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Abstract

The Torelli group of Wy = #85" x §™ is the group of diffeomorphisms of Wy fixing a disc that act trivially on
Hy (Wg; Z). The rational cohomology groups of the Torelli group are representations of an arithmetic subgroup of
Spag (Z) or Og,¢(Z). In this article we prove that for 2n > 6 and g > 2, they are in fact algebraic representations.
Combined with previous work, this determines the rational cohomology of the Torelli group in a stable range. We
further prove that the classifying space of the Torelli group is nilpotent.
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1. Introduction

Let W, denote the 2n-dimensional manifold #£ 5" x §" and Dift (W, D>™) denote the topological group
of diffeomorphisms of W, fixing an open neighbourhood of a disc D> ¢ W, pointwise in the C*-
topology. Only certain automorphisms of H, (W,;Z) can be realised by diffeomorphisms: in particular,
they must respect the intersection form, giving a homomorphism

ag: Diff(Wg, D) — Gy = {Sp2g(Z) s odd

O4.¢(Z) ifniseven,
whose image we denote by G . According to Kreck, in dimension 2n > 6 the only additional constraint
is that the automorphism preserves a certain quadratic refinement of the intersection form [32]. Thus,
G is a finite index subgroup of G4 and hence an arithmetic subgroup associated to the algebraic group
G € {Spy,. Og ¢} The kernel of ag is called the Torelli group and denoted by Tor(W, ,D?); it is
equipped with an outer action of Gy.

In [33] the first author proved that the rational cohomology groups of BTor(W,, D*") are finite-
dimensional in each degree as long as 2n > 6. It is then a consequence of Margulis super-rigidity that
they are almost algebraic representations of Gy; that is, there is a finite index subgroup of Gy, such that
the restriction of the representation to this subgroup extends to a rational representation of the algebraic
group G [42, 1.3.(9)]. The purpose of this article is to show that the rational cohomology groups are
not just almost algebraic but algebraic: no restriction to a finite index subgroup is necessary.

Theorem A. For 2n > 6 and g > 2, the H'(BTor(W,, D>"); Q) are algebraic representations of Gy.

Remark 1.1. Of course in the case g = 0, such a statement is trivial as G, = {e}. For g = 1 and
n odd, extensions of algebraic representations need no longer split and our techniques only imply
that these rational cohomology groups have a filtration whose associated graded consists of algebraic
representations. For g = 1 and n even, we do not obtain any information.
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Theorem A may be used in conjunction with the main result of [34]: for 2n > 6 that paper computes
the maximal algebraic subrepresentation of H*(BTor(W,, D>"); Q) in a stable range; by Theorem A
this is in fact the entire cohomology.

If Gy < Gy is a finite index subgroup, let us write Difng(Wg,DZ") = a; (Gg). Theorem A
implies that its cohomology with coeflicients in any algebraic G -representation (as usual, these are
representations over the rationals) is independent of the choice of finite index subgroup in a stable range:

Corollary B. Let 2n > 6, g > 2,V be an algebraic G ,-representation, and if n is even then assume that
Gy is not entirely contained in SOg ¢ (Z). Then the natural map

H*(BDiff(W,, D*"); V) — H*(Diff%s (W,, D*); V),

which is a split injection by transfer, is an isomorphism in degrees = < g — e, with e = 0 if n is odd and
e=1ifniseven.

Our techniques can also be used to prove a second property of Torelli groups. Recall that a based
path-connected topological space is nilpotent if its fundamental group is nilpotent and acts nilpotently
on all higher homotopy groups.

Theorem C. For 2n > 6, the spaces BTor(W,, D?") are nilpotent.

The spaces BDiff(W,, D>") classify smooth fibre bundles with fibre W, containing a trivialised disc
bundle and can be considered as moduli spaces of such manifolds. In Section 8 we prove the natural
generalisations of Theorem A, Corollary B, and Theorem C to moduli spaces of manifolds with certain
tangential structures (such as framings).

2. Algebraicity

We start by proving some qualitative results about algebraicity of representations, with the goal of passing
such properties through spectral sequences and long exact sequences. A particular role is played by the
following well-known groups. Define groups Oy ¢ (Q) (respectively Sp,,(Q)) as those automorphisms

of Q8 preserving the symmetric (respectively antisymmetric) form with matrix

0 idg 0 idg
idg 0 [» TSP |4, 0 |

These are the Q-points of algebraic groups Oy . and Sp,,, respectively. The former has two connected
components, and we let SO , denote that containing the identity.
In this section we shall take as given a short exact sequence of groups

]l —J—T —>G—1, (D

for G an arithmetic subgroup of an algebraic group G € {Sp,,,Og,¢,S0; o}, which in this article
will mean a finite index subgroup of G(Z) that is Zariski dense in G(Q) (in contrast with [42], which
imposes no such condition). For G € {Sp,,, S0y .}, any such G < G(Z) of finite index is Zariski dense:
SOy, ¢ for g > 2 and Sp,, for g > 1 are connected semisimple algebraic groups defined over Q without
compact factors, so by [7, Theorem 7.8] G is a lattice in G(R), and by the Borel density theorem [4] G
is Zariski dense in G(R) and hence also in G(Q). For G = O, ,, a subgroup G < G(Z) of finite index
is Zariski dense if and only if it is not contained in SO, ,(Z). Because SO ; fails to be semisimple, we
will exclude it from now on.

Convention 2.1. If n is even, we will assume g > 2.
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2.1. Some representation theory

2.1.1. Algebraic representations

Let G be an arithmetic subgroup of the algebraic group G € {Sp,,, Og4.¢,SOq ¢ } as above. A representa-
tion ¢: G — GL,(Q) is said to be algebraic if it is the restriction of a finite-dimensional representation
of the algebraic group G in the sense that there is a morphism of algebraic groups ¢: G — GL,, that
on taking Q-points and restricting to G yields ¢. An action of G on an n-dimensional Q-vector space V
is then said to be algebraic if V admits a basis such that the resulting representation G — GL,,(Q) is
algebraic. We usually denote a representation (¢, V) by V, leaving the action of G on V implicit. Prop-
erties (a), (b) and (c) of algebraic representations listed below are obtained in Subsection 2.1 of [34]
by combining several results in the literature, and properties (d) and (e) are direct consequences of the
definition.

Theorem 2.2. The class of algebraic G-representations is closed under the following operations:

(a) subrepresentations,
(b) quotients,

(c) extensions when g > 2,
(d) duals,

(e) tensor products.

2.1.2. gr-algebraic representations
The vector spaces that show up in this article will often not be G-representations, let alone be algebraic.
Instead, they will be I'-representations with the following property.

Definition 2.3. A I'-representation V is gr-algebraic if it admits a finite length filtration
OcFhV)cFi(V)c---CFp(V)=V

of subrepresentations such that each F;(V)/F;_{(V) is the restriction to I' of an algebraic G-
representation.

Remark 2.4. This class of representations has appeared before in the work of Hain (see, e.g., [26,
Section 5]); they play a role in his theory of relative unipotent completion.

By definition, a gr-algebraic I'-representation is finite-dimensional. The class of gr-algebraic
I'-representations has all of the closure properties of the algebraic G-representations themselves.

Lemma 2.5. The class of gr-algebraic T'-representations is closed under the following operations:

(a) subrepresentations,
(b) quotients,

(c) extensions,

(d) duals,

(e) tensor products.

Proof. For parts (a) and (b), suppose that V is a gr-algebraic I'-representation with filtration {F; (V) };’; o0

and W C V is a subrepresentation. Firstly, W inherits a filtration F;(W) := W N F;(V). Each filtration
quotient F;(W)/F;_1(W) is a subrepresentation of F;(V)/F;_1(V); this guarantees that the I"-action
factors over G and then by Theorem 2.2 (a) the resulting G-representation is algebraic. Secondly, V/W
inherits a filtration F;(V /W) = im(F;(V) —» V — V/W). The filtration quotient F;(V/W)/F;_1(V /W)
is the quotient of F;(V)/F;_1(V) by F;(W)/F;_1(W). The I'-action thus factors over G and then by
Theorem 2.2 (b) the resulting G-representation is algebraic.

For part (c), suppose that V is a gr-algebraic I'-representation with filtration {F,-(V)}f’:0 and W
is a gr-algebraic I'-representation with filtration {F J-(W)};”:O, and there is a short exact sequence of
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I"-representations

0—W-5US5v—o0.

Then U admits a filtration {Fy(U)}*7 *! by stitching together the filtrations of W and V. That is, we
set Fx(U) = «(Fj(W)) for k < p and Fx(U) = n_l(Fk_,,_l(V)) for k > p. The filtration quotient
Fi(U)/Fr-1(U) is Fx (W) /[Fr_1(W) for k < p and Fy_p,—1(V)/Fy-p-2(V) for k > p. In particular, the
I"-action factors over G and, as such, is algebraic.

For part (d), suppose V is a gr-algebraic I'-representation with filtration {F,-(V)}f: o- Then VY is
a filtered I'-representation by F; (V") := ann(F,_;(V)), with associated graded F;(V")/Fi_1(V") =
(Fp-i(V)/Fp-i-1(V))". Thus, the -action factors over G, and, as such, is algebraic.

For part (e), suppose V is a gr-algebraic I'-representation with filtration {F;(V) };": o and W
is a gr-algebraic I'-representation with filtration {F;(W) };?:0. Then we may filter V ® W by
Fr (Ve W) = Y Fi(V) ® Fj(W) so that the filtration quotient is Fx(V & W)/Fi_1(V ® W) =
@i+j:k Fi(V)/Fi-1(V) ® F;(W)/F;_1(W). This means that the I"-action factors over G and, as such,
is algebraic. O

Remark 2.6. Note that in distinction with Theorem 2.2, case (c) does not require the assumption g > 2.
By Convention 2.1, this is only relevant when n is odd.

If V is a I'-representation, then each cohomology group H'(J; V) is a I'-representation, via the action
v - (j,v) = (yjy~',yv) of T on the object (J, V) in the category of groups equipped with a module
and functoriality of group cohomology on this category. As inner automorphisms act trivially on group
cohomology, this action of I descends to an action of G on H'(J;V) (see [11, Corollary 8.2]). The
following lemma gives a condition under which such a G-representation is algebraic.

Lemma 2.7. Suppose that g > 2, that each G-representation H'(J; Q) is algebraic, and that V is a
gr-algebraic T-representation. Then each G-representation H (J;V) is algebraic.

Proof. For any filtered I'-representation V' with filtration {F,(V)}, there is a spectral sequence of G-
representations

EPT = HP¥(J; Fy (V) [Fpor (V) = HPH(J:V),
If the action of I" on F}, (V) /F,-1(V) factors over G, then J acts trivally on Fj,(V)/F,-1(V) and so we
can identity E"? with HP*9(J;Q) ® Fj,(V)/F,_1(V) as a G-representation.
The hypotheses imply that the E|-page consists of algebraic G-representations. Using Theorem 2.2

(a) and (b) the E-page consists of algebraic G-representations, and using Theorem 2.2 (c) and the
assumption that g > 2, so does the abutment. )

2.2. Equivariant Serre classes
We will use a version of Serre’s mod C theory for spaces with actions of a group I'.

Definition 2.8. Fix a localisation k of Z. A Serre class C of k[I']-modules is a collection of k[I']-
modules satisfying the following properties:

(i) For every short exact sequence of k[I']-modules
0—A—B—C—0,
A,C eCifandonlyif B € C.

(i) A, B € C implies A ®; B € C and Tor]i‘ (A,B) eC.
(iii) A € Cimplies H,(K(A,n);k) e Cforalln > 1and p > 0.
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Property (iii) can be weakened to
(iii’) A € Cimplies that H,(K(A,1);k) e Cforallp >0
by the following lemma.
Lemma 2.9. Given properties (i) and (ii), property (iii’) implies property (iii).

Proof. We will prove that H,(K(A,n); k) € C by double induction over n > 1 and p > 0, the initial
cases n = 1 being (iii’) and p = 0 following from Hy(K(A,n); k) = k = Hy(K(A, 1); k), which lies in
C by (iii’).

For the case (n, p) with n > 1 and p > 0, we assume that the result is proven for n — 1 and all p and
for n and all p” < p. We will use the Serre spectral sequence for the homotopy fibration sequence

K(A,n—1) — = — K(A,n),
which takes the form
E;, = Hy(K(A,n); H/(K(A,n— 1);k)) = Hy (5 k).
By the universal coefficient theorem, the group Esz’t is an extension of

H;(K(A,n); k) ®@x H(K(A,n—1);k) and
Tory (Hs-1 (K (A, n); k), H; (K (A, n = 1);k)).

Thus, the inductive hypothesis and property (ii) imply that E;,’ g € C for p’ < p and for all q. Because
E Ir),’ g 18 obtained from this by taking subquotients, by property (i) it also lies in C.

We wish to prove that Ei’o € C. Using the exact sequences

r+l r ar r
0— EP»O - Ep,O - Ep—r,r—l

and the fact that E;
E ’+é does. Because E” o= E =0 € C, this concludes the proof of the induction step. O
ps p- ps

_y y_1 lies in C so the image of d” does too, we see that E; o lies in C as long as

Property (i) implies that belonging to the class C passes through spectral sequences in the following
sense.

Lemma 2.10. Suppose that we have a spectral sequence {E), .} of k[I'|-modules such that

(a) each (p, q) has only finitely many nonzero differentials into and out of it,
(b) for each n € Z only finitely many entries E'; , with p + q = n are nonzero,
(c) for each (p, q) there exists anr > 1 such that E}, , € C.

Then the abutment consists of k[I'|-modules that lie in C.

Proof. We first note that property (i) implies that being in C is preserved by passing to subquotients.

Using (c) it follows that each E Ir," q forr’ > ralso lies in C. By property (a), for each (p, g) there exists
an r’ such that Elr;’q = E;’iq. Thus, each E;’,",q lies in C.

Finally, the abutment in total degree n has a filtration with associated graded given by the terms E}) |
with p + ¢ = n, which all lie in C. This filtration is finite by (b), and using property (i) a number of times

we conclude that the abutment also lies in C. O
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Recall that a local system on a space X is a functor [1(X) — Ab, where I1(X) denotes the fundamental
groupoid of X. If 7: E — B is a fibration, then there is a local system H 4 (m; k) on B given by

ﬁq(n;ﬂ{): I1(B) — Mody,
bo —> Hy(n™ ' (bo); k).

If the fibres of & are typically called F, sometimes one writes H 4 (F; Q) for this local system. Dress’s
construction [15] of the homology Serre spectral sequence for a fibration 7: E — B is given by

E} ,=Hp(B:H (m:K) = Hpiq(E; L)

and does not use a choice of base point in B. Traditionally, for B path-connected one chooses a base point
bo € B and replaces this local system with the k[ (B, bg)]-module H,, (771 (bo); k). At that point the
spectral sequence is only functorial in based maps of fibrations. The advantage of Dress’s formulation
is that it is natural in all maps of fibrations: any commutative diagram

induces a map of Serre spectral sequence given on the E,-page by

Hy (B H, (1)) = Hy(B: f*H, (x':K)) > H, (B H, (x':10),

where 8,: f*H (7r k) — H, (7’; k) is the map of local systems induced by restricting g to fibres.

We will often want to transfer results about rational homotopy groups to results about rational
cohomology and vice versa, which will only be possible if the action of the fundamental group on
higher homotopy groups is under control.

For each i > 2, there is a local system

(X)) II(X) — Ab
7i(X): H(X) )

xo — mi (X, x0),

and each continuous map f: X — Y induces a natural transformation 7;(X) — f*m;(Y). Recall that a
path-connected space X is called simple if its fundamental group is abelian and acts trivially on higher
homotopy groups (this is true for any base point if it is true for a single base point). If X is simple,
not only does (2) makes sense for i = 1 as well but each local system (2) for i > 1 has the following
property: the isomorphism 7; (X, xg) — m;(X, x1) is independent of the choice of morphism from xg to
x1 in I1(X). Equivalently, 77; (X) is naturally isomorphic to a constant functor on an abelian group. We
can make a canonical choice of such a group by

7 (X) = colim 7; (X).

By definition of the colimit, 7r; (X) receives a natural map from ;(X, xo) for any base point xy € X,
and this is an isomorphism. If f: X — Y is a map between simple spaces, we therefore obtain a
homomorphism f,: m;(X) — m;(Y).

Suppose now that we have a I'-action up to homotopy, given by a homomorphism I' — [ X, X] to the
monoid of homotopy classes of maps. This induces an action of I" on the homology groups H;(X; k),
and if X is simple it also induces an action of I" on 77; (X) ® k. We can ask for either of these to lie in C.
The following will be used in Section 6.
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Lemma 2.11. Let X be a path-connected simple space with an action of I" up to homotopy. If all k[I']-
modules m;(X) ® k lie in C, then so do all H;(X; k).

Proof. We use Postnikov towers, which can be produced functorially in all maps by first replacing X by
the naturally weakly equivalent space |Sing(X)| and letting the nth stage 7<, X be the nth coskeleton
|cosk,, (Sing(X))| (e.g., [17]). The result is a natural tower of maps

dn+1 q qn-1 q1
- T<nX — T<pn-1X — T<0X

under X. The homotopy groups 71;(7<,X) vanish for i > n and the map X — 7.,X induces an
isomorphism on 7r; for i < n. Given a point xo € X, we obtain a point in 7,,_1 X that we shall denote the
same. The homotopy fibre of g,, over this point in 7<,_; X can be identified with the Eilenberg—MacLane
space K (m, (X, xq), n).

We apply the above version of the Serre spectral sequence to the fibration g, for n > 1 and get a
spectral sequence of I'-modules

Ei,q = Hp(TSn%X;Eq(Qn; k)) = Hp.q (t<nX; k),
where the coefficients are taken in the local system

Eq(CIn; k) : I(7<p-1X) — Mody
X0+ Hy (g5 (x0): K.
As q,‘l1 (x0) = K(m,(X, x9),n), homotopy classes of maps between these fibres are determined by their
effect on 7, so as X is simple the fibre transport map from ¢,,' (xo) to g;,' (x;) is independent of the

choice of path from x¢ to x;. Thus, H 4 (¢n; k) is canonically isomorphic to the trivial coefficient system
on the abelian group

colimﬂq(qn; k) = H,(K(nn(X),n); k).
Thus, the Serre spectral sequence simplifies to
E} o= Hp(t<n1X; Hy(K (72(X), 1); k) = Hprg (1< X k).
The universal coefficient theorem says that the I'-module
Hp (t<n-1X5 Hy (K (m(X), 1) k))
is naturally an extension of the I'-modules
Tory (Hp-1(t<n-1X), Hy (K (7,(X),1); k)) and Hp, (t<p-1X; k) @1 Hy (K (7,(X), 1); k).

Under this identification, the I"-action is given diagonally by the evident action on H, (7<,-1X; k) and
the action on H, (K (7,(X), n); k) induced by the action of I" on ,, (X).

After this preparation we now prove the proposition. We will show by induction over n that each
of the homology groups H.(7<,X; k) lies in C. The initial case n = 1 follows from the identification
7<1X = K(71(X), 1) as a space with I'-action. The homology groups H, (K (71 (X), 1); k) lie in C by
property (iii) of equivariant Serre classes.

For the induction step, we use the above Serre spectral sequence and again use property (iii) of
equivariant Serre classes to see that H, (K (m,(X),n); k) lies in C. By property (ii) the E>-page of the
Serre spectral sequence also lies in C, so by Lemma 2.10 so does its abutment. O

We will only use the full strength of the previous lemma in Section 8. In all other applications X is
in fact 1-connected, and in this case any action of I' on X up to homotopy can be replaced by a based
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action up to homotopy; that is, a homomorphism I"' — [X, X].. to the monoid of based homotopy
classes of based maps. In this case one may ignore the technical discussion about local systems and use
the ordinary Serre spectral sequence instead. It also allows one to apply the following converse result,
which will be used in Subsection 5.4 and Section 7.

Lemma 2.12. Let X be a based 1-connected space with a based action of I" up to homotopy. If all
I'-modules H;(X; k) lie in C, so do all m;(X) @ k.

Proof. We will again use a Postnikov tower and will prove by induction over n that each of the homotopy
groups 74 (1<, X) ® k lies in C. Because 71, (X) = m,(7<,X), this in particular proves the lemma.

For the induction step, we suppose that the homotopy groups 7;(7<,-1X) ® k lie in C for all i. By
the previous lemma it follows that each homology group H;(7<,-1X; k) lies in C. Form the long exact
sequence of homotopy groups for the pair (7<,-1X, X), we obtain an isomorphism of abelian groups

T+l (TSn—IX, X) ;) ﬂn(X),

and because X — 7<,-1X is an n-connected map between 1-connected spaces, the Hurewicz theorem
gives us an isomorphism

st (Ten 1 X, X) ® k — Hyp (t<n1 X, X3 K).

It thus suffices to prove that H,11 (7<,-1X, X; k) lies in C. This follows from the long exact sequence of
a pair

e Hn+1(X;]k) - Hn+l(TSn—lX;]k) - Hn+l(TSn—lX7X;1k) - Hn(X,Ik) — o,

by property (i) of equivariant Serre classes and the fact that the homology groups H.(X;k) and
H.(t<p-1X; k) liein C. |

If one is interested in cohomology instead of homology, one should impose a further axiom on the
Serre class C: that it is closed under k-linear duals in a derived sense. Specifically, we impose that

(iv) A € Cif and only if Homy (A, k) € C and Exté{ (A, k) eC.
The following will also be used in Subsection 5.4 and Section 7.

Lemma 2.13. Let C be an equivariant Serre class that also satisfies property (iv). Let X be a space with
an action of T up to homotopy. Then all k[T"]|-modules H;(X; k) lie in C if and only if all H (X; k) do.

Proof. The universal coefficient theorem gives a natural short exact sequence
0 — Ext} (H;-1(X; k), k) — H'(X;k) — Homy (H,(X;k), k) — 0.

The result follows from property (i) of equivariant Serre classes along with the additional property (iv).
O

2.2.1. gr-algebraic representations
The first equivariant Serre class is that of gr-algebraic representations:

Lemma 2.14. The Q[TI"]-modules that are gr-algebraic representations form an equivariant Serre class
satisfying the additional property (iv).

Proof. Property (i) is Lemma 2.5 (a), (b) and (c), and property (iv) is (d). Property (ii) is Lemma 2.5 (e).
Property (iii) follows by dualization, which is allowed by property (18), from the identification of the
cohomology H* (K (A, n); Q) with the free graded-commutative algebra on (A ® Q)" [n], as an algebra
in Q[I"]-modules. o
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Thus, the hypotheses of Lemmas 2.10, 2.11, 2.12 and 2.13 hold when we take k = Q and C to be the
gr-algebraic representations.

One way in which a space with a I"-action can arise is as the universal cover Y{e) of a based path-
connected space Y having 711 (Y, yg) = I'. The Torelli spaces we will be studying arise similarly as covers
Y (J) corresponding to a normal subgroup J < I" given by the kernel of a homomorphism I' — G; that
is, the homotopy fibre of the composition Y — BI' — BG.

Lemma 2.15. In this situation, suppose that g > 2, each G-representation H'(J;Q) is algebraic,
and each T-representation H (Y {e); Q) is gr-algebraic. Then each G-representation H (Y {J); Q) is
algebraic.

Proof. Naturality of the Serre spectral sequence implies that
EJT = HP (J;H(Y(e))) = HP™(Y(J))

is a spectral sequence of G-representations. As long as g > 2, we may apply Lemma 2.7 and Theorem 2.2
to obtain the conclusion. m]

2.2.2. Nilpotent modules
The second equivariant Serre class we will consider is that of nilpotent ['-modules that are finitely
generated as abelian groups.

Definition 2.16. For a group I', a I'-module (i.e., Z[T']-module) M is said to be nilpotent if it has a finite
filtration by sub-I"-modules whose associated graded is a trivial ["-module (i.e., has trivial I"-action).

Lemma 2.17. The Z[T']-modules that are finitely generated as abelian groups and nilpotent as T'-
modules form an equivariant Serre class.

Proof. Property (i) is straightfoward.

Now consider property (ii). Let 0 ¢ Fo(A) € Fi(A) C --- C F,(A) = A be a finite filtration of A
by Z[I']-modules such that each F;(A)/F;—;(A) has a trivial I'-action. Choose a resolution B, — B by
Z[T']-modules that are free as abelian groups and form the filtered chain complex {F;(A) ® B.}. This
gives a spectral sequence of Z[I']-modules

Ipl  _
En,q - Tor%m

(F,(A)/F,-1(A), B) = Tor”

]7+([ (A’ B)

Similarly, letting 0 C Fy(B) C F1(B) C --- C F,(B) = B be a finite filtration whose filtration quotients
have trivial I'-action and Q. — F,(A)/F,-1(A) be a resolution by free Z-modules gives a spectral
sequence of Z[I']-modules

gLl =TorZ,,(Fy(A)/Fy-1(A), Fi(B)/Fi—1 (B)) = TorZ,,(F,(A)/Fy-1(A), B).

Now the groups 7/ E;,, are finitely generated and have trivial I'-action, so by property (i) each ' E },’ q
is finitely generated and has a nilpotent I"-action, and by property (i) again each Torl.Z(A, B) is finitely-
generated and has a nilpotent I"-action, as required.

For property (iii), we instead prove property (iii’) and invoke Lemma 2.9. We prove this by induction
over the length m of the filtration 0 C Fy(A) C - - - F,;,(A) = A. In the initial case m = 0, the action of
I' on A is trivial and the result follows. For the induction step, we apply the Serre spectral sequence to

the fibration sequence

K(Fno1(A), 1) — K(A, 1) — K(A/Fm_1(A), 1).
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The E>-page is given by E%,,q = H,(K(A/Fpu-1(A),1); Hy(K(Fu-1(A), 1)); Z), which are naturally
an extension of the I'-modules

TorX (Hp—1 (K(A/Fn-1(A), 1);Z), Hy (K (Fu-1(A), 1); k)) and

Hp(K(A/Fp-1(A), 1) @ Hy(K(Fin-1(A), 1);Z).
These are in C by property (ii), and hence so is the abutment by property (i). O

Thus, the hypotheses of Lemmas 2.10, 2.11 and 2.12 hold when we take k = Z and C to be
the nilpotent I'-modules that are finitely generated as abelian groups. Furthermore, the hypothesis of
Lemma 2.13 holds by the following:

Lemma 2.18. Let C be the class of Z|TI'|-modules that are finitely generated as abelian groups and
nilpotent as I'-modules. Then property (iv) holds.

Proof. We need to verify that A € C if and only if Homz(A,Z) € C and ExtJZ(A, Z) € C. Suppose first
that A € C. There is a natural short exact sequence

0 — tors(A) — A — A/tors(A) — 0,

of Z[T"]-modules from which one obtains natural isomorphisms
Homg (A, Z) — Homg (A/tors(A),Z), Ext)(A,Z) — Extl(tors(A), Z).

Thus, it suffices to prove the result separately for the Z[I']-modules that are torsion or are free as abelian
groups.

First suppose A is torsion. We will use the fact that the functor Ext%( —,Z) is exact on torsion abelian
groups. A finite filtration 0 € Fo(A) € Fi1(A) C --- C F,(A) = A by Z[I']-modules such that each
F;(A)/F;—1(A) has a trivial I"-action gives a collection of short exact sequences

0 — Ext},(Fi(A)/Fi-1(A),Z) — Ext}(F;(A),Z) — Exth(F;_1(A),Z) — 0,

where the left term has a trivial I"-action. By applying property (i) we can then inductively prove that
ExtL(F;(A),Z) is a nilpotent I'-module, so Ext} (A, Z) = Ext(F,,(A),Z) is too.

Next suppose A is free and finitely generated. We will use the fact that Homgz(—, Z) is exact on free
and finitely generated abelian groups. Applying Homgz(—,Z) to the filtration as before, we get short
exact sequences

0 — Homgz(F;(A)/F;-1(A),Z) —» Homz(F;(A),Z) — Homg(F;—1(A),Z) — O,

where the left term has a trivial I"-action. This again shows inductively that Hom(F;(A), Z) is a nilpotent
I'-module, so Homz (A, Z) = Homz(F, (A), Z) is too.

For the reverse direction, supposing Homz(A,Z) € C and ExtIZ(A, Z) € C, it suffices to prove that
tors(A) and A/tors(A) lie in C. Now use the natural isomorphisms

tors(A) = Ext}(Ext}(A,Z),Z), A/tors(A) = Homz(Homz(A,Z),Z),

and apply the same arguments as above. O

3. Spaces of self-embeddings

Diffeomorphisms of the manifold W, := #,5" x §" relative to an open neighbourhood of a disc D"
are the same as diffeomorphisms of W, 1 = #,8" x §" \ int(D>") relative to an open neighbourhood
of its boundary W, ; = S*"~!. We shall study diffeomorphisms of W, 1 by thinking of them as self-
embeddings.
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3.1. The Weiss fibration sequence

A diffeomorphism of W, ; fixing a neighbourhood of the boundary pointwise is the same as a self-
embedding W, 1 < W, ; fixing a neighbourhood of the boundary pointwise. We shall relax this
boundary condition, and to do so fix an embedded disc D**~! c W, ;.

Definition 3.1. Let Embi2 5(Wg 1) be the group-like topological monoid of embeddings W 1 — Wy |
that fix a neighbourhood of D?*~! ¢ 0W, .1 pointwise and are isotopic through such embeddings to
a diffeomorphism of W, ; fixing a neighbourhood of dW, | pointwise. These are topologised in the
C*-topology.

The Weiss fibration sequence, implicit in [53], takes the form
BDiff5(D*") — BDiffg(Wg 1) — BEmb;, ,(Wg 1). (3)

In [33, Theorem 4.17] it was proven that this fibration sequence may be delooped once. In other words, (3)
is a principal BDiff5(D*")-bundle. Its base is then B?Diff5(D>"), obtained by delooping BDiff5(D>")
using its E,,-algebra structure given by boundary connect-sum (see Remark 3.2 below).

We will prove algebraicity properties for BDiff5(W, 1) by first proving them for BEmbi2 oWe.1)
and leveraging (3). In this section we set up the background necessary to implement this strategy, which
will then be done in the remaining sections of this article.

Remark 3.2. This E;,-structure is well known: one construction is given in [30, Lemma 6.1]. We will
have use for a version of this E,,-algebra structure for moduli spaces of manifolds with tangential
structure, so we outline a construction.

Our preferred model for BDiff3(D?") is the moduli space My(D?") of submanifolds of D> x R®
that (i) coincide with D** x {0} on an open neighbourhood of dD* x R™ and (ii) are diffeomorphic
to D" rel boundary (see [19, Section 2] for details on the topology). Our preferred model for the Es,-
operad is the little 2n-discs operad D,,, whose space D,,(r) of r-ary operations consists of ordered
r-tuples e = (eq, ..., e,) of embeddings D** — D?" with disjoint interior that are each a composition
of translation and dilation.

The structure maps of the D,,-algebra structure on My(D>") are then given as follows: given
(e;X1,....X) € Don(r) x Ma(D*)" we define a new element X of My(D?") by ‘inserting X; on
the image of the ith disc’. That is, the submanifold determined by

X N (e;(D™) xR®) = (¢; X idp)(X;)  fori=1,...,r,
X N (D \U_ e;(D™) xR®) = (D*" x {0}) N (D** \ U_,e;(D*") x R).

3.2. The group of path components

We start with a computation of the group of path components of Embi2 5(Wg.1). This will take the form
of a short exact sequence of groups as in (1). Recall from the introduction the homomorphism

ag: Diffg(Wg 1) — G4 = {szg(Z) %fn ?S odd.

O,4,0(Z) ifniseven,
recording the action of a diffeomorphism on the middle-dimensional homology group H, (W, 1;Z).
This lands in the symplectic or orthogonal group because the middle homology is equipped with a non-
degenerate (—1)"-symmetric intersection form. The intersection form is also equipped with a quadratic
refinement, given by counting self-intersections of embedded spheres representing n-dimensional
homology classes (see, e.g., [50, Theorem 5.2] or [20, Section 5] for details of its construction). This
quadratic refinement contains no further information unless n is odd but not 1, 3,7, in which case in

https://doi.org/10.1017/fms.2020.41 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2020.41

Forum of Mathematics, Sigma 13

terms of the standard hyperbolic basis e, fi, €2, f2, ..., g, fo of Hy(Wg 15Z) = 728 it is given by

g g
D Xiei +Yifi — Y XiY; € Z/2. )
i=1 i=1

It follows from the work of Kreck [32], Theorem 3.3 below, that for 2n > 6, the image G z:’ of ay is

Spye(Z) ifnisl,3,0r7,

G, = Spgg (Z) ifnisoddbutnotl,3,or7,

Og,¢(Z) ifniseven,

where Spgg(Z) < Sp,,(Z) is the proper subgroup of symplectic matrices that preserve the quadratic
form (4). (This was presumably known earlier and, as the referee pointed out, may be deduced by
combining [49, Lemma 10] with [14, Corollaire 1] and the fact that W, s have trivial inertia groups for
n > 3 [48, Theorem] [29, Corollary 3.2].) We will write H,, := H, (W, 1;Z).

The kernel of a, was also determined by Kreck [32, Theorem 2].

Theorem 3.3 (Kreck). For 2n > 6, the mapping class group I'y = mo(Diff5(Wy 1)) is described by
the pair of extensions

| — Iy — Ty =5 G — 1,

1 — @1 — Iy = Hom(H,, S7,(SO(n))) — 1.

Let us explain the groups and homomorphisms in Theorem 3.3 (the reference for the following
discussion is [32, Section 2], but see [31] for a similar explanation as well as further information about
these extensions). Recall that W, ; is given by the connected sum #,.5" x S \ int(D?") and hence has a
standard handle decomposition with a single 0-handle and 2g n-handles. Let us introduce terminology
for the cores of the n-handles. Writing S” = D"/S"~!, we may assume that the connected sums are
performed along discs in S” x " avoiding the subsets " x {0} and {0} x S". Similarly, we may assume
that the disc that is removed from #,S" x §" is disjoint from these subsets. We call the 2g subsets of W,
obtained from the subsets " X {0} and {0} X S" the standard cores. These come in pairs, which intersect
transversally in a single point, and we pick g disjoint embedded arcs connecting these intersection points
to W, 1. Up to isotopy, we may assume without loss of generality that all diffeomorphisms are the
identity on a neighbourhood of each of these arcs.

As aconsequence of aresult of Haefliger [25], eachelement f € I, is represented by a diffeomorphism
that fixes pointwise the 2g standard cores. Let us choose orientation-preserving trivialisations 7;: v; @
R=CxR% 1<i< 2g, of the once-stabilised normal bundles of each of these cores. The derivative
of f gives 2g elements

[ti o (Dfly, @id) 0 7;'] € mu (SO (n + 1)),
each of which is in the image of 7,,(SO(n)) under stabilisation. Because the cores represent a basis
ai,...,axg of H,, we canrecord this data as an element of Hom(H,,, S7,, (SO (n))), with S7,, (SO (n)) =

im(7,(SO(n)) — 7,(SO(n + 1))) as given in Table 1. Kreck shows that this is independent of the
choices of trivialisations 7; and gives a homomorphism

x: 1, — Hom(H,, S7,(S0(n))).

An element in the kernel of y can be represented by a diffeomorphism that is the identity on
an open neighbourhood of each of the standard cores in addition to open neighbourhoods of each
of the aforementioned arcs. Thus, it is supported in a disc and hence represented by an element of
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Table 1. ([32, p. 644]) The abelian groups S 7, (SO (n)) for n > 2, with the exception that S 16 (SO(6)) =0

n (mod 8) 0 1 2 3 4 5 6 7

St.(SO(n))  (Z/2? zj2 zZ)2 Z Z/j2 0O Z)2 Z

no(Diff5(D?")), which is identified with the group ©,,,4; of homotopy (27 + 1)-spheres. Finally, Kreck
proved that the homomorphism G)z,m — I, is injective.

We use this to study the group A, = ﬂo(En’lb 2 5(Wg.1)). By definition, the inclusion Diffg(Wg 1) —
Emb?, 7 5(Wg 1) is surjective on 7o and there is a commutative diagram

T » A
Gl

We conclude that the homomorphism A, — Gy is surjective. By (3), the kernel of the homomorphism
I — Ag is Oypyy. Writing J, = Hom(H,,, Sm,(SO(n))), we conclude that there is a short exact
sequence of groups as in (1):

1—>Jg—>Ag—>G;,—>1. 5)

3.3. Recollection of embedding calculus

Embedding calculus is a method to study spaces of embeddings via a tower of approximations, whose
layers can be described in homotopy-theoretic terms. Our exposition mostly follows [2] but also refers to
the older paper [51, 52]. Though some of the theorems in these papers are stated for manifolds without
boundary, they also hold with boundary per [2, Section 9] and [51, Section 10]. Other models for the
embedding calculus Taylor tower can be found in [23, 47, 3].

3.3.1. The embedding calculus Taylor tower
Fix two d-dimensional manifolds M and N with the same boundary dM = K ON. Then the space
Embg (M, N) is the value on N of a continuous functor Embg (-, N): Mfd — Top (with the weak
C>-topology; cf. [2, Section 1.2]). Here Mfd4 k is the category enriched 1n topologlcal spaces with
objects given by d-dimensional smooth manifolds having a boundary identified with K and morphisms
given by spaces of embeddings rel boundary, and Top is the enriched category of spaces. The category
Mfd, x admits a collection of Grothendieck topologies J for k > 1; in J} a collection {U;} of open
subsets of M is a cover if every subset of the interior of M of cardinality < k is contained in some U;.
The kth Taylor approximation Tx(Embg (—, N)) is the homotopy sheafification of the presheaf
Embg (—, N) with respect to . This means that up to homotopy it is the best approximation to
Embg (M, N) built out of the restrictions of embeddings to < & discs in M and hence is explicitly given
by a right homotopy Kan extension (cf. [2, Definition 4.2]): Ty (Embg (M, N)) is the derived mapping
space, with respect to the objectwise weak equivalences

RmapPSh(Discsk’K)(EmbK(—, M),Embg (-, N)) 6)

between the objects Embg (—, M) and Embg (—, N) of the topological category of space-valued
presheaves on the full subcategory Disc<x x C Mfds x on d-dimensional manifolds diffeomorphic
rel boundary to a disjoint union of < k discs and a collar on K. Derived mapping spaces are only well
defined up to homotopy; if we need a point-set model we can pick the Dwyer—Kan mapping spaces [16,
3.1] or pick cofibrant-fibrant replacements in the projective model structure of [2, Section 3.0.1] and
take the strict mapping space. By [16, Corollary 4.7] these are equivalent.
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Because every J-cover is a J_;-cover, there is a Taylor tower [2, Section 3.1]

EmbK(M, N) e Tk(EmbK(M, N))

!

Ti—1(Embg (M, N))

!

starting at 71 (Embg (M, N)).
Using Goodwillie’s multiple disjunction results [21], Goodwillie-Weiss [24] and Goodwillie—Klein
[22] proved that if the handle dimension & of M rel K satisfies i < d — 3, then the map

Embg (M,N) — I}{Olim Ty (Embg (M, N))

is a weak equivalence. More precisely, Embg (M, N) — Ty (Embg (M, N)) is (=(h—1)+k(d -2 - h))-
connected by [24, Corollary 2.5]. Strictly speaking, their results apply to an older model [51, p. 84] of the
embedding calculus tower, but by [2, Proposition 8.3] that model is equivalent to the one described here.

In the case M = N, the space Embg (M) := Embg (M, M) has a composition law making it
into a topological monoid and in particular an H-space with strict unit given by the identity map.
The functoriality of the above construction makes the Taylor tower into a tower of H-spaces with
units up to homotopy. More precisely, up to homotopy there is a well-defined composition of derived
mapping spaces of objects in PSh(Disc<x k) as in (6); taking M = N gives the multiplication of the
H-space structure with unit up to homotopy. Furthermore, restriction gives a functor PSh(Disc<x x) —
PSh(Disc<k-1.k); this induces a map Ty (Embg (M)) — Ti—1 (Embg (M)) of H-spaces with units up
to homotopy. In fact, if one is willing to pick models one can use the Dwyer—Kan mapping spaces of
[16] to make the tower one of unital topological monoids.

3.3.2. The layers
Fixing an embedding ¢: M — N, we obtain a base point in each approximation 7 (Embg (M, N)),
which we call Ty (¢). We now describe more explicitly the layers

T1(EmbK(M,N)) ifk=1,
Li(Embg (M, N),) := hofib. [7i(Emb (M. N)) = Tt (Embg (M. N))] ifk 22
k-1(t

The first layer 71 (Embg (M, N)) is given by formal immersions: it is the space Bung (TM,TN)
of bundle maps TM — TN that are the identity near K. This follows from [2, Proposition 7.6]. By
definition, Bung (TM,TN) is independent of the base point ¢, so we shall write L;i(Embg (M, N))
instead of L{(Embg (M, N),).

For k > 2, the kth layer is weakly equivalent to the relative section space of a particular locally
trivial fibre bundle built from configuration spaces, which we will now describe. Let k = {1,...,k}
and consider the ordered configuration space Emb(k, N) of k points in N. For each I ¢ J C k there is
a forgetful map Emb(k \ I, N) — Emb(k \ J, N). We can combine these into a cubical diagram

Emb(k \ I, N) € Top
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We will consider a space of sections of a fibre bundle whose fibres are homeomorphic to total
homotopy fibres of this cubical diagram taken over certain base points; this is the homotopy fibre of the
map

holimg,7cxEmb(k \ I, N) @)
over a certain base point. To see it is natural in N, we use an explicit model for the total homotopy fibre
of this cubical diagram [39, Proposition 5.5.8].

Definition 3.4. The fotal homotopy fibre tohofib; cxxEmb(k \ I, N) over an ordered configuration
Xk = (x1,...,xr) € Emb(k, N) consists of collections of continuous maps

{[o, 1A L Bmb, N)}
Ick

that satisfy

(i) for each I c J, extension by zero gives an inclusion [0, l]k\J — [0, l]&\l , and the following
diagram should commute:

[0, 115V s [0, 1]%V

1s I

Emb(J, N) —— Emb(/, N),

(i) for each I, if d € [0, 115V has at least one entry equal to 1, then f7(d)(i) = x; foralli € k \ I

This is topologised as a subspace of the product []; -, map([0, 115V ' Emb(I, N)) of mapping spaces
with the compact-open topology. A basepoint is given by the collection of maps {f;} satisfying
fi(d)(i) = x; foralld € [0,1]! andi € k \ I.

These are the fibres of a space over Emb(k, N).

Definition 3.5. Let Z; (N) be the subspace of those collections of maps

{[o, 1AV 25 Emb(1, N)}I )
C7

in [T;cx map([O, 115M ' Emb(I, N)) that satisfy conditions (i) and (ii) of Definition 3.4 for some config-
uration x; € Emb(k, N).
There is a map

7d: Zx(N) — Emb(k, N)
given by mapping (gs)rck to the unique x; of condition (ii).

By the isotopy extension theorem, the map F}(d is a locally trivial fibre bundle, with the total homotopy
fibres of Definition 3.4 as its fibres. It has a section §i,f given by sending x to the base point in the
corresponding fibre, so that we have constructed a bundle with section

cid
S

R
Z(N) — Emb(k, N).
k

The permutation action of the symmetric group S; on Emb(k, N) naturally extends to an action on
the total space Z; (N) as follows: a permutation of k sends the total homotopy fibre of X to that over
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Xo (k) by simultaneously acting on the indexing sets and the domains of the embeddings. For brevity we
shall use the notation

Ci(N) := Emb(k,N)/S; and Zi(N) = Z;(N)/Cy

for the quotients. The maps 7; and Eikd are equivariant for these actions, so we may take the quotient by
the Sg-action to get another locally trivial fibre bundle with the same fibres and a section

Jid
Ak

L
Zy(N) T) Cik(N).
k

Finally, pulling this bundle back along the map t.: Cx(M) — Ci(N) induced by an embedding
t: M — N we get a locally trivial fibre bundle with section

L
Sk

L
UZ(N) —— Ci(M).
&

We can think of Cy (M) as a subspace of M* /S, and demand that sections satisfy properties on open

neighbourhoods of subsets of M* /Sy.. Given a section s: Cx (M) — *Zy(N), we let supp(s) € Cx(M)

be the closure of the subset where s # s, . If the inverse image of Cy (M) \ supp(s) in M k contains an
open neighbourhood of

— k| xi =x;forsomei # j

Ao = {(xl""’xk)EM or x; € K for some i }’

we say that ‘s is equal to s, near the fat diagonal or when at least one particle is near K.” The following
appears in [51, Theorem 9.2] (with the necessary modifications for boundary conditions explained in [51,
Section 10], in particular [51, Example 10.3]). A homotopy-equivalent way of phrasing the boundary
condition is given in Subsection 5.3.

Proposition 3.6. The homotopy fibre
hofibr, , () [Tk (Embg (M, N)) — Ty (Embg (M, N))]

is weakly equivalent to the space of sections of the pullback bundle (1)*Zx(N) — Cx (M), which equal
s, near the fat diagonal or when at least one particle is near K.

From (6), it is clear that the embedding calculus tower is natural, with respect to embeddings relative
to the boundary K, in the variables M and N. As a consequence, the layers Ly (Embg (M, N)) are
contravariantly functorial in M and covariantly functorial in N:

o

FiM M w Le(Embg (M N)wos) =L Ly (Bmbg (M, N),),
L x

g NN w  Li(Bubg (M, N)) 25 Ly (Embg (M, N')goy).

We claim that these operations are induced by the naturality of the fibre bundles in M and N. Firstly,
given an embedding f: M’ < M that is the identity near K, we can pull back along f to get a map of
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fibre bundles with section

(to f)* Zik(N) — *Zi(N)

ol

Ce (M) —— ¢ (m).

Secondly, given an embedding g: N < N’ that is the identity near K, there is a natural transformation
g+: Emb(—, N) = Emb(—, N’) that induces a map of fibre bundles with section

FZ(N) =25 (g0 0)* Zi(N')

g el

Cr(M) — 24— o (M).

To see that these maps induce Ly (f)* and L (g)«, we need to trace through the arguments in [51].
To identify Ly (g)., we observe that the classification of homogeneous functors as relative sections of
a fibration in [51, Theorem 8.5] as well as the identification of that fibration for the layers of a good
functor in [51, Proposition 9.1] naturally depends on the input functor, in this case Embg (-, N). To
identify L (g)., one observes that M enters in these classification results through | I (®)|. This space and
its identification with Emb(k, M) in the proof of [51, Theorem 9.2] are natural in embeddings.

3.3.3. Applying embedding calculus to W, ;
Embedding calculus as explained above does not directly apply to the space of self-embeddings
Embi2 5(Wg 1) because we are not working relative to the entire boundary. However, this is easily fixed
by removing those points that do not lie in the interior of the subset D*"*~! ¢ 0Wy.1. That is, following
Weiss [53], we shall apply embedding calculus to the noncompact manifold

W | = Wei \ (0W,.1 \ int(D>* 1)),

This manifold is isotopy equivalent to W, ; rel D2~ and by [33, Section 3.1], there is a homotopy
equivalence

Emb;), 5 (We,1) = Emby (W )

as topological monoids (as above, we use the weak C*-topology even when the manifolds involved are
noncompact). Often it is the case that replacing W, ; by W; , does not affect the homotopy type of
various mapping and section spaces as long as one works relative to D>"~!. (Of course, it does when
one works with respect to the full boundary W, 1 of W, 1.) Unless the difference is relevant for the
argument, we shall use the notation W, ; for simplicity.

4. The first layer: bundle maps

The goal of this section is to prove Proposition 4.5, concerning the rational homotopy groups of the
first layer L;(Embij,5(W, 1)). This first layer is given by the space Buni;,s(TW, 1) of bundle maps
TW,,1 — TWg ;i that are the identity near 1/20W, 1 € W, 1 (cf. Section 3.3.2. Following Subsection
3.3.3, we implicitly replace Wy ; with W;f, | to apply embedding calculus as described in Subsection
3.3.1)

4.1. Trivialising the tangent bundle

The tangent bundle TW, ; is trivialisable via an orientation-preserving isomorphism of vector bundles
that we denote 7: TWy 1 — Wy 1 X R2"; this is not unique, even up to homotopy, so we shall keep track
of its effect.
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Let us denote an element of Buni,s(TW,, 1) by a pair (f,£) of a continuous map f: Wy 1 — W,
and a bundle map £: TW, | — TW, 1 covering it. The framing 7 allows us to identify such data with
maps W, 1 — W, 1 X GLy,(R), whose first component W, 1 — W, ; is equal to the identity of W, ;
near 1/20W, 1 and the second component W, 1 — GL5,(R) is constant equal to id € GL,,(R) near
1/20W, 1 . More precisely, there are homeomorphisms

Kz 2 Buny,g(TWe,1) — map,,5(We.1, Wg.1 X GLa, (R))
(£0 = (we FOtr o buonh). (10)

(0r,9) 5 (FONL Ty 0 A 0 1w () = (£,)

where the subscript on the right-hand side indicates that the maps satisfy the boundary conditions
indicated above.

To prevent any confusion about the monoid structure used, we shall use ® to denote the monoid
structure on the right-hand side, which corresponds to composition of bundle maps.

Lemma 4.1. Under the homeomorphism of (10), the monoid structure given by composition of bundle
maps is described on map,,5(Wg,1, Wg 1 X GL2,(R)) by

(fLA) @ (g.p)=(fog,(1og):p),

where - denotes pointwise multiplication of maps Wy 1 — GL2, (R).

Proof. We have

G 0 k7 (80) = (00,9) = (FEON) T ) © At © Tet) (Tyio) ©@ P 0 Tw (1))

= (w.9) > (N T gy © Agon) © P © T (1))
=k (fog (1og) p).

4.2. The group of homotopy-invertible path components

Using this identification we can describe the group
Yg = ﬂo(Bunl/Za(TWg,l))X

of homotopy-invertible path components under composition. Recall that H, is shorthand for
Hn(Wg,l;Z)-

Lemma 4.2. The homeomorphism k. induces an isomorphism of groups

(k7)1 Yg = mo(Bunippg(TWq 1)) — GL(H,,) < Hom(H,,, 1,(S0(2n))),
where GL(H,,) acts on Hom(H,,, 7,,(SO(2n))) by precomposition.

Proof. The homeomorphism «- of (10) gives a bijection from 7 (Buni,s(TWy 1)) to the set

ﬂo(mapl/za(wg,l s We 1)) X ﬂo(mapl/za(Wg,l, GL2,(R))).

The homotopy equivalence of pairs (W, 1, [/20W, 1) = (V2,5", *) gives a weak equivalence of topolog-
ical monoids

map,,5(We.1, Wg.1) = map, (V2gS", Vag ™).

https://doi.org/10.1017/fms.2020.41 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2020.41

20 Alexander Kupers and Oscar Randal-Williams

Thus, the first term may be identified with the monoid Endz(H,,) of Z-module endomorphisms of H,,
under composition, by sending [ f] to the endomorphism f.: H,, — H,.

For the second term, we recall from Subsection 3.2 that the manifold W ; has 2g standard cores C;,
which give elements a; of H, forming a basis. We may then identify mo(map,,5(Wpg,1, GL2,(R))) with
the set Hom(H,,, 7,,(SO(2n))), by sending [1] to the homomorphism uniquely determined by

a; +— [C; 2 x — A, € GLyp,(R)] .
By Lemma4.1, under these identifications the operation & on the set Endz (H,,) xHom(H,,, 7, (SO (2n)))
is given by

(A,a)® (B,B) =(AoB,aoB+p), (11)
where o denotes the composition of endomorphisms of H,, or of a homomorphism H,, — 7, (SO (2n))
with an endomorphism of H,. An element (A, @) is invertible with respect to @ if and only if A is

(in which case its inverse is (A~!, - o A~!)). We also read off from (11) that the group of invertible
elements is a semidirect product. O

The expression of Y as a semidirect product as in Lemma 4.2 depends on the choice of trivialisation
7, but the ensuing description as an extension

1 — Hom(H,, 1,(SO(2n))) — Y, — GL(H,) — 1

is independent of this choice. To see this, note that another trivialisation 7’ differs from 7 by an element

¢ € map,;,5(Wg,1,50(2n)), giving an element [¢] € Hom(H,, 7,(SO(2n))), and the isomorphism

(k+)«0(k7)7 ! is then given by conjugation by [#]. Such a conjugation is a nontrivial automorphism of the

group GL(H,)<Hom(H,, r,,(SO(2n))), butitis trivial on the normal subgroup Hom(H,,, 7, (SO (2n)))

(because this is abelian) and on the quotient GL(H,,) (where it becomes conjugation by the identity).
In these terms, let us describe the homomorphism

Ag = ﬂo(Emb]E/za(Wg,l)) — Y, = 7'1'0(BuI’ll/ZC’)(TWg,l))><

induced by taking the derivative of a self-embedding.

Lemma 4.3. There is a commutative diagram with exact rows

1 — J, = Hom(H,, S7,(SO(n))) Ag S G 51

T

| —— Hom(Hy, 7,(S0(2n))) Y, — GL(H,) — 1,

where the left vertical map is induced by the stabilisation Sr,,(SO(n)) — m,(SO(2n)).

Proof. Because both homomorphisms A; — Gy and Y; — GL(H,,) are given by the action on the
middle-dimensional homology, we obtain a commutative square

Ay — G,

| [

Y, — GL(H,).

Hence, the kernel of the top horizontal map gets sent to the kernel of the bottom horizontal map, and
we obtain a commutative diagram as in the statement.
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To understand the map between these kernels, we need to recall the surjection y: I, —
Hom(H,,, S7,(SO(n))) following Theorem 3.3. Every element of I, can be represented by a diffeo-
morphism f that fixes the cores C; pointwise, and after picking orientation-preserving trivialisations
7,1 v; X R>R™! of the once-stabilised normal bundles of the cores, y (f) is determined by sending the
basis element a; € H,, to

[ti o (Dfly; XR) 0 77 '] € mu(SO(n +1)).

The element in Hom(H,,, 7,,(SO(2n))) to which diffeomorphism f is sent is determined by sending
the basis elements a; € H,, to

[toDflc, o 7! € 1, (SO(2n)).

Adding a two-dimensional trivial bundle, we prove the following claim.

Claim. [(7 o Df]c, o 7') x R?] € m,(SO(2n +2)) is the (n + 1)-fold stabilisation of [7; o (D f|,, x
R)o17!] € 1, (SO(n + 1)).

Proof. We will use the following two facts. Firstly, if two maps S — GLy,42(R) differ by pointwise
conjugation by a map " — GLy,+2(R), they represent the same element of x,,(SO(2n + 2)) by a
Hilton—Eckmann argument. Secondly, if a map G : S" — GLj,2(R)) is given by

idpe1 y(x)

0 g(x) € GL2n+2(R)’ (12)

S"ox > [
with g: §” — GL,41(R) andy: §” — Lin(R"*!, R"!), then the homotopy class [G] € 7, (SO (2n+2))
is equal to the (n + 1)-fold stabilisation of the homotopy class [g] € 7,(SO(n + 1)).

We now fix a trivialisation 7; that fits in a commutative diagram of short exact sequences of vector
bundles over C;,

I — TC; xR —— TWg XxR? ——— v; xR —— |

.| i |

] — G xR™ 5 C;xR¥M2 s O, xR™ 5 1.

Using the fact that f fixes C; pointwise and hence is the identity on TC;, we see that [(T; o D f|c, o
‘Fl.‘l) XR?] € m,S0(2n+2) is of the form (12), with g = 7;0 (D f|,, XR) orl.‘l. This differs by conjugation
with (txR?) o %71 from [(r 0 D f|c, o7~!') X R?]. The claim then follows from the above two facts. O

Because the stabilisation homomorphism 7, (SO (2n)) — 7,(SO(2n + 2)) is an isomorphism, this
implies that J; = Hom(H,,, Sx(SO(n))) — Hom(H,,7,(SO(2n))) on generators is induced by the
map S, (SO (n)) — m,(SO(2n)). O

To understand better the homomorphism A, — Y,, we combine Theorem 1.4 of [35] with Table 1
to get the following.

Lemma 4.4. For n > 3, the stabilisation Sn,, (SO (n)) — n,(SO(2n)) is

(i) surjective with kernel Z/2 when n is even,
(ii) an isomorphism when n is odd, + 3,7,
(iii) injective with cokernel Z/2 if n = 3,7.
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4.3. The higher rational homotopy groups

We next study the action of the group A, on 7r; (Bunu,s (TWy 1), id) ® Q via the derivative map Ay — Y,
and conjugation, which is the action that arises from the embedding calculus tower. It will suffice to
study the action of Y, which by Lemma 4.3 fits into a short exact sequence

1 — Hom(Hp, 1,(SO(2n))) — Y, — GL(H,) — 1.

Proposition 4.5. For all i > 0, the Y 4-representation m;(Buni;,s(TW, 1),id) ® Q is gr-algebraic.

Proof. Let L.(—) denote the functor assigning the free graded Lie algebra to a graded Q-vector space.
For a Q-vector space A, we write A[n] for the graded vector space with A put in degree n. We will prove
the more precise statement that this representation is an extension of Hom(H,,, £L.(H,[n— 1] @ Q))[1]
by Hom(H,,, 7,4, (SO(2n)) ® Q), and on each term the Yg-action is given by the evident GL(H,,) =
GLo, (Z)-action, which is algebraic.

Using the homeomorphism «, of (10), there is a fibration sequence

map,,5(We.1, GL2,(R)) — Bunl/za(TWg,l)>< - mapl/za(Wg,l, We.1)*

of topological monoids, where the multiplication is given by composition on the base and by pointwise
multiplication of maps on the fibre. This is split by a map of monoids, by sendingamap f: Wy 1 — W, 4
to the bundle map

- foz” T_l
TWg 1 — We i XR™ s Wy | Xx R — TW, ;.

The long exact sequence of (rational) homotopy groups therefore splits into short exact sequences.
The multiplication on map;,5(Wg,1, GL2,(R)) given by pointwise multiplication of maps extends

to an (n + 1)-fold loop space structure, as W, 1 ~ V288", Thus, the action of 7y of this group on its
higher homotopy groups is trivial, and so the action of Y on 7;(map,;,5(Ws,1, GL2,(R)), constiq) =
Hom(H,,, 7;+, (GL2, (R))) descends to an action of GL(H,,). It follows from Lemma 4.1 that this action
is given by precomposition.

The group Y, acts on the rational homotopy groups . (map, /26(Wg,1,Wg,1)X,id) via the projec-
tion map Yg — mo(map;,5(We 1, Wg 1)*) = GL(H,). Using the homotopy equivalence of pairs
(Wg,ls 1/2(3Wg,1) ~ (\/zgSn, *) we get

mi(mapy;,5(We,1, We 1), id) ® Q = Hom(Hy, 70 (We,1) ® Q).
The Hilton-Milnor theorem gives an identification of Y,-representations
Tain(We 1) ® Q = L (Hu[n - 1] @ Q)[1],
a shift of free graded Lie algebra on H, ® Q concentrated in degree n — 1, and the resulting identification
7. (map,,5(We,1, We.1),id) ® Q = Hom(H,, L. (Hu[n - 1] ® Q) [1]

in positive degrees is one of graded GL(H,,)-representations. O

5. The higher layers: section spaces

In this section, our goal is to prove Proposition 5.11, concerning the rational homotopy groups of the
higher layers Li (Embi;,5(Wyg 1)ia) of the embedding calculus tower.
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5.1. Bousfield—-Kan homotopy spectral sequences

For every tower of fibrations of based spaces
> Xz — X 1 — XO

there is an ‘extended’ spectral sequence of homotopy groups, as in [10, IX.§4]. Letting F,, denote the
homotopy fibre of X,, — X, (with X_| = * by convention), we get sequences

2 (Xo1) = 11 (Fy) = 71(Xa) = 711 (X)) = 70(Fn) = 70(Xn) = 70(Xat),

with the rightmost three terms pointed sets, the next three terms groups, and the remainder abelian
groups. The maps into mp-terms are maps of pointed sets and the maps into 7r;-terms for i > 2 are group
homomorphisms, with 7 (X,,_;) mapping into the centre of 71 (F,). The sequence is exact in the sense
that the kernel of a map is the image of the previous one, with ‘kernel” taken to mean the inverse images
of the base point/identity element. Finally, the decoration on the map 7; (X;,—1)—mo(F},) is to indicate
that it extends to an action of 71 (X;-1) on mo(F,); exactness here is the property that two elements of
7o (F,) are in the same orbit if and only if they map to the same element of mo(X,,). Let us call such a
sequence an extended long exact sequence.

These extended long exact sequences assemble to an extended exact couple (in the sense of [10,
§.IX.4.1])

Dl —l> Dl
7\ D;:,q =7g-p(Xp),
Kk / E}, 4 =nq-p(Fp),

El

with i of bidegree (-1, 1), j of bidegree (0,—1) and k of bidegree (0,0). We can iteratively form a
derived couple by taking

D, 4 =im(mg—p(Xpir) = mg-p(Xp)),
. Ket(mg_p(Fp) = 74 p(Xp)/D%, )

P-4 action of ker(ry—p+1(Xp-1) = Tg—pr1(Xp-r-1))’

the latter reducing to the cokernel of the boundary homomorphism as long as ¢ — p > 1. For this to
make sense, one needs Bousfield and Kan’s crucial observation [10, p. 259] that the derived couple of
an extended exact couple is again an extended exact couple.

The result is an extended spectral sequence, the Bousfield—Kan homotopy spectral sequence

Elll,q = ﬂ'q—p(Fp) = nq_,,(holim,, Xp).

Its properties are explained in [10, p. 260]. The differentials d": E}, , — E;H gir—1 Are homomor-
phisms when g — p > 2, whose images are central when g — p = 2. In these cases,

Erl E}, , Nker(dy)
P4 Ej, ,Nnim(d,)

When g — p = 1, the differential " extends to an action and

,
r+1 Epp
E,pC ; 7
’ action of E
p-r,q-r+l
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Convergence conditions for this spectral sequence are described in [10, IX.§5] and [9, Section 4].
Complete convergence for ¢ — p > 1 as in [10, IX.§5.3] means that 7,_, (holim, X,) is the limit of
a tower of epimorphisms with kernels given by entries on the E~-page. By [10, Lemma IX.§5.4] this
holds for g — p > 1 if limi E;’q vanishes (see [10, IX.§2] for a discussion of lim! in the nonabelian
setting), a condition similar to that for strong convergence of a half-plane spectral sequence with entering
differentials [ 1, Theorem 7.1]. Complete convergence holds, for example, if there are only finitely many
nonzero differentials into or out of each entry by [10, Proposition IX.§5.7], as will be the case in the
examples we consider.

One way for a tower of fibrations of based spaces to arise is by filtering the totalisation of a based
cosimplicial space Y,: the pth space in the tower - - - — Tot(Y,); — Tot(Y,)g is given by

2
Tot(Y.), = {fi: A" - Y;, satisfying simplicial relations} C 1_[ map(AL,Y;).
i=0

As explained in [10, X.§6,7], in this case

Ellkq = 1,(Yp) Nker(s%) N --- Nker(sP™)

as long as ¢ > p > 0 and is 0 otherwise, where the s’ denote the codegeneracy maps. For ¢ > 2, the
differential is induced by the alternating sum of the coface maps d': 7, (Y,) — m4(¥Yps1), and thus
the E2-page is given by the cohomology of the cosimplicial abelian groups E,! - A similar description
exists for ¢ = 0, 1. Above we discussed when it completely converges to 7, (Tot(¥,)) for g — p > 1;
in particular, this happens if there are only finitely many nonzero differentials into or out of each entry.

5.2. The Federer spectral sequence

In [18], Federer constructed an extended spectral sequence for the homotopy groups of the space
map(X,Y) of maps X — Y based at f, in the case that X is a finite CW-complex and Y is a simple
path-connected space:

E} = HP(X;ng(Y)) = mg_p(map(X.Y), f).

We shall need a variation of this spectral sequence for relative section spaces (the Federer spectral
sequence is recovered by taking £ = X XY and A = @). Such a spectral sequence has appeared before in
[41]. For a fibration 7: E — B, asubspace A C B and a section o|4: A — E, let us write Sect(7; 0 |4)
for the space of sections of 7 extending |4 in compact-open topology.

We will occasionally want to change the base of the fibration. Suppose g: (B, A) — (B’, A’) is amap
of pairs; that is, a continuous map g: B — B’ such that g(A) c A’. Then we can pull back a fibration
n’: E’ — B’ with section 0’| 4 along g to obtain another fibration g*n’: ¢g*E’ :== B Xp E’ — B, with
a section g*o’|4: A — E induced by universal property of pullbacks:

A o’ |arogla
~
m‘

ke g

g*EI } E/

inc

The following is proven by an elementary argument.
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Lemma 5.1. If both A — B and A’ — B’ are Hurewicz cofibrations and g: (B,A) — (B’,A’) is a
homotopy equivalence of pairs, then the induced map

Sect(n’; 0’| ar) — Sect(g*n’; 870" |a)

is a weak equivalence.

Theorem 5.2. Suppose i: A — B is a Hurewicz cofibration such that (B, A) is homotopy equivalent
to a relative CW pair, and let n: E — B be a fibration with 1-connected fibres and c: B — E be a
section. Then there is an extended spectral sequence

H”(B,A;n (n)) ifp>0andg—p >0,
Eif{ T(m) ¥p r — 1 p(Sect(m: ]a). 7).

0 otherwise,

with differentials d" : E}, , — E;+r’q+r71. Here 7T_q(7T) denotes the local system

n_q(n): I1(B) — Set,, Gr, or Ab
b+ ng(n7 (b), o (b)).

If (B, A) is homotopy equivalent to a finite-dimensional relative CW pair, then this spectral sequence
converges completely forq — p > 1.

The observant reader may have noticed that we did not define H” (B, A; n (7)) for g = 0, 1. Because
the functors , () for g = 0, 1 take trivial values by the assumption that the fibres are 1-connected, we
will take these groups to be 0.

Proof. Out of the singular simplicial sets Sing(A) C Sing(B), we can form a cosimplicial space with
p-cosimplices given by the subspace of

map(A? x Sing(B),, E) = 1_[ map(A?, E)
7€Sing(B)),

consisting of collections of maps {fz: AP — E};esing(p), thatsatisfy mo f; = 7,and f; = o o7 when
7 € Sing(A). Its totalisation is the relative space of sections Sect(e*7; €0 ||sing(a)|) of the pullback
of  along €: |Sing(B)| — B. The assumption that (B, A) is homotopy equivalent to a relative CW
pair implies that (|Sing(B)|, |Sing(A)|) — (B, A) is a homotopy equivalence of pairs. By the previous
lemma, the totalisation of the cosimplicial space is weakly equivalent to Sect(; 07|4).

Form the Bousfield—Kan spectral sequence for its totalisation, whose E ,1, gentry is given for 0 <
p < q by the subset of [ csing(s), Tq(Sect(t"mr), 7%0) of those elements that are trivial when 7 is an
element of Sing(A),. With the differential given by the alternating sum of the coface maps, we see that
the Ef,’ g-entry will be H? (B, A; g () (because we assumed that the fibre of 7 is 1-connected, this is
just cohomology with a local coefficient system of abelian groups).

If (B, A) is homotopy equivalent to a finite-dimensional relative CW complex of dimension d, then
EI% q = 0for p > d, so there are finitely many nonzero differentials out of each entry and hence the
spectral sequence converges completely by [21, Lemma IX. §5.7]. O

This spectral sequence is natural in maps of fibrations with section

E Ly E

e Al

B—L3 B,
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in the following sense. As explained above, given such a commutative diagram we can produce a pullback
fibration f*n’ with section f*o’. Then there is a zigzag of maps of spectral sequences as above, given
on the E2-page by

HP (B’,A’;ﬂ_q(ﬂ’)) L mr (B,A;f*ﬂ'_q(ﬂ/))
|
HP (B,A;ﬂ_q(ﬂ)) L g (B,A;ﬂ_q(f*ﬂ’))

and converging to

ng-p(Sect(n’; 0’ |ar), o) = mq—p(Sect(f*n's fFo'|a), f0") — mq—p(Sect(m;o|a), o).

5.3. Application to layers

We shall now apply this to study Lx (Embg (M, N),) as in Subsection 3.3.2. In terms of the fibration
te: U Z(N) — Cr(M),

with section s,, it is given by space of sections that are equal to s; near the fat diagonal or when

at least one particle is near K. The fibre of the map #; over a configuration xx = (xy,...,xx) is

tohofib; c, Emb(k \ I, N), which by Theorem B of [22] is (—(d — 3) + k(d — 2))-connected, where

d = dim(N), so at least 1-connected for all k > 2 as long as d > 2.

We shall rephrase the condition on the support of sections in Proposition 3.6 as being relative to a
certain subspace V. This subspace will not be unique, but any two choices will admit a common homo-
topy equivalent refinement. To see the resulting definition coincides with the definition in Proposition
3.6, we will observe that subspaces of the form V4 are cofinal in the poset of open neighbourhoods
considered in that proposition.

To define the pair (Cx (M), V) and understand its homotopy type, we use the Fulton—-MacPherson
compactifications of configuration spaces, discussed in detail for smooth manifolds without a boundary
in [43] and adapted without much difficulty to smooth manifolds with a boundary. Fixing a proper neat
embedding M — [0, c0) X RN-L recording the location, relative angles between pairs of particles and
relative distances between triples of particles gives an inclusion

k
3

Emb(k, M) —> ([0, 00) x RN 1)k x (sN-1)(2) x [0, 1](3)

The Fulton—-MacPherson compactification Emb[k, M] of Emb(k, M) is the closure of its image. This
is a smooth manifold with corners and free Sy -action. The quotient Cy [ M] is the Fulton-MacPherson
compactification of Cy (M) and likewise a smooth manifold with corners.

In particular, Cx[M] is a piecewise linear (PL)-manifold with boundary and thus there exists a
closed collar C ¢ Ci[M] of the boundary dCy [M], unique up to isotopy. This is PL-homeomorphic to
OCr[M] x [0, 1], with Cy[M] x {0} corresponding to dCy [M] c Cix[M], and we take C’ C C to be
the inverse image of Cx[M] X [0, %] under this homeomorphism. We then define

Vg :=C’ N Cr (M),

which is PL-homeomorphic to dCy [M] % (O, %]. We use both C and C’ in Lemma 5.4; in the lemma
below one may use C instead of C’.

Lemma 5.3. There is an equivalence of pairs (Ci[M],0Cr[M]) = (Cx(M),Vy), and
(Cx[M], dCk[M]) admits the structure of a finite-dimensional CW pair.
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Proof. Picking a PL-triangulation proves the second claim. The first claim follows from the observation
that if N is a PL-manifold with boundary N and C” is a collar on dN, there is a homotopy equivalence
of pairs (N \ ON,C" \ ON) = (N,IN). O

The inclusion Vg < Cy (M) is a Hurewicz cofibration, so Theorem 5.2 applies to the fibration
1y UZ(N) — Cr (M), giving a completely convergent extended spectral sequence

= m4-p(Lk(Embg (M, N),)). (13)

P (C"(M)’Va;”_q(’zi)) ifp>0,g-p20
r.q
0 else

If M is 1-connected of dimension > 3, then Emb(k, M) is also 1-connected and the local system
m4 (1) may be trivialised when pulled back along the principal S -bundle

n: Emb(k, M) — Cr(M).

Let V4 be the inverse image of V4 under the map 7. By transfer we obtain an isomorphism
- <
Elz,,q ®Q = |HP(Emb(k, M), V; Q) ®q mgtohofib; cx, Emb(k \ I, N) ® Q * . (14)

This is an identification only of the rationalised E*-page. We shall not attempt to ‘rationalise’ the entire
spectral sequence or any subsequent pages, which might not make sense when g — p =0, 1.

Let us consider the functoriality of the above under embeddings, using the notation of Subsection 5.3.
An embedding f: M’ — M induces a map of fibrations (8), giving an morphism of spectral sequences
that on E? is given by H*(f,;id) and converges to the map induced by L (f)*. On the other hand, an
embedding g: N — N’ induces a map of fibrations (9), giving an morphism of spectral sequences that
on E? is given by H*(id; (g.).) and converges to the map induced by L (g)s..

5.4. Homotopy and cohomology groups of configuration spaces

In this section we obtain qualitative results on configuration spaces, with the goal of eventually applying
these to the description (14) of the E2-page of (13). In particular, we shall identify the groups

H*(Emb(k,M),V5;Q) and . (tohofib;cx Emb(k \ I,N)) ® Q,

in a sufficiently natural form that we can understand the I'g-actions for M = N = W, ;. For the sake of
Section 7 we will use coefficients in an arbitrary commutative ring k.

5.4.1_. Relative cohomology
Let A 4 be the closure in M* of V5 ¢ Emb(k, M). This contains the closed subset

Aa:{(xl L) € Mk| i = forsome % ] }

or x; € K for some i
Lemma 5.4. There is an isomorphism
H*(M*,Ay:Kk) = H*(Emb(k, M), V; k)

of k-modules with commuting Sy - and ny(Diff 5(M))-actions.

Proof. Recall that the collar C C Cy[M] is homeomorphic to dCy [M] X [0, 1] and under this iden-
tification C’ is given by dCy[M] X [0, %]. We shall use these identifications. The collars C, C” lift to
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Sy-equivariant collars C, C’ of the boundary in Emb[k, M]. Consider now the homotopy

H,: Emb[k, M| — Emb[k, M|

(y, W) if¥ = (3,5) € C = 9Bmb[k, M] x [0, 1]

X —
X otherwise,

which pushes points near the boundary of Emb|[ ., M] into the boundary using the collar. By definition of
Emb|[k, M] there is a ‘macroscopic position’ map u: Emb[k, M] — M*, which records the underlying
location of the configuration points. Observe that for ¥ € M*, the element u o H; : Emb[k, M] — M*
takes the same values on all elements of x~!(¥). Thus, H; extends to a map Hi: M* > M*, and H,
extends to a homotopy H; of such maps. These exhibit H; as a homotopy inverse to the inclusion of
pairs i : (M*,Ag) — (M*,Ap).

Now (Emb(k, M) \ int(C’), (Emb(k, M) \ int(C’)) N C) — (Emb(k, M), V) is a homotopy equiv-
alence of pairs, and u induces a map of pairs

(Emb(k, M) \ int(C"), (Emb(k, M) \ int(C")) n €) —> (Mk, Aa) .
The induced maps on cohomology are isomorphisms:

H*(Emb(k, M), Vs; k) «— H*(Emb(k, M) \ int(¢”), (Emb(k, M) \ int(C")) N C; k)
=5 H*(M*, Ay k)
— H*(M*, A4 k),

with second an isomorphism by excision. Because all maps are equivariant for the actions of S
and diffeomorphisms supported away from the boundary, these are isomorphisms of k-modules with
commuting Sy - and 7 (Diff5(M))-actions O

Let us from now on suppose that the cohomology of M consists of free k-modules, as it is
for Wy 1 = #5" x 8"\ int(D?"). Under this assumption, the Kiinneth theorem gives an isomor-
phism H*(M*;k) = H*(M;k)®*. Because the action of the mapping class group 7o (Diff5(M)) on
H*(M*;k) = H*(M;k)®* is evident, it will suffice to understand the groups H*(Ay; k) with their
action of the mapping class group. To do so, we will express A as a homotopy colimit.

Let IT*(k) be the poset of nondiscrete partitions w of {1,...,k, =}, ordered by refinement, and
consider the functor A s : IT*(k) — Top given by

x; = x; if i, j in the same element of w
As(w) =AY ={(x1,...,x;) € M* t )
s(w) 6 {( ! ) x; € K if i in the same element of w as *

Example 5.5. TT*(2) contains four partitions: {1, 2}{=}, {1, «}{2}, {2, «}{1} and {1, 2, }, the first three
partitions being incomparable and all larger than the last partition. If K is contractible, then the value
of Ay on the first three partitions is homotopy equivalent to M and its value on the last partition is
contractible.

Lemma 5.6. The inclusions A < Ay assemble to a homeomorphism

colimp(x) As = Ay

and the canonical map hocolimp(x) A s — colimp«(x) A 5 is a weak equivalence.
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Proof. The first identification is obvious.

Before discussing the weak equivalence, let us discuss the Reedy model structure, which may be used
to efficiently present the homotopy colimit. A Reedy category is a category C with two subcategories C..
and C_ containing all objects, and a function deg: ob(C) — N such that (i) nonidentity morphisms in
C; strictly increase deg, (i’) nonidentity morphisms in C_ strictly decrease deg, and (ii) every morphism
in C factors uniquely as a composition as a morphism in C_ followed by a morphism in C.. Because
every nonidentity morphism in IT*(k) increases the number of parts of a partition, we can make IT*(k)
into a Reedy category by taking deg to be the number of parts, C* all morphisms and C_ to be the
identity morphisms (cf. [40, Example 2.3]).

Let us use the Strgm model structure on the category Top of topological spaces, then there is a Reedy
model structure on the category Top® of functors C — Top [40, Theorem 4.18]. We will need two facts
about this model structure: (i) colim: TopC — Top is a left Quillen functor [40, §8] and (ii) a diagram
F e Top® is cofibrant if for each object ¢ € C the latching maps [40, §3]

colim F(c¢’') — F(c)

c—c’

are closed Hurewicz cofibrations. Here the colimit is taken over the full subcategory of the comma-
category in C,/c not containing the identity.

Now to prove the weak equivalence it suffices to prove that w +— A% is cofibrant in the Reedy
model structure, because then we may use its colimit to compute the homotopy colimit [40, Definition
8.1]. This amounts to proving that the latching maps are cofibrations. These latching maps identify the
inclusioninto AY ¢ M K of all A ‘3” c M* such that " < w. The result follows from the union theorem
for closed Hurewicz cofibrations [36]. ]

Thus, there is a Bousfield—Kan spectral sequence (a special case of [10, XII.§5])

El, = P HY (A k) = HPM (Mg k). (15)
W) <...<wp eNp (IT* (k))

Because the above constructions are equivariant for diffeomorphisms of M fixing K pointwise, we can
read those features of the action on the abutment that are relevant for this article from the action on the
E'-page.

Let us assume that K is contractible. Then the action of the mapping class group on H9(A¢; k)
again factors over Aut(H*(M;Lk)) as A¥ is equivariantly homotopy equivalent to M ¥ for some k’ < k.
Let us now specialise to M = W, 1, K = 1/20W, 1 = D"~ and take k = Q. Recall that the mapping
class group o (Diff5(W,,1)) was denoted I',.

Proposition 5.7. For each k > 1, the Iy-representation H *(Wéf’l, Ay; Q) is gr-algebraic.

Proof. Using Lemma 2.5 (a), (b), (c), and the long exact sequences of I'y-representations
- — HI(Wy |,A5;Q) — HY (W) ;Q) — HI(Ap;Q) — -+

we see that H*(Wé’f 1»A6; Q) is gr-algebraic if both H*(Wéf 1:Q) and H*(Ay; Q) are. As pointed out
above, the Kiinneth isomorphism provides an isomorphism (of I'y-representations) H* (Wg Q) =
H*"(W,.1;Q) @k This shows that the action of I, factors over G, and by Lemma 2.5 (e) it is gr-algebraic
as such.

The Bousfield—Kan spectral sequence (15) computing H* (A 5; Q) as a I',-representation has E I_page
given by a direct sum of tensor products of H*(W, 1;Q) as I'g-representations. By the same reasoning
as above, its E!-page is gr-algebraic and hence so is the abutment by Lemma 2.10. m}
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5.4.2. Rational homotopy

Next we study the rational homotopy groups of the ordered configuration spaces Emb(k, N), which we
base at a configuration near the boundary K so that we may assume that the Diff5(/N)-action fixes the
base point.

We shall use the Totaro spectral sequence [45]. This is derived from the Leray spectral sequence for
the inclusion Emb(k, N) < N, and when k is a field it has E»-page given by the bigraded k-algebra
H*(N*;X%)[Gap] with HZ(N*;k) in bidegree (g,0) and generators G, of bidegree (0,d — 1) for
1 <a,b <k,a+ b, subject to the following relations:

(1 Gtzzb = (_l)dGba»
(i) G, =0,
(iii) GupGpe + GpcGeg + GoqGap =0 for a, b, ¢ distinct,
(iv) pa(x)Gap = p;,(x)Gap Where p,: N* — N denotes the ath projection map and x € H*(N; k).

Following Totaro’s construction one finds that this description of the E,-page also holds with k-
coefficients if k is a localisation of the integers and H*(N; k) consists of free k-modules. It converges
to HP*4(Emb(k, N); k) and is natural in embeddings. Let us now specialise to N = W, ; and k = Q.

Lemma 5.8. Each T'y-representation H' (Emb(k, W 1); Q) is gr-algebraic.

Proof. In the Totaro spectral sequence the I'g-action on the E,-page factors over G and, as such, is
an algebraic representation, so in particular gr-algebraic. By Lemma 2.10 the abutment is also gr-
algebraic. O

Because Emb(k, W, 1) is 1-connected for n > 2, we can convert this to a statement about rational
homotopy groups using Lemmas 2.12, 2.13 and 2.14.

Corollary 5.9. Each I'g-representation m;(Emb(k, Wg 1)) ® Q is gr-algebraic.

The total homotopy fibre tohofib; cx, Emb(k \ 1, W, 1) taken at a configuration xx near the boundary
admits a base point—preserving Diff3(W,,1)-action, because the entire cubical diagram / — Emb(k \
I, Wy 1) of based spaces does.

Proposition 5.10. Each I'y-representation m;(tohofib; cx, Emb(k \ 1, W, 1)) ® Q is gr-algebraic.
Proof. Because the total homotopy fibre tohofib; cx, Emb(k \ 7, W, 1) is the homotopy fibre of the map
(7) over a certain base point, there is a natural based map

tohofibs c, Emb(k \ I, W, 1) — Emb(k, Wy 1),

which is equivariant for the base point—preserving action of Dift5(Wy ).
Because all maps in the diagram admit sections up to homotopy by adding particles near the boundary,
the induced map on homotopy groups

7. (tohofibs cx, Emb(k \ 1, Wy 1)) — 7. (Emb(k, Wy 1))

is the inclusion of a summand. Because this inclusion is I'g-equivariant and the right-hand side after
tensoring with Q is gr-algebraic by Corollary 5.9, so is the left-hand side after tensoring with Q by
Lemma 2.5 (a). o

5.5. Algebraicity of rational homotopy groups

We now put together the results of this section to prove the remaining proposition concerning the layers
of the embedding calculus tower. It concerns the ['g-action on Li (Embi/,5(Wg 1)ia), which is induced
by conjugation with a diffeomorphism of W, ;. We know that this action factors through A, but it is
convenient to remember the geometric origin of this action.
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As mentioned in Subsection 3.3.1, the layer Ly (Embi,5(Wyg, 1 )iq) is an H-space, so its positive-degree
homotopy groups are abelian and so can be rationalised.

Proposition 5.11. Fori > 1 and k > 2 the I'y-representations

7 (L (Embije(We 1)ia)) ® Q

are gr-algebraic.

Proof. We apply the spectral sequence (13) with M = N = W, 1 and K = 1/20W, ;. This spectral
sequence converges completely because it has E2 p,g = 0 for all large enough p, so for i > 1 the
abelian group 71; (L (Embi,5(Wy,1)id)) has a finite filtration with pth filtration quotient a subquotient
of E? This is natural for the I'y-action, so 7;(Li (Embijs(We 1)ia)) ® Q has a finite filtration by

p.i+p’
I, -subrepresentations with the pth filtration quotient a subquotient of E? ® Q. By Lemma 2.5 it

p.i+p

suffices to show that each Ei’ i+p ® Q is gr-algebraic.

As described in Subsection 5.3, we have
- Sk
p i+p Q Hp(Emb(k’ Wg,])7V6;Q) ®Q (nl+[)(t0h0ﬁbICXLEmb(k\I7 Wg,])) ®Q)

A diffeomorphism ¢ of W, | acts on this by [(#;')* ® ¢.]®*. By parts (a) and (e) of Lemma 2.5 it
suffices to show that the I'y-representations H?” (Emb(k, Wg 1), V; Q) and 7y, (tohofiby ¢, Emb(k \
I, Wg 1)) ® Q are both gr-algebraic, which they are by Propositions 5.7 and 5.10, respectively. )

6. Proof of Theorem A and Corollary B

To obtain a structural understanding of the cohomology of the Torelli space of W 1, we will consider
the Torelli analogue of the space of self-embeddings. We proved in Subsection 3.2 that the action on
homology gives a surjective homomorphism

Sp2g (z) ifnisl,3,or7,
Bg: Ag = mo(Emb; 5(We 1)) — G = Spg’g (Z) ifnisoddbutnotl,3,or7,
Og,¢(Z) ifniseven.
As before, we shall assume that 2n > 6.

Definition 6.1. The embedding Torelli group TorEmbia(Wg,]) is the group-like submonoid of
Embi2 9(Wg.1) consisting of those path components in the kernel of S.

The classifying space of this monoid fits into a fibration sequence
BTorEmbiza(Wg,l) — BEmbiza(Wg,l) — BG/,

and so BTorEmbf2 5(Wg,1) has an action of G} up to homotopy. To prove that the cohomology of
this space consists of algebraic G representatlons we will use that we already understand the group
Ag = o(Emby; B 9(Wg.1)) and focus our attention on the identity component Emb, 2 (Wg.1). By definition
there is a fibration sequence

BEmb} ,(W,,1) — BEmby, 5(W, 1) — BA,,

and hence the simply connected space BEmb 1/2 5(Wg.1) has a base point-preserving Ag-action up to
homotopy, as in Subsection 2.2.1.
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Theorem 6.2. Suppose that 2n > 6. Then for eachi > 1, the Ag-representation i (BEmbi(/i2 o(We1))®
Q is gr-algebraic.

Proof. Let us first recall how the Ag-action may be constructed geometrically. The identity component
of the space of self-embeddings of W, 1 admits an action of Diff3(W,, 1) by letting a diffeomorphism ¢
act on an embedding e by ¢ - e = ¢! 0 ¢ 0 ¢. This action is via morphisms of monoids and so induces an
action on BEmbﬁ‘/i2 9(Wg.1), too. The induced I'g-action on ;4 (BEmbil‘/i2 9(Wg.1)) is then identified with
the I'y-action on 7r; (Embi,5(Wy 1), id) fori > 1. This action factors through the surjection 'y — Ay, so
to prove the theorem it is therefore enough to prove that the I', -representations 7; (Embi (W, 1), id) ®Q
are gr-algebraic for all i > 1.

To do so we consider the embedding calculus tower for Embi,5(Wy 1), which is a tower of H-spaces,
and apply the Bousfield—Kan spectral sequence to it. As id € Embij,5(Wy 1) is a Diff (W 1)-invariant
base point, the Taylor approximations and layers inherit an action of Diff5(Wj 1), so their homotopy
groups inherit a I'g-action. This spectral sequence is given by

E[l;,q = g-p(Lp(Embig(We,1)id)) = 7g—p(Embij5(We,1), id),
and by the H-space structure this is a spectral sequence of abelian groups for ¢ — p > 1. By naturality
of the Taylor tower and the Bousfield—Kan homotopy spectral sequence, this spectral sequence has an
action of I'y. The p-th layer of this tower is (—(rn — 1) + (p — 1)(n — 2))-connected, so the spectral
sequence converges completely by [10, Proposition IX.§5.7]. Thus, for each i > 1 the abelian group
7i (Embips(Wy 1),id) has a finite filtration with the pth filtration quotient a subquotient of Ezlv,i +p-
Hence, 7;(Embi,5(W,.1),id) ® Q has a finite filtration with the pth filtration quotient a subquotient of

E,.,®Q

By Lemma 2.5, the theorem follows as soon as we establish that each I'g-representation E }u. p © Q
is gr-algebraic for i > 1. This was the content of two previous sections: Proposition 4.5 for p = 1 and
Proposition 5.11 for p > 2. O
Corollary 6.3. Suppose that 2n > 6. Then the Ag-representations

H'(BEmb}f 5 (Wg.1); Q)

are gr-algebraic.
Proof. Combine Theorem 6.2 with Lemma 2.11. |

Corollary 6.4. Suppose that 2n > 6 and that g > 2. Then the Gj-representations
H (BTorEmb;;,(Wg.1); Q) are algebraic.

Proof. There is a fibration sequence

BEmbj , (W, 1) — BTorEmby;,,(We 1) — B,

with J, = o(TorEmb; (W, 1)) 5 Hom(H,, S7,(SO(n))) asin (5), to which we will apply Lemma 2.15.
Given Corollary 6.3, to apply that lemma we need to prove that the G -representations Hi(Jg; Q) are
algebraic, but we have

Hi(Jg;Q) = Ai [Hn ® (Snn(SO(Zn)) ® Q)V]’
which is indeed algebraic. O

We may now deduce Theorem A, which said that for 2n > 6 and g > 2, the rational cohomology
groups of BTory(Wy 1) are algebraic G -representations.
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Proof of Theorem A. The Weiss fibration sequence (3) provides a commutative diagram with rows and
columns fibration sequences

BDiff3(D?*") === BDiff3(D*") —— *

l l l

BTorg(W,,1) ——— BDiffg(Wg1) — BG,,

| l |

BTorEmbTN/w(Wgyl) —_— BEmbizB(Wg,l) — BG/,

where the left and middle columns deloop compatibly by [33, Theorem 4.17] and hence the action of
the fundamental group of the base on the cohomology of the fibre is trivial, and on the left column the

G- and BDiff 5(D?")-actions commute. Thus, we get a Serre spectral sequence of G g-Tepresentations

E} , = HP (BTorEmbj, ,(W, 1); Q) ® H(BDiff5(D*"); Q) = H"*?(BTorg(Wg 1); Q).
Using Corollary 6.4 and the fact that H*(BDiff3(D?"); Q) is degree-wise finite-dimensional by [33,

Theorem A], the E2-page consists of algebraic G, -representations, so by Theorem 2.2 so does the
abutment. O

Proof of Corollary B. Consider the map of fibrations

BTory(Wq.1) —— BDffy* (Wy 1) —— BGY

H l |

BTOI‘@(Wg’l) —_— BDiff@(Wg’l) —_— BGé,

which on E;-pages of the associated Serre spectral sequences induces
H? (G HY(BTorg(We,1); Q) ® V) — HP (G HY(BTorg(We,1); Q) ® V).

To compare the left- and right-hand sides, we shall use work of Borel. By Corollary 5.5 of [33], each
HY(BTors(Wg,1); Q) ®V is a finite-dimensional G -representation, so by theorems of Borel [5, 6] (see
Theorem 2.3 of [34] for a description of Borel’s results adapted to this situation, using the bounds from
[46]) the map

HP (Goo; Q) ® [HY(BTorg(We,1); Q) ® V|% — HP (G} HY (BTorg(Wg,1); Q) ® V)

is an isomorphism for p < g — e, withe = 0 if nis odd and e = 1 if n is even. This only uses that G is
an arithmetic subgroup of G(Q) and so also holds with G replaced with G.

Now by Theorem A the representation H¢ (BTors(Wy,1); Q) ® V is algebraic, and by our assumptions
both G, and G} are Zariski-dense in G(Q) (see Subsection 2.1.1 of [34]). Thus, the Gg- and G-
invariants coincide, so the map of total spaces induces an isomorphism on homology in total degrees
* < g—e. O

7. Proof of Theorem C

In this section we prove that for 2n > 6 the spaces BTorg(W, 1) are nilpotent. A suitable reference for
the theory of nilpotent spaces is [38, Chapter 3], but we recall the definition here.
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Definition 7.1. A path-connected based space (X, xo) is nilpotent if 71 (X, xo) is a nilpotent group and
for each i > 1 the 71 (X, xo)-module 7; (X, xp) is nilpotent. More generally, a space is nilpotent if each
of its path components is nilpotent for each base point.

Examples of nilpotent spaces include simply connected spaces and n-fold loop spaces. Nilpotent
spaces are preserved by various constructions; for example, products and homotopy fibres, a special
case of [38, Proposition 4.4.1]:

Lemma 7.2. Suppose p: E — B is a surjective fibration with B path-connected. For ¢ € E, let E,
denote the path component containing e, F denote the fibre over p(e), and F, denote the path component
of F containing e. If E, is nilpotent, then F, is nilpotent.

We showed in Lemma 2.17 that the class C of nilpotent I'-modules that are finitely generated as
abelian groups is an equivariant Serre class, and we showed in Lemma 2.18 that this class is closed
under duals or Exté(—, Z). This gives us Lemmas 2.10, 2.11, 2.12 and 2.13 as tools. We shall apply
some of these with I" = I,.

We will now commence the proof of Theorem C, which says that BTorg(W,,1) is nilpotent as long
as 2n > 6. We will first prove the corresponding statement for BTorEmbi2 9(Wg.1). This requires two
pieces of input, analogous to Propositions 5.7 and 5.10.

Lemma 7.3. The I,-modules H' (W;l, Ag;Z) are nilpotent.

Proof. There is a long exact sequence of I,-modules
- — H' (WS, A9;Z) — H' (WS 32) — H'(A3;2) — -+

and because the /,-action on H ‘ (WéC 15 Z) is trivial, it suffices to prove that each /;-module H (Ay;Z)
is nilpotent. This follows by applying Lemma 2.10 to the spectral sequence (15) with k = Z, using the
observation that the /,-action on the E I_page is trivial. O

Lemma 7.4. The I-modules n;(tohofibs ., Emb(k \ I, W, 1)) are nilpotent.

Proof. By the Totaro spectral sequence, the /,-modules H'(Emb(k; W, 1);Z) are finitely generated
as abelian groups and have nilpotent /,-action, so by Lemmas 2.12 and 2.13 the homotopy groups of
Emb(k; W, 1) are as well. By the argument of Proposition 5.10, r; (tohofib;  ,, Emb(k \ I, W, 1)) is a
summand of 7;(Emb(k, Wy 1)). B o

Proposition 7.5. For 2n > 6, BTorEmbi2 5(Wg.1) is nilpotent.

Proof. Tt is a path-connected space with fundamental group given by J, = Hom(H,, S7,(SO(n))),
which is abelian and so in particular nilpotent. It remains to show that J, acts nilpotently on the higher
homotopy groups. That is, we need to show that the J,-module Jr,-Jrl(BTorEmbi2 9(Wg.1)) fori > 0
admits a finite filtration by sub-J,-modules such that the action on the associated graded is trivial. That
is, it should lie in the class C of Z[J,]-modules that are finitely generated as abelian groups and have
nilpotent Jg-actions.

There is an I,-module structure on the J,-module 7;,; (BTorEmbg(W, 1)) given by the surjection
I, — Jg, whichis induced by the geometric action of I, C I', by conjugation. Hence, it suffices to prove
that /, acts nilpotently. Furthermore, by Lemma 2.10 the property of being a nilpotent /;-module passes
through the Bousfield—Kan homotopy spectral sequence used in the proof of Theorem 6.2, so it suffices
to prove that I, acts nilpotently on the higher homotopy groups of the layers L, (Embi5(Wy,1)ia)-

There are two cases to consider. The first is p = 1, in which case we have

L1 (Embijs(We 1)) = Bunipg(TWy 1).
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The first part of the proof of Proposition 4.5 did not require rational coeflicients, and that argument
shows that I, acts trivially on the higher homotopy groups of Buni,s(TWg 1).
The second case is p > 1, in which case we have

L, (Embiy,s(W 1)ia) = Sect(r, siv,),
with the right-hand side as described in Proposition 3.6. The Federer spectral sequence (13) is a spectral

sequence of Io-modules of the form

HP (Ci(Wy,1), Vo 7q (1)) p 2 0,9-p 20, .
E,Z,qz{ kW) Voimg(U)) P2 0.a7p 20 0 Ser(id, si915,)).

0 else,
Because Ci(Wy 1) is finite-dimensional, this is concentrated in finitely many columns and by [10,
Proposition IX.§5.7] converges completely.
Working integrally, the simplification of the E2-page that we gave in in (14) does not apply. Instead,

there is a trigraded spectral sequence of /,-modules converging to the E 2_page of the Federer spectral
sequence

HY' (B&y, HY (Emb(k, W,1), Vs m (tohofiby c., Emb(k \ 1, Wy.1))) = Edryy g

Inlightof Lemma 5.4 for k = Z and the fact that the local systems of coefficients 7, (tohofib; cx, Emb(k\
I, Wyg 1)) are trivial by simple connectivity, we may replace this E 2_page by

HY' (B@y, HY (WY |, Ag: g (tohofiby o, Emb(k \ I, W1)))

By property (i) of equivariant Serre classes, it suffices to prove that these entries lie in C.
The entry EIZJ, o May be computed using the bar complex

CP' = Homge, | (Z[ek]l”“, HY (W |, Ag: 7y (tohofiby ., Emb(k \ 7, Wg,l)))) :
so by property (i) again, it suffices to prove that each of groups
HY (WE |, Ags g (tohofiby e Brnb(k \ 1, W 1)))

lies in C. By property (ii) and the universal coefficients theorem, it suffices to prove that H9’ (W;‘ AV /A
and 7, (tohofib; cx, Emb(k \ I, W 1)) are nilpotent /;-modules. We did so in Lemmas 7.3 and 7.4. O

We now prove Theorem C.
Proof of Theorem C. In the proof of Theorem A we constructed a fibre sequence
BDiff5(D*") — BToryg(Wy,1) — BTorEmby, 5 (Wq,1)
that deloops. In particular, BTors(Wy, 1) is the homotopy fibre of a map
BTorEmby, (W, 1) — B*Diffs(D™").

The domain is a nilpotent space by the previous proposition, so by Lemma 7.2 the space BTors(Wy 1)
is also nilpotent. m}
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8. Generalisation to tangential structures

In this section we extend Theorem A and Corollary B to moduli spaces of manifolds equipped with a
@-structure, encoded by a fibration 6: B — BO(2n) that classifies a 2n-dimensional vector bundle 6%y
over B, where y denotes the universal 2n-dimensional vector bundle over BO(2n).

A @-structure on W, 1 is a map of vector bundles £: TW,; — 6"y. We shall fix a boundary
condition £5: TWyg 1low, , — 6"y and only consider 6-structures extending this boundary condition: let
Bung(TWy 1, 0"y; £5) denote the space of bundle maps extending £5. A bundle map is a continuous map
that is a fibrewise linear isomorphism, and this space is given the compact-open topology. The group
Diff5(Wjg 1) acts through the derivative map Diff5(W, 1) — Bung(TWy 1) on Bung(T Wy 1,0"y; €s) by
precomposition. The object of interest in this section is the homotopy quotient

BDIff(Wy 15 Ls) = Bunyg(TWy 1,6"y; Ls) |/ Diffo(Wg. 1).

Though the notation may suggest otherwise, this is not the classifying space of a topological
monoid and in general has many path components, which are in bijection with the orbits of the ac-
tion of the mapping class group I'y = 7o (Diff5(W,. 1)) on the set of path components 7o (Bung(TWy 1,

0"y o).
We shall denote by BDiffg (Wg 15 €s)e the path component containing a particular #-structure ¢, and

by Gg’ 1] the image of the composition

I = 1 (BDIff§(Wg.15€s), ) — Tg = m1(BDiff5(Wg,1), %) — Gj.

We shall first show that this is an arithmetic group.

Proposition 8.1. Let 2n > 6 and B be n-connected. Then G g < ¢ has finite index.

The proof will be given in Subsection 8.4, after some preparation. We may define a version of the
Torelli space with 6-structures by

BTor%(Wq 1; £a)e = hofib | BDiff)(Wg 1;£s)r — BGT

this is a connected space. It has a Gg 14 _action up to homotopy, so its rational cohomology groups

]

are Gg’[[]—representations, and because Gg’[f is an arithmetic group by Proposition 8.1, one may

ask whether they are algebraic Gg ’[fl—representations. Analogous to Theorem A, we will show that
they are.

Theorem 8.2. Let 2n > 6, B be n-connected, and H* (B; Q) be finite-dimensional in each degree. For
g > 2the Gg’[f]-representations Hi(BTorg(Wg,l;fa)g; Q) are algebraic.

The proof will be given in Subsection 8.5. The analogue of Corollary B for 6-structures follows by a
nearly identical argument. After that we prove the analogue of Theorem C.

Theorem 8.3. Let 2n > 6 and B be n-connected. Then BTorg(Wg,l ; La)¢ is nilpotent.
8.1. Notation

We collect here the notation for various groups used in this section. Further details and results regarding
these objects will be given in the following sections.
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First, we recall that there are maps of group extensions

1 > Ig > Ty = mo(Diffg(Wg,1)) > Gy > 1
1 > Jg > Ag = mo(Emby) (W 1)) > Gy > 1

l | |

1 —> Hom(H,, m,(SO(2n))) — Y, = mo(Bun, (TW,.1)) — GL(H,) — 1,

with Jg = 1,/02,.1 = Hom(H,,, S7,(SO(n))).

We fix a boundary condition {3 of #-structures near dW, 1, and let Strg(Wg,l) denote the set of
homotopy classes of §-structure extending 5. An element in this set is denoted [£], and we introduce
notation for its stabiliser:

1 = stabr, ([€]).
This receives a surjection from

0¢ = 1y (BDiff (Wy 15 £s), €),

8
and we set
G = im|rgt > 1, - G, 191 = staby, ([¢]) =19 1,
giving an extension
1 — 19 L Fg’[[] — Gg,[g] — 1.

The boundary condition {3 of §-structures near Wy, | by restriction determines one {1/, near a fixed

point * € AW, 1, and we let Stré( Wy 1) denote the set of homotopy classes of 6-structure extending £1,5.

An element in this set is denoted [ [£]] and, though we shall not need it, its stabiliser is denoted Fg (e,

The I'g-action on Str? (Wg,1) descends to an action of A, and we write

Ag = saby, ([141]).
This receives a surjection from
APt = nl(BEmbsza(Wg,l;f./w),f),
and we set

GPU = im (AP 5 Ay — G, TP = sty ([101]) = AP A g,

giving an extension

L g0 AOU) _ golien
Finally, we define Lg’[ as the kernel of the composition /V\g’[ - Ag’[[m - Gg’[[m, giving an

extension

1 — Lg’f — /V\g’[ — Ggo’[[[” —s 1.
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8.2. Spaces of 0-structures on Wy ;

The proof of Proposition 8.1 and Theorem 8.2 requires a careful study of the action of I', on the set of
homotopy classes of §-structures on Wy ;. We will write

F = Fr(6"y)

for the frame bundle of the vector bundle 6"y — B; this is a principal GL;,(R)-bundle, and F is
homotopy equivalent to the homotopy fibre of § : B — BO(2n). A bundle map TW, ;1 — 60"y is
precisely the same as a GL,, (R)-equivariant map Fr(TW, 1) — F.

Under the assumption that B is n-connected, and so in particular simply connected, we may choose
once and for all an orientation of the bundle §*y and let

F° = Fr°(0%y)

denote the oriented frame bundle, which is path-connected (it is a path component of F). An
orientation-preserving bundle map TWy, 1 — 6y is precisely the same as a GL}, (R)-equivariant map
Fro'(TWy 1) — F°"

If 7: TWgq1 — Wy X R?" is a choice of (orientation-preserving) framing, then choosing a base
point fy € F°' defines a GL3, (R)-equivariant map

€7 Fr (TW,.1) — W1 X GLY (R) 828 h por

which up to homotopy does not depend on the choice of fy, because F°" is path-connected. It does,
however, depend on .
Lemma 8.4. Let B be n-connected.

(1) Up to homotopy there is a unique orientation-preserving boundary condition £y that extends to a 6-
structure € on all of Wy 1, and U3 := €7 |sw, , represents this homotopy class of boundary condition.
(ii) For such a boundary condition there is a homotopy equivalence

Bung(TW,. 1,0%y;£s) =~ mapy(Wy 1, F™),

depending on a framing T and a homotopy from €5 to €3.
Recall that we write
St (We.1) = mo(Bung(TWe,1, 6: ()
for the set of homotopy classes of #-structures on W, 1 rel boundary, the omission of the boundary
condition {5 from the notation justified by Lemma 8.4 (i). It is important to be aware that under the
bijection
mo(Bung(TW,.1,0%y: €s)) = mo(mapy (W 1, F™))

given by Lemma 8.4 (ii) the action of the mapping class group I'y = mo(Diff3(W, 1)) on the set of
homotopy classes of 8-structures does not in general correspond to the action by precomposition on the

mapping space. Instead, an analysis analogous to that of Subsection 4.1 must be made, which we will
do below.

Proof of Lemma 8.4. If X x R*" is a trivial bundle, then there is a homeomorphism

map(X, F°') — Bun® (X x R*",6"y)
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to the space of GLJ, (R)-equivariant maps X x GL} (R) — F°', given by sending the map f: X — F*
to the GL] (R)-equivariant map

(x.8)—g-f (x) For

¢ 1 X xGL3, (R)
Fixing a choice of (orientation-preserving) framing 7: TWy 1 — Wg 1 X R?", any @-structure £ €
Bun®(TWy,1,0"y) therefore corresponds to a map fr: Wy 1 — F°, and the associated boundary
condition {5 € Bun®(TWy 1|yw, ,, 8"y) corresponds to the composition fz oinc: sl We1 — FO.
We hence need to show that the map [W, 1, F'] — [SZ"‘I, F°'] of homotopy classes, induced by
restriction to the boundary, is constant. It suffices to prove this for based homotopy classes, because
[Wq.1, FO']. — [W,. 1, F°'] is surjective because F is path-connected.
From the fibration SO(2n) ~ GL], (R) — Fr°'(8*y) — B we obtain an exact sequence

Tnet (B.x1) — 7,(SO(2n),id) -5 71, (F, x1) —> 70 (B, x1) = 0,

using our assumption that B is n-connected. In particular, the map a. is surjective, and because all
Whitehead products vanish in an H-space such as SO (2n), the Whitehead bracket

[— =] ma (F, x1) X 0 (F*, x1) — @21 (F™, x1)

must also be zero. The inclusion of the boundary inc: $**~! — Wy, is represented by the homotopy
class

g
[ai, bi] € m2n—1(Wg 1,X0),
i=1

where a;,b;: S — W, form a hyperbolic basis of the intersection form on m,(W, 1,x0) =
H,(Wg 1;Z). In particular, it is a sum of Whitehead products, and hence the map f; cinc: § -l _, por
must be null-homotopic. This proves part (i).

For part (ii) we observe that the above identification using 7 gives a map of homotopy Cartesian
squares from

mapy(We 1, F') —— map(W, 1, F)

! |

{const} ———— map(dW, 1, F*)

to
Buny(TWyg 1, 0%y; ;) ———> Bun™(TWg,1,60%y)

| |

{fg} % Bunor(TWg,l |6Wgy1 s 9*7)

which is an equivalence at each corner apart from the top left corner and so is also an equivalence at the
top left corner. Finally, a choice of homotopy from £ to £ gives an equivalence Bung(TW, 1, 6% y; (]) ~
Bung(TWy 1, 6"y; €5), using the homotopy lifting property for the right-hand map of the second square.

O

8.2.1. Mapping class group action
Given a choice of framing 7 we have produced a bijection

Strf (W, 1) = o (Bung(TW, 1, 60°y; €5)) = mo(mapy(Wy 1, F)),
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and we wish to understand the orbits and stabilisers of the natural action of I, on the left-hand side. To do
so we must describe the corresponding I'g-action on the right-hand side. In Section 4 we described how a
choice of framing identifies the topological monoid Bunij,g(TWy,1) withmap, ,5(Wg,1, Wg 1XGL2, (R)),
and we determined the induced composition law on this space. The same discussion goes through when
we impose a boundary condition on the entire boundary instead: there is a homeomorphism

Bung(TW,.1) — mapy(Wg 1, We 1 X GL;,(R))
under which composition of bundle maps corresponds to the operation

(L) e(g.p)=(fog,(1og) - p),

with o denoting composition of maps and - denoting pointwise multiplication.

In the proof of Lemma 8.4 we have similarly used 7 to identify the space of @-structures
Bung(TWy 1, 6"y; €5) with maps(Wg 1, F°). Similar to Lemma 4.1, one sees that under this identi-
fication the right action of Bung(TWy, 1) by precomposition corresponds to

mapy (W, 1, FO') X mapy(Wy 1, We,1 X GL3, (R)) — mapy(W,, 1, F*)
(h’(fs/l)) L (hof) '/l,

where here - denotes the left GL;, (R)-action on F°'. We write & ® (f, ) for this operation. Note that
it is not equal to precomposition on the mapping space.

8.2.2. Relaxing the boundary condition
In the long exact sequence of homotopy groups for the fibration sequence

map,(Wy 1, F*') — map, (W, 1, F*) — map, (0W, 1, F*),

based at the constant maps to the base point fy € F, the maps m;(map,(Wy 1, F*)) —
n;(map, (8Wq 1, F)) are given by a sum of Whitehead products of elements in 7, (Q'F°"). For i > 0
such Whitehead products vanish because Q7 F°" is a loop space; for i = 0 they also vanish as discussed
in the proof of Lemma 8.4. Thus, this yields a short exact sequence in the sense of groups and sets

0 — 70 (F*) — mo(mapy(W.1, F)) —> Hom(H,,. 7, (F*)) — 0. (16)

O
(By G — X we indicate an action of a group G on a set X.) Recalling that Str? (Wg,1) denotes the
homotopy classes of #-structures on W, | equal to €5 near the point * € W, 1, this may be rewritten as

0 — Swd(D) —2—3 Suf (W, ) ———— Sl (W) —— 0

lg l; l;

0 — Mo (F") —2— mo(mapy(W,.1, F*)) — Hom(H,,m,(F)) —> 0,

where the vertical bijections depend on the choice of framing 7.

This short exact sequence is equivariant for the right action of the mapping class group I, in the
following sense. Let I'y act on the middle term via the derivative I'y — mo(Bung(TWy 1)) and @ above.
Similarly, I'; acts on the right-hand term via the derivative

Fg e Yg = ﬂo(Bunl/za(TWg,l))

and factors over A, = 7r0(Emb§2 9(Wg.1)). The right-hand side was identified with GL(H,)
Hom(H,,, 7,(SO(2n))) in Subsection 4.2, and in terms of this identification the action (B, 8) € Y, is
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given by
a® (B,B) =aoB+up,

where ¢: SO(2n) c GL3, (R) — F°" is given by acting on the base point of F*'. With these actions, the
map

no(mapy(We. 1, F)) — Hom(H,,, 7, (F))

is I'g-equivariant, and the I',- and 75, (F°")-actions on mo(map,(Wg 1, F°')) commute (this is because
the 7, (F°")-action is by changing the §-structure in a small disc near the boundary, and diffeomorphisms
in I'y can be assumed to fix such a disc).

8.3. Framings

An important example of a tangential structure satisfying the conditions given in the beginning of this
section is a framing: we take the tangential structure to be fr: EO(2n) — BO(2n).

In this case F°" =~ SO(2n), so when we specialise (16) to framings, we see that the set Strg(Wg,l)
of homotopy classes of framings of W, | extending {3 is in bijection with the middle term of the short
exact sequence in the sense of groups and sets

0 — Suli(D¥) —2 % sull(W, 1) s St (W, 1) ——— 0

0 — 72, (SO(2n)) SICIN mo(mapy(Wg 1,S0(2n))) — Hom(H,, 1,(SO(2n))) — 0.

Forn > 3, the groups m,, (SO (2n)) were determined by Bott [8] and the groups 5, (SO (2n)) by Kervaire
[27]. We will only use that 75, (SO (2n)) is always finite.

Recall from Subsection 3.2 that I, denotes the Torelli subgroup of the mapping class group I'y; that
is, the kernel of ag: I'y — G;,.

Lemma 8.5. Forn > 3, the action of the subgroup I, < T’y on Strg(Wg,l,) via ® has finitely many orbits.

Proof. The framing 7 gives a bijection Strg(Wg’l,) = mo(mapy(We 1,50 (2n))). Because 2, (SO (2n))
is finite, it suffices to prove that there are finitely many orbits for the /,-action on the set Strff(Wg’l) of
homotopy classes of framings relative to a point. As before, we identify this set through the framing
with 712,(SO(2m))\rg(map,(We 1, SO(2n))) = mo(map. (W1, SO(2n)).

To study the /,-action, recall from Theorem 3.3 that /, is an extension

1 — Oyy11 — Iy — Hom(H,, S71,(SO(n))) — 1.

The action of I'y on the set Hom(H,, 7,(SO(2n))) is through the derivative map I'; — Y, =
mo(Buniy,g(TWyg 1)), whose structure was determined in Lemma 4.3. Thus, we need to understand the
image of I, in Y.

The derivatives of elements of ®;,; are bundle maps supported in a small disc that can be taken to
be near the boundary: when only half of the boundary is required to be fixed these may be homotoped to
the identity (or one may use Lemma 8.14). Thus, the homomorphism /, — Y, factors over the quotient
group

Jg = I3 /®2n41 = Hom(H,, Sm, (SO (n))).

By Lemma 4.3, the map from J, = Hom(H,,S7,(SO(n))) lands in the subgroup Hom
(Hp, m,(SO(2n))) C Y,, and this homomorphism is induced by applying the homomorphism
Sr,(SO(n)) — m,(SO(2n)) to the target. Because this is surjective when n # 1,3,7 by Lemma 4.4,
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in this case the image of I, is exactly Hom(H,, 7,(SO(2n))). The action of this group on Hom
(H,, m,(SO(2n))) is through addition, which is transitive. This proves that there is a unique /,-orbit
for n # 3,7. On the other hand, if n = 3,7, then S7,,(SO(n)) — 7,,(SO(2n)) has cokernel Z/2, again
by Lemma 4.4, so the set of orbits is in bijection with Hom(H,,, Z/2) and is still finite. O

Recall from Subsection 8.1 that we write Fg’m for the stabiliser of [£] € Strg(Wg,ly) under the

action of I" and write Gg’ 1 = im [Fg’ e, I, — Gfo,].

Corollary 8.6. The group Gi,r’m has finite index in G

Proof. This image is the stabiliser of [£] € Strg(Wg,l,) /1 with respect to the residual G, = I'g/l,-
action. Because this is a finite set by Lemma 8.5, this stabiliser has finite index. m]

8.4. Proof of Proposition 8.1

Because EO(2n) is contractible, there is a unique map EO(2n) — B over BO(2n) up to homotopy,
using which any framing determines a #-structure: we say that such §-structures come from framings.
This induces a map SO (2n) — F°" as well as a map of short exact sequences (16):

0 — m,(S0(2n))) — mo(mapy (W1, 50 (2n))) — Hom(H,, 7,(SO(2n))) — 0

l l l

0 —— m, (F*) ——— mo(mapy(Wg 1, F*")) —— Hom(H,, 7,(F*)) — 0

with right-hand map surjective because 7, (SO(2n)) — =, (F°") is surjective, by our assumption that
B is n-connected. This is identified with the map Strff(WgJ) — Str? (Wg,1), which is therefore also
surjective.

Thus, given a [€] € Str§(Wg,1) = mo(mapy(Wg,1, F*)), there is another [£y] coming from a framing
that has the same image in Str? (Wg,1). Because the bottom sequence is exact, these differ by the action
of an element 75, (F°"). Changing the #-structure by this element in a small disc near the boundary,
we obtain a homotopy equivalence BDiﬂ”g(Wg,l;fa)g o~ BDiﬁg(Wgsl;fa)go. In conclusion, each path
component of BDiffg(Wg,l ; U) is homotopy equivalent (over BDift5(W, 1)) to one that comes from a
framing.

In particular, the group Gg’m is conjugate to Gg’
framing. By Corollary 8.6 the inclusion

6] Where {o is a @-structure that comes from a

fr, [6] 8,[6]
Gy Gyt CG;,

has finite index, and hence so does G ge bl - G-

8.5. Proof of Theorem 8.2

We shall repeat the proof the argument for Theorem A while carrying along the tangential structure
0: B — BO(2n). Recall that we assume that B is n-connected, and H*(B; Q) is finite-dimensional in
each degree.

8.5.1. The Weiss fibration sequence with tangential structures
The first step of Theorem A was to reduce from diffeomorphisms to self-embeddings. We shall do the
same for tangential structures.

From the boundary condition of #-structures {5 near W, | we can extract by restriction a new
boundary condition 1,5 near 1/20W, ;. The topological monoid Embiza(Wg,l) acts on the space
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Buni,5(TWyg,1,68%y; €i,5) through the derivative map
Embia(Wg,]) — Buni;,s(TW, 1).
In analogy with BDiffg(Wg,l ;€a), we take the homotopy quotient

BEmew(Wg,l;gl/za) = Bunl/za(TWgyl, 9*’)/;51/23) // Embiza(wg,l)'

In the same way as the set of path components of BDiff? 5 (Wg 15 €5) is given by the set of orbits
St1ra (Wg,1) /I, the set of path components of BEmb1 a(Wg 15 €119) is given by Str? (Wg 1)/ Ag.

The difference between diffeomorphisms and self—embeddmgs with tangential structures is described
by an analogue of the Weiss fibre sequence (3). Let {5, be obtained by restricting the standard framing
on R?* to a neighbourhood of dD?" and considering it as a boundary condition for §-structures on
D?"; this is a representative of the unique homotopy class of boundary conditions that extends, as in
Lemma 8.4. Then

BDiff(D*"; £y,) = Bung(TD™,0%y;(y,) J Diff5(D*").
Boundary-connected sum makes the fibration sequence
Buny(TD*", 6%y; (5,) — BDiff§(D*";(3,) — BDiff5(D*") (17)

one of group-like E,,-algebras, using models as in Remark 3.2. By choosing suitable models reminiscent
of Moore loops, we can extract from this a fibration sequence of group-like topological monoids (cf. [33,
Section 4.2]). We remind the reader that we assume that B is n-connected. Without this assumption,
further care needs to be taken with path-components

Proposition 8.7. There is a fibration sequence
BDIff§(D*"; £a,) —> BDIft§(Wy.1;ls) — BEmb, 5 (Wq 13 lino),
which deloops once.

Proof. If suffices to establish the delooped version. For brevity, we write (consistent with [33])

BD := BDiff3(D*"),  BD? := BDiff§(D*"; (s,),
BW, 1 = BDiffy(Wg 1),  BW{ | = BDiff§(Wq 1;£a),
TD? = Bung(TD™,0%y; €a,),  TW | := Bung(TW,,1,60%y;Cs).
Without loss of generality, {5 agrees with £, on the complement of 1/20W, . Then boundary-connected

sum gives compatible actions of the topological monoids (17), now written TDY — BD? — BD, on each
of the terms in TW§ | = BW; | — BWg ;. Taking homotopy quotients, we get a commutative diagram

TWg, —— TW? | /TD? —— =/ TD’

l ! l

BW/, — BW{, /BD? — « /BD’

| l |

BW, | — BW,,; /BD —— * / BD
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with columns and rows fibration sequences. The middle row is the desired fibration sequence, so it
remains to identify the center term with BEmb1 S a(Wg, 1501pp). As in [33, Section 4], in a suitable
model, restriction to a small copy of Wy | inside W | gives a map of fibration sequences

ng,l //TDH — Buni,g(TWg 1,0%y;0)

l l

BWY, /BD? —— BEmbl/za(W& 13 €110)

| !

BWg,l // BD —— BEmblg/za(Wg,l)-

The bottom map is a weak equivalence by [33, Theorem 4.17], so it suffices to prove that the top map
is a weak equivalence. Upon picking a reference framing 7, we can identify it with the map

map,(We.1, F) ) @ (F°") — map,,5(Wg.1, F*),
induced by restriction to a small copy of W, 1 inside W, 1, which is indeed a weak equivalence. O

8.5.2. Embeddings with tangential structures
Now that Proposition 8.7 has established the relationship between diffeomorphisms and self-embeddings
with 6-structures, we study the latter.

Let us recall some of the notation introduced in Subsection 8.1. A §-structure £ on Wy ; that extends

{5, and hence also extends £1,5, gives a base point in BEmb;, /2 a(ngl ; 01h9) and we write

v

Ag’€ =m (BEmbi;Z(Wg’l 1 0119), €)

for the fundamental group at this base point. This surjects onto the subgroup Ag’ o.11eN — = Staba, ([[£]])
of Ag = no(Emb]/za(Wg 1)), and G e < G denotes the image ofA 1T We defined Lg « by the
extension

1 — Lg’f — lv\g’f — Gg’[m] — 1.

Lemma 8.8. If2n > 6 and B is n-connected, then GQ AT < Gy has finite index.

Proof. By definition, we have inclusions Gg’[ a4 < Gg’[m] < Gg. The result then follows as Gg’m is
a finite index subgroup of G by Proposition &.1. O

We can therefore apply the setup of (1) and ask whether a /V\g ’f-representation is gr-algebraic.

The group A ) acts (in the homotopy category; i.e., by homotopy classes of homotopy equiva-
lences) on the path component Buni,s(TWy 1, 0"y €i1,9)¢ of £, and as preparation we study the action of

the subgroup Jg T 61 the rational homotopy groups of Buni,5(TWq.1,60"y; €1),6)c. This action does
not preserve the base point ¢, but the space in question is simple (because it is homotopy-equivalent to
a path component of [[,, Q" F), so there is still a well-defined action on homotopy groups.

Lemma 8.9. JH’ N Gets trivially on m;(Buni,g(TWq 1, 07 y; €1126)c).

Proof. The action of Emb;, /za(Wg 1) on Bunl/za(TWg 1,8%y;lipp) is through the derivative map to

Buni,5(TWg,1)*, so the action of the group A I'on the path component Buniy,s(TWg 1, 0™y; tip0)e
factors through an action of the stabiliser of [[f]] in Yy = mo(Bunij,g(TW,1)™).
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As in Proposition 4.5 and Lemma 8.4 (ii), a reference framing 7 gives rise to a split fibration sequence
mapl/za(Wg,l’ GL2n (R)) — Bunl/zB(TWg,l)X — mapl/za(Wg,h Wg,l)x’ (18)
as well as an identification

Bunis(TWe. 1,07y i) = map, (W1, F). (19)

In this description, the group J Vacts through 7o (map,,5(Wg,1, GL2, (R))). The topological monoid
map,5(We,1, GL2s (R)) acts on mapl/za(Wg,l, F°") by the pointwise action of GL;,,(R) on F°". By the
Eckmann-Hilton argument, the action of an element of map, ,5(Wg,1, GL2, (R)) is homotopic to sending

it to map, ;,5(Wyg,1, F°") and acting through the n-fold loop structure. As elements of Jg LT gtabilise
[[£€]], they lie in the kernel of mo(map, (W, 1, GL2,(R))) — mo(map, (W, 1, F°')), and hence they act
on map ,5(We,1, F°') by maps homotopic to the identity. O

Proposition 8.10. Supposing that 2n > 6, then for each i > 1 the Ag’g-representation
Tisl (BEmbi;z(W,,l;&/za), £) ® Q is gr-algebraic.

Proof. Let Buni,g(TWq 1,60y €ipg)a, ¢ denote the set of path components in the Ag-orbit of [[£]] €
Strf(Wg,1) = mo(Bunug(TWy 1, 8"y; €129)), so that there is a fibration sequence

Bunl/za(TWg 1,9 7,51/23)/\ £ LN BEmb:; Wg’l;fl/za)f — BEmbg(Wg,I). (20)

120 (
This gives a long exact sequence of abelian groups (or groups; respectively sets) with action of Ag £
the fundamental group of the total space [44, p. 385]. By property (i) of equivariant Serre classes, it
suffices to prove that the higher rational homotopy groups of fibre and base are gr-algebraic.

For the base, the action 1s through the homomorphism A — A, . That the higher rational homotopy
groups are gr-algebraic A —representatlons thus follows from Theorem 6.2, which says that they are
gr-algebraic A —representatrons

For the fibre, we recall that Buni,s(TWg 1,60%y; lip0)e is srrnple and thus its fundamental group
acts trivially on 1ts higher homotopy groups. Hence, the action of A ¢ factors through the surjection

A‘9 ‘£ A‘9 A1 , and the A T aetion is given by self—embeddlngs acting on @-structures through
the derrvatrve map.
By Lemma 8.9, the action of the subgroup J, .l A on the higher ratronal homotopy

groups of Buni,g(TW,. 1,0%y; {i9)e is trivial, and hence the A {_action factors over Gy -1 Ag in
the proof of Lemma 8.9, a reference framing 7 gives an 1dent1ﬁcat10n (19), from which we read off that

sl (Bunl/zﬁ(TWg,l ,07y; fl/za)l’) = H;\z/ ® Mpais1 (F).

The split fibration sequence (18) provides a section GL(H,,) — Y,, and G a < GL(H,) acts via
this in the evident way. Because the rational homotopy groups of F°" are ﬁmte dimensional because
those of B and BO(2n) are, this action is algebraic. O
- . 60,1111

In fact, it is easy to describe the group J, .

Lemma 8.11. The subgroup
J¢ N = stab;, ([[£1]) < Jg = Hom(H,, S7,(SO(n)))

is given by Hom(H,,, K,;) < Hom(H,,, S7,(SO(n))), where K,, = ker[Sr,, (SO (n)) — m,(SO(2n)) —
T (F)].
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Proof. The action of J; = Hom(H,,, S7,,(SO(n))) on Strf(Wg,l) = Hom(H,,, r,,(F°")) is via the map
Sr,(SO(n)) — n,(SO(2n)) — n,(F°) and the action by addition on Hom(H,,, 7, (F°")), so its
stabiliser is precisely as described. O

Recall that Lg’Z denotes the kernel of the homomorphism ]\g - Gg’[[[”. Using the fibration
sequence (20), we introduce the notation

im(i) == im [i: 711 (Buny,g(TWe.1, 0%y €g), €) — LI

and it follows from that fibration sequence that there is a commutative diagram

im(i) > L s gl

im(i) 2D

~

<
S S

~

~

>

n

h

S

=

where each row and column is a group extension.

Lemma 8.12. If 2n >

> 6, then Lg’ is abelian (and hence nilpotent). If in addition g > 2, then the
G- e
g

-representations H i(Lg’[; Q) are algebraic.

Proof. By Lemma 8.9 the top extension in (21) is central, and because J, o.11e1l

is), it follows that Lg ** is abelian.
The group /V\H’f acts on its normal subgroup Lg o+ by conjugation, and by (21) there are compatible

is abelian (because J,

actions on im(7) and J O-L1E that factor over Ag’ [N Because the top extension in (21) is central, there

(e

o, .
is a Serre spectral sequence of A -representations

E3 = HP (7MY Q) @ HY (im(1);Q) = HP*(LIG;Q),

so by Theorem 2.2 it suffices to show that the A el -representations HP (J e, ; Q) and HY(im(i); Q)
are gr-algebraic.

Lemma 8.11 shows that JH’W]] = Hom(H,, K,;) where K,, C Sn,(SO(n)) is a certain subgroup,
necessarily ﬁmtely generated, with the Ag N _action induced by the Gg’ en

Thus, HP(J el ;Q) = AP[H, ® (K, ® Q)¥], which is algebraic.
0,[1¢]]

-action by precomposition.

For the group im(i), we use that it is abelian and so the A, -representations H9 (im(7); Q) are
all gr-algebraic if and only if im(¢) ® Q is. But im(i) is a quotlent of w1 (Buniy,g(TWg 1,0"y; tips), £),
which in the proof of Proposition 8.10 we showed is identified with H,! ® 7,1 (F°); the rationalisation
of this is algebraic. O

8.5.3. Starting the proof of Theorem 8.2
In analogy with BTorg(Wg, 1;€8)e, let us define

6,[[¢]]

BTorEmb We.1: tiy9)¢ = hofib | BEmb We 15 o) — BGy

1/26( 1/26(

Its fundamental group is Lg’g, the kernel of f‘g - Gg’[[m.
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The proof of Theorem 8.2 proceeds along the lines of Theorem A, with some additional work keeping
track of fundamental groups and path components. We restrict the fibre sequence of Proposition 8.7
to the path component of total space given by [£] € Strg(Wg, 1) and produce the analogue of the
commutative diagram in the proof of Theorem A, which now takes the form

BDIff§(D?"; €5)4 ——— BDiff§(D*"; L5)s — Gl /Gt

l l l

BTor§(Wy.15€s)e ————— BDIff§ (W 1;l5)e —— BG! (22)

| l |

BTorEmbl:N/EZ(Wgsl?fl/zﬁ)f — BEmbi;g(Wg,Hfl/za)f —— BG M

in which the rows and columns are fibration sequences and the subscripts A, B C ﬂo(BDiffg(DZ"; ta,))
denote certain collections of path components. As the leftmost two columns deloop, we see that A and
B are in fact subgroups of no(BDiffg (D*, {5,)) and may be described in terms of the exact sequences

of groups ﬂl(BTorg(Wg,l;é’a),f) — Lg’[ — A — 0and lv“gg’f — /V\g’[ — B —0.

Remark 8.13. It follows from the delooping of the middle column that Gg’[f] < Gg T i in fact a
normal subgroup.

8.5.4. Interlude: The groups A and B are finite
First observe that the map

71 (Bung (TWq 1,0%y; €s), £) — w1 (Bunig(TWe 1, 0%y; l14), £)

is surjective, by the discussion in Subsection 8.2.2 and the long exact sequence on homotopy groups.
From the exact sequence

7T1(Bunl/za(TWg’l,9*)/;51/23),5) — Lg’[ — J‘g’[[f]] — 0

coming from BTorg (We,15€s) = Buniyg(TW, 1, 6%y; Li) //TorEmbiza(Wg, 1) it then follows that there

is a surjection Jge AT 5 A with kernel given by the image of the natural homomorphism / gg A QN
J;’W 1
(e _

To finish our analysis of the group A, we need to understand how much the group ]g ’ =
Staby, ([[£]]) differs from 17"1‘] = Staby, ([£].

Lemma 8.14. The action up to homotopy of the subgroup ®,.1 < I, < Ty on the space

Bunz (TWg 1:ts) is trivial, so in particular ®,,1 < I?’m.

Proof. This subgroup acts on Bung(TWg,l;fg) via the derivative map (with respect to the standard
framing of D** c R?")

©2u+1 = mo(Diffo(D*")) — 724(SO(2n)),
which we claim is trivial. Smoothing theory identifies the space of smooth structures on a 2n-dimensional
topological manifold with the space of lifts to BO(2n) of the map to BTop(2n) classifying its tangent

microbundle [28, Essays IV, V]. In particular, for a disc this provides an equivalence [13, Theorem
4.4(b)] [28, Theorem V.3.4]

Diff5(D?*") =~ Q"' Top(2n)/0 (2n),
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under which the derivative map is the connecting map 75,41 (Top(2n) /0 (2n)) — m,(0(2n)) in the
fibration sequence. Then the result follows directly from [13, Proposition 5.4 (iv)], which says that
m;(0(k)) — m;(Top(k)) is injective for k > Sand i < k. O

As a consequence of the previous lemma, the action of I, on Strg(Wg,l) factors over Jg, and
Ige’[[] /®2,41 is identified with the stabiliser in J, of [{] € Strg(Wg,l).

Lemma 8.15. The subgroup

Stab,, ([€]) < Jg = Hom(H,, S7,(SO(n)))
has finite index in the subgroup Jg’”m = Hom(H,, K,) < Hom(H,, S7,,(SO(n))), where K, =
ker[S7,, (SO (n)) — n,(SO(2n)) — m,(F°)].

Proof. Recall from Subsection 8.2.2 that there is a surjection Strg(Wg,l) — Str? (Wg,1), which by a
choice of framing is identified with the surjection

no(mapy(Wg,1, F*)) — Hom(H,, 7, (F)).

The group mp, (F°") acts freely and transitively on the fibres of this map. Let us write [[£]] €
Hom(H,,, m, (F°")) for the image of [{] € mo(map,y(W,, 1, F°)) under this map.

If [¢] € Jg fixes [£], then it certainly fixes [[£]]. Conversely, there is defined a function
Je: Staby, ([[£]]) — w2, (F®) by the property

(] @ [¢] = fe(leD - [£].

It follows from this formula and the fact that the action of J, commutes with that of 75, (F°") that f7 is
a homomorphism. Therefore, we have an exact sequence

1 —> Staby, ([£]) —> J& U = Stab,, ([[€]]) - man (F*),

with Staby, ([£]) the group of interest. To finish the proof of this lemma we must therefore show that
the homomorphism f has finite image.
We can apply the same construction to the full A, = I'y/©,,41-action, giving an exact sequence

1 — Staba, ([¢]) — AL = Staby, ([[£]]) <5 720 (F),
where f; extends f; . The Serre spectral sequence for the extension
1 — P U = sty ([[61]) — AT = Staby, ([[€]]) — G2 — 1
gives an exact sequence

e Hom(H"’Kn)Gg»[[f]] N (Ag,llt’JJ)ab _ (Gg,[w”)ab o

Claim. As long as g > 2 the two outer terms of this exact sequence are finite.

Proof of claim. For the left-hand term, first note that the group Hom(H,,, K},) is finitely generated, and
hence so are the coinvariants. Then the Gg’ AN _coinvariants of Hom(H,, K,;) ® Q are isomorphic to the
Gg’[[m—invariants. The subgroup Gg’[[m < Gy has finite index by Lemma 8.8. Because g > 2 (this
only needs g > 1 when n is odd), it follows that Gg’ A i5 Zariski dense in either Sp2,(Q), SO ¢ (Q) or
0, - (Q), and we may as well take invariants with respect to this larger group: it is evident that this is 0.
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For the right-hand term, the abelian group (Gg (el )ab is finitely generated because the arithmetic
group G Lte1] is, and H (GH Ll ; Q) vanishes because g > 2 by [37, Corollary 7.6.17]. O

It follows that (Ag’[[[”)bIb is also a finite group. We then proceed as follows. The homomorphism
fr: J el _, 72, (F°) extends through the homomorphism f[ as discussed above, and this in turn

[”)ab

factors through a homomorphism (Ag oAl — 72, (F°), as the target is an abelian group:

b ()

0,
jraig >
l A T

AGLAT Ly (AGLyab,

But (Ag’[[{)”)ab is a finite group, so fr has finite image. O

Because we have A = J [K]]/Stabj ([€]), and G [K]]/Gg L is finite by Lemma 8.8, we deduce
the following.

Corollary 8.16. The groups A and B are finite.

8.5.5. Finishing the proof of Theorem 8.2
We wish to analyse the Serre spectral sequence for the left-hand column of (22), and it is awkward that
the fibre of this fibration is not connected. To deal with this we consider the subgroup

‘= ker(Lg’ﬁ — A) = im(m(BTorg(Wg,l;fa),f) — Lg’[)

of Lg ¢ and let BTorEmb; S 3(W 15 01pp)e denote the corresponding covering space. There is then a
ﬁbratlon sequence

BDIfty(D>"; £3,)q, —> BTor(Wg.13la)e — BTorEmbj;g(Wg,l; bo)es (23)

where the fibre is now path connected.

Similarly, consider the subgroup /V\g’e = ker(]\g L B) of /\g * and the corresponding covering

space BEmbIE/;g (Wg 15 tipa)e. It is easy to check that there is an induced fibration sequence

BTorEmb W, 1,51/25)5 —> BEmb Wg,l;fl/za)[ — BGE,’[[],

l/za( l/za(

S0 Gg,[f] acts on the cohomology of BTorEmbiég(Wg,l 3 pa)e.

Lemma 8.17. Suppose that 2n > 6 and that g > 2. Then the Gg’m—representations
H(BTorEmb

l/za(Wg,l i 0ipo)e; Q) are algebraic.

Proof. We consider the fibration

7-1BEmb We 15 tip9)¢ —> BTorEmb We 15 Cipp)e — BLg’[,

1/28( 1/26(

where 7.1 denotes the 1-connected cover. Firstly, combining Proposition 8.10 and Lemma 2.11 shows
that the Ag ’[-representations

H' (12 BEmb,:N/;g(Wg,l i 016)e; Q)
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are gr-algebraic. Secondly, we will show below that the G g ’[-representations H (Lge £, Q) are algebraic.
Together these provide the input for Lemma 2.15, which gives the required result.
This second ingredient is proved using Lemma 8.12. Because Lg " is abelian, the action of the group

A on the kernel Lg’f = ker(Lg’[ — A) is trivial, so, because A is finite by Corollary 8.16, the Serre
spectral sequence shows that

HY(LYGQ) — H (LYY Q).
The second part of Lemma 8.12 then gives the desired conclusion. O

We can now complete the proof of Theorem 8.2. We make two observations about the fibration (23).
Firstly, BDiffg(D2"; €,)¢, has degree-wise finite-dimensional rational cohomology. This follows from
the fibre sequence (17) using that F°' has degree-wise finite-dimensional rational cohomology (as B
does, by assumption) and that BDiff3(D>") has degree-wise finite-dimensional rational cohomology by
[33, Theorem A]) and finite fundamental group. Secondly, the fundamental group of the base of (23)
acts trivially on the cohomology of the fibre, as this fibration deloops. The rational cohomology Serre
spectral sequence for this fibration and Lemma 8.17 then give the result.

8.6. Proof of Theorem 8.3

Having established algebraicity for the cohomology of BTOI'g(Wg,1;€a)(, we now prove that it is a
nilpotent space.

Proposition 8.18. Let 2n > 6 and B be n-connected. Then BTorEmbjo/2 oWe.1: lipg)e is nilpotent.
Proof. Its fundamental group Lg s nilpotent by Lemma 8.12 (in fact it is abelian), so it suffices to

show that it acts nilpotently on the higher homotopy groups. To do so, let BTorEmb3 (W, 1) denote the
covering space corresponding to the subgroup J g Al < g ¢, and consider the fibration sequence

Buni,g(TWe 1, 08"y Cipng)e — BTorEmbi;z(W,,l;&/za)g — BTorEmb3 (W, 1).

As we remarked before the proof of Lemma 8.9, the fibre is simple. Furthermore, the base is nilpotent
by Proposition 7.5 (and the fact that a cover of a nilpotent space is nilpotent). The fundamental group

J g LT of the base acts on the fibre, and because the fibre is simple this gives an action on the homotopy

groups of the fibre: it suffices to show that this action is nilpotent, but Lemma 8.9 shows that J 5 ATy
fact acts trivially on the homotopy groups of the fibre. O

The proof of Theorem 8.3 is now analogous to that of Theorem C:

Proof of Theorem 8.3. Delooping (23), BTorg (Wg.1; €a)e is the base point component of the homotopy
fibre of a map

BTorEmb{), ,(We 15 €19)c — B(BDIft)(D>"; €a))s,)-

The domain is a nilpotent space by the previous proposition (again because a cover of a nilpotent space
is nilpotent), so by Lemma 7.2 the space BTorg(Wg,l ; o) is also nilpotent. O
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