 , we use an explicit model for the total homotopy fibre

of this cubical diagram [39, Proposition 5.5.8].

Definition 3.4. The total homotopy fibre tohofib�퐼 ⊂�푥�푘Emb(�푘 \ �퐼, �푁) over an ordered configuration

�푥�푘 = (�푥1, . . . , �푥�푘 ) ∈ Emb(�푘, �푁) consists of collections of continuous maps

{
[0, 1]�푘\�퐼

�푓�퐼
−→ Emb(�퐼, �푁)

}

�퐼 ⊂�푘

that satisfy

(i) for each �퐼 ⊂ �퐽, extension by zero gives an inclusion [0, 1]�푘\�퐽 ↩→ [0, 1]�푘\�퐼 , and the following

diagram should commute:

[0, 1]�푘\�퐽 [0, 1]�푘\�퐼

Emb(�퐽, �푁) Emb(�퐼, �푁),

�푓�퐽 �푓�퐼

(ii) for each �퐼, if �푑 ∈ [0, 1]�푘\�퐼 has at least one entry equal to 1, then �푓�퐼 (�푑) (�푖) = �푥�푖 for all �푖 ∈ �푘 \ �퐼.

This is topologised as a subspace of the product
∏

�퐼 ⊂�푘 map([0, 1]�푘\�퐼 ,Emb(�퐼, �푁)) of mapping spaces

with the compact-open topology. A basepoint is given by the collection of maps { �푓�퐼 } satisfying

�푓�퐼 (�푑) (�푖) = �푥�푖 for all �푑 ∈ [0, 1] �퐼 and �푖 ∈ �푘 \ �퐼.

These are the fibres of a space over Emb(�푘, �푁).

Definition 3.5. Let �̃푍�푘 (�푁) be the subspace of those collections of maps

{
[0, 1]�푘\�퐼

�푔�퐼
−→ Emb(�퐼, �푁)

}

�퐼 ⊂�푘

in
∏

�퐼 ⊂�푘 map([0, 1]�푘\�퐼 ,Emb(�퐼, �푁)) that satisfy conditions (i) and (ii) of Definition 3.4 for some config-

uration �푥�푘 ∈ Emb(�푘, �푁).
There is a map

�푡id�푘 : �̃푍�푘 (�푁) −→ Emb(�푘, �푁)

given by mapping (�푔�퐼 )�퐼 ⊂�푘 to the unique �푥�푘 of condition (ii).

By the isotopy extension theorem, the map �푡id
�푘

is a locally trivial fibre bundle, with the total homotopy

fibres of Definition 3.4 as its fibres. It has a section �푠id
�푘

given by sending �푥�푘 to the base point in the

corresponding fibre, so that we have constructed a bundle with section

�̃푍�푘 (�푁) Emb(�푘, �푁).
�푡 id
�푘

�푠id
�푘

The permutation action of the symmetric group �픖�푘 on Emb(�푘, �푁) naturally extends to an action on

the total space �̃푍�푘 (�푁) as follows: a permutation of �푘 sends the total homotopy fibre of �푥�푘 to that over
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�푥�휎 (�푘) by simultaneously acting on the indexing sets and the domains of the embeddings. For brevity we

shall use the notation

�퐶�푘 (�푁) ≔ Emb(�푘, �푁)/�픖�푘 and �푍�푘 (�푁) ≔ �̃푍�푘 (�푁)/�픖�푘

for the quotients. The maps �푡�푘 and �푠id
�푘

are equivariant for these actions, so we may take the quotient by

the �픖�푘 -action to get another locally trivial fibre bundle with the same fibres and a section

�푍�푘 (�푁) �퐶�푘 (�푁).
�푡 id
�푘

�푠id
�푘

Finally, pulling this bundle back along the map �휄∗ : �퐶�푘 (�푀) → �퐶�푘 (�푁) induced by an embedding

�휄 : �푀 → �푁 we get a locally trivial fibre bundle with section

�휄∗�푍�푘 (�푁) �퐶�푘 (�푀).
�푡 �휄
�푘

�푠 �휄
�푘

We can think of �퐶�푘 (�푀) as a subspace of �푀�푘/�픖�푘 and demand that sections satisfy properties on open

neighbourhoods of subsets of �푀�푘/�픖�푘 . Given a section �푠 : �퐶�푘 (�푀) → �휄∗�푍�푘 (�푁), we let supp(�푠) ⊂ �퐶�푘 (�푀)
be the closure of the subset where �푠 ≠ �푠 �휄

�푘
. If the inverse image of �퐶�푘 (�푀) \ supp(�푠) in �푀�푘 contains an

open neighbourhood of

Δ�휕 ≔

{
(�푥1, . . . , �푥�푘 ) ∈ �푀�푘

����
�푥�푖 = �푥 �푗 for some �푖 ≠ �푗

or �푥�푖 ∈ �퐾 for some �푖

}
,

we say that ‘�푠 is equal to �푠 �휄
�푘

near the fat diagonal or when at least one particle is near �퐾 .’ The following

appears in [51, Theorem 9.2] (with the necessary modifications for boundary conditions explained in [51,

Section 10], in particular [51, Example 10.3]). A homotopy-equivalent way of phrasing the boundary

condition is given in Subsection 5.3.

Proposition 3.6. The homotopy fibre

hofib�푇�푘−1 ( �휄) [�푇�푘 (Emb�퐾 (�푀, �푁)) −→ �푇�푘−1 (Emb�퐾 (�푀, �푁))]

is weakly equivalent to the space of sections of the pullback bundle (�휄)∗�푍�푘 (�푁) → �퐶�푘 (�푀), which equal
�푠 �휄
�푘

near the fat diagonal or when at least one particle is near �퐾 .

From (6), it is clear that the embedding calculus tower is natural, with respect to embeddings relative

to the boundary �퐾 , in the variables �푀 and �푁 . As a consequence, the layers �퐿�푘 (Emb�퐾 (�푀, �푁)) are

contravariantly functorial in �푀 and covariantly functorial in �푁:

�푓 : �푀 ′ ↩→ �푀  �퐿�푘 (Emb�퐾 (�푀 ′, �푁)�휄◦ �푓 )
�퐿�푘 ( �푓 )

∗

−−−−−−→ �퐿�푘 (Emb�퐾 (�푀, �푁)�휄),

�푔 : �푁 ↩→ �푁 ′
 �퐿�푘 (Emb�퐾 (�푀, �푁)�휄)

�퐿�푘 (�푔)∗
−−−−−→ �퐿�푘 (Emb�퐾 (�푀, �푁 ′)�푔◦ �휄).

We claim that these operations are induced by the naturality of the fibre bundles in �푀 and �푁 . Firstly,

given an embedding �푓 : �푀 ′ ↩→ �푀 that is the identity near �퐾 , we can pull back along �푓 to get a map of
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fibre bundles with section

(�휄 ◦ �푓 )∗�푍�푘 (�푁) �휄∗�푍�푘 (�푁)

�퐶�푘 (�푀
′) �퐶�푘 (�푀).

�푡
�휄◦ �푓
�푘

�푡 �휄
�푘

�푓∗

�푠
�휄◦ �푓
�푘

�푠 �휄
�푘

(8)

Secondly, given an embedding �푔 : �푁 ↩→ �푁 ′ that is the identity near �퐾 , there is a natural transformation

�푔∗ : Emb(−, �푁) ⇒ Emb(−, �푁 ′) that induces a map of fibre bundles with section

�휄∗�푍�푘 (�푁) (�푔 ◦ �휄)∗�푍�푘 (�푁
′)

�퐶�푘 (�푀) �퐶�푘 (�푀).

�푡 �휄
�푘

�푔∗

�푡
�푔◦�휄
�푘

id

�푠 �휄
�푘 �푠

�푔◦�휄
�푘

(9)

To see that these maps induce �퐿�푘 ( �푓 )
∗ and �퐿�푘 (�푔)∗, we need to trace through the arguments in [51].

To identify �퐿�푘 (�푔)∗, we observe that the classification of homogeneous functors as relative sections of

a fibration in [51, Theorem 8.5] as well as the identification of that fibration for the layers of a good

functor in [51, Proposition 9.1] naturally depends on the input functor, in this case Emb�퐾 (−, �푁). To

identify �퐿�푘 (�푔)∗, one observes that �푀 enters in these classification results through |I(�푘) |. This space and

its identification with Emb(�푘, �푀) in the proof of [51, Theorem 9.2] are natural in embeddings.

3.3.3. Applying embedding calculus to Wg,1

Embedding calculus as explained above does not directly apply to the space of self-embeddings

Emb�1/2�휕
(�푊�푔,1) because we are not working relative to the entire boundary. However, this is easily fixed

by removing those points that do not lie in the interior of the subset �퐷2�푛−1 ⊂ �휕�푊�푔,1. That is, following

Weiss [53], we shall apply embedding calculus to the noncompact manifold

�푊◦
�푔,1 ≔ �푊�푔,1 \ (�휕�푊�푔,1 \ int(�퐷2�푛−1)).

This manifold is isotopy equivalent to �푊�푔,1 rel �퐷2�푛−1, and by [33, Section 3.1], there is a homotopy

equivalence

Emb�1/2�휕 (�푊�푔,1) ≃ Emb��휕 (�푊
◦
�푔,1)

as topological monoids (as above, we use the weak �퐶∞-topology even when the manifolds involved are

noncompact). Often it is the case that replacing �푊�푔,1 by �푊◦
�푔,1

does not affect the homotopy type of

various mapping and section spaces as long as one works relative to �퐷2�푛−1. (Of course, it does when

one works with respect to the full boundary �휕�푊�푔,1 of �푊�푔,1.) Unless the difference is relevant for the

argument, we shall use the notation �푊�푔,1 for simplicity.

4. The first layer: bundle maps

The goal of this section is to prove Proposition 4.5, concerning the rational homotopy groups of the

first layer �퐿1 (Emb1/2�휕 (�푊�푔,1)). This first layer is given by the space Bun1/2�휕 (�푇�푊�푔,1) of bundle maps

�푇�푊�푔,1 → �푇�푊�푔,1 that are the identity near 1/2�휕�푊�푔,1 ⊂ �푊�푔,1 (cf. Section 3.3.2. Following Subsection

3.3.3, we implicitly replace �푊�푔,1 with �푊◦
�푔,1

to apply embedding calculus as described in Subsection

3.3.1.)

4.1. Trivialising the tangent bundle

The tangent bundle �푇�푊�푔,1 is trivialisable via an orientation-preserving isomorphism of vector bundles

that we denote �휏 : �푇�푊�푔,1 → �푊�푔,1 ×R
2�푛; this is not unique, even up to homotopy, so we shall keep track

of its effect.
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Let us denote an element of Bun1/2�휕 (�푇�푊�푔,1) by a pair ( �푓 , ℓ) of a continuous map �푓 : �푊�푔,1 → �푊�푔,1

and a bundle map ℓ : �푇�푊�푔,1 → �푇�푊�푔,1 covering it. The framing �휏 allows us to identify such data with

maps �푊�푔,1 → �푊�푔,1 × GL2�푛 (R), whose first component �푊�푔,1 → �푊�푔,1 is equal to the identity of �푊�푔,1

near 1/2�휕�푊�푔,1 and the second component �푊�푔,1 → GL2�푛 (R) is constant equal to id ∈ GL2�푛 (R) near
1/2�휕�푊�푔,1 . More precisely, there are homeomorphisms

�휅�휏 : Bun1/2�휕 (�푇�푊�푔,1)
�

−→ map1/2�휕 (�푊�푔,1,�푊�푔,1 × GL2�푛 (R))

( �푓 , ℓ) ↦−→
(
�푤 ↦→ ( �푓 (�푤), �휏 �푓 (�푤) ◦ ℓ�푤 ◦ �휏−1

�푤 )
)
,

(
(�푤, �푣) ↦→ ( �푓 (�푤), �휏−1

�푓 (�푤) ◦ �휆�푤 ◦ �휏�푤 (�푣)
)
←−[ ( �푓 , �휆)

(10)

where the subscript on the right-hand side indicates that the maps satisfy the boundary conditions

indicated above.

To prevent any confusion about the monoid structure used, we shall use ⊛ to denote the monoid

structure on the right-hand side, which corresponds to composition of bundle maps.

Lemma 4.1. Under the homeomorphism of (10), the monoid structure given by composition of bundle
maps is described on map1/2�휕 (�푊�푔,1,�푊�푔,1 × GL2�푛 (R)) by

( �푓 , �휆) ⊛ (�푔, �휌) = ( �푓 ◦ �푔, (�휆 ◦ �푔) · �휌),

where · denotes pointwise multiplication of maps �푊�푔,1 → GL2�푛 (R).

Proof. We have

�휅−1
�휏 ( �푓 , �휆) ◦ �휅−1

�휏 (�푔, �휌) =
(
(�푤, �푣) ↦→ ( �푓 (�푔(�푤)), �휏−1

�푓 (�푔 (�푤)) ◦ �휆�푔 (�푤) ◦ �휏�푔 (�푤) (�휏
−1
�푔 (�푤) ◦ �휌�푤 ◦ �휏�푤 (�푣)))

)

=

(
(�푤, �푣) ↦→ ( �푓 (�푔(�푤)), �휏−1

�푓 (�푔 (�푤)) ◦ �휆�푔 (�푤) ◦ �휌�푤 ◦ �휏�푤 (�푣))
)

= �휅−1
�휏 ( �푓 ◦ �푔, (�휆 ◦ �푔) · �휌).

�

4.2. The group of homotopy-invertible path components

Using this identification we can describe the group

Υ�푔 ≔ �휋0 (Bun1/2�휕 (�푇�푊�푔,1))
×

of homotopy-invertible path components under composition. Recall that �퐻�푛 is shorthand for

�퐻�푛 (�푊�푔,1;Z).

Lemma 4.2. The homeomorphism �휅�휏 induces an isomorphism of groups

(�휅�휏)∗ : Υ�푔 = �휋0 (Bun1/2�휕 (�푇�푊�푔,1))
× �

−→ GL(�퐻�푛) ⋉ Hom(�퐻�푛, �휋�푛 (�푆�푂 (2�푛))),

where GL(�퐻�푛) acts on Hom(�퐻�푛, �휋�푛 (�푆�푂 (2�푛))) by precomposition.

Proof. The homeomorphism �휅�휏 of (10) gives a bijection from �휋0 (Bun1/2�휕 (�푇�푊�푔,1)) to the set

�휋0 (map1/2�휕 (�푊�푔,1,�푊�푔,1)) × �휋0 (map1/2�휕 (�푊�푔,1,GL2�푛 (R))).

The homotopy equivalence of pairs (�푊�푔,1, 1/2�휕�푊�푔,1) ≃ (∨2�푔�푆
�푛, ∗) gives a weak equivalence of topolog-

ical monoids

map1/2�휕 (�푊�푔,1,�푊�푔,1) ≃ map∗(∨2�푔�푆
�푛,∨2�푔�푆

�푛).
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Thus, the first term may be identified with the monoid EndZ(�퐻�푛) of Z-module endomorphisms of �퐻�푛

under composition, by sending [ �푓 ] to the endomorphism �푓∗ : �퐻�푛 → �퐻�푛.

For the second term, we recall from Subsection 3.2 that the manifold �푊�푔,1 has 2�푔 standard cores �퐶�푖 ,

which give elements �푎�푖 of �퐻�푛 forming a basis. We may then identify �휋0 (map1/2�휕 (�푊�푔,1,GL2�푛 (R))) with

the set Hom(�퐻�푛, �휋�푛 (�푆�푂 (2�푛))), by sending [�휆] to the homomorphism uniquely determined by

�푎�푖 ↦−→ [�퐶�푖 ∋ �푥 ↦→ �휆�푥 ∈ GL2�푛 (R)] .

By Lemma 4.1, under these identifications the operation⊛ on the set EndZ (�퐻�푛)×Hom(�퐻�푛, �휋�푛 (�푆�푂 (2�푛)))
is given by

(�퐴, �훼) ⊛ (�퐵, �훽) = (�퐴 ◦ �퐵, �훼 ◦ �퐵 + �훽), (11)

where ◦ denotes the composition of endomorphisms of �퐻�푛 or of a homomorphism �퐻�푛 → �휋�푛 (�푆�푂 (2�푛))
with an endomorphism of �퐻�푛. An element (�퐴, �훼) is invertible with respect to ⊛ if and only if �퐴 is

(in which case its inverse is (�퐴−1,−�훼 ◦ �퐴−1)). We also read off from (11) that the group of invertible

elements is a semidirect product. �

The expression of Υ�푔 as a semidirect product as in Lemma 4.2 depends on the choice of trivialisation

�휏, but the ensuing description as an extension

1 −→ Hom(�퐻�푛, �휋�푛 (�푆�푂 (2�푛))) −→ Υ�푔 −→ GL(�퐻�푛) −→ 1

is independent of this choice. To see this, note that another trivialisation �휏′ differs from �휏 by an element

�휙 ∈ map1/2�휕 (�푊�푔,1, �푆�푂 (2�푛)), giving an element [�휙] ∈ Hom(�퐻�푛, �휋�푛 (�푆�푂 (2�푛))), and the isomorphism

(�휅�휏′)∗◦(�휅�휏)
−1
∗ is then given by conjugation by [�휙]. Such a conjugation is a nontrivial automorphism of the

group GL(�퐻�푛)⋉Hom(�퐻�푛, �휋�푛 (�푆�푂 (2�푛))), but it is trivial on the normal subgroup Hom(�퐻�푛, �휋�푛 (�푆�푂 (2�푛)))
(because this is abelian) and on the quotient GL(�퐻�푛) (where it becomes conjugation by the identity).

In these terms, let us describe the homomorphism

Λ�푔 = �휋0 (Emb�1/2�휕 (�푊�푔,1)) −→ Υ�푔 = �휋0 (Bun1/2�휕 (�푇�푊�푔,1))
×

induced by taking the derivative of a self-embedding.

Lemma 4.3. There is a commutative diagram with exact rows

1 �퐽�푔 = Hom(�퐻�푛, �푆�휋�푛 (�푆�푂 (�푛))) Λ�푔 �퐺 ′
�푔 1

1 Hom(�퐻�푛, �휋�푛 (�푆�푂 (2�푛))) Υ�푔 GL(�퐻�푛) 1,

where the left vertical map is induced by the stabilisation �푆�휋�푛 (�푆�푂 (�푛)) → �휋�푛 (�푆�푂 (2�푛)).

Proof. Because both homomorphisms Λ�푔 → �퐺 ′
�푔 and Υ�푔 → GL(�퐻�푛) are given by the action on the

middle-dimensional homology, we obtain a commutative square

Λ�푔 �퐺 ′
�푔

Υ�푔 GL(�퐻�푛).

Hence, the kernel of the top horizontal map gets sent to the kernel of the bottom horizontal map, and

we obtain a commutative diagram as in the statement.
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To understand the map between these kernels, we need to recall the surjection �휒 : �퐼�푔 →
Hom(�퐻�푛, �푆�휋�푛 (�푆�푂 (�푛))) following Theorem 3.3. Every element of �퐼�푔 can be represented by a diffeo-

morphism �푓 that fixes the cores �퐶�푖 pointwise, and after picking orientation-preserving trivialisations

�휏�푖 : �휈�푖 ×R
∼
→R�푛+1 of the once-stabilised normal bundles of the cores, �휒( �푓 ) is determined by sending the

basis element �푎�푖 ∈ �퐻�푛 to

[�휏�푖 ◦ (�퐷 �푓 |�휈�푖 × R) ◦ �휏
−1
�푖 ] ∈ �휋�푛 (�푆�푂 (�푛 + 1)).

The element in Hom(�퐻�푛, �휋�푛 (�푆�푂 (2�푛))) to which diffeomorphism �푓 is sent is determined by sending

the basis elements �푎�푖 ∈ �퐻�푛 to

[�휏 ◦ �퐷 �푓 |�퐶�푖
◦ �휏−1] ∈ �휋�푛 (�푆�푂 (2�푛)).

Adding a two-dimensional trivial bundle, we prove the following claim.

Claim. [(�휏 ◦ �퐷 �푓 |�퐶�푖
◦ �휏−1) × R2] ∈ �휋�푛 (�푆�푂 (2�푛 + 2)) is the (�푛 + 1)-fold stabilisation of [�휏�푖 ◦ (�퐷 �푓 |�휈�푖 ×

R) ◦ �휏−1
�푖 ] ∈ �휋�푛 (�푆�푂 (�푛 + 1)).

Proof. We will use the following two facts. Firstly, if two maps �푆�푛 → GL2�푛+2 (R) differ by pointwise

conjugation by a map �푆�푛 → GL2�푛+2 (R), they represent the same element of �휋�푛 (�푆�푂 (2�푛 + 2)) by a

Hilton–Eckmann argument. Secondly, if a map �퐺 : �푆�푛 → GL2�푛+2(R)) is given by

�푆�푛 ∋ �푥 ↦−→

[
id�푛+1 �훾(�푥)

0 �푔(�푥)

]
∈ GL2�푛+2 (R), (12)

with �푔 : �푆�푛 → GL�푛+1(R) and �훾 : �푆�푛 → Lin(R�푛+1,R�푛+1), then the homotopy class [�퐺] ∈ �휋�푛 (�푆�푂 (2�푛+2))
is equal to the (�푛 + 1)-fold stabilisation of the homotopy class [�푔] ∈ �휋�푛 (�푆�푂 (�푛 + 1)).

We now fix a trivialisation �휏�푖 that fits in a commutative diagram of short exact sequences of vector

bundles over �퐶�푖 ,

1 �푇�퐶�푖 × R �푇�푊�푔,1 × R
2 �휈�푖 × R 1

1 �퐶�푖 × R
�푛+1 �퐶�푖 × R

2�푛+2 �퐶�푖 × R
�푛+1 1.

� �̃휏�푖� �휏�푖�

Using the fact that �푓 fixes �퐶�푖 pointwise and hence is the identity on �푇�퐶�푖 , we see that [(�휏�푖 ◦ �퐷 �푓 |�퐶�푖
◦

�휏−1
�푖 )×R2] ∈ �휋�푛�푆�푂 (2�푛+2) is of the form (12), with �푔 = �휏�푖 ◦(�퐷 �푓 |�휈�푖 ×R) ◦�휏

−1
�푖 . This differs by conjugation

with (�휏×R2) ◦ �휏−1
�푖 from [(�휏 ◦�퐷 �푓 |�퐶�푖

◦ �휏−1) ×R2]. The claim then follows from the above two facts. �

Because the stabilisation homomorphism �휋�푛 (�푆�푂 (2�푛)) → �휋�푛 (�푆�푂 (2�푛 + 2)) is an isomorphism, this

implies that �퐽�푔 = Hom(�퐻�푛, �푆�휋(�푆�푂 (�푛))) → Hom(�퐻�푛, �휋�푛 (�푆�푂 (2�푛))) on generators is induced by the

map �푆�휋�푛 (�푆�푂 (�푛)) → �휋�푛 (�푆�푂 (2�푛)). �

To understand better the homomorphism Λ�푔 → Υ�푔, we combine Theorem 1.4 of [35] with Table 1

to get the following.

Lemma 4.4. For �푛 ≥ 3, the stabilisation �푆�휋�푛 (�푆�푂 (�푛)) → �휋�푛 (�푆�푂 (2�푛)) is

(i) surjective with kernel Z/2 when �푛 is even,
(ii) an isomorphism when �푛 is odd, ≠ 3, 7,
(iii) injective with cokernel Z/2 if �푛 = 3, 7.
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4.3. The higher rational homotopy groups

We next study the action of the groupΛ�푔 on �휋�푖 (Bun1/2�휕 (�푇�푊�푔,1), id) ⊗Q via the derivative mapΛ�푔 → Υ�푔

and conjugation, which is the action that arises from the embedding calculus tower. It will suffice to

study the action of Υ�푔, which by Lemma 4.3 fits into a short exact sequence

1 −→ Hom(�퐻�푛, �휋�푛 (�푆�푂 (2�푛))) −→ Υ�푔 −→ GL(�퐻�푛) −→ 1.

Proposition 4.5. For all �푖 > 0, the Υ�푔-representation �휋�푖 (Bun1/2�휕 (�푇�푊�푔,1), id) ⊗ Q is �푔�푟-algebraic.

Proof. Let L∗(−) denote the functor assigning the free graded Lie algebra to a graded Q-vector space.

For aQ-vector space �퐴, we write �퐴[�푛] for the graded vector space with �퐴 put in degree �푛. We will prove

the more precise statement that this representation is an extension of Hom(�퐻�푛,L∗(�퐻�푛 [�푛 − 1] ⊗Q)) [1]
by Hom(�퐻�푛, �휋∗+�푛 (�푆�푂 (2�푛)) ⊗ Q), and on each term the Υ�푔-action is given by the evident GL(�퐻�푛) �
GL2�푔 (Z)-action, which is algebraic.

Using the homeomorphism �휅�휏 of (10), there is a fibration sequence

map1/2�휕 (�푊�푔,1,GL2�푛 (R)) −→ Bun1/2�휕 (�푇�푊�푔,1)
× −→ map1/2�휕 (�푊�푔,1,�푊�푔,1)

×

of topological monoids, where the multiplication is given by composition on the base and by pointwise

multiplication of maps on the fibre. This is split by a map of monoids, by sending a map �푓 : �푊�푔,1 → �푊�푔,1

to the bundle map

�푇�푊�푔,1
�휏

−→ �푊�푔,1 × R
2�푛 �푓 ×R2�푛

−−−−−→ �푊�푔,1 × R
2�푛 �휏−1

−→ �푇�푊�푔,1.

The long exact sequence of (rational) homotopy groups therefore splits into short exact sequences.

The multiplication on map1/2�휕 (�푊�푔,1,GL2�푛 (R)) given by pointwise multiplication of maps extends

to an (�푛 + 1)-fold loop space structure, as �푊�푔,1 ≃ ∨2�푔�푆�푛. Thus, the action of �휋0 of this group on its

higher homotopy groups is trivial, and so the action of Υ�푔 on �휋�푖 (map1/2�휕 (�푊�푔,1,GL2�푛 (R)), constid) =
Hom(�퐻�푛, �휋�푖+�푛 (GL2�푛 (R))) descends to an action of GL(�퐻�푛). It follows from Lemma 4.1 that this action

is given by precomposition.

The group Υ�푔 acts on the rational homotopy groups �휋∗(map1/2�휕 (�푊�푔,1,�푊�푔,1)
×, id) via the projec-

tion map Υ�푔 → �휋0 (map1/2�휕 (�푊�푔,1,�푊�푔,1)
×) = GL(�퐻�푛). Using the homotopy equivalence of pairs

(�푊�푔,1, 1/2�휕�푊�푔,1) ≃ (∨2�푔�푆
�푛, ∗) we get

�휋�푖 (map1/2�휕 (�푊�푔,1,�푊�푔,1), id) ⊗ Q � Hom(�퐻�푛, �휋�푖+�푛 (�푊�푔,1) ⊗ Q).

The Hilton–Milnor theorem gives an identification of Υ�푔-representations

�휋∗+�푛 (�푊�푔,1) ⊗ Q � L∗(�퐻�푛 [�푛 − 1] ⊗ Q) [1],

a shift of free graded Lie algebra on �퐻�푛 ⊗Q concentrated in degree �푛−1, and the resulting identification

�휋∗ (map1/2�휕 (�푊�푔,1,�푊�푔,1), id) ⊗ Q � Hom(�퐻�푛,L∗(�퐻�푛 [�푛 − 1] ⊗ Q)) [1]

in positive degrees is one of graded GL(�퐻�푛)-representations. �

5. The higher layers: section spaces

In this section, our goal is to prove Proposition 5.11, concerning the rational homotopy groups of the

higher layers �퐿�푘 (Emb1/2�휕 (�푊�푔,1)id) of the embedding calculus tower.
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5.1. Bousfield–Kan homotopy spectral sequences

For every tower of fibrations of based spaces

· · · −→ �푋2 −→ �푋1 −→ �푋0

there is an ‘extended’ spectral sequence of homotopy groups, as in [10, IX.§4]. Letting �퐹�푛 denote the

homotopy fibre of �푋�푛 → �푋�푛−1 (with �푋−1 = ∗ by convention), we get sequences

→ �휋2 (�푋�푛−1) → �휋1 (�퐹�푛) → �휋1 (�푋�푛) → �휋1 (�푋�푛−1)
�
→ �휋0 (�퐹�푛) → �휋0 (�푋�푛) → �휋0 (�푋�푛−1),

with the rightmost three terms pointed sets, the next three terms groups, and the remainder abelian

groups. The maps into �휋0-terms are maps of pointed sets and the maps into �휋�푖-terms for �푖 ≥ 2 are group

homomorphisms, with �휋2 (�푋�푛−1) mapping into the centre of �휋1 (�퐹�푛). The sequence is exact in the sense

that the kernel of a map is the image of the previous one, with ‘kernel’ taken to mean the inverse images

of the base point/identity element. Finally, the decoration on the map �휋1 (�푋�푛−1)
�
→�휋0 (�퐹�푛) is to indicate

that it extends to an action of �휋1 (�푋�푛−1) on �휋0 (�퐹�푛); exactness here is the property that two elements of

�휋0 (�퐹�푛) are in the same orbit if and only if they map to the same element of �휋0 (�푋�푛). Let us call such a

sequence an extended long exact sequence.

These extended long exact sequences assemble to an extended exact couple (in the sense of [10,

§.IX.4.1])

�퐷1 �퐷1

�퐸1,

�푖

�푗�푘

�퐷1
�푝,�푞 = �휋�푞−�푝 (�푋�푝),

�퐸1
�푝,�푞 = �휋�푞−�푝 (�퐹�푝),

with �푖 of bidegree (−1, 1), �푗 of bidegree (0,−1) and �푘 of bidegree (0, 0). We can iteratively form a

derived couple by taking

�퐷�푟
�푝,�푞 = im(�휋�푞−�푝 (�푋�푝+�푟 ) → �휋�푞−�푝 (�푋�푝)),

�퐸�푟
�푝,�푞 =

ker(�휋�푞−�푝 (�퐹�푝) → �휋�푞−�푝 (�푋�푝)/�퐷
�푟
�푝,�푞)

action of ker(�휋�푞−�푝+1 (�푋�푝−1) → �휋�푞−�푝+1 (�푋�푝−�푟−1))
,

the latter reducing to the cokernel of the boundary homomorphism as long as �푞 − �푝 ≥ 1. For this to

make sense, one needs Bousfield and Kan’s crucial observation [10, p. 259] that the derived couple of

an extended exact couple is again an extended exact couple.

The result is an extended spectral sequence, the Bousfield–Kan homotopy spectral sequence

�퐸1
�푝,�푞 = �휋�푞−�푝 (�퐹�푝) =⇒ �휋�푞−�푝 (holim�푝 �푋�푝).

Its properties are explained in [10, p. 260]. The differentials �푑�푟 : �퐸�푟
�푝,�푞 → �퐸�푟

�푝+�푟 ,�푞+�푟−1
are homomor-

phisms when �푞 − �푝 ≥ 2, whose images are central when �푞 − �푝 = 2. In these cases,

�퐸�푟+1
�푝,�푞 =

�퐸�푟
�푝,�푞 ∩ ker(�푑�푟 )

�퐸�푟
�푝,�푞 ∩ im(�푑�푟 )

.

When �푞 − �푝 = 1, the differential �푑�푟 extends to an action and

�퐸�푟+1
�푝,�푝 ⊂

�퐸�푟
�푝,�푝

action of �퐸�푟
�푝−�푟 ,�푞−�푟+1

.
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Convergence conditions for this spectral sequence are described in [10, IX.§5] and [9, Section 4].

Complete convergence for �푞 − �푝 ≥ 1 as in [10, IX.§5.3] means that �휋�푞−�푝 (holim�푝 �푋�푝) is the limit of

a tower of epimorphisms with kernels given by entries on the �퐸∞-page. By [10, Lemma IX.§5.4] this

holds for �푞 − �푝 ≥ 1 if lim1
�푟 �퐸

�푟
�푝,�푞 vanishes (see [10, IX.§2] for a discussion of lim1 in the nonabelian

setting), a condition similar to that for strong convergence of a half-plane spectral sequence with entering

differentials [1, Theorem 7.1]. Complete convergence holds, for example, if there are only finitely many

nonzero differentials into or out of each entry by [10, Proposition IX.§5.7], as will be the case in the

examples we consider.

One way for a tower of fibrations of based spaces to arise is by filtering the totalisation of a based

cosimplicial space �푌•: the �푝th space in the tower · · · → Tot(�푌•)1 → Tot(�푌•)0 is given by

Tot(�푌•)�푝 = { �푓�푖 : Δ
�푖 → �푌�푖 , satisfying simplicial relations} ⊂

�푝∏

�푖=0

map(Δ �푖 , �푌�푖).

As explained in [10, X.§6,7], in this case

�퐸1
�푝,�푞 = �휋�푞 (�푌�푝) ∩ ker(�푠0) ∩ · · · ∩ ker(�푠�푝−1)

as long as �푞 ≥ �푝 ≥ 0 and is 0 otherwise, where the �푠�푖 denote the codegeneracy maps. For �푞 ≥ 2, the

differential is induced by the alternating sum of the coface maps �푑�푖 : �휋�푞 (�푌�푝) → �휋�푞 (�푌�푝+1), and thus

the �퐸2-page is given by the cohomology of the cosimplicial abelian groups �퐸1
∗,�푞 . A similar description

exists for �푞 = 0, 1. Above we discussed when it completely converges to �휋�푞−�푝 (Tot(�푌•)) for �푞 − �푝 ≥ 1;

in particular, this happens if there are only finitely many nonzero differentials into or out of each entry.

5.2. The Federer spectral sequence

In [18], Federer constructed an extended spectral sequence for the homotopy groups of the space

map(�푋,�푌 ) of maps �푋 → �푌 based at �푓 , in the case that �푋 is a finite CW-complex and �푌 is a simple

path-connected space:

�퐸2
�푝,�푞 = �퐻 �푝 (�푋; �휋�푞 (�푌 )) =⇒ �휋�푞−�푝 (map(�푋,�푌 ), �푓 ).

We shall need a variation of this spectral sequence for relative section spaces (the Federer spectral

sequence is recovered by taking �퐸 = �푋 ×�푌 and �퐴 = ∅). Such a spectral sequence has appeared before in

[41]. For a fibration �휋 : �퐸 → �퐵, a subspace �퐴 ⊂ �퐵 and a section �휎 |�퐴 : �퐴 → �퐸 , let us write Sect(�휋;�휎 |�퐴)
for the space of sections of �휋 extending �휎 |�퐴 in compact-open topology.

We will occasionally want to change the base of the fibration. Suppose �푔 : (�퐵, �퐴) → (�퐵′, �퐴′) is a map

of pairs; that is, a continuous map �푔 : �퐵 → �퐵′ such that �푔(�퐴) ⊂ �퐴′. Then we can pull back a fibration

�휋′ : �퐸 ′ → �퐵′ with section �휎′ |�퐴′ along �푔 to obtain another fibration �푔∗�휋′ : �푔∗�퐸 ′
≔ �퐵 ×�퐵′ �퐸 ′ → �퐵, with

a section �푔∗�휎′ |�퐴 : �퐴 → �퐸 induced by universal property of pullbacks:

�퐴

�푔∗�퐸 ′ �퐸 ′

�퐵 �퐵′.

�푔∗�휎′ |�퐴

inc

�휎′ |�퐴′◦�푔 |�퐴

�̃푔

�푔∗ �휋′ �휋′

�푔

The following is proven by an elementary argument.
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Lemma 5.1. If both �퐴 ↩→ �퐵 and �퐴′ ↩→ �퐵′ are Hurewicz cofibrations and �푔 : (�퐵, �퐴) → (�퐵′, �퐴′) is a
homotopy equivalence of pairs, then the induced map

Sect(�휋′;�휎′ |�퐴′) −→ Sect(�푔∗�휋′; �푔∗�휎′ |�퐴)

is a weak equivalence.

Theorem 5.2. Suppose �푖 : �퐴 → �퐵 is a Hurewicz cofibration such that (�퐵, �퐴) is homotopy equivalent
to a relative CW pair, and let �휋 : �퐸 → �퐵 be a fibration with 1-connected fibres and �휎 : �퐵 → �퐸 be a
section. Then there is an extended spectral sequence

�퐸2
�푝,�푞 =

{
�퐻 �푝

(
�퐵, �퐴; �휋�푞 (�휋)

)
if �푝 ≥ 0 and �푞 − �푝 ≥ 0,

0 otherwise,
=⇒ �휋�푞−�푝 (Sect(�휋;�휎 |�퐴), �휎),

with differentials �푑�푟 : �퐸�푟
�푝,�푞 → �퐸�푟

�푝+�푟 ,�푞+�푟−1
. Here �휋�푞 (�휋) denotes the local system

�휋�푞 (�휋) : Π(�퐵) −→ Set∗, Gr, or Ab

�푏 ↦−→ �휋�푞 (�휋
−1 (�푏), �휎(�푏)).

If (�퐵, �퐴) is homotopy equivalent to a finite-dimensional relative CW pair, then this spectral sequence
converges completely for �푞 − �푝 ≥ 1.

The observant reader may have noticed that we did not define �퐻 �푝 (�퐵, �퐴; �휋�푞 (�휋)) for �푞 = 0, 1. Because

the functors �휋�푞 (�휋) for �푞 = 0, 1 take trivial values by the assumption that the fibres are 1-connected, we

will take these groups to be 0.

Proof. Out of the singular simplicial sets Sing(�퐴) ⊂ Sing(�퐵), we can form a cosimplicial space with

�푝-cosimplices given by the subspace of

map(Δ �푝 × Sing(�퐵)�푝 , �퐸) �
∏

�휏∈Sing(�퐵)�푝

map(Δ �푝 , �퐸)

consisting of collections of maps { �푓�휏 : Δ �푝 → �퐸}�휏∈Sing(�퐵)�푝 that satisfy �휋 ◦ �푓�휏 = �휏, and �푓�휏 = �휎 ◦ �휏 when

�휏 ∈ Sing(�퐴). Its totalisation is the relative space of sections Sect(�휖∗�휋; �휖∗�휎 | |Sing(�퐴) |) of the pullback

of �휋 along �휖 : |Sing(�퐵) | → �퐵. The assumption that (�퐵, �퐴) is homotopy equivalent to a relative CW

pair implies that (|Sing(�퐵) |, |Sing(�퐴) |) → (�퐵, �퐴) is a homotopy equivalence of pairs. By the previous

lemma, the totalisation of the cosimplicial space is weakly equivalent to Sect(�휋;�휎 |�퐴).
Form the Bousfield–Kan spectral sequence for its totalisation, whose �퐸1

�푝,�푞-entry is given for 0 ≤
�푝 ≤ �푞 by the subset of

∏
�휏∈Sing(�퐵)�푝 �휋�푞 (Sect(�휏∗�휋), �휏∗�휎) of those elements that are trivial when �휏 is an

element of Sing(�퐴)�푝 . With the differential given by the alternating sum of the coface maps, we see that

the �퐸2
�푝,�푞-entry will be �퐻 �푝 (�퐵, �퐴; �휋�푞 (�휋)) (because we assumed that the fibre of �휋 is 1-connected, this is

just cohomology with a local coefficient system of abelian groups).

If (�퐵, �퐴) is homotopy equivalent to a finite-dimensional relative CW complex of dimension �푑, then

�퐸2
�푝,�푞 = 0 for �푝 > �푑, so there are finitely many nonzero differentials out of each entry and hence the

spectral sequence converges completely by [21, Lemma IX. §5.7]. �

This spectral sequence is natural in maps of fibrations with section

�퐸 �퐸 ′

�퐵 �퐵′,

�퐹

�휋 �휋′�휎

�푓

�휎′
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in the following sense. As explained above, given such a commutative diagram we can produce a pullback

fibration �푓 ∗�휋′ with section �푓 ∗�휎′. Then there is a zigzag of maps of spectral sequences as above, given

on the �퐸2-page by

�퐻 �푝
(
�퐵′, �퐴′; �휋�푞 (�휋

′)
)

�퐻 �푝
(
�퐵, �퐴; �푓 ∗�휋�푞 (�휋

′)
)

�퐻 �푝
(
�퐵, �퐴; �휋�푞 (�휋)

)
�퐻 �푝

(
�퐵, �퐴; �휋�푞 ( �푓

∗�휋′)
)

�푓 ∗

�퐹∗

and converging to

�휋�푞−�푝 (Sect(�휋′;�휎′ |�퐴′), �휎′) → �휋�푞−�푝 (Sect( �푓 ∗�휋′; �푓 ∗�휎′ |�퐴), �푓
∗�휎′) ← �휋�푞−�푝 (Sect(�휋;�휎 |�퐴), �휎).

5.3. Application to layers

We shall now apply this to study �퐿�푘 (Emb�퐾 (�푀, �푁)�휄) as in Subsection 3.3.2. In terms of the fibration

�푡 �휄�푘 : �휄∗�푍�푘 (�푁) −→ �퐶�푘 (�푀),

with section �푠 �휄
�푘
, it is given by space of sections that are equal to �푠 �휄

�푘
near the fat diagonal or when

at least one particle is near �퐾 . The fibre of the map �푡 �휄
�푘

over a configuration �푥�푘 = (�푥1, . . . , �푥�푘 ) is

tohofib�퐼 ⊂�푥�푘Emb(�푘 \ �퐼, �푁), which by Theorem B of [22] is (−(�푑 − 3) + �푘 (�푑 − 2))-connected, where

�푑 = dim(�푁), so at least 1-connected for all �푘 ≥ 2 as long as �푑 ≥ 2.

We shall rephrase the condition on the support of sections in Proposition 3.6 as being relative to a

certain subspace ∇�휕. This subspace will not be unique, but any two choices will admit a common homo-

topy equivalent refinement. To see the resulting definition coincides with the definition in Proposition

3.6, we will observe that subspaces of the form ∇�휕 are cofinal in the poset of open neighbourhoods

considered in that proposition.

To define the pair (�퐶�푘 (�푀),∇�휕) and understand its homotopy type, we use the Fulton–MacPherson

compactifications of configuration spaces, discussed in detail for smooth manifolds without a boundary

in [43] and adapted without much difficulty to smooth manifolds with a boundary. Fixing a proper neat

embedding �푀 ↩→ [0,∞) × R�푁−1, recording the location, relative angles between pairs of particles and

relative distances between triples of particles gives an inclusion

Emb(�푘, �푀) −→ ([0,∞) × R�푁−1)�푘 × (�푆�푁−1) (
�푘
2) × [0, 1] (

�푘
3) .

The Fulton–MacPherson compactification Emb[�푘, �푀] of Emb(�푘, �푀) is the closure of its image. This

is a smooth manifold with corners and free �픖�푘 -action. The quotient �퐶�푘 [�푀] is the Fulton–MacPherson

compactification of �퐶�푘 (�푀) and likewise a smooth manifold with corners.

In particular, �퐶�푘 [�푀] is a piecewise linear (PL)-manifold with boundary and thus there exists a

closed collar �퐶 ⊂ �퐶�푘 [�푀] of the boundary �휕�퐶�푘 [�푀], unique up to isotopy. This is PL-homeomorphic to

�휕�퐶�푘 [�푀] × [0, 1], with �휕�퐶�푘 [�푀] × {0} corresponding to �휕�퐶�푘 [�푀] ⊂ �퐶�푘 [�푀], and we take �퐶 ′ ⊂ �퐶 to be

the inverse image of �휕�퐶�푘 [�푀] × [0, 1
2
] under this homeomorphism. We then define

∇�휕 ≔ �퐶 ′ ∩ �퐶�푘 (�푀),

which is PL-homeomorphic to �휕�퐶�푘 [�푀] × (0, 1
2
]. We use both �퐶 and �퐶 ′ in Lemma 5.4; in the lemma

below one may use �퐶 instead of �퐶 ′.

Lemma 5.3. There is an equivalence of pairs (�퐶�푘 [�푀], �휕�퐶�푘 [�푀]) ≃ (�퐶�푘 (�푀),∇�휕), and
(�퐶�푘 [�푀], �휕�퐶�푘 [�푀]) admits the structure of a finite-dimensional CW pair.
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Proof. Picking a PL-triangulation proves the second claim. The first claim follows from the observation

that if �푁 is a PL-manifold with boundary �휕�푁 and �퐶 ′ is a collar on �휕�푁 , there is a homotopy equivalence

of pairs (�푁 \ �휕�푁,�퐶 ′ \ �휕�푁) ≃ (�푁, �휕�푁). �

The inclusion ∇�휕 ↩→ �퐶�푘 (�푀) is a Hurewicz cofibration, so Theorem 5.2 applies to the fibration

�푡 �휄
�푘

: �휄∗�푍�푘 (�푁) → �퐶�푘 (�푀), giving a completely convergent extended spectral sequence

�퐸2
�푝,�푞 =

{
�퐻 �푝

(
�퐶�푘 (�푀),∇�휕; �휋�푞 (�푡

�휄
�푘
)
)

if �푝 ≥ 0, �푞 − �푝 ≥ 0

0 else
⇒ �휋�푞−�푝 (�퐿�푘 (Emb�퐾 (�푀, �푁)�휄)). (13)

If �푀 is 1-connected of dimension ≥ 3, then Emb(�푘, �푀) is also 1-connected and the local system

�휋�푞 (�푡
�휄
�푘
) may be trivialised when pulled back along the principal�픖�푘 -bundle

�휋 : Emb(�푘, �푀) −→ �퐶�푘 (�푀).

Let ∇̃�휕 be the inverse image of ∇�휕 under the map �휋. By transfer we obtain an isomorphism

�퐸2
�푝,�푞 ⊗ Q �

[
�퐻 �푝 (Emb(�푘, �푀), ∇̃�휕;Q) ⊗Q �휋�푞tohofib�퐼 ⊂�푥�푘Emb(�푘 \ �퐼, �푁) ⊗ Q

]�픖�푘

. (14)

This is an identification only of the rationalised �퐸2-page. We shall not attempt to ‘rationalise’ the entire

spectral sequence or any subsequent pages, which might not make sense when �푞 − �푝 = 0, 1.

Let us consider the functoriality of the above under embeddings, using the notation of Subsection 5.3.

An embedding �푓 : �푀 ′ → �푀 induces a map of fibrations (8), giving an morphism of spectral sequences

that on �퐸2 is given by �퐻∗( �푓∗; id) and converges to the map induced by �퐿�푘 ( �푓 )
∗. On the other hand, an

embedding �푔 : �푁 → �푁 ′ induces a map of fibrations (9), giving an morphism of spectral sequences that

on �퐸2 is given by �퐻∗(id; (�푔∗)∗) and converges to the map induced by �퐿�푘 (�푔)∗.

5.4. Homotopy and cohomology groups of configuration spaces

In this section we obtain qualitative results on configuration spaces, with the goal of eventually applying

these to the description (14) of the �퐸2-page of (13). In particular, we shall identify the groups

�퐻∗(Emb(�푘, �푀), ∇̃�휕;Q) and �휋∗ (tohofib�퐼 ⊂�푥�푘Emb(�푘 \ �퐼, �푁)) ⊗ Q,

in a sufficiently natural form that we can understand the Γ�푔-actions for �푀 = �푁 = �푊�푔,1. For the sake of

Section 7 we will use coefficients in an arbitrary commutative ring k.

5.4.1. Relative cohomology

Let Δ̄�휕 be the closure in �푀�푘 of ∇̃�휕 ⊂ Emb(�푘, �푀). This contains the closed subset

Δ�휕 =

{
(�푥1, . . . , �푥�푘 ) ∈ �푀�푘

����
�푥�푖 = �푥 �푗 for some �푖 ≠ �푗

or �푥�푖 ∈ �퐾 for some �푖

}
.

Lemma 5.4. There is an isomorphism

�퐻∗(�푀�푘 ,Δ�휕;k) � �퐻∗(Emb(�푘, �푀), ∇̃�휕;k)

of k-modules with commuting �픖�푘 - and �휋0 (Diff�휕 (�푀))-actions.

Proof. Recall that the collar �퐶 ⊂ �퐶�푘 [�푀] is homeomorphic to �휕�퐶�푘 [�푀] × [0, 1] and under this iden-

tification �퐶 ′ is given by �휕�퐶�푘 [�푀] × [0, 1
2
]. We shall use these identifications. The collars �퐶,�퐶 ′ lift to

https://doi.org/10.1017/fms.2020.41 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.41


28 Alexander Kupers and Oscar Randal-Williams

�픖�푘 -equivariant collars �̃퐶, �̃퐶 ′ of the boundary in Emb[�푘, �푀]. Consider now the homotopy

�퐻�푡 : Emb[�푘, �푀] −→ Emb[�푘, �푀]

®�푥 ↦−→

{(
®�푦,

min(0,�푠−�푡/2)
(1−�푡/2)

)
if ®�푥 = (®�푦, �푠) ∈ �̃퐶 � �휕Emb[�푘, �푀] × [0, 1]

®�푥 otherwise,

which pushes points near the boundary of Emb[�푘, �푀] into the boundary using the collar. By definition of

Emb[�푘, �푀] there is a ‘macroscopic position’ map �휇 : Emb[�푘, �푀] → �푀�푘 , which records the underlying

location of the configuration points. Observe that for ®�푥 ∈ �푀�푘 , the element �휇 ◦ �퐻�푡 : Emb[�푘, �푀] → �푀�푘

takes the same values on all elements of �휇−1(®�푥). Thus, �퐻1 extends to a map �퐻1 : �푀�푘 → �푀�푘 , and �퐻�푡

extends to a homotopy �퐻�푡 of such maps. These exhibit �퐻1 as a homotopy inverse to the inclusion of

pairs �푖 : (�푀�푘 ,Δ�휕) → (�푀�푘 , Δ̄�휕).
Now (Emb(�푘, �푀) \ int(�̃퐶 ′), (Emb(�푘, �푀) \ int(�̃퐶 ′)) ∩ �̃퐶) → (Emb(�푘, �푀), ∇̃�휕) is a homotopy equiv-

alence of pairs, and �휇 induces a map of pairs

(
Emb(�푘, �푀) \ int(�̃퐶 ′), (Emb(�푘, �푀) \ int(�̃퐶 ′)) ∩ �̃퐶

)
−→

(
�푀�푘 , Δ̄�휕

)
.

The induced maps on cohomology are isomorphisms:

�퐻∗(Emb(�푘, �푀), ∇̃�휕;k)
�

←− �퐻∗(Emb(�푘, �푀) \ int(�̃퐶 ′), (Emb(�푘, �푀) \ int(�̃퐶 ′)) ∩ �̃퐶;k)

�

−→ �퐻∗(�푀�푘 , Δ̄�휕;k)

�

←− �퐻∗(�푀�푘 ,Δ�휕;k),

with second an isomorphism by excision. Because all maps are equivariant for the actions of �픖�푘

and diffeomorphisms supported away from the boundary, these are isomorphisms of k-modules with

commuting �픖�푘 - and �휋0 (Diff�휕 (�푀))-actions �

Let us from now on suppose that the cohomology of �푀 consists of free k-modules, as it is

for �푊�푔,1 = #�푆�푛 × �푆�푛 \ int(�퐷2�푛). Under this assumption, the Künneth theorem gives an isomor-

phism �퐻∗(�푀�푘 ;k) � �퐻∗(�푀;k)⊗�푘 . Because the action of the mapping class group �휋0 (Diff�휕 (�푀)) on

�퐻∗(�푀�푘 ;k) � �퐻∗(�푀;k)⊗�푘 is evident, it will suffice to understand the groups �퐻∗(Δ�휕;k) with their

action of the mapping class group. To do so, we will express Δ�휕 as a homotopy colimit.

Let Π∗ (�푘) be the poset of nondiscrete partitions �휔 of {1, . . . , �푘, ∗}, ordered by refinement, and

consider the functor Δ �훿 : Π∗(�푘) → Top given by

Δ �훿 (�휔) = Δ
�휔
�훿 ≔

{
(�푥1, . . . , �푥�푘 ) ∈ �푀�푘

����
�푥�푖 = �푥 �푗 if �푖, �푗 in the same element of �휔

�푥�푖 ∈ �퐾 if �푖 in the same element of �휔 as ∗

}
.

Example 5.5. Π∗(2) contains four partitions: {1, 2}{∗}, {1, ∗}{2}, {2, ∗}{1} and {1, 2, ∗}, the first three

partitions being incomparable and all larger than the last partition. If �퐾 is contractible, then the value

of Δ�휕 on the first three partitions is homotopy equivalent to �푀 and its value on the last partition is

contractible.

Lemma 5.6. The inclusions Δ�휔
�훿
↩→ Δ�휕 assemble to a homeomorphism

colimΠ∗ (�푘) Δ �훿
�

−→ Δ�휕

and the canonical map hocolimΠ∗ (�푘) Δ �훿 → colimΠ∗ (�푘) Δ �훿 is a weak equivalence.
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Proof. The first identification is obvious.

Before discussing the weak equivalence, let us discuss the Reedy model structure, which may be used

to efficiently present the homotopy colimit. A Reedy category is a category C with two subcategories C+

and C− containing all objects, and a function deg: ob(C) → N such that (i) nonidentity morphisms in

C+ strictly increase deg, (i’) nonidentity morphisms in C− strictly decrease deg, and (ii) every morphism

in C factors uniquely as a composition as a morphism in C− followed by a morphism in C+. Because

every nonidentity morphism in Π∗ (�푘) increases the number of parts of a partition, we can make Π∗(�푘)
into a Reedy category by taking deg to be the number of parts, C+ all morphisms and C− to be the

identity morphisms (cf. [40, Example 2.3]).

Let us use the Strøm model structure on the category Top of topological spaces, then there is a Reedy

model structure on the category TopC of functors C → Top [40, Theorem 4.18]. We will need two facts

about this model structure: (i) colim: TopC → Top is a left Quillen functor [40, §8] and (ii) a diagram

�퐹 ∈ TopC is cofibrant if for each object �푐 ∈ C the latching maps [40, §3]

colim
�푐

+
→�푐′

�퐹 (�푐′) −→ �퐹 (�푐)

are closed Hurewicz cofibrations. Here the colimit is taken over the full subcategory of the comma-

category in C+/�푐 not containing the identity.

Now to prove the weak equivalence it suffices to prove that �휔 ↦→ Δ�휔
�훿

is cofibrant in the Reedy

model structure, because then we may use its colimit to compute the homotopy colimit [40, Definition

8.1]. This amounts to proving that the latching maps are cofibrations. These latching maps identify the

inclusion into Δ�휔
�훿
⊂ �푀�푘 of all Δ�휔′

�훿
⊂ �푀�푘′ such that �휔′ ≺ �휔. The result follows from the union theorem

for closed Hurewicz cofibrations [36]. �

Thus, there is a Bousfield–Kan spectral sequence (a special case of [10, XII.§5])

�퐸1
�푝,�푞 =

⊕

�휔0≺...≺�휔�푝 ∈�푁�푝 (Π∗ (�푘))

�퐻�푞 (Δ�휔0

�훿
;k) =⇒ �퐻 �푝+�푞 (Δ�휕;k). (15)

Because the above constructions are equivariant for diffeomorphisms of �푀 fixing �퐾 pointwise, we can

read those features of the action on the abutment that are relevant for this article from the action on the

�퐸1-page.

Let us assume that �퐾 is contractible. Then the action of the mapping class group on �퐻�푞 (Δ�휔
�훿

;k)

again factors over Aut(�퐻∗(�푀;k)) as Δ�휔
�훿

is equivariantly homotopy equivalent to �푀�푘′ for some �푘 ′ < �푘 .

Let us now specialise to �푀 = �푊�푔,1, �퐾 = 1/2�휕�푊�푔,1 = �퐷2�푛−1, and take k = Q. Recall that the mapping

class group �휋0 (Diff�휕 (�푊�푔,1)) was denoted Γ�푔.

Proposition 5.7. For each �푘 ≥ 1, the Γ�푔-representation �퐻∗(�푊 �푘
�푔,1

,Δ�휕;Q) is �푔�푟-algebraic.

Proof. Using Lemma 2.5 (a), (b), (c), and the long exact sequences of Γ�푔-representations

· · · −→ �퐻�푞 (�푊 �푘
�푔,1,Δ�휕;Q) −→ �퐻�푞 (�푊 �푘

�푔,1;Q) −→ �퐻�푞 (Δ�휕;Q) −→ · · ·

we see that �퐻∗(�푊 �푘
�푔,1

,Δ�휕;Q) is �푔�푟-algebraic if both �퐻∗(�푊 �푘
�푔,1

;Q) and �퐻∗(Δ�휕;Q) are. As pointed out

above, the Künneth isomorphism provides an isomorphism (of Γ�푔-representations) �퐻∗(�푊 �푘
�푔,1

;Q) �

�퐻∗(�푊�푔,1;Q)⊗�푘 . This shows that the action of Γ�푔 factors over �퐺 ′
�푔 and by Lemma 2.5 (e) it is �푔�푟-algebraic

as such.

The Bousfield–Kan spectral sequence (15) computing �퐻∗(Δ�휕;Q) as a Γ�푔-representation has �퐸1-page

given by a direct sum of tensor products of �퐻∗(�푊�푔,1;Q) as Γ�푔-representations. By the same reasoning

as above, its �퐸1-page is �푔�푟-algebraic and hence so is the abutment by Lemma 2.10. �
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5.4.2. Rational homotopy

Next we study the rational homotopy groups of the ordered configuration spaces Emb(�푘, �푁), which we

base at a configuration near the boundary �퐾 so that we may assume that the Diff�휕 (�푁)-action fixes the

base point.

We shall use the Totaro spectral sequence [45]. This is derived from the Leray spectral sequence for

the inclusion Emb(�푘, �푁) ↩→ �푁 �푘 , and when k is a field it has �퐸2-page given by the bigraded k-algebra

�퐻∗(�푁 �푘 ;k) [�퐺�푎�푏] with �퐻�푞 (�푁 �푘 ;k) in bidegree (�푞, 0) and generators �퐺�푎�푏 of bidegree (0, �푑 − 1) for

1 ≤ �푎, �푏 ≤ �푘 , �푎 ≠ �푏, subject to the following relations:

(i) �퐺�푎�푏 = (−1)�푑�퐺�푏�푎,

(ii) �퐺2
�푎�푏

= 0,

(iii) �퐺�푎�푏�퐺�푏�푐 + �퐺�푏�푐�퐺�푐�푎 + �퐺�푐�푎�퐺�푎�푏 = 0 for �푎, �푏, �푐 distinct,

(iv) �푝∗�푎 (�푥)�퐺�푎�푏 = �푝∗
�푏
(�푥)�퐺�푎�푏 where �푝�푎 : �푁 �푘 → �푁 denotes the �푎th projection map and �푥 ∈ �퐻∗(�푁;k).

Following Totaro’s construction one finds that this description of the �퐸2-page also holds with k-

coefficients if k is a localisation of the integers and �퐻∗(�푁;k) consists of free k-modules. It converges

to �퐻 �푝+�푞 (Emb(�푘, �푁);k) and is natural in embeddings. Let us now specialise to �푁 = �푊�푔,1 and k = Q.

Lemma 5.8. Each Γ�푔-representation �퐻�푖 (Emb(�푘,�푊�푔,1);Q) is �푔�푟-algebraic.

Proof. In the Totaro spectral sequence the Γ�푔-action on the �퐸2-page factors over �퐺 ′
�푔 and, as such, is

an algebraic representation, so in particular �푔�푟-algebraic. By Lemma 2.10 the abutment is also �푔�푟-

algebraic. �

Because Emb(�푘,�푊�푔,1) is 1-connected for �푛 ≥ 2, we can convert this to a statement about rational

homotopy groups using Lemmas 2.12, 2.13 and 2.14.

Corollary 5.9. Each Γ�푔-representation �휋�푖 (Emb(�푘,�푊�푔,1)) ⊗ Q is �푔�푟-algebraic.

The total homotopy fibre tohofib�퐼 ⊂�푥�푘Emb(�푘 \ �퐼,�푊�푔,1) taken at a configuration �푥�푘 near the boundary

admits a base point–preserving Diff�휕 (�푊�푔,1)-action, because the entire cubical diagram �퐼 ↦→ Emb(�푘 \
�퐼,�푊�푔,1) of based spaces does.

Proposition 5.10. Each Γ�푔-representation �휋�푖 (tohofib�퐼 ⊂�푥�푘Emb(�푘 \ �퐼,�푊�푔,1)) ⊗ Q is �푔�푟-algebraic.

Proof. Because the total homotopy fibre tohofib�퐼 ⊂�푥�푘Emb(�푘 \ �퐼,�푊�푔,1) is the homotopy fibre of the map

(7) over a certain base point, there is a natural based map

tohofib�퐼 ⊂�푥�푘Emb(�푘 \ �퐼,�푊�푔,1) −→ Emb(�푘,�푊�푔,1),

which is equivariant for the base point–preserving action of Diff�휕 (�푊�푔,1).
Because all maps in the diagram admit sections up to homotopy by adding particles near the boundary,

the induced map on homotopy groups

�휋∗(tohofib�퐼 ⊂�푥�푘Emb(�푘 \ �퐼,�푊�푔,1)) −→ �휋∗ (Emb(�푘,�푊�푔,1))

is the inclusion of a summand. Because this inclusion is Γ�푔-equivariant and the right-hand side after

tensoring with Q is �푔�푟-algebraic by Corollary 5.9, so is the left-hand side after tensoring with Q by

Lemma 2.5 (a). �

5.5. Algebraicity of rational homotopy groups

We now put together the results of this section to prove the remaining proposition concerning the layers

of the embedding calculus tower. It concerns the Γ�푔-action on �퐿�푘 (Emb1/2�휕 (�푊�푔,1)id), which is induced

by conjugation with a diffeomorphism of �푊�푔,1. We know that this action factors through Λ�푔, but it is

convenient to remember the geometric origin of this action.
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As mentioned in Subsection 3.3.1, the layer �퐿�푘 (Emb1/2�휕 (�푊�푔,1)id) is an �퐻-space, so its positive-degree

homotopy groups are abelian and so can be rationalised.

Proposition 5.11. For �푖 ≥ 1 and �푘 ≥ 2 the Γ�푔-representations

�휋�푖 (�퐿�푘 (Emb1/2�휕 (�푊�푔,1)id)) ⊗ Q

are �푔�푟-algebraic.

Proof. We apply the spectral sequence (13) with �푀 = �푁 = �푊�푔,1 and �퐾 = 1/2�휕�푊�푔,1. This spectral

sequence converges completely because it has �퐸2
�푝,�푞 = 0 for all large enough �푝, so for �푖 ≥ 1 the

abelian group �휋�푖 (�퐿�푘 (Emb1/2�휕 (�푊�푔,1)id)) has a finite filtration with �푝th filtration quotient a subquotient

of �퐸2
�푝,�푖+�푝. This is natural for the Γ�푔-action, so �휋�푖 (�퐿�푘 (Emb1/2�휕 (�푊�푔,1)id)) ⊗ Q has a finite filtration by

Γ�푔-subrepresentations with the �푝th filtration quotient a subquotient of �퐸2
�푝,�푖+�푝 ⊗ Q. By Lemma 2.5 it

suffices to show that each �퐸2
�푝,�푖+�푝 ⊗ Q is �푔�푟-algebraic.

As described in Subsection 5.3, we have

�퐸2
�푝,�푖+�푝 ⊗ Q =

[
�퐻 �푝 (Emb(�푘,�푊�푔,1), ∇̃�휕;Q) ⊗Q (�휋�푖+�푝 (tohofib�퐼 ⊂�푥�푘Emb(�푘 \ �퐼,�푊�푔,1)) ⊗ Q)

]�픖�푘

.

A diffeomorphism �휙 of �푊�푔,1 acts on this by [(�휙−1
∗ )∗ ⊗ �휙∗]

�픖�푘 . By parts (a) and (e) of Lemma 2.5 it

suffices to show that the Γ�푔-representations �퐻 �푝 (Emb(�푘,�푊�푔,1),∇�휕;Q) and �휋�푖+�푝 (tohofib�퐼 ⊂�푥�푘Emb(�푘 \
�퐼,�푊�푔,1)) ⊗ Q are both �푔�푟-algebraic, which they are by Propositions 5.7 and 5.10, respectively. �

6. Proof of Theorem A and Corollary B

To obtain a structural understanding of the cohomology of the Torelli space of �푊�푔,1, we will consider

the Torelli analogue of the space of self-embeddings. We proved in Subsection 3.2 that the action on

homology gives a surjective homomorphism

�훽�푔 : Λ�푔 = �휋0 (Emb�1/2�휕 (�푊�푔,1)) −→ �퐺 ′
�푔 =





Sp2�푔 (Z) if �푛 is 1, 3, or 7,

Sp
�푞

2�푔
(Z) if �푛 is odd but not 1, 3, or 7,

O�푔,�푔 (Z) if �푛 is even.

As before, we shall assume that 2�푛 ≥ 6.

Definition 6.1. The embedding Torelli group TorEmb�1/2�휕
(�푊�푔,1) is the group-like submonoid of

Emb�1/2�휕
(�푊�푔,1) consisting of those path components in the kernel of �훽�푔.

The classifying space of this monoid fits into a fibration sequence

�퐵TorEmb�1/2�휕 (�푊�푔,1) −→ �퐵Emb�1/2�휕 (�푊�푔,1) −→ �퐵�퐺 ′
�푔,

and so �퐵TorEmb�1/2�휕
(�푊�푔,1) has an action of �퐺 ′

�푔 up to homotopy. To prove that the cohomology of

this space consists of algebraic �퐺 ′
�푔-representations, we will use that we already understand the group

Λ�푔 = �휋0 (Emb�1/2�휕
(�푊�푔,1)) and focus our attention on the identity component Embid

1/2�휕
(�푊�푔,1). By definition

there is a fibration sequence

�퐵Embid
1/2�휕

(�푊�푔,1) −→ �퐵Emb�1/2�휕 (�푊�푔,1) −→ �퐵Λ�푔,

and hence the simply connected space �퐵Embid
1/2�휕

(�푊�푔,1) has a base point–preserving Λ�푔-action up to

homotopy, as in Subsection 2.2.1.
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Theorem 6.2. Suppose that 2�푛 ≥ 6. Then for each �푖 ≥ 1, theΛ�푔-representation �휋�푖+1(�퐵Embid
1/2�휕

(�푊�푔,1)) ⊗
Q is �푔�푟-algebraic.

Proof. Let us first recall how the Λ�푔-action may be constructed geometrically. The identity component

of the space of self-embeddings of �푊�푔,1 admits an action of Diff�휕 (�푊�푔,1) by letting a diffeomorphism �휙

act on an embedding �푒 by �휙 · �푒 = �휙−1 ◦ �푒 ◦�휙. This action is via morphisms of monoids and so induces an

action on �퐵Embid
1/2�휕

(�푊�푔,1), too. The induced Γ�푔-action on �휋�푖+1(�퐵Embid
1/2�휕

(�푊�푔,1)) is then identified with

the Γ�푔-action on �휋�푖 (Emb1/2�휕 (�푊�푔,1), id) for �푖 ≥ 1. This action factors through the surjection Γ�푔 → Λ�푔, so

to prove the theorem it is therefore enough to prove that the Γ�푔-representations �휋�푖 (Emb1/2�휕 (�푊�푔,1), id)⊗Q
are �푔�푟-algebraic for all �푖 ≥ 1.

To do so we consider the embedding calculus tower for Emb1/2�휕 (�푊�푔,1), which is a tower of �퐻-spaces,

and apply the Bousfield–Kan spectral sequence to it. As id ∈ Emb1/2�휕 (�푊�푔,1) is a Diff�휕 (�푊�푔,1)-invariant

base point, the Taylor approximations and layers inherit an action of Diff�휕 (�푊�푔,1), so their homotopy

groups inherit a Γ�푔-action. This spectral sequence is given by

�퐸1
�푝,�푞 = �휋�푞−�푝 (�퐿�푝 (Emb1/2�휕 (�푊�푔,1)id)) =⇒ �휋�푞−�푝 (Emb1/2�휕 (�푊�푔,1), id),

and by the �퐻-space structure this is a spectral sequence of abelian groups for �푞 − �푝 ≥ 1. By naturality

of the Taylor tower and the Bousfield–Kan homotopy spectral sequence, this spectral sequence has an

action of Γ�푔. The �푝-th layer of this tower is (−(�푛 − 1) + (�푝 − 1) (�푛 − 2))-connected, so the spectral

sequence converges completely by [10, Proposition IX.§5.7]. Thus, for each �푖 ≥ 1 the abelian group

�휋�푖 (Emb1/2�휕 (�푊�푔,1), id) has a finite filtration with the �푝th filtration quotient a subquotient of �퐸1
�푝,�푖+�푝.

Hence, �휋�푖 (Emb1/2�휕 (�푊�푔,1), id) ⊗ Q has a finite filtration with the �푝th filtration quotient a subquotient of

�퐸1
�푝,�푖+�푝 ⊗ Q.

By Lemma 2.5, the theorem follows as soon as we establish that each Γ�푔-representation �퐸1
�푝,�푖+�푝 ⊗ Q

is �푔�푟-algebraic for �푖 ≥ 1. This was the content of two previous sections: Proposition 4.5 for �푝 = 1 and

Proposition 5.11 for �푝 ≥ 2. �

Corollary 6.3. Suppose that 2�푛 ≥ 6. Then the Λ�푔-representations

�퐻�푖 (�퐵Embid
1/2�휕

(�푊�푔,1);Q)

are �푔�푟-algebraic.

Proof. Combine Theorem 6.2 with Lemma 2.11. �

Corollary 6.4. Suppose that 2�푛 ≥ 6 and that �푔 ≥ 2. Then the �퐺 ′
�푔-representations

�퐻�푖 (�퐵TorEmb�1/2�휕
(�푊�푔,1);Q) are algebraic.

Proof. There is a fibration sequence

�퐵Embid
1/2�휕

(�푊�푔,1) −→ �퐵TorEmb�1/2�휕 (�푊�푔,1) −→ �퐵�퐽�푔,

with �퐽�푔 = �휋0 (TorEmb��휕 (�푊�푔,1))
�

→ Hom(�퐻�푛, �푆�휋�푛 (�푆�푂 (�푛))) as in (5), to which we will apply Lemma 2.15.

Given Corollary 6.3, to apply that lemma we need to prove that the �퐺 ′
�푔-representations �퐻�푖 (�퐽�푔;Q) are

algebraic, but we have

�퐻�푖 (�퐽�푔;Q) = Λ
�푖 [�퐻�푛 ⊗ (�푆�휋�푛 (�푆�푂 (2�푛)) ⊗ Q)∨],

which is indeed algebraic. �

We may now deduce Theorem A, which said that for 2�푛 ≥ 6 and �푔 ≥ 2, the rational cohomology

groups of �퐵Tor�휕 (�푊�푔,1) are algebraic �퐺 ′
�푔-representations.
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Proof of Theorem A. The Weiss fibration sequence (3) provides a commutative diagram with rows and

columns fibration sequences

�퐵Diff�휕 (�퐷
2�푛) �퐵Diff�휕 (�퐷

2�푛) ∗

�퐵Tor�휕 (�푊�푔,1) �퐵Diff�휕 (�푊�푔,1) �퐵�퐺 ′
�푔

�퐵TorEmb�1/2�휕
(�푊�푔,1) �퐵Emb�1/2�휕

(�푊�푔,1) �퐵�퐺 ′
�푔,

where the left and middle columns deloop compatibly by [33, Theorem 4.17] and hence the action of

the fundamental group of the base on the cohomology of the fibre is trivial, and on the left column the

�퐺 ′
�푔- and �퐵Diff�휕 (�퐷

2�푛)-actions commute. Thus, we get a Serre spectral sequence of �퐺 ′
�푔-representations

�퐸2
�푝,�푞 = �퐻 �푝 (�퐵TorEmb�1/2�휕 (�푊�푔,1);Q) ⊗ �퐻�푞 (�퐵Diff�휕 (�퐷

2�푛);Q) =⇒ �퐻 �푝+�푞 (�퐵Tor�휕 (�푊�푔,1);Q).

Using Corollary 6.4 and the fact that �퐻∗(�퐵Diff�휕 (�퐷
2�푛);Q) is degree-wise finite-dimensional by [33,

Theorem A], the �퐸2-page consists of algebraic �퐺 ′
�푔-representations, so by Theorem 2.2 so does the

abutment. �

Proof of Corollary B. Consider the map of fibrations

�퐵Tor�휕 (�푊�푔,1) �퐵Diff
�퐺′′

�푔

�휕
(�푊�푔,1) �퐵�퐺 ′′

�푔

�퐵Tor�휕 (�푊�푔,1) �퐵Diff�휕 (�푊�푔,1) �퐵�퐺 ′
�푔,

which on �퐸2-pages of the associated Serre spectral sequences induces

�퐻 �푝 (�퐺 ′
�푔;�퐻�푞 (�퐵Tor�휕 (�푊�푔,1);Q) ⊗ �푉) −→ �퐻 �푝 (�퐺 ′′

�푔 ;�퐻�푞 (�퐵Tor�휕 (�푊�푔,1);Q) ⊗ �푉).

To compare the left- and right-hand sides, we shall use work of Borel. By Corollary 5.5 of [33], each

�퐻�푞 (�퐵Tor�휕 (�푊�푔,1);Q) ⊗�푉 is a finite-dimensional �퐺 ′
�푔-representation, so by theorems of Borel [5, 6] (see

Theorem 2.3 of [34] for a description of Borel’s results adapted to this situation, using the bounds from

[46]) the map

�퐻 �푝 (�퐺∞;Q) ⊗ [�퐻�푞 (�퐵Tor�휕 (�푊�푔,1);Q) ⊗ �푉]�퐺
′′
�푔 → �퐻 �푝 (�퐺 ′′

�푔 ;�퐻�푞 (�퐵Tor�휕 (�푊�푔,1);Q) ⊗ �푉)

is an isomorphism for �푝 < �푔 − �푒, with �푒 = 0 if �푛 is odd and �푒 = 1 if �푛 is even. This only uses that �퐺 ′′
�푔 is

an arithmetic subgroup of G(Q) and so also holds with �퐺 ′′
�푔 replaced with �퐺 ′

�푔.

Now by Theorem A the representation �퐻�푞 (�퐵Tor�휕 (�푊�푔,1);Q) ⊗�푉 is algebraic, and by our assumptions

both �퐺 ′
�푔 and �퐺 ′′

�푔 are Zariski-dense in G(Q) (see Subsection 2.1.1 of [34]). Thus, the �퐺 ′
�푔- and �퐺 ′′

�푔 -

invariants coincide, so the map of total spaces induces an isomorphism on homology in total degrees

∗ < �푔 − �푒. �

7. Proof of Theorem C

In this section we prove that for 2�푛 ≥ 6 the spaces �퐵Tor�휕 (�푊�푔,1) are nilpotent. A suitable reference for

the theory of nilpotent spaces is [38, Chapter 3], but we recall the definition here.
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Definition 7.1. A path-connected based space (�푋, �푥0) is nilpotent if �휋1 (�푋, �푥0) is a nilpotent group and

for each �푖 > 1 the �휋1 (�푋, �푥0)-module �휋�푖 (�푋, �푥0) is nilpotent. More generally, a space is nilpotent if each

of its path components is nilpotent for each base point.

Examples of nilpotent spaces include simply connected spaces and �푛-fold loop spaces. Nilpotent

spaces are preserved by various constructions; for example, products and homotopy fibres, a special

case of [38, Proposition 4.4.1]:

Lemma 7.2. Suppose �푝 : �퐸 → �퐵 is a surjective fibration with �퐵 path-connected. For �푒 ∈ �퐸 , let �퐸�푒

denote the path component containing �푒, �퐹 denote the fibre over �푝(�푒), and �퐹�푒 denote the path component
of �퐹 containing �푒. If �퐸�푒 is nilpotent, then �퐹�푒 is nilpotent.

We showed in Lemma 2.17 that the class C of nilpotent Γ-modules that are finitely generated as

abelian groups is an equivariant Serre class, and we showed in Lemma 2.18 that this class is closed

under duals or Ext1
Z
(−,Z). This gives us Lemmas 2.10, 2.11, 2.12 and 2.13 as tools. We shall apply

some of these with Γ = �퐼�푔.

We will now commence the proof of Theorem C, which says that �퐵Tor�휕 (�푊�푔,1) is nilpotent as long

as 2�푛 ≥ 6. We will first prove the corresponding statement for �퐵TorEmb�1/2�휕
(�푊�푔,1). This requires two

pieces of input, analogous to Propositions 5.7 and 5.10.

Lemma 7.3. The �퐼�푔-modules �퐻�푖 (�푊 �푘
�푔,1

,Δ�휕;Z) are nilpotent.

Proof. There is a long exact sequence of �퐼�푔-modules

· · · −→ �퐻�푖 (�푊 �푘
�푔,1,Δ�휕;Z) −→ �퐻�푖 (�푊 �푘

�푔,1;Z) −→ �퐻�푖 (Δ�휕;Z) −→ · · ·

and because the �퐼�푔-action on �퐻�푖 (�푊 �푘
�푔,1

;Z) is trivial, it suffices to prove that each �퐼�푔-module �퐻�푖 (Δ�휕;Z)

is nilpotent. This follows by applying Lemma 2.10 to the spectral sequence (15) with k = Z, using the

observation that the �퐼�푔-action on the �퐸1-page is trivial. �

Lemma 7.4. The �퐼�푔-modules �휋�푖 (tohofib�퐼 ⊂�푥�푘Emb(�푘 \ �퐼,�푊�푔,1)) are nilpotent.

Proof. By the Totaro spectral sequence, the �퐼�푔-modules �퐻�푖 (Emb(�푘;�푊�푔,1);Z) are finitely generated

as abelian groups and have nilpotent �퐼�푔-action, so by Lemmas 2.12 and 2.13 the homotopy groups of

Emb(�푘;�푊�푔,1) are as well. By the argument of Proposition 5.10, �휋�푖 (tohofib�퐼 ⊂�푥�푘Emb(�푘 \ �퐼,�푊�푔,1)) is a

summand of �휋�푖 (Emb(�푘,�푊�푔,1)). �

Proposition 7.5. For 2�푛 ≥ 6, �퐵TorEmb�1/2�휕
(�푊�푔,1) is nilpotent.

Proof. It is a path-connected space with fundamental group given by �퐽�푔 � Hom(�퐻�푛, �푆�휋�푛 (�푆�푂 (�푛))),
which is abelian and so in particular nilpotent. It remains to show that �퐽�푔 acts nilpotently on the higher

homotopy groups. That is, we need to show that the �퐽�푔-module �휋�푖+1(�퐵TorEmb�1/2�휕
(�푊�푔,1)) for �푖 > 0

admits a finite filtration by sub-�퐽�푔-modules such that the action on the associated graded is trivial. That

is, it should lie in the class C of Z[�퐽�푔]-modules that are finitely generated as abelian groups and have

nilpotent �퐽�푔-actions.

There is an �퐼�푔-module structure on the �퐽�푔-module �휋�푖+1(�퐵TorEmb�휕 (�푊�푔,1)) given by the surjection

�퐼�푔 → �퐽�푔, which is induced by the geometric action of �퐼�푔 ⊂ Γ�푔 by conjugation. Hence, it suffices to prove

that �퐼�푔 acts nilpotently. Furthermore, by Lemma 2.10 the property of being a nilpotent �퐼�푔-module passes

through the Bousfield–Kan homotopy spectral sequence used in the proof of Theorem 6.2, so it suffices

to prove that �퐼�푔 acts nilpotently on the higher homotopy groups of the layers �퐿�푝 (Emb1/2�휕 (�푊�푔,1)id).
There are two cases to consider. The first is �푝 = 1, in which case we have

�퐿1(Emb1/2�휕 (�푊�푔,1)id) ≃ Bun1/2�휕 (�푇�푊�푔,1).
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The first part of the proof of Proposition 4.5 did not require rational coefficients, and that argument

shows that �퐼�푔 acts trivially on the higher homotopy groups of Bun1/2�휕 (�푇�푊�푔,1).
The second case is �푝 > 1, in which case we have

�퐿�푝 (Emb1/2�휕 (�푊�푔,1)id) ≃ Sect(�푡id�푘 , �푠
id
�푘 |∇�휕

),

with the right-hand side as described in Proposition 3.6. The Federer spectral sequence (13) is a spectral

sequence of �퐼�푔-modules of the form

�퐸2
�푝,�푞 =

{
�퐻 �푝

(
�퐶�푘 (�푊�푔,1),∇�휕; �휋�푞 (�푡

id
�푘
)
)

�푝 ≥ 0, �푞−�푝 ≥ 0,

0 else,
=⇒ �휋�푞−�푝 (Sect(�푡id�푘 , �푠

id
�푘 |∇�휕

)).

Because �퐶�푘 (�푊�푔,1) is finite-dimensional, this is concentrated in finitely many columns and by [10,

Proposition IX.§5.7] converges completely.

Working integrally, the simplification of the �퐸2-page that we gave in in (14) does not apply. Instead,

there is a trigraded spectral sequence of �퐼�푔-modules converging to the �퐸2-page of the Federer spectral

sequence

�퐻 �푝′
(
�퐵�픖�푘 , �퐻

�푞′ (
Emb(�푘,�푊�푔,1), ∇̃�휕; �휋�푞 (tohofib�퐼 ⊂�푥�푘 Emb(�푘 \ �퐼,�푊�푔,1))

) )
=⇒ �퐸2

�푝′+�푞′,�푞 .

In light of Lemma 5.4 fork = Z and the fact that the local systems of coefficients �휋�푞 (tohofib�퐼 ⊂�푥�푘 Emb(�푘\
�퐼,�푊�푔,1)) are trivial by simple connectivity, we may replace this �퐸2-page by

�퐻 �푝′
(
�퐵�픖�푘 , �퐻

�푞′ (
�푊 �푘

�푔,1,Δ�휕; �휋�푞 (tohofib�퐼 ⊂�푥�푘 Emb(�푘 \ �퐼,�푊�푔,1))
) )

.

By property (i) of equivariant Serre classes, it suffices to prove that these entries lie in C.

The entry �퐸2
�푝′,�푞′ may be computed using the bar complex

�퐶 �푝′

= HomZ[�픖�푘 ]

(
Z[�픖�푘 ]

�푝′+1, �퐻�푞′ (
�푊 �푘

�푔,1,Δ�휕; �휋�푞 (tohofib�퐼 ⊂�푥�푘 Emb(�푘 \ �퐼,�푊�푔,1))
) )
,

so by property (i) again, it suffices to prove that each of groups

�퐻�푞′
(
�푊 �푘

�푔,1,Δ�휕; �휋�푞 (tohofib�퐼 ⊂�푥�푘 Emb(�푘 \ �퐼,�푊�푔,1))
)

lies inC. By property (ii) and the universal coefficients theorem, it suffices to prove that �퐻�푞′
(�푊 �푘

�푔,1
,Δ�휕;Z)

and �휋�푞 (tohofib�퐼 ⊂�푥�푘Emb(�푘 \ �퐼,�푊�푔,1)) are nilpotent �퐼�푔-modules. We did so in Lemmas 7.3 and 7.4. �

We now prove Theorem C.

Proof of Theorem C. In the proof of Theorem A we constructed a fibre sequence

�퐵Diff�휕 (�퐷
2�푛) −→ �퐵Tor�휕 (�푊�푔,1) −→ �퐵TorEmb�1/2�휕 (�푊�푔,1)

that deloops. In particular, �퐵Tor�휕 (�푊�푔,1) is the homotopy fibre of a map

�퐵TorEmb�1/2�휕 (�푊�푔,1) −→ �퐵2Diff�휕 (�퐷
2�푛).

The domain is a nilpotent space by the previous proposition, so by Lemma 7.2 the space �퐵Tor�휕 (�푊�푔,1)
is also nilpotent. �
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8. Generalisation to tangential structures

In this section we extend Theorem A and Corollary B to moduli spaces of manifolds equipped with a

�휃-structure, encoded by a fibration �휃 : �퐵 → �퐵�푂 (2�푛) that classifies a 2�푛-dimensional vector bundle �휃∗�훾

over �퐵, where �훾 denotes the universal 2�푛-dimensional vector bundle over �퐵�푂 (2�푛).
A �휃-structure on �푊�푔,1 is a map of vector bundles ℓ : �푇�푊�푔,1 → �휃∗�훾. We shall fix a boundary

condition ℓ�휕 : �푇�푊�푔,1 |�휕�푊�푔,1
→ �휃∗�훾 and only consider �휃-structures extending this boundary condition: let

Bun�휕 (�푇�푊�푔,1, �휃
∗�훾; ℓ�휕) denote the space of bundle maps extending ℓ�휕. A bundle map is a continuous map

that is a fibrewise linear isomorphism, and this space is given the compact-open topology. The group

Diff�휕 (�푊�푔,1) acts through the derivative map Diff�휕 (�푊�푔,1) → Bun�휕 (�푇�푊�푔,1) on Bun�휕 (�푇�푊�푔,1, �휃
∗�훾; ℓ�휕) by

precomposition. The object of interest in this section is the homotopy quotient

�퐵Diff �휃
�휕 (�푊�푔,1; ℓ�휕) ≔ Bun�휕 (�푇�푊�푔,1, �휃

∗�훾; ℓ�휕) � Diff�휕 (�푊�푔,1).

Though the notation may suggest otherwise, this is not the classifying space of a topological

monoid and in general has many path components, which are in bijection with the orbits of the ac-

tion of the mapping class group Γ�푔 = �휋0 (Diff�휕 (�푊�푔,1)) on the set of path components �휋0 (Bun�휕 (�푇�푊�푔,1,

�휃∗�훾; ℓ�휕)).
We shall denote by �퐵Diff �휃

�휕 (�푊�푔,1; ℓ�휕)ℓ the path component containing a particular �휃-structure ℓ, and

by �퐺
�휃, [ℓ ]
�푔 the image of the composition

Γ̌
�휃,ℓ
�푔 ≔ �휋1 (�퐵Diff �휃

�휕 (�푊�푔,1; ℓ�휕), ℓ) −→ Γ�푔 = �휋1 (�퐵Diff�휕 (�푊�푔,1), ∗) −→ �퐺 ′
�푔 .

We shall first show that this is an arithmetic group.

Proposition 8.1. Let 2�푛 ≥ 6 and �퐵 be �푛-connected. Then �퐺
�휃, [ℓ ]
�푔 ≤ �퐺 ′

�푔 has finite index.

The proof will be given in Subsection 8.4, after some preparation. We may define a version of the

Torelli space with �휃-structures by

�퐵Tor�휃�휕 (�푊�푔,1; ℓ�휕)ℓ ≔ hofib
[
�퐵Diff �휃

�휕 (�푊�푔,1; ℓ�휕)ℓ → �퐵�퐺
�휃, [ℓ ]
�푔

]
;

this is a connected space. It has a �퐺
�휃, [ℓ ]
�푔 -action up to homotopy, so its rational cohomology groups

are �퐺
�휃, [ℓ ]
�푔 -representations, and because �퐺

�휃, [ℓ ]
�푔 is an arithmetic group by Proposition 8.1, one may

ask whether they are algebraic �퐺
�휃, [ℓ ]
�푔 -representations. Analogous to Theorem A, we will show that

they are.

Theorem 8.2. Let 2�푛 ≥ 6, �퐵 be �푛-connected, and �퐻∗(�퐵;Q) be finite-dimensional in each degree. For
�푔 ≥ 2 the �퐺 �휃, [ℓ ]

�푔 -representations �퐻�푖 (�퐵Tor�휃
�휕
(�푊�푔,1; ℓ�휕)ℓ ;Q) are algebraic.

The proof will be given in Subsection 8.5. The analogue of Corollary B for �휃-structures follows by a

nearly identical argument. After that we prove the analogue of Theorem C.

Theorem 8.3. Let 2�푛 ≥ 6 and �퐵 be �푛-connected. Then �퐵Tor�휃
�휕
(�푊�푔,1; ℓ�휕)ℓ is nilpotent.

8.1. Notation

We collect here the notation for various groups used in this section. Further details and results regarding

these objects will be given in the following sections.
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First, we recall that there are maps of group extensions

1 �퐼�푔 Γ�푔 = �휋0 (Diff�휕 (�푊�푔,1)) �퐺 ′
�푔 1

1 �퐽�푔 Λ�푔 = �휋0 (Emb�1/2�휕
(�푊�푔,1)) �퐺 ′

�푔 1

1 Hom(�퐻�푛, �휋�푛 (�푆�푂 (2�푛))) Υ�푔 = �휋0 (Bun∗(�푇�푊�푔,1)) GL(�퐻�푛) 1,

with �퐽�푔 = �퐼�푔/Θ2�푛+1 = Hom(�퐻�푛, �푆�휋�푛 (�푆�푂 (�푛))).
We fix a boundary condition ℓ�휕 of �휃-structures near �휕�푊�푔,1, and let Str�휃

�휕
(�푊�푔,1) denote the set of

homotopy classes of �휃-structure extending ℓ�휕. An element in this set is denoted [ℓ], and we introduce

notation for its stabiliser:

Γ
�휃, [ℓ ]
�푔 ≔ StabΓ�푔 ([ℓ]).

This receives a surjection from

Γ̌
�휃,ℓ
�푔 ≔ �휋1 (�퐵Diff �휃

�휕 (�푊�푔,1; ℓ�휕), ℓ),

and we set

�퐺
�휃, [ℓ ]
�푔 ≔ im

[
Γ
�휃, [ℓ ]
�푔 → Γ�푔 → �퐺 ′

�푔

]
�퐼
�휃, [ℓ ]
�푔 ≔ Stab�퐼�푔 ([ℓ]) = Γ

�휃, [ℓ ]
�푔 ∩ �퐼�푔,

giving an extension

1 −→ �퐼
�휃, [ℓ ]
�푔 −→ Γ

�휃, [ℓ ]
�푔 −→ �퐺

�휃, [ℓ ]
�푔 −→ 1.

The boundary condition ℓ�휕 of �휃-structures near �휕�푊�푔,1 by restriction determines one ℓ1/2�휕 near a fixed

point ∗ ∈ �휕�푊�푔,1, and we let Str�휃∗ (�푊�푔,1) denote the set of homotopy classes of �휃-structure extending ℓ1/2�휕.

An element in this set is denoted [[ℓ]] and, though we shall not need it, its stabiliser is denoted Γ
�휃, [ [ℓ ] ]
�푔 .

The Γ�푔-action on Str�휃∗ (�푊�푔,1) descends to an action of Λ�푔, and we write

Λ
�휃, [ [ℓ ] ]
�푔 ≔ StabΛ�푔

([[ℓ]]).

This receives a surjection from

Λ̌
�휃,ℓ
�푔 ≔ �휋1 (�퐵Emb�휃

1/2�휕
(�푊�푔,1; ℓ1/2�휕), ℓ),

and we set

�퐺
�휃, [ [ℓ ] ]
�푔 ≔ im

[
Λ

�휃, [ [ℓ ] ]
�푔 → Λ�푔 → �퐺 ′

�푔

]
�퐽
�휃, [ [ℓ ] ]
�푔 ≔ Stab�퐽�푔 ([[ℓ]]) = Λ

�휃, [ [ℓ ] ]
�푔 ∩ �퐽�푔,

giving an extension

1 −→ �퐽
�휃, [ [ℓ ] ]
�푔 −→ Λ

�휃, [ [ℓ ] ]
�푔 −→ �퐺

�휃, [ [ℓ ] ]
�푔 −→ 1.

Finally, we define �퐿
�휃,ℓ
�푔 as the kernel of the composition Λ̌

�휃,ℓ
�푔 → Λ

�휃, [ [ℓ ] ]
�푔 → �퐺

�휃, [ [ℓ ] ]
�푔 , giving an

extension

1 −→ �퐿 �휃,ℓ
�푔 −→ Λ̌

�휃,ℓ
�푔 −→ �퐺

�휃, [ [ℓ ] ]
�푔 −→ 1.
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8.2. Spaces of �휃-structures on Wg,1

The proof of Proposition 8.1 and Theorem 8.2 requires a careful study of the action of Γ�푔 on the set of

homotopy classes of �휃-structures on �푊�푔,1. We will write

�퐹 ≔ Fr(�휃∗�훾)

for the frame bundle of the vector bundle �휃∗�훾 → �퐵; this is a principal GL2�푛 (R)-bundle, and �퐹 is

homotopy equivalent to the homotopy fibre of �휃 : �퐵 → �퐵�푂 (2�푛). A bundle map �푇�푊�푔,1 → �휃∗�훾 is

precisely the same as a GL2�푛 (R)-equivariant map Fr(�푇�푊�푔,1) → �퐹.

Under the assumption that �퐵 is �푛-connected, and so in particular simply connected, we may choose

once and for all an orientation of the bundle �휃∗�훾 and let

�퐹or
≔ Fror (�휃∗�훾)

denote the oriented frame bundle, which is path-connected (it is a path component of �퐹). An

orientation-preserving bundle map �푇�푊�푔,1 → �휃∗�훾 is precisely the same as a GL+
2�푛 (R)-equivariant map

Fror (�푇�푊�푔,1) → �퐹or.

If �휏 : �푇�푊�푔,1 → �푊�푔,1 × R2�푛 is a choice of (orientation-preserving) framing, then choosing a base

point �푓0 ∈ �퐹or defines a GL+
2�푛 (R)-equivariant map

ℓ�휏 : Fror (�푇�푊�푔,1)
�휏

−→ �푊�푔,1 × GL+
2�푛 (R)

(�푥,�푔) ↦→�푔 · �푓0
−−−−−−−−−→ �퐹or,

which up to homotopy does not depend on the choice of �푓0, because �퐹or is path-connected. It does,

however, depend on �휏.

Lemma 8.4. Let �퐵 be �푛-connected.

(i) Up to homotopy there is a unique orientation-preserving boundary condition ℓ�휕 that extends to a �휃-
structure ℓ on all of�푊�푔,1, and ℓ�휏

�휕
≔ ℓ�휏 |�휕�푊�푔,1

represents this homotopy class of boundary condition.
(ii) For such a boundary condition there is a homotopy equivalence

Bun�휕 (�푇�푊�푔,1, �휃
∗�훾; ℓ�휕) ≃ map�휕 (�푊�푔,1, �퐹

or),

depending on a framing �휏 and a homotopy from ℓ�휕 to ℓ�휏
�휕
.

Recall that we write

Str�휃�휕 (�푊�푔,1) = �휋0 (Bun�휕 (�푇�푊�푔,1, �휃
∗�훾; ℓ�휕))

for the set of homotopy classes of �휃-structures on �푊�푔,1 rel boundary, the omission of the boundary

condition ℓ�휕 from the notation justified by Lemma 8.4 (i). It is important to be aware that under the

bijection

�휋0 (Bun�휕 (�푇�푊�푔,1, �휃
∗�훾; ℓ�휕)) � �휋0 (map�휕 (�푊�푔,1, �퐹

or))

given by Lemma 8.4 (ii) the action of the mapping class group Γ�푔 = �휋0 (Diff�휕 (�푊�푔,1)) on the set of

homotopy classes of �휃-structures does not in general correspond to the action by precomposition on the

mapping space. Instead, an analysis analogous to that of Subsection 4.1 must be made, which we will

do below.

Proof of Lemma 8.4. If �푋 × R2�푛 is a trivial bundle, then there is a homeomorphism

map(�푋, �퐹or)
∼

−→ Bunor (�푋 × R2�푛, �휃∗�훾)
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to the space of GL+
2�푛 (R)-equivariant maps �푋 ×GL+

2�푛 (R) → �퐹or, given by sending the map �푓 : �푋 → �퐹or

to the GL+
2�푛 (R)-equivariant map

ℓ �푓 : �푋 × GL+
2�푛 (R)

(�푥,�푔) ↦→�푔 · �푓 (�푥)
−−−−−−−−−−−−→ �퐹or.

Fixing a choice of (orientation-preserving) framing �휏 : �푇�푊�푔,1 → �푊�푔,1 × R2�푛, any �휃-structure ℓ ∈
Bunor (�푇�푊�푔,1, �휃

∗�훾) therefore corresponds to a map �푓ℓ : �푊�푔,1 → �퐹or, and the associated boundary

condition ℓ�휕 ∈ Bunor (�푇�푊�푔,1 |�휕�푊�푔,1
, �휃∗�훾) corresponds to the composition �푓ℓ ◦ inc : �푆2�푛−1 → �푊�푔,1 → �퐹or.

We hence need to show that the map [�푊�푔,1, �퐹
or] → [�푆2�푛−1, �퐹or] of homotopy classes, induced by

restriction to the boundary, is constant. It suffices to prove this for based homotopy classes, because

[�푊�푔,1, �퐹
or]∗ → [�푊�푔,1, �퐹

or] is surjective because �퐹or is path-connected.

From the fibration �푆�푂 (2�푛) ≃ GL+
2�푛 (R) → Fror (�휃∗�훾) → �퐵 we obtain an exact sequence

�휋�푛+1 (�퐵, �푥1)
�휕

−→ �휋�푛 (�푆�푂 (2�푛), id)
�푎∗
−→ �휋�푛 (�퐹

or, �푥1) −→ �휋�푛 (�퐵, �푥1) = 0,

using our assumption that �퐵 is �푛-connected. In particular, the map �푎∗ is surjective, and because all

Whitehead products vanish in an �퐻-space such as �푆�푂 (2�푛), the Whitehead bracket

[−,−] : �휋�푛 (�퐹
or, �푥1) × �휋�푛 (�퐹

or, �푥1) −→ �휋2�푛−1 (�퐹
or, �푥1)

must also be zero. The inclusion of the boundary inc : �푆2�푛−1 → �푊�푔,1 is represented by the homotopy

class
�푔∑

�푖=1

[�푎�푖 , �푏�푖] ∈ �휋2�푛−1 (�푊�푔,1, �푥0),

where �푎�푖 , �푏�푖 : �푆�푛 → �푊�푔,1 form a hyperbolic basis of the intersection form on �휋�푛 (�푊�푔,1, �푥0) �
�퐻�푛 (�푊�푔,1;Z). In particular, it is a sum of Whitehead products, and hence the map �푓ℓ ◦ inc : �푆2�푛−1 → �퐹or

must be null-homotopic. This proves part (i).

For part (ii) we observe that the above identification using �휏 gives a map of homotopy Cartesian

squares from

map�휕 (�푊�푔,1, �퐹
or) map(�푊�푔,1, �퐹

or)

{const} map(�휕�푊�푔,1, �퐹
or)

to

Bun�휕 (�푇�푊�푔,1, �휃
∗�훾; ℓ�휏

�휕
) Bunor (�푇�푊�푔,1, �휃

∗�훾)

{ℓ�휏
�휕
} Bunor (�푇�푊�푔,1 |�휕�푊�푔,1

, �휃∗�훾)

which is an equivalence at each corner apart from the top left corner and so is also an equivalence at the

top left corner. Finally, a choice of homotopy from ℓ�휏
�휕

to ℓ�휕 gives an equivalence Bun�휕 (�푇�푊�푔,1, �휃
∗�훾; ℓ�휏

�휕
) ≃

Bun�휕 (�푇�푊�푔,1, �휃
∗�훾; ℓ�휕), using the homotopy lifting property for the right-hand map of the second square.

�

8.2.1. Mapping class group action

Given a choice of framing �휏 we have produced a bijection

Str�휃�휕 (�푊�푔,1) = �휋0 (Bun�휕 (�푇�푊�푔,1, �휃
∗�훾; ℓ�휕)) � �휋0 (map�휕 (�푊�푔,1, �퐹

or)),
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and we wish to understand the orbits and stabilisers of the natural action of Γ�푔 on the left-hand side. To do

so we must describe the corresponding Γ�푔-action on the right-hand side. In Section 4 we described how a

choice of framing identifies the topological monoid Bun1/2�휕 (�푇�푊�푔,1) with map1/2�휕 (�푊�푔,1,�푊�푔,1×GL2�푛 (R)),
and we determined the induced composition law on this space. The same discussion goes through when

we impose a boundary condition on the entire boundary instead: there is a homeomorphism

Bun�휕 (�푇�푊�푔,1)
�

−→ map�휕 (�푊�푔,1,�푊�푔,1 × GL+
2�푛 (R))

under which composition of bundle maps corresponds to the operation

( �푓 , �휆) ⊛ (�푔, �휌) = ( �푓 ◦ �푔, (�휆 ◦ �푔) · �휌),

with ◦ denoting composition of maps and · denoting pointwise multiplication.

In the proof of Lemma 8.4 we have similarly used �휏 to identify the space of �휃-structures

Bun�휕 (�푇�푊�푔,1, �휃
∗�훾; ℓ�휕) with map�휕 (�푊�푔,1, �퐹

or). Similar to Lemma 4.1, one sees that under this identi-

fication the right action of Bun�휕 (�푇�푊�푔,1) by precomposition corresponds to

map�휕 (�푊�푔,1, �퐹
or) × map�휕 (�푊�푔,1,�푊�푔,1 × GL+

2�푛 (R)) −→ map�휕 (�푊�푔,1, �퐹
or)

(ℎ, ( �푓 , �휆)) ↦−→ (ℎ ◦ �푓 ) · �휆,

where here · denotes the left GL+
2�푛 (R)-action on �퐹or. We write ℎ ⊛ ( �푓 , �휆) for this operation. Note that

it is not equal to precomposition on the mapping space.

8.2.2. Relaxing the boundary condition

In the long exact sequence of homotopy groups for the fibration sequence

map�휕 (�푊�푔,1, �퐹
or) −→ map∗(�푊�푔,1, �퐹

or) −→ map∗(�휕�푊�푔,1, �퐹
or),

based at the constant maps to the base point �푓0 ∈ �퐹or, the maps �휋�푖 (map∗(�푊�푔,1, �퐹
or)) →

�휋�푖 (map∗(�휕�푊�푔,1, �퐹
or)) are given by a sum of Whitehead products of elements in �휋�푛 (Ω

�푖�퐹or). For �푖 > 0

such Whitehead products vanish because Ω�푖�퐹or is a loop space; for �푖 = 0 they also vanish as discussed

in the proof of Lemma 8.4. Thus, this yields a short exact sequence in the sense of groups and sets

0 −→ �휋2�푛 (�퐹
or)

�
−→ �휋0 (map�휕 (�푊�푔,1, �퐹

or)) −→ Hom(�퐻�푛, �휋�푛 (�퐹
or)) −→ 0. (16)

(By �퐺
�
→ �푋 we indicate an action of a group �퐺 on a set �푋 .) Recalling that Str�휃∗ (�푊�푔,1) denotes the

homotopy classes of �휃-structures on �푊�푔,1 equal to ℓ�휕 near the point ∗ ∈ �휕�푊�푔,1, this may be rewritten as

0 Str�휃
�휕
(�퐷2�푛) Str�휃

�휕
(�푊�푔,1) Str�휃∗ (�푊�푔,1) 0

0 �휋2�푛 (�퐹
or) �휋0 (map�휕 (�푊�푔,1, �퐹

or)) Hom(�퐻�푛, �휋�푛 (�퐹
or)) 0,

�

� � �

�

where the vertical bijections depend on the choice of framing �휏.

This short exact sequence is equivariant for the right action of the mapping class group Γ�푔 in the

following sense. Let Γ�푔 act on the middle term via the derivative Γ�푔 → �휋0 (Bun�휕 (�푇�푊�푔,1)) and ⊛ above.

Similarly, Γ�푔 acts on the right-hand term via the derivative

Γ�푔 −→ Υ�푔 = �휋0 (Bun1/2�휕 (�푇�푊�푔,1))

and factors over Λ�푔 = �휋0 (Emb�1/2�휕
(�푊�푔,1)). The right-hand side was identified with GL(�퐻�푛) ⋉

Hom(�퐻�푛, �휋�푛 (�푆�푂 (2�푛))) in Subsection 4.2, and in terms of this identification the action (�퐵, �훽) ∈ Υ�푔 is
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given by

�훼 ⊛ (�퐵, �훽) = �훼 ◦ �퐵 + �휄∗�훽,

where �휄 : �푆�푂 (2�푛) ⊂ GL+
2�푛 (R) → �퐹or is given by acting on the base point of �퐹or. With these actions, the

map

�휋0 (map�휕 (�푊�푔,1, �퐹
or)) −→ Hom(�퐻�푛, �휋�푛 (�퐹

or))

is Γ�푔-equivariant, and the Γ�푔- and �휋2�푛 (�퐹
or)-actions on �휋0 (map�휕 (�푊�푔,1, �퐹

or)) commute (this is because

the �휋2�푛 (�퐹
or)-action is by changing the �휃-structure in a small disc near the boundary, and diffeomorphisms

in Γ�푔 can be assumed to fix such a disc).

8.3. Framings

An important example of a tangential structure satisfying the conditions given in the beginning of this

section is a framing: we take the tangential structure to be fr : �퐸�푂 (2�푛) → �퐵�푂 (2�푛).
In this case �퐹or ≃ �푆�푂 (2�푛), so when we specialise (16) to framings, we see that the set Strfr

�휕
(�푊�푔,1)

of homotopy classes of framings of �푊�푔,1 extending ℓ�휕 is in bijection with the middle term of the short

exact sequence in the sense of groups and sets

0 Strfr
�휕
(�퐷2�푛) Strfr

�휕
(�푊�푔,1) Strfr

∗ (�푊�푔,1) 0

0 �휋2�푛 (�푆�푂 (2�푛)) �휋0 (map�휕 (�푊�푔,1, �푆�푂 (2�푛))) Hom(�퐻�푛, �휋�푛 (�푆�푂 (2�푛))) 0.

�

� � �

�

For �푛 ≥ 3, the groups �휋�푛 (�푆�푂 (2�푛)) were determined by Bott [8] and the groups �휋2�푛 (�푆�푂 (2�푛)) by Kervaire

[27]. We will only use that �휋2�푛 (�푆�푂 (2�푛)) is always finite.

Recall from Subsection 3.2 that �퐼�푔 denotes the Torelli subgroup of the mapping class group Γ�푔; that

is, the kernel of �훼�푔 : Γ�푔 → �퐺 ′
�푔.

Lemma 8.5. For �푛 ≥ 3, the action of the subgroup �퐼�푔 ≤ Γ�푔 on Strfr
�휕
(�푊�푔,1,) via ⊛ has finitely many orbits.

Proof. The framing �휏 gives a bijection Strfr
�휕
(�푊�푔,1,) � �휋0 (map�휕 (�푊�푔,1, �푆�푂 (2�푛))). Because �휋2�푛 (�푆�푂 (2�푛))

is finite, it suffices to prove that there are finitely many orbits for the �퐼�푔-action on the set Strfr
∗ (�푊�푔,1) of

homotopy classes of framings relative to a point. As before, we identify this set through the framing

with �휋2�푛 (�푆�푂 (2�푛))\�휋0 (map�휕 (�푊�푔,1, �푆�푂 (2�푛))) = �휋0 (map∗(�푊�푔,1, �푆�푂 (2�푛))).
To study the �퐼�푔-action, recall from Theorem 3.3 that �퐼�푔 is an extension

1 −→ Θ2�푛+1 −→ �퐼�푔 −→ Hom(�퐻�푛, �푆�휋�푛 (�푆�푂 (�푛))) −→ 1.

The action of Γ�푔 on the set Hom(�퐻�푛, �휋�푛 (�푆�푂 (2�푛))) is through the derivative map Γ�푔 → Υ�푔 =

�휋0 (Bun1/2�휕 (�푇�푊�푔,1)), whose structure was determined in Lemma 4.3. Thus, we need to understand the

image of �퐼�푔 in Υ�푔.

The derivatives of elements of Θ2�푛+1 are bundle maps supported in a small disc that can be taken to

be near the boundary: when only half of the boundary is required to be fixed these may be homotoped to

the identity (or one may use Lemma 8.14). Thus, the homomorphism �퐼�푔 → Υ�푔 factors over the quotient

group

�퐽�푔 = �퐼�푔/Θ2�푛+1 = Hom(�퐻�푛, �푆�휋�푛 (�푆�푂 (�푛))).

By Lemma 4.3, the map from �퐽�푔 = Hom(�퐻�푛, �푆�휋�푛 (�푆�푂 (�푛))) lands in the subgroup Hom

(�퐻�푛, �휋�푛 (�푆�푂 (2�푛))) ⊂ Υ�푔, and this homomorphism is induced by applying the homomorphism

�푆�휋�푛 (�푆�푂 (�푛)) → �휋�푛 (�푆�푂 (2�푛)) to the target. Because this is surjective when �푛 ≠ 1, 3, 7 by Lemma 4.4,
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in this case the image of �퐼�푔 is exactly Hom(�퐻�푛, �휋�푛 (�푆�푂 (2�푛))). The action of this group on Hom

(�퐻�푛, �휋�푛 (�푆�푂 (2�푛))) is through addition, which is transitive. This proves that there is a unique �퐼�푔-orbit

for �푛 ≠ 3, 7. On the other hand, if �푛 = 3, 7, then �푆�휋�푛 (�푆�푂 (�푛)) → �휋�푛 (�푆�푂 (2�푛)) has cokernel Z/2, again

by Lemma 4.4, so the set of orbits is in bijection with Hom(�퐻�푛,Z/2) and is still finite. �

Recall from Subsection 8.1 that we write Γ
fr, [ℓ ]
�푔 for the stabiliser of [ℓ] ∈ Strfr

�휕
(�푊�푔,1,) under the

action of Γ and write �퐺
fr, [ℓ ]
�푔 = im

[
Γ

fr, [ℓ ]
�푔 → Γ�푔 → �퐺 ′

�푔

]
.

Corollary 8.6. The group �퐺
fr, [ℓ ]
�푔 has finite index in �퐺 ′

�푔.

Proof. This image is the stabiliser of [ℓ] ∈ Strfr
�휕
(�푊�푔,1,)/�퐼�푔 with respect to the residual �퐺 ′

�푔 = Γ�푔/�퐼�푔-

action. Because this is a finite set by Lemma 8.5, this stabiliser has finite index. �

8.4. Proof of Proposition 8.1

Because �퐸�푂 (2�푛) is contractible, there is a unique map �퐸�푂 (2�푛) → �퐵 over �퐵�푂 (2�푛) up to homotopy,

using which any framing determines a �휃-structure: we say that such �휃-structures come from framings.

This induces a map �푆�푂 (2�푛) → �퐹or as well as a map of short exact sequences (16):

0 �휋2�푛 (�푆�푂 (2�푛))) �휋0 (map�휕 (�푊�푔,1, �푆�푂 (2�푛))) Hom(�퐻�푛, �휋�푛 (�푆�푂 (2�푛))) 0

0 �휋2�푛 (�퐹
or) �휋0 (map�휕 (�푊�푔,1, �퐹

or)) Hom(�퐻�푛, �휋�푛 (�퐹
or)) 0

with right-hand map surjective because �휋�푛 (�푆�푂 (2�푛)) → �휋�푛 (�퐹
or) is surjective, by our assumption that

�퐵 is �푛-connected. This is identified with the map Strfr
∗ (�푊�푔,1) → Str�휃∗ (�푊�푔,1), which is therefore also

surjective.

Thus, given a [ℓ] ∈ Str�휃
�휕
(�푊�푔,1) � �휋0 (map�휕 (�푊�푔,1, �퐹

or)), there is another [ℓ0] coming from a framing

that has the same image in Str�휃∗ (�푊�푔,1). Because the bottom sequence is exact, these differ by the action

of an element �휋2�푛 (�퐹
or). Changing the �휃-structure by this element in a small disc near the boundary,

we obtain a homotopy equivalence �퐵Diff �휃
�휕 (�푊�푔,1; ℓ�휕)ℓ ≃ �퐵Diff �휃

�휕 (�푊�푔,1; ℓ�휕)ℓ0
. In conclusion, each path

component of �퐵Diff �휃
�휕 (�푊�푔,1; ℓ�휕) is homotopy equivalent (over �퐵Diff�휕 (�푊�푔,1)) to one that comes from a

framing.

In particular, the group �퐺
�휃, [ℓ ]
�푔 is conjugate to �퐺

�휃, [ℓ0 ]
�푔 where ℓ0 is a �휃-structure that comes from a

framing. By Corollary 8.6 the inclusion

�퐺
fr, [ℓ0 ]
�푔 ⊂ �퐺

�휃, [ℓ0 ]
�푔 ⊂ �퐺 ′

�푔

has finite index, and hence so does �퐺
�휃, [ℓ0 ]
�푔 ⊂ �퐺 ′

�푔.

8.5. Proof of Theorem 8.2

We shall repeat the proof the argument for Theorem A while carrying along the tangential structure

�휃 : �퐵 → �퐵�푂 (2�푛). Recall that we assume that �퐵 is �푛-connected, and �퐻∗(�퐵;Q) is finite-dimensional in

each degree.

8.5.1. The Weiss fibration sequence with tangential structures

The first step of Theorem A was to reduce from diffeomorphisms to self-embeddings. We shall do the

same for tangential structures.

From the boundary condition of �휃-structures ℓ�휕 near �휕�푊�푔,1 we can extract by restriction a new

boundary condition ℓ1/2�휕 near 1/2�휕�푊�푔,1. The topological monoid Emb�1/2�휕
(�푊�푔,1) acts on the space
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Bun1/2�휕 (�푇�푊�푔,1, �휃
∗�훾; ℓ1/2�휕) through the derivative map

Emb�1/2�휕 (�푊�푔,1) −→ Bun1/2�휕 (�푇�푊�푔,1).

In analogy with �퐵Diff �휃
�휕 (�푊�푔,1; ℓ�휕), we take the homotopy quotient

�퐵Emb
�, �휃
1/2�휕

(�푊�푔,1; ℓ1/2�휕) ≔ Bun1/2�휕 (�푇�푊�푔,1, �휃
∗�훾; ℓ1/2�휕) � Emb�1/2�휕 (�푊�푔,1).

In the same way as the set of path components of �퐵Diff �휃
�휕 (�푊�푔,1; ℓ�휕) is given by the set of orbits

Str�휃
�휕
(�푊�푔,1)/Γ�푔, the set of path components of �퐵Emb

�, �휃
1/2�휕

(�푊�푔,1; ℓ1/2�휕) is given by Str�휃∗ (�푊�푔,1)/Λ�푔.

The difference between diffeomorphisms and self-embeddings with tangential structures is described

by an analogue of the Weiss fibre sequence (3). Let ℓ�휕0
be obtained by restricting the standard framing

on R2�푛 to a neighbourhood of �휕�퐷2�푛 and considering it as a boundary condition for �휃-structures on

�퐷2�푛; this is a representative of the unique homotopy class of boundary conditions that extends, as in

Lemma 8.4. Then

�퐵Diff �휃
�휕 (�퐷

2�푛; ℓ�휕0
) ≔ Bun�휕 (�푇�퐷

2�푛, �휃∗�훾; ℓ�휕0
) � Diff�휕 (�퐷

2�푛).

Boundary-connected sum makes the fibration sequence

Bun�휕 (�푇�퐷
2�푛, �휃∗�훾; ℓ�휕0

) −→ �퐵Diff �휃
�휕 (�퐷

2�푛; ℓ�휕0
) −→ �퐵Diff�휕 (�퐷

2�푛) (17)

one of group-like �퐸2�푛-algebras, using models as in Remark 3.2. By choosing suitable models reminiscent

of Moore loops, we can extract from this a fibration sequence of group-like topological monoids (cf. [33,

Section 4.2]). We remind the reader that we assume that �퐵 is �푛-connected. Without this assumption,

further care needs to be taken with path-components

Proposition 8.7. There is a fibration sequence

�퐵Diff �휃
�휕 (�퐷

2�푛; ℓ�휕0
) −→ �퐵Diff �휃

�휕 (�푊�푔,1; ℓ�휕) −→ �퐵Emb
�, �휃
1/2�휕

(�푊�푔,1; ℓ1/2�휕),

which deloops once.

Proof. If suffices to establish the delooped version. For brevity, we write (consistent with [33])

BD ≔ �퐵Diff�휕 (�퐷
2�푛), BD�휃

≔ �퐵Diff �휃
�휕 (�퐷

2�푛; ℓ�휕0
),

BW�푔,1 ≔ �퐵Diff�휕 (�푊�푔,1), BW�휃
�푔,1 ≔ �퐵Diff �휃

�휕 (�푊�푔,1; ℓ�휕),

TD�휃
≔ Bun�휕 (�푇�퐷

2�푛, �휃∗�훾; ℓ�휕0
), TW�휃

�푔,1 ≔ Bun�휕 (�푇�푊�푔,1, �휃
∗�훾; ℓ�휕).

Without loss of generality, ℓ�휕 agrees with ℓ�휕0
on the complement of 1/2�휕�푊�푔,1. Then boundary-connected

sum gives compatible actions of the topological monoids (17), now written TD�휃 → BD�휃 → BD, on each

of the terms in TW�휃
�푔,1

→ BW�휃
�푔,1

→ BW�푔,1. Taking homotopy quotients, we get a commutative diagram

TW�휃
�푔,1

TW�휃
�푔,1

� TD�휃 ∗ � TD�휃

BW�휃
�푔,1

BW�휃
�푔,1

� BD�휃 ∗ � BD�휃

BW�푔,1 BW�푔,1 � BD ∗ � BD
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with columns and rows fibration sequences. The middle row is the desired fibration sequence, so it

remains to identify the center term with �퐵Emb
�, �휃
1/2�휕

(�푊�푔,1; ℓ1/2�휕). As in [33, Section 4], in a suitable

model, restriction to a small copy of �푊�푔,1 inside �푊�푔,1 gives a map of fibration sequences

TW�휃
�푔,1

� TD�휃 Bun1/2�휕 (�푇�푊�푔,1, �휃
∗�훾; ℓ1/2�휕)

BW�휃
�푔,1

� BD�휃 �퐵Emb
�, �휃
1/2�휕

(�푊�푔,1; ℓ1/2�휕)

BW�푔,1 � BD �퐵Emb�1/2�휕
(�푊�푔,1).

The bottom map is a weak equivalence by [33, Theorem 4.17], so it suffices to prove that the top map

is a weak equivalence. Upon picking a reference framing �휏, we can identify it with the map

map�휕 (�푊�푔,1, �퐹
or) � Ω

2�푛 (�퐹or) −→ map1/2�휕 (�푊�푔,1, �퐹
or),

induced by restriction to a small copy of �푊�푔,1 inside �푊�푔,1, which is indeed a weak equivalence. �

8.5.2. Embeddings with tangential structures

Now that Proposition 8.7 has established the relationship between diffeomorphisms and self-embeddings

with �휃-structures, we study the latter.

Let us recall some of the notation introduced in Subsection 8.1. A �휃-structure ℓ on �푊�푔,1 that extends

ℓ�휕, and hence also extends ℓ1/2�휕, gives a base point in �퐵Emb
�, �휃
1/2�휕

(�푊�푔,1; ℓ1/2�휕) and we write

Λ̌
�휃,ℓ
�푔 ≔ �휋1 (�퐵Emb

�, �휃
1/2�휕

(�푊�푔,1; ℓ1/2�휕), ℓ)

for the fundamental group at this base point. This surjects onto the subgroup Λ
�휃, [ [ℓ ] ]
�푔 = StabΛ�푔

([[ℓ]])

of Λ�푔 = �휋0 (Emb�1/2�휕
(�푊�푔,1)), and �퐺

�휃, [ [ℓ ] ]
�푔 ⊂ �퐺 ′

�푔 denotes the image of Λ
�휃, [ [ℓ ] ]
�푔 . We defined �퐿

�휃,ℓ
�푔 by the

extension

1 −→ �퐿 �휃,ℓ
�푔 −→ Λ̌

�휃,ℓ
�푔 −→ �퐺

�휃, [ [ℓ ] ]
�푔 −→ 1.

Lemma 8.8. If 2�푛 ≥ 6 and �퐵 is �푛-connected, then �퐺
�휃, [ [ℓ ] ]
�푔 ≤ �퐺 ′

�푔 has finite index.

Proof. By definition, we have inclusions �퐺
�휃, [ℓ ]
�푔 ≤ �퐺

�휃, [ [ℓ ] ]
�푔 ≤ �퐺 ′

�푔. The result then follows as �퐺
�휃, [ℓ ]
�푔 is

a finite index subgroup of �퐺 ′
�푔 by Proposition 8.1. �

We can therefore apply the setup of (1) and ask whether a Λ̌
�휃,ℓ
�푔 -representation is �푔�푟-algebraic.

The group Λ
�휃, [ [ℓ ] ]
�푔 acts (in the homotopy category; i.e., by homotopy classes of homotopy equiva-

lences) on the path component Bun1/2�휕 (�푇�푊�푔,1, �휃
∗�훾; ℓ1/2�휕)ℓ of ℓ, and as preparation we study the action of

the subgroup �퐽
�휃, [ [ℓ ] ]
�푔 on the rational homotopy groups of Bun1/2�휕 (�푇�푊�푔,1, �휃

∗�훾; ℓ1/2�휕)ℓ . This action does

not preserve the base point ℓ, but the space in question is simple (because it is homotopy-equivalent to

a path component of
∏

2�푔 Ω
�푛�퐹or), so there is still a well-defined action on homotopy groups.

Lemma 8.9. �퐽
�휃, [ [ℓ ] ]
�푔 acts trivially on �휋�푖 (Bun1/2�휕 (�푇�푊�푔,1, �휃

∗�훾; ℓ1/2�휕)ℓ).

Proof. The action of Emb�1/2�휕
(�푊�푔,1) on Bun1/2�휕 (�푇�푊�푔,1, �휃

∗�훾; ℓ1/2�휕) is through the derivative map to

Bun1/2�휕 (�푇�푊�푔,1)
×, so the action of the group Λ

�휃, [ [ℓ ] ]
�푔 on the path component Bun1/2�휕 (�푇�푊�푔,1, �휃

∗�훾; ℓ1/2�휕)ℓ
factors through an action of the stabiliser of [[ℓ]] in Υ�푔 = �휋0 (Bun1/2�휕 (�푇�푊�푔,1)

×).
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As in Proposition 4.5 and Lemma 8.4 (ii), a reference framing �휏 gives rise to a split fibration sequence

map1/2�휕 (�푊�푔,1,GL2�푛 (R)) −→ Bun1/2�휕 (�푇�푊�푔,1)
× −→ map1/2�휕 (�푊�푔,1,�푊�푔,1)

×, (18)

as well as an identification

Bun1/2�휕 (�푇�푊�푔,1, �휃
∗�훾; ℓ1/2�휕) ≃ map1/2�휕 (�푊�푔,1, �퐹

or). (19)

In this description, the group �퐽
�휃, [ [ℓ ] ]
�푔 acts through �휋0 (map1/2�휕 (�푊�푔,1,GL2�푛 (R))). The topological monoid

map1/2�휕 (�푊�푔,1,GL2�푛 (R)) acts on map1/2�휕 (�푊�푔,1, �퐹
or) by the pointwise action of GL2�푛 (R) on �퐹or. By the

Eckmann–Hilton argument, the action of an element of map1/2�휕 (�푊�푔,1,GL2�푛 (R)) is homotopic to sending

it to map1/2�휕 (�푊�푔,1, �퐹
or) and acting through the �푛-fold loop structure. As elements of �퐽

�휃, [ [ℓ ] ]
�푔 stabilise

[[ℓ]], they lie in the kernel of �휋0 (map∗(�푊�푔,1,GL2�푛 (R))) → �휋0 (map∗(�푊�푔,1, �퐹
or)), and hence they act

on map1/2�휕 (�푊�푔,1, �퐹
or) by maps homotopic to the identity. �

Proposition 8.10. Supposing that 2�푛 ≥ 6, then for each �푖 ≥ 1 the Λ̌
�휃,ℓ
�푔 -representation

�휋�푖+1(�퐵Emb
�, �휃
1/2�휕

(�푊�푔,1; ℓ1/2�휕), ℓ) ⊗ Q is �푔�푟-algebraic.

Proof. Let Bun1/2�휕 (�푇�푊�푔,1, �휃
∗�훾; ℓ1/2�휕)Λ�푔 ·ℓ denote the set of path components in the Λ�푔-orbit of [[ℓ]] ∈

Str�휃∗ (�푊�푔,1) = �휋0 (Bun1/2�휕 (�푇�푊�푔,1, �휃
∗�훾; ℓ1/2�휕)), so that there is a fibration sequence

Bun1/2�휕 (�푇�푊�푔,1, �휃
∗�훾; ℓ1/2�휕)Λ�푔 ·ℓ

�푖
−→ �퐵Emb

�, �휃
1/2�휕

(�푊�푔,1; ℓ1/2�휕)ℓ −→ �퐵Emb��휕 (�푊�푔,1). (20)

This gives a long exact sequence of abelian groups (or groups; respectively sets) with action of Λ̌
�휃,ℓ
�푔 ,

the fundamental group of the total space [44, p. 385]. By property (i) of equivariant Serre classes, it

suffices to prove that the higher rational homotopy groups of fibre and base are �푔�푟-algebraic.

For the base, the action is through the homomorphism Λ̌
ℓ, �휃
�푔 → Λ�푔. That the higher rational homotopy

groups are �푔�푟-algebraic Λ̌
ℓ, �휃
�푔 -representations thus follows from Theorem 6.2, which says that they are

�푔�푟-algebraic Λ�푔-representations.

For the fibre, we recall that Bun1/2�휕 (�푇�푊�푔,1, �휃
∗�훾; ℓ1/2�휕)ℓ is simple and thus its fundamental group

acts trivially on its higher homotopy groups. Hence, the action of Λ̌
�휃,ℓ
�푔 factors through the surjection

Λ̌
�휃,ℓ
�푔 → Λ

�휃, [ [ℓ ] ]
�푔 , and the Λ

�휃, [ [ℓ ] ]
�푔 -action is given by self-embeddings acting on �휃-structures through

the derivative map.

By Lemma 8.9, the action of the subgroup �퐽
�휃, [ [ℓ ] ]
�푔 ⊂ Λ

�휃, [ [ℓ ] ]
�푔 on the higher rational homotopy

groups of Bun1/2�휕 (�푇�푊�푔,1, �휃
∗�훾; ℓ1/2�휕)ℓ is trivial, and hence the Λ

�휃,ℓ
�푔 -action factors over �퐺

�휃, [ [ℓ ] ]
�푔 . As in

the proof of Lemma 8.9, a reference framing �휏 gives an identification (19), from which we read off that

�휋�푖+1 (Bun1/2�휕 (�푇�푊�푔,1, �휃
∗�훾; ℓ1/2�휕)ℓ) � �퐻∨

�푛 ⊗ �휋�푛+�푖+1 (�퐹
or).

The split fibration sequence (18) provides a section GL(�퐻�푛) → Υ�푔, and �퐺
�휃, [ [ℓ ] ]
�푔 ≤ �퐺�퐿(�퐻�푛) acts via

this in the evident way. Because the rational homotopy groups of �퐹or are finite-dimensional because

those of �퐵 and �퐵�푂 (2�푛) are, this action is algebraic. �

In fact, it is easy to describe the group �퐽
�휃, [ [ℓ ] ]
�푔 .

Lemma 8.11. The subgroup

�퐽
�휃, [ [ℓ ] ]
�푔 = Stab�퐽�푔 ([[ℓ]]) ≤ �퐽�푔 = Hom(�퐻�푛, �푆�휋�푛 (�푆�푂 (�푛)))

is given by Hom(�퐻�푛, �퐾�푛) ≤ Hom(�퐻�푛, �푆�휋�푛 (�푆�푂 (�푛))), where�퐾�푛 ≔ ker[�푆�휋�푛 (�푆�푂 (�푛)) → �휋�푛 (�푆�푂 (2�푛)) →
�휋�푛 (�퐹

or)].
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Proof. The action of �퐽�푔 = Hom(�퐻�푛, �푆�휋�푛 (�푆�푂 (�푛))) on Str�휃∗ (�푊�푔,1) � Hom(�퐻�푛, �휋�푛 (�퐹
or)) is via the map

�푆�휋�푛 (�푆�푂 (�푛)) → �휋�푛 (�푆�푂 (2�푛)) → �휋�푛 (�퐹
or) and the action by addition on Hom(�퐻�푛, �휋�푛 (�퐹

or)), so its

stabiliser is precisely as described. �

Recall that �퐿
�휃,ℓ
�푔 denotes the kernel of the homomorphism Λ̌

�휃,ℓ
�푔 → �퐺

�휃, [ [ℓ ] ]
�푔 . Using the fibration

sequence (20), we introduce the notation

im(�푖) ≔ im
[
�푖 : �휋1 (Bun1/2�휕 (�푇�푊�푔,1, �휃

∗�훾; ℓ1/2�휕), ℓ) → �퐿 �휃,ℓ
�푔

]
,

and it follows from that fibration sequence that there is a commutative diagram

im(�푖) �퐿
�휃,ℓ
�푔 �퐽

�휃, [ [ℓ ] ]
�푔

im(�푖) Λ̌
�휃,ℓ
�푔 Λ

�휃, [ [ℓ ] ]
�푔

{�푒} �퐺
�휃, [ [ℓ ] ]
�푔 �퐺

�휃, [ [ℓ ] ]
�푔

(21)

where each row and column is a group extension.

Lemma 8.12. If 2�푛 ≥ 6, then �퐿
�휃,ℓ
�푔 is abelian (and hence nilpotent). If in addition �푔 ≥ 2, then the

�퐺
�휃, [ [ℓ ] ]
�푔 -representations �퐻�푖 (�퐿 �휃,ℓ

�푔 ;Q) are algebraic.

Proof. By Lemma 8.9 the top extension in (21) is central, and because �퐽
�휃, [ [ℓ ] ]
�푔 is abelian (because �퐽�푔

is), it follows that �퐿
�휃,ℓ
�푔 is abelian.

The group Λ̌
�휃,ℓ
�푔 acts on its normal subgroup �퐿

�휃,ℓ
�푔 by conjugation, and by (21) there are compatible

actions on im(�푖) and �퐽
�휃, [ [ℓ ] ]
�푔 that factor over Λ

�휃, [ [ℓ ] ]
�푔 . Because the top extension in (21) is central, there

is a Serre spectral sequence of Λ
�휃, [ [ℓ ] ]
�푔 -representations

�퐸2
�푝,�푞 = �퐻 �푝 (�퐽

�휃, [ [ℓ ] ]
�푔 ;Q) ⊗ �퐻�푞 (im(�푖);Q) =⇒ �퐻 �푝+�푞 (�퐿 �휃,ℓ

�푔 ;Q),

so by Theorem 2.2 it suffices to show that theΛ
�휃, [ [ℓ ] ]
�푔 -representations �퐻 �푝 (�퐽

�휃, [ [ℓ ] ]
�푔 ;Q) and �퐻�푞 (im(�푖);Q)

are �푔�푟-algebraic.

Lemma 8.11 shows that �퐽
�휃, [ [ℓ ] ]
�푔 = Hom(�퐻�푛, �퐾�푛) where �퐾�푛 ⊂ �푆�휋�푛 (�푆�푂 (�푛)) is a certain subgroup,

necessarily finitely generated, with theΛ
�휃, [ [ℓ ] ]
�푔 -action induced by the�퐺

�휃, [ [ℓ ] ]
�푔 -action by precomposition.

Thus, �퐻 �푝 (�퐽
�휃, [ [ℓ ] ]
�푔 ;Q) � Λ�푝 [�퐻�푛 ⊗ (�퐾�푛 ⊗ Q)∨], which is algebraic.

For the group im(�푖), we use that it is abelian and so the Λ
�휃, [ [ℓ ] ]
�푔 -representations �퐻�푞 (im(�푖);Q) are

all �푔�푟-algebraic if and only if im(�푖) ⊗ Q is. But im(�푖) is a quotient of �휋1 (Bun1/2�휕 (�푇�푊�푔,1, �휃
∗�훾; ℓ1/2�휕), ℓ),

which in the proof of Proposition 8.10 we showed is identified with �퐻∨
�푛 ⊗ �휋�푛+1 (�퐹

or); the rationalisation

of this is algebraic. �

8.5.3. Starting the proof of Theorem 8.2

In analogy with �퐵Tor�휃
�휕
(�푊�푔,1; ℓ�휕)ℓ , let us define

�퐵TorEmb
�, �휃
1/2�휕

(�푊�푔,1; ℓ1/2�휕)ℓ ≔ hofib
[
�퐵Emb

�, �휃
1/2�휕

(�푊�푔,1; ℓ1/2�휕)ℓ −→ �퐵�퐺
�휃, [ [ℓ ] ]
�푔

]
.

Its fundamental group is �퐿
�휃,ℓ
�푔 , the kernel of Γ̌

�휃,ℓ
�푔 → �퐺

�휃, [ [ℓ ] ]
�푔 .
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The proof of Theorem 8.2 proceeds along the lines of Theorem A, with some additional work keeping

track of fundamental groups and path components. We restrict the fibre sequence of Proposition 8.7

to the path component of total space given by [ℓ] ∈ Str�휃
�휕
(�푊�푔,1) and produce the analogue of the

commutative diagram in the proof of Theorem A, which now takes the form

�퐵Diff �휃
�휕 (�퐷

2�푛; ℓ�휕0
)�퐴 �퐵Diff �휃

�휕 (�퐷
2�푛; ℓ�휕0

)�퐵 �퐺
�휃, [ [ℓ ] ]
�푔 /�퐺

�휃, [ℓ ]
�푔

�퐵Tor�휃
�휕
(�푊�푔,1; ℓ�휕)ℓ �퐵Diff �휃

�휕 (�푊�푔,1; ℓ�휕)ℓ �퐵�퐺
�휃, [ℓ ]
�푔

�퐵TorEmb
�, �휃
1/2�휕

(�푊�푔,1; ℓ1/2�휕)ℓ �퐵Emb
�, �휃
1/2�휕

(�푊�푔,1; ℓ1/2�휕)ℓ �퐵�퐺
�휃, [ [ℓ ] ]
�푔 ,

(22)

in which the rows and columns are fibration sequences and the subscripts �퐴, �퐵 ⊂ �휋0 (�퐵Diff �휃
�휕 (�퐷

2�푛; ℓ�휕0
))

denote certain collections of path components. As the leftmost two columns deloop, we see that �퐴 and

�퐵 are in fact subgroups of �휋0 (�퐵Diff �휃
�휕 (�퐷

2�푛; ℓ�휕0
)) and may be described in terms of the exact sequences

of groups �휋1 (�퐵Tor�휃
�휕
(�푊�푔,1; ℓ�휕), ℓ) → �퐿

�휃,ℓ
�푔 → �퐴 → 0 and Γ̌

�휃,ℓ
�푔 → Λ̌

�휃,ℓ
�푔 → �퐵 → 0.

Remark 8.13. It follows from the delooping of the middle column that �퐺
�휃, [ℓ ]
�푔 ≤ �퐺

�휃, [ [ℓ ] ]
�푔 is in fact a

normal subgroup.

8.5.4. Interlude: The groups �퐴 and �퐵 are finite

First observe that the map

�휋1 (Bun�휕 (�푇�푊�푔,1, �휃
∗�훾; ℓ�휕), ℓ) −→ �휋1 (Bun1/2�휕 (�푇�푊�푔,1, �휃

∗�훾; ℓ1/2�휕), ℓ)

is surjective, by the discussion in Subsection 8.2.2 and the long exact sequence on homotopy groups.

From the exact sequence

�휋1 (Bun1/2�휕 (�푇�푊�푔,1, �휃
∗�훾; ℓ1/2�휕), ℓ) −→ �퐿 �휃,ℓ

�푔 −→ �퐽
�휃, [ [ℓ ] ]
�푔 −→ 0

coming from �퐵Tor�휃
�휕
(�푊�푔,1; ℓ�휕) ≃ Bun1/2�휕 (�푇�푊�푔,1, �휃

∗�훾; ℓ1/2�휕)�TorEmb�1/2�휕
(�푊�푔,1) it then follows that there

is a surjection �퐽
�휃, [ [ℓ ] ]
�푔 → �퐴 with kernel given by the image of the natural homomorphism �퐼

�휃, [ℓ ]
�푔 →

�퐽
�휃, [ [ℓ ] ]
�푔 .

To finish our analysis of the group �퐴, we need to understand how much the group �퐽
�휃, [ [ℓ ] ]
�푔 =

Stab�퐽�푔 ([[ℓ]]) differs from �퐼
�휃, [ℓ ]
�푔 = Stab�퐼�푔 ([ℓ].

Lemma 8.14. The action up to homotopy of the subgroup Θ2�푛+1 ≤ �퐼�푔 ≤ Γ�푔 on the space

Bun�휃
�휕
(�푇�푊�푔,1; ℓ�휕) is trivial, so in particular Θ2�푛+1 ≤ �퐼

�휃, [ℓ ]
�푔 .

Proof. This subgroup acts on Bun�휃
�휕
(�푇�푊�푔,1; ℓ�휕) via the derivative map (with respect to the standard

framing of �퐷2�푛 ⊂ R2�푛)

Θ2�푛+1 = �휋0 (Diff�휕 (�퐷
2�푛)) −→ �휋2�푛 (�푆�푂 (2�푛)),

which we claim is trivial. Smoothing theory identifies the space of smooth structures on a 2�푛-dimensional

topological manifold with the space of lifts to �퐵�푂 (2�푛) of the map to �퐵Top(2�푛) classifying its tangent

microbundle [28, Essays IV, V]. In particular, for a disc this provides an equivalence [13, Theorem

4.4(b)] [28, Theorem V.3.4]

Diff�휕 (�퐷
2�푛) ≃ Ω

2�푛+1Top(2�푛)/�푂 (2�푛),
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under which the derivative map is the connecting map �휋2�푛+1 (Top(2�푛)/�푂 (2�푛)) → �휋2�푛 (�푂 (2�푛)) in the

fibration sequence. Then the result follows directly from [13, Proposition 5.4 (iv)], which says that

�휋�푖 (�푂 (�푘)) → �휋�푖 (Top(�푘)) is injective for �푘 ≥ 5 and �푖 ≤ �푘 . �

As a consequence of the previous lemma, the action of �퐼�푔 on Str�휃
�휕
(�푊�푔,1) factors over �퐽�푔, and

�퐼
�휃, [ℓ ]
�푔 /Θ2�푛+1 is identified with the stabiliser in �퐽�푔 of [ℓ] ∈ Str�휃

�휕
(�푊�푔,1).

Lemma 8.15. The subgroup

Stab�퐽�푔 ([ℓ]) ≤ �퐽�푔 = Hom(�퐻�푛, �푆�휋�푛 (�푆�푂 (�푛)))

has finite index in the subgroup �퐽
�휃, [ [ℓ ] ]
�푔 = Hom(�퐻�푛, �퐾�푛) ≤ Hom(�퐻�푛, �푆�휋�푛 (�푆�푂 (�푛))), where �퐾�푛 ≔

ker[�푆�휋�푛 (�푆�푂 (�푛)) → �휋�푛 (�푆�푂 (2�푛)) → �휋�푛 (�퐹
or)].

Proof. Recall from Subsection 8.2.2 that there is a surjection Str�휃
�휕
(�푊�푔,1) → Str�휃∗ (�푊�푔,1), which by a

choice of framing is identified with the surjection

�휋0 (map�휕 (�푊�푔,1, �퐹
or)) −→ Hom(�퐻�푛, �휋�푛 (�퐹

or)).

The group �휋2�푛 (�퐹
or) acts freely and transitively on the fibres of this map. Let us write [[ℓ]] ∈

Hom(�퐻�푛, �휋�푛 (�퐹
or)) for the image of [ℓ] ∈ �휋0 (map�휕 (�푊�푔,1, �퐹

or)) under this map.

If [�휑] ∈ �퐽�푔 fixes [ℓ], then it certainly fixes [[ℓ]]. Conversely, there is defined a function

�푓ℓ : Stab�퐽�푔 ([[ℓ]]) → �휋2�푛 (�퐹
or) by the property

[ℓ] ⊛ [�휑] = �푓ℓ ([�휑]) · [ℓ] .

It follows from this formula and the fact that the action of �퐽�푔 commutes with that of �휋2�푛 (�퐹
or) that �푓ℓ is

a homomorphism. Therefore, we have an exact sequence

1 −→ Stab�퐽�푔 ([ℓ]) −→ �퐽
�휃, [ [ℓ ] ]
�푔 = Stab�퐽�푔 ([[ℓ]])

�푓ℓ
−→ �휋2�푛 (�퐹

or),

with Stab�퐽�푔 ([ℓ]) the group of interest. To finish the proof of this lemma we must therefore show that

the homomorphism �푓ℓ has finite image.

We can apply the same construction to the full Λ�푔 = Γ�푔/Θ2�푛+1-action, giving an exact sequence

1 −→ StabΛ�푔
([ℓ]) −→ Λ

�휃, [ [ℓ ] ]
�푔 = StabΛ�푔

([[ℓ]])
�푓ℓ

−→ �휋2�푛 (�퐹
or),

where �푓ℓ extends �푓ℓ . The Serre spectral sequence for the extension

1 −→ �퐽
�휃, [ [ℓ ] ]
�푔 = Stab�퐽�푔 ([[ℓ]]) −→ Λ

�휃, [ [ℓ ] ]
�푔 = StabΛ�푔

([[ℓ]]) −→ �퐺
�휃, [ [ℓ ] ]
�푔 −→ 1

gives an exact sequence

· · · −→ Hom(�퐻�푛, �퐾�푛)�퐺�휃, [ [ℓ ] ]
�푔

−→ (Λ
�휃, [ [ℓ ] ]
�푔 )ab −→ (�퐺

�휃, [ [ℓ ] ]
�푔 )ab −→ 0.

Claim. As long as �푔 ≥ 2 the two outer terms of this exact sequence are finite.

Proof of claim. For the left-hand term, first note that the group Hom(�퐻�푛, �퐾�푛) is finitely generated, and

hence so are the coinvariants. Then the�퐺
�휃, [ [ℓ ] ]
�푔 -coinvariants of Hom(�퐻�푛, �퐾�푛) ⊗Q are isomorphic to the

�퐺
�휃, [ [ℓ ] ]
�푔 -invariants. The subgroup �퐺

�휃, [ [ℓ ] ]
�푔 ≤ �퐺 ′

�푔 has finite index by Lemma 8.8. Because �푔 ≥ 2 (this

only needs �푔 ≥ 1 when �푛 is odd), it follows that�퐺
�휃, [ [ℓ ] ]
�푔 is Zariski dense in either Sp2�푔 (Q), SO�푔,�푔 (Q) or

O�푔,�푔 (Q), and we may as well take invariants with respect to this larger group: it is evident that this is 0.
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For the right-hand term, the abelian group (�퐺
�휃, [ [ℓ ] ]
�푔 )ab is finitely generated because the arithmetic

group �퐺
�휃, [ [ℓ ] ]
�푔 is, and �퐻1(�퐺

�휃, [ [ℓ ] ]
�푔 ;Q) vanishes because �푔 ≥ 2 by [37, Corollary 7.6.17]. �

It follows that (Λ
�휃, [ [ℓ ] ]
�푔 )ab is also a finite group. We then proceed as follows. The homomorphism

�푓ℓ : �퐽
�휃, [ [ℓ ] ]
�푔 → �휋2�푛 (�퐹

or) extends through the homomorphism �푓ℓ as discussed above, and this in turn

factors through a homomorphism (Λ
�휃, [ [ℓ ] ]
�푔 )ab → �휋2�푛 (�퐹

or), as the target is an abelian group:

�퐽
�휃, [ [ℓ ] ]
�푔 �휋2�푛 (�퐹

or)

Λ
�휃, [ [ℓ ] ]
�푔 (Λ

�휃, [ [ℓ ] ]
�푔 )ab.

�푓ℓ

�푓ℓ

But (Λ
�휃, [ [ℓ ] ]
�푔 )ab is a finite group, so �푓ℓ has finite image. �

Because we have �퐴 � �퐽
�휃, [ [ℓ ] ]
�푔 /Stab�퐽�푔 ([ℓ]), and �퐺

�휃, [ [ℓ ] ]
�푔 /�퐺

�휃, [ℓ ]
�푔 is finite by Lemma 8.8, we deduce

the following.

Corollary 8.16. The groups �퐴 and �퐵 are finite.

8.5.5. Finishing the proof of Theorem 8.2

We wish to analyse the Serre spectral sequence for the left-hand column of (22), and it is awkward that

the fibre of this fibration is not connected. To deal with this we consider the subgroup

�퐿
�휃,ℓ
�푔 ≔ ker(�퐿 �휃,ℓ

�푔 → �퐴) = im(�휋1 (�퐵Tor�휃�휕 (�푊�푔,1; ℓ�휕), ℓ) → �퐿 �휃,ℓ
�푔 )

of �퐿
�휃,ℓ
�푔 and let �퐵TorEmb

�, �휃
1/2�휕

(�푊�푔,1; ℓ1/2�휕)ℓ denote the corresponding covering space. There is then a

fibration sequence

�퐵Diff �휃
�휕 (�퐷

2�푛; ℓ�휕0
)ℓ0

−→ �퐵Tor�휃�휕 (�푊�푔,1; ℓ�휕)ℓ −→ �퐵TorEmb
�, �휃
1/2�휕

(�푊�푔,1; ℓ1/2�휕)ℓ , (23)

where the fibre is now path connected.

Similarly, consider the subgroup Λ̌
�휃,ℓ
�푔 ≔ ker(Λ̌�휃,ℓ

�푔 → �퐵) of Λ̌
�휃,ℓ
�푔 and the corresponding covering

space �퐵Emb
�, �휃
1/2�휕

(�푊�푔,1; ℓ1/2�휕)ℓ . It is easy to check that there is an induced fibration sequence

�퐵TorEmb
�, �휃
1/2�휕

(�푊�푔,1; ℓ1/2�휕)ℓ −→ �퐵Emb
�, �휃
1/2�휕

(�푊�푔,1; ℓ1/2�휕)ℓ −→ �퐵�퐺
�휃, [ℓ ]
�푔 ,

so �퐺
�휃, [ℓ ]
�푔 acts on the cohomology of �퐵TorEmb

�, �휃
1/2�휕

(�푊�푔,1; ℓ1/2�휕)ℓ .

Lemma 8.17. Suppose that 2�푛 ≥ 6 and that �푔 ≥ 2. Then the �퐺
�휃, [ℓ ]
�푔 -representations

�퐻�푖 (�퐵TorEmb
�, �휃
1/2�휕

(�푊�푔,1; ℓ1/2�휕)ℓ ;Q) are algebraic.

Proof. We consider the fibration

�휏>1�퐵Emb
�, �휃
1/2�휕

(�푊�푔,1; ℓ1/2�휕)ℓ −→ �퐵TorEmb
�, �휃
1/2�휕

(�푊�푔,1; ℓ1/2�휕)ℓ −→ �퐵�퐿
�휃,ℓ
�푔 ,

where �휏>1 denotes the 1-connected cover. Firstly, combining Proposition 8.10 and Lemma 2.11 shows

that the Λ̌
�휃,ℓ
�푔 -representations

�퐻�푖 (�휏>1�퐵Emb
�, �휃
1/2�휕

(�푊�푔,1; ℓ1/2�휕)ℓ ;Q)
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are �푔�푟-algebraic. Secondly, we will show below that the �퐺
�휃,ℓ
�푔 -representations �퐻�푖 (�퐿 �휃,ℓ

�푔 ;Q) are algebraic.

Together these provide the input for Lemma 2.15, which gives the required result.

This second ingredient is proved using Lemma 8.12. Because �퐿
�휃,ℓ
�푔 is abelian, the action of the group

�퐴 on the kernel �퐿
�휃,ℓ
�푔 = ker(�퐿 �휃,ℓ

�푔 → �퐴) is trivial, so, because �퐴 is finite by Corollary 8.16, the Serre

spectral sequence shows that

�퐻∗(�퐿 �휃,ℓ
�푔 ;Q)

�

−→ �퐻∗(�퐿 �휃,ℓ
�푔 ;Q).

The second part of Lemma 8.12 then gives the desired conclusion. �

We can now complete the proof of Theorem 8.2. We make two observations about the fibration (23).

Firstly, �퐵Diff �휃
�휕 (�퐷

2�푛; ℓ�휕0
)ℓ0

has degree-wise finite-dimensional rational cohomology. This follows from

the fibre sequence (17) using that �퐹or has degree-wise finite-dimensional rational cohomology (as �퐵

does, by assumption) and that �퐵Diff�휕 (�퐷
2�푛) has degree-wise finite-dimensional rational cohomology by

[33, Theorem A]) and finite fundamental group. Secondly, the fundamental group of the base of (23)

acts trivially on the cohomology of the fibre, as this fibration deloops. The rational cohomology Serre

spectral sequence for this fibration and Lemma 8.17 then give the result.

8.6. Proof of Theorem 8.3

Having established algebraicity for the cohomology of �퐵Tor�휃
�휕
(�푊�푔,1; ℓ�휕)ℓ , we now prove that it is a

nilpotent space.

Proposition 8.18. Let 2�푛 ≥ 6 and �퐵 be �푛-connected. Then �퐵TorEmb�휃
1/2�휕

(�푊�푔,1; ℓ1/2�휕)ℓ is nilpotent.

Proof. Its fundamental group �퐿
�휃,ℓ
�푔 is nilpotent by Lemma 8.12 (in fact it is abelian), so it suffices to

show that it acts nilpotently on the higher homotopy groups. To do so, let �퐵TorEmb��휕 (�푊�푔,1) denote the

covering space corresponding to the subgroup �퐽
�휃, [ [ℓ ] ]
�푔 ≤ �퐽�푔, and consider the fibration sequence

Bun1/2�휕 (�푇�푊�푔,1, �휃
∗�훾; ℓ1/2�휕)ℓ −→ �퐵TorEmb

�, �휃
1/2�휕

(�푊�푔,1; ℓ1/2�휕)ℓ −→ �퐵TorEmb��휕 (�푊�푔,1).

As we remarked before the proof of Lemma 8.9, the fibre is simple. Furthermore, the base is nilpotent

by Proposition 7.5 (and the fact that a cover of a nilpotent space is nilpotent). The fundamental group

�퐽
�휃, [ [ℓ ] ]
�푔 of the base acts on the fibre, and because the fibre is simple this gives an action on the homotopy

groups of the fibre: it suffices to show that this action is nilpotent, but Lemma 8.9 shows that �퐽
�휃, [ [ℓ ] ]
�푔 in

fact acts trivially on the homotopy groups of the fibre. �

The proof of Theorem 8.3 is now analogous to that of Theorem C:

Proof of Theorem 8.3. Delooping (23), �퐵Tor�휃
�휕
(�푊�푔,1; ℓ�휕)ℓ is the base point component of the homotopy

fibre of a map

�퐵TorEmb�휃
1/2�휕

(�푊�푔,1; ℓ1/2�휕)ℓ −→ �퐵(�퐵Diff �휃
�휕 (�퐷

2�푛; ℓ�휕0
)ℓ0
).

The domain is a nilpotent space by the previous proposition (again because a cover of a nilpotent space

is nilpotent), so by Lemma 7.2 the space �퐵Tor�휃
�휕
(�푊�푔,1; ℓ�휕)ℓ is also nilpotent. �
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