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Abstract 

An elastoplastic phase-field model is used to investigate the deformation mechanisms of yttria 

stabilized tetragonal zirconia in presence of defects. A remarkable tension-compression 

asymmetry is detected. A higher strength and a lower degree of transformation are observed in 

compression than in tension. Also, deformation mechanism is asymmetric depending on the 

crystal orientation. For some cases (other cases), phase transformation is absent in tension (in 

compression), while both transformation and plasticity are present in compression (in tension). 

Such tension-compression asymmetry is attributed to activation of different monoclinic 

variants with different Eigen strain tensors in tension versus compression. Results also reveal 

a higher degree of transformation and plasticity with lower onset stresses as the void size 

increases. Elliptic voids exhibit a directional effect with a maximum stress intensity factor of 

5.6 MPa.m1/2 when the long semi-axis is diagonally oriented with respect to the loading 

direction, and this prediction is comparable to experiments.  
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1. Introduction 

The ever-increasing complexity in engineering applications require high-performance 

materials [1]. A prime example is the need of strong, temperature-resistant, and damage 

tolerant materials for full-fledged development of next-generation hypersonic vehicles, fuel-

efficient jet engines, and nuclear energy reactors [2-4]. Ceramics are usually strong and 

temperature/corrosion resistant making them potential candidates for such applications, but 

they suffer from low damage tolerance. Such multiple requirements cannot be currently 

satisfied simultaneously [5]. A core issue is that all materials are prone to cracks when their 

deformed microstructure reaches its strain-hardening limit [5]. Therefore, a main engineering 

challenge is to increase the fracture toughness which is a critical mechanical property 

determining the structural integrity and reliability of engineering components and devices.  

It is well-established that plastic deformation and phase transformation have the 

commonality of increasing fracture toughness via strain energy absorption and stress relaxation 

in shape memory alloys (SMAs) [6-8]. However, in the case of shape memory ceramics, the 

brittleness is not easy to overcome. While some transformable ceramics such as yttria-

stabilized tetragonal zirconia (YSTZ) can potentially increase fracture toughness, plastic 

deformation is mostly limited therein and the transformation-induced volume expansion may 

also result in microcracking [9, 10]. Fracture behavior of such materials need to be fully 

understood, especially at the lower length scales where ubiquitous nanoscale defects control 

the brittle fracture behavior.  

YSTZ ceramics, with dopant concentration less than 4% mol., display a reversible 

tetragonal-to-monoclinic phase transformation (TMPT) and possible plastic yielding [11-13]. 

This TMPT is accompanied by a significant shape recovery of up to 7%  shear strain, and a 

volume expansion of 3~5% [14], which induces shape memory effect, superelasticity [15], and 

transformation toughening [16]. Such a high capacity to accommodate the shape variation and 

large inelastic strain, along with their outstanding strength, hardness, and resistance to 

oxidation and corrosion have paved the way for unique engineering applications of YSTZ, 

including thermal barrier coating, wear and bearing parts [13], refractors, gas sensors, and 

pacifiers [17, 18]. However, their limited plasticity and relatively low damage tolerance, 

particularly their tensile brittleness [19], are the main obstacles to their extended applicability 

[5]. During material processing or service, the volume expansion associated with the TMPT 

can generate defects (nano and micro voids and cracks) at localized regions [20-22]. On the 

other hand, under some conditions, the same volume expansion can heal/close the some cracks 
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as they form [23, 24], which can limit and/or delaying crack growth and toughen the material 

during service [25]. Therefore, understanding how TMPT and plasticity interact with flaws is 

of particular importance in YSTZ where the crystal orientation is a determinant factor of the 

deformation mechanisms [26, 27] and  mechanical properties [28].  

 Since the first fatigue study of zirconia by Dauskardt and Ritchie [29], researchers have 

found that all toughened ceramics display a degradation of their mechanical properties when 

subjected to cyclic loads [30-32]. The fracture in zirconia is reported to initiate at defects 

(voids, cracks and flaws) [33]. Likewise, interlamellar gaps, open pores and microcracks were 

evidenced on the fracture surface of zirconia [34] (see Figure 1a). Microscopic observations 

also highlight failure initiation sites in 3Y-STZ dominated by pores and voids [22] (see Figure 

1 b). These results were confirmed by the scanning electron microscopy (SEM) observations 

of Govila [35] and Casellas et al. [36] showing that pores constitute important failure origins 

in YSTZ. Experimental fatigue studies in YSTZ [21, 31, 37], magnesia-partially stabilized 

zirconia [38] and ceria-stabilized tetragonal zirconia [20, 39] reveal that TMPT-induced crack-

tip shielding ensures a stable/small crack growth under constant load, which progressively 

contribute to deterioration of strength during cyclic loading [40].   

 

Figure 1. (a) Cross-sectional SEM micrograph showing the defect morphology of as-sprayed 

zirconia coats [34], and (b) Failure-initiation sites at pores[22]. 

 

Quantitative understanding of the deformation mechanisms of defect filled zirconia 

ceramics is needed [41]. Because experimental methods are limited by their time and length 

scales, numerical approaches such as molecular dynamics (MD) and phase-field modelling 

(PFM) stand out as practical alternatives [42]. At the atomistic level, Zhang and Asle Zaeem 

conducted MD simulations of YSTZ to determine the critical crack width ensuring its closure 
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[43], self-healing, dislocation migration and formation of amorphous phase in single crystals  

[25], nanoscale flaw tolerance in bicrystal [9], and competition between twin-boundary-

induced and void-induced TMPT in polycrystals [44]. At the microscale, Mamivand et al. 

developed an elastic PFM [45] to study transformation toughening ahead of a crack tip in 

zirconia under monotonic tensile loading [46]. In a recent work, Cissé and Asle Zaeem [27] 

proposed a fully thermomechanical coupled elastoplastic PFM to investigate the orientation-

dependent deformation mechanisms in 3Y-STZ (TMPT and plasticity). This robust and 

transferable model was also used later to study the elastocaloric effect in SMAs [47, 48], predict 

the fracture toughening in SMAs [49]. This model has been recently extended to incorporate 

the asymmetry of both martensitic transformation and plasticity, thermomechanical training 

and stress-assisted two-way shape memory effects [50]. Nonetheless, these considerable efforts 

have not been able to fully explain the very low fatigue life of zirconia-based shape memory 

ceramics.  

 The objective of this work is to numerically unveil how TMPT and plasticity interact with 

defects and provide insights on the effects of the shape, orientation, size and distribution of 

defects on localized and generalized thermomechanical behaviors in compression and tension 

of specifically orientated 3Y-STZ single crystals. Even if dislocation-mediated plasticity is 

temperature-dependent both in tetragonal and monoclinic phases, our work is conducted at high 

temperature where dislocations are mobile, which help simplify the formulation. The 

simulations are aimed to provide the deformation mechanisms and potentially guide the future 

experiments for enhancing 3Y-STZ fracture toughness. The rest of this article paper is 

organized in three sections; Section 2 gives the PFM and governing equations, Section 3 is 

dedicated to the simulation results, and Section 4 provides conclusive perspectives. 

 

2.   Thermo-Elastic-Plastic Phase-Field Model  

PFM is a powerful computational method that enables access to nano and micro length and 

time scales to investigate the evolution of nano/microstructures during phase transformation 

[51]. It uses orders parameters (OPs) as state variables to describe the involved processes. The 

TMPT can be well described by PFM using non-conserved long-range OPs, noted by 

𝜂௩ሺ𝒓, 𝑡ሻ for the 𝑣௧௛ monoclinic variant (product phase) [45]. A full forward transformation into 

the 𝑣௧௛ variant corresponds to 𝜂௩ ൌ 1, whereas 𝜂௩ሺ𝒓, 𝑡ሻ ൌ 0 expresses an absence of the 𝑣௧௛ 

variant. The total free energy 𝐹௧௢௧ of the system is composed of the chemical or bulk free energy 
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(𝐹௕௞), the gradient free energy (𝐹௚ௗሻ, the thermal free energy (𝐹௧௛), and the elastic free energy 

(𝐹௘௟). 

2.1 Chemical free energy 

The chemical free energy is the non-equilibrium homogeneous free energy driving the 

TMPT under stress-free conditions. Its density is defined as a 2-4-6 Landau polynomial of the 

primary OPs [51] so that to be insensitive to their signs and their permutations: 
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,                         ሺ1ሻ 

where 𝑁 is the total number of monoclinic variants, and 𝐴ሺ𝑇ሻ, 𝐵ሺ𝑇ሻ and 𝐶ሺ𝑇ሻ are positive 

temperature-dependent coefficients that can be calibrated from the transition temperature, 

equilibrium OPs, and transformation latent heat [52]. They are related to the energy gap 

between tetragonal (equivalent to austenite phase) and monoclinic (equivalent to martensite 

phase), 𝛥𝐹ሺ𝑇ሻ, as follows, 

𝐵ሺ𝑇ሻ ൌ 4𝐴ሺ𝑇ሻ െ 12𝛥𝐹, 𝐶ሺ𝑇ሻ ൌ 3𝐴ሺ𝑇ሻ െ 12𝛥𝐹, and   𝛥𝐹ሺ𝑇ሻ ൌ 𝑄ሺ𝑇/𝑇଴ െ 1ሻ,   ሺ2ሻ 

where 𝑄 is the latent heat of phase transformation, and 𝑇଴ is the equilibrium temperature. We 

proposed the following continuous function of temperature for coefficient 𝐴ሺ𝑇ሻ [47, 50] so that 

simulate complete thermochemical deformation and account for the nonlinear increase of the 

critical transformation stress (CTS):  
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,                                                  ሺ3ሻ 

where 𝑘ଵ and 𝑘ଶ are positive constants.  

2.2 Gradient free energy 

While the OPs are assumed to be homogeneous within each phase/domain, they change 

smoothly across the narrow regions called interfaces that separate the tetragonal and 

monoclinic phases. The gradient free energy is a heterogeneous penalty-like term for the spatial 

variations of the OPs. It helps guarantee the smooth phase transformation across the interfaces. 

An isotropic formulation of its density gives this simplified expression: 
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𝐺௚ௗሺ𝜂ଵ, 𝜂ଶ, … , 𝜂௠  ሻ ൌ
1
2
𝛽෍ሺ∇𝜂௩ሻଶ

ே

௩ୀଵ

,                                                 ሺ4ሻ 

where ∇  is  the gradient operator, and 𝛽  is a  coefficient  related  to  the energy and/or 

thickness of the interface so that an appropriate value should replicate its energy density or 

finite width. For instance, Yeddu et al. [53] derived the following expression of the gradient 

energy coefficient: 

𝛽଴ ൌ
ଷ√ଶ

ସ
𝜒𝜉,                                                           (26) 

where 𝜒 is the interfacial energy, and 𝜉 is the interface thickness.  

2.3 Thermal free energy 

The thermal free energy is a function of temperature and its density is given by the classic 

equation [50] 

𝐺௧௛ሺ𝑇ሻ ൌ  𝐶௣ ൤ሺ𝑇 െ 𝑇଴ሻ െ 𝑇𝑙𝑛 ൬
𝑇
𝑇଴
൰൨ ,                                                      ሺ5ሻ 

where 𝐶௣ is the specific heat of the tetragonal and monoclinic phases.  

2.4 Elastic free energy 

The elastic free energy helps accommodate the microstructural changes due to the 

stretching/compression of atoms within the tetragonal phase and/or the lattice compatibility 

along the different interfaces during the TMPT. Its density is expressed as  

𝐹௘௟ሺ𝜺௘௟ , 𝜂௩ሻ ൌ
1
2
𝜺௘௟:𝑲ሺ𝜂௩ሻ: 𝜺௘௟ ൌ

1
2
ሺ𝜺 െ 𝜺௧௥ െ 𝜺௣௟ሻ:𝑲ሺ𝜂௩ሻ: ሺ𝜺 െ 𝜺௧௥ െ 𝜺௣௟ሻ,           ሺ6ሻ 

where 𝑲ሺ𝜂௩ሻ is the equivalent stiffness tensor, 𝜺(r) is the total strain tensor describing the 

macroscopic shape of the system, 𝜺௧௥ሺ𝒓ሻ is the transformation strain tensor, 𝜺௣௟ሺ𝒓ሻ is the plastic 

strain tensor, and 𝜺௘௟ሺ𝒓ሻ is the elastic strain tensor at a given location r. The elastic 

inhomogeneity is considered by defining an equivalent stiffness tensor 𝑲ሺ𝜂௩ሻ given by [27, 

50]: 

𝑲ሺ𝜂௩ሻ ൌ 𝑲் ൅ อ෍𝜂௩

௠

௩ୀଵ

อ ሺ𝑲ெ െ 𝑲்ሻ,                                                     ሺ7ሻ 
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in which 𝑲் and 𝑲ெ refer to the stiffness tensor of the tetragonal and monoclinic phases, 

respectively. The transformation strain tensor 𝜺௧௥ is related to the stress-free eigen strain tensor 

𝜺௩଴଴ of the different monoclinic variants by [27, 50]: 

𝜺௧௥ ൌ ෍𝜂௩ଶ𝜺௩଴଴
ே

௩ୀଵ

.                                                                       ሺ8ሻ 

Since we study crystals having different orientations, we will apply rotation operations to 

transfer the stress-free strain tensor and elastic stiffness matrix from the local coordinates of 

the different single crystals to the same global coordinate system, so that the short axis  𝑎௧ and 

long axis 𝑐௧ of the tetragonal phase coincide with the 𝑥 and 𝑧-directions, respectively: 

𝜀௜௝
ீ଴଴ ൌ 𝑹௜௞𝑹௝௟𝜀௞௟

଴଴ ,                                                                     ሺ9ሻ 

𝐶௜௝௞௟
ீ ൌ 𝑹௜௠𝑹௝௡𝑹௞௢𝑹௟௣𝐶௠௡௢௣,                                                           ሺ10ሻ 

in which, 𝜀௞௟
଴଴ and 𝐶௠௡௢௣ are the elements of the eigen strain tensor and elastic stiffness matrix 

in the local coordinate systems, respectively, 𝜀௜௝
ீ଴଴ and 𝐶௜௝௞௟

ீ  are their representations in the 

global coordinate system, and 𝑹௜௝ is a rotation matrix which, for a crystal having an orientation 

angle 𝜑, is given by 

𝑹௜௝ሺ𝜑ሻ ൌ ൤
cos ሺ𝜑ሻ sin ሺ𝜑ሻ
െsin ሺ𝜑ሻ cos ሺ𝜑ሻ

൨ .                                                  (11) 

 

A complete computation of the plastic strain requires a yield criterion, a hardening rule, 

and a plastic flow rule. We use a J2-type yield criterion along with the loading-unloading 

condition 

𝐹௬ ൌ 𝜎ො௩௠ሺ𝝈,𝜑ሻ െ 𝜎௬ ൌ 0    and    
𝜕𝐹௬
𝜕𝝈

:𝝈ሶ ൐ 0 ,                                                           ሺ12ሻ 

in which 𝜎ො௩௠ is a modified von Mises equivalent stress accounting for the orientation 

dependency [27], and 𝜎௬ is the yield stress. These specific stress variables are expressed, 

respectively, as 

𝜎ො௩௠ሺ𝝈,𝜑ሻ ൌ cosଶሺ2𝜑ሻ .ඥ𝜎௫௫ଶ ൅ 𝜎௭௭ଶ െ 𝜎௫௫𝜎௭௭ ൅ 3𝜎௫௭ଶ ,                                              ሺ13ሻ 

𝜎௬ ൌ 𝜎଴ ൅ 𝐻௬𝜀௣௤
୮୪ , 

where 𝜎௫௫, 𝜎௭௭, and 𝜎௫௭ are the two-dimensional (2D) components of the stress tensor, 𝜎଴ is 

the initial yield stress, 𝐻௬ is the hardening modulus, and 𝜀௣௤
୮୪  is the equivalent plastic strain that 

reads 
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𝜀௣௤
୮୪ ൌ

2
3
ඥ𝜀௫௫ଶ ൅ 𝜀௭௭ଶ െ 𝜀௫௫𝜀௭௭ ൅ 3𝜀௫௭ଶ  ,                                                ሺ14ሻ 

where 𝜀௫௫
௣௟ , 𝜀௭௭

௣௟, and 𝜀௫௭
௣௟  are the components of the plastic strain tensor. 

 

2.5. Governing equations 

2.5.1 Evolution of transformation order parameters  

The time and space evolutions of OPs are obtained by solving by time-dependent Ginzburg-

Landau (TDGL) equation [54] relating their rates to the variational form of the total free energy 

with respect to the same OPs: 

𝜕𝜂௩
𝜕𝑡

ൌ െ𝑀
𝜕𝐹
𝜕𝜂௩

,                                                                       ሺ15ሻ 

where 𝑀 is the kinetic coefficient describing the mobility of the interfaces.  

2.5.2 Evolution of temperature 

The rate-dependency of TMPT is caused by the heat release/absorption during 

forward/reverse phase transformation, which changes the temperature in the material under 

adiabatic deformation. The time evolution and space distribution of the temperature is given 

by the heat conduction equation:  

𝜌𝐶௣
𝜕𝑇
𝜕𝑡

ൌ 𝜆𝛻ଶ𝑇 ൅ 𝑞 ሶ ,                                                                  ሺ16ሻ 

where 𝑞ሶ  is the rate of heat source, and λ is the thermal conductivity of the material. Assuming 

that the rate of internal heat source is related to not only the latent heat of phase transformation, 

but also the intrinsic dissipation of plasticity, the rate of heat source becomes: 

qሶ ൌ 〈σ௩௠ െ 𝜎௬〉𝜀ሶ௘௤
௣௟ ൅෍𝑄𝜂ሶ௩

௠

௩ୀଵ

,                                                               ሺ17ሻ 

where 𝜀ሶ௘௤
௣௟  is a scalar denoting the rate of equivalent plastic strain, and 〈𝑋〉 denotes the positive 

part of scalar X.  

2.5.3 Evolution of plastic strain 

The evolution of the plastic strain is obtained from the normality rule and the consistency 

condition so that the plastic flow rule reads 
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𝜺ሶ ௣௟ ൌ 𝛾ሶ
𝜕𝐹௬
𝜕𝝈

,                                                                         ሺ18ሻ 

where 𝛾ሶ  is the rate of the plastic strain magnitude and is obtained from the consistency 

condition: 

𝐹௬ሶ ൌ
𝜕𝐹௬
𝜕𝝈

:𝝈ሶ ൅
𝜕𝐹௬
𝜕𝛾

𝛾ሶ ൌ 0.                                                       ሺ19ሻ 

Discretizing the Hooke’s law as 

𝝈ሶ ൌ 𝑪ሶ ሺ𝜂௩ሻ: 𝜺௘௟ ൅ 𝑪ሺ𝜂௩ሻ: ሺ𝜺ሶ െ 𝜺ሶ ௧௥ െ 𝜺ሶ ௣௟ሻ,                                    ሺ20ሻ 

the rate of the plastic multiplier can be written as 

𝛾ሶ ൌ
𝑵௣: ൣ𝑪: ሺ𝜺ሶ െ 𝜺ሶ ௧௥ሻ ൅ 𝑪ሶ : 𝜺௘௟൧

𝑵௣:𝑪:𝑵௣ ൅ 𝐻௬
 ,                                          ሺ21ሻ 

where 𝑵௣ ൌ
డி೤
డ𝝈

  is the flow direction. 

2.5.4 Mechanical equilibrium equations  

The above governing equations are coupled to the mechanical equilibrium that gives the 

displacement field. Neglecting the body forces for a 2D solid domain (𝛺ሻ subjected to surface 

force (𝒕௔ሻ on a portion (𝛺௧ሻ of its boundary (𝜕𝛺) and/or a displacement vector ሺ𝒖௔ሻ on a 

boundary portion ሺ𝛺௨ሻ, the mechanical equilibrium equations are expressed in term of the 

Cauchy stress tensor 𝝈 as follows, 

𝛻𝝈 ൌ 𝟎 in 𝛺,     𝝈.𝒏 ൌ 𝒕௔ on 𝛺௧,     and    𝒖 ൌ 𝒖௔ on 𝛺௨ .                                            ሺ22ሻ 

 

2.6. Details of numerical simulations and material properties 

We applied the "Fully Coupled" approach so that the nonlinear equations describing the 

solution is a single large system where all the field variables and their coupling terms are solved 

at once within the same iteration. It converges more robustly and uses less iterations than the 

"Segregated" method which solves the unknowns sequentially within a single iteration. Within 

each iteration, the nonlinear system of equations is linearized and solved. We also used the 

MUMPS "Direct" algorithm solver which is more robust and general than the "Iterative" solver 

which converges slower for ill-conditioned problems, such as those with a very high geometric 

aspect ratio and/or a high gradient in material properties. The size of the study domain is 0.25 

x 0.25 μm2, and we use free quadratic triangular elements with a minimum mesh size of 1 nm 



  10   
 

and a maximum mesh size of 5 nm to discretise the domain. We have chosen this range to 

accurately capture the all-possible features of TMPT and the tetragonal-monoclinic interface. 

This mesh is small enough to provide the details and results similar to MD simulations [55] 

while allowing the use of larger sample size and smooth response that can be related to 

macroscopic results and experimental tests. The governing equations are solved using the input 

parameters given in Tables 1 and the elastic constants of the monoclinic and tetragonal phases 

in Table 2.  

Table 1. Material properties and simulation parameters for 3Y-STZ (at. %). 

Model parameter Value 

Kinetic coefficient M (m3.J-1.s-1) 1 * 

Gradient energy coefficient β (J.m-1) 1x10-8 [27] 

Latent heat Q (MJ.m-3) 108.8 [56] 

Energy coefficient parameter k2 2* 

Equilibrium temperature T0 (K) 883 [56] 

Mass density ρ (kg.m3) 6100 [57] 

Thermal conductivity λ (W.m-1.K-1) 3 [57] 

Specific heat Cp (J.kg-1.K-1)  600 [57] 

Initial yield stress σ0 (MPa) 2500 [58] 

Isotropic hardening modulus Hy (GPa) 50 [28] 

Thermal coefficient (K/MPa) 1.0 [59] 

Eigen strain for variant 1  𝜺ଵ
଴଴ ൌ ቀ0.0419 0.0761

0.0761 െ0.0181
ቁ   [60-62] 

Eigen strain for variant 2  𝜺ଶ
଴଴ ൌ ቀ 0.0419 െ0.0761

െ0.0761 െ0.0181
ቁ   [60-62] 

* These parameters are adjusted to reproduce the transformation stress reported in [58]. 

 

Table 2. Elastic properties of the tetragonal and monoclinic phases. 

                                     Parameter  

Phase                  

C11 

(GPa) 

C33 

(GPa) 

C13 

(GPa) 

C44 

(GPa) 

Monoclinic [63, 64] 361 264 62 59 

Tetragonal [64, 65] 327 258 55 100 
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3.   Results and Discussions 

Based on previous MD simulations [26] and experimental observations [28, 66], we select 

three single crystals (SC): [101] orientated (SC[101]) where only transformation was observed, 

[001] orientated (SC[001]) where both TMPT and plasticity were reported, and [100] orientated 

(SC[100]) where only plasticity was observed. We considered various size, shape, orientation, 

and distribution of voids, shown in Figure 2, where all elliptic voids have a short semi-minor 

axis of 10 nm. All the simulations consist of pseudoelastic cycles operated at TL = 905 K, i.e., 

22 K above the equilibrium temperature, T0. A maximum compressive or tensile stress of 2 

GPa is applied linearly during a ramp of 1.0 μs, followed by a complete unloading to 0 MPa 

during another linear ramp of 1.0 μs. 

 

Figure 2. Square simulation samples of side length 250 nm, with (a) a circular void of 40 nm 

diameter (c40) which is taken as the reference sample, (b) a circular void of 20 nm diameter 

(c20), (c) a circular void of 80 nm diameter (c80), (d) patterned circular voids of 10 nm 

diameter (c10p), (e) patterned circular voids of 20 nm diameter (c20p), (f) an elliptic void with 

horizontal semi-major axis of 25nm (e25h), (g) an elliptic void with horizontal semi-major axis 

of 60 nm (e60h), (h) an elliptic void with vertical semi-major axis of 60 nm (e60v), (i) an 

elliptic void with diagonal semi-major axis of 60 nm (e60d), and (j) meshed defect-free bulk 

specimen (BS) under compression using 10,000 quadratic elements of size 2.5 nm. 
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3.1 Defected SC[101] single crystal 

We first study the behavior of single crystalline 3Y-STZ having an orientation angle [101] 

with respect to the vertical loading direction by applying a rotation of 45o to the eigen strain 

tensors and stiffness matrices. In Figure 3, we compare the results for the defect-free bulk 

sample (BS) to the defected reference specimen with a circular void of 40 nm diameter (c40). 

Similar to our previous work [27], only phase transformation occurs for this crystal orientation 

even in the presence of void. This is demonstrated by the absence of residual strain in the stress-

strain curve in Figure 3a after unloading. This curve, along with the evolution of the total 

surface-averaged volume fraction of monoclinic phase in Figure 3b, highlights a noticeable 

asymmetry of the deformation of both BS and c40 samples. This quantitative analysis of TMPT 

in Figure 3b reveals an initial negligible increase in the monoclinic volume fraction, followed 

by a rapid increase between points P1 and P2, then a modest increase toward near saturation 

until point L (maximum stress).  

For all samples, the stress-strain curves in tension exhibit a flatter stress plateau and a lower 

CTS in tension (440 MPa for c40) than in compression (520 MPa for c40). This means that the 

3Y-STZ is more deformable in tension with a larger hysteresis loop than in compression. This 

latter point is also visible in Figure 3b where a higher fraction of monoclinic phase is obtained 

in tension (0.93 for c40) than in compression (0.88 for c40). These results are consistent with 

the experimental data reported by Liu and Chen [67] where both Mg-PSZ and 3Y-STZ show 

an asymmetric behavior with a ratio of CTS, located at P1 in the Figure 3a, for tension over 

compression between 2/3 and ½. In our work, the saturation stress, located at P2 in the Figure 

3a where most of TMPT is complete, in tension (610 MPa) and in compression (-810 MPa) 

generates an asymmetry ratio of nearly 2/3. In addition, we have stress concentration factors 

for c40 in tension of 2.96, 11.9, and 8.96 at points P1, P2 and L, respectively. From a theoretical 

perspective where the stress concentration factor is 3, we see a good agreement of this 

analytical value with the tensile elastic regime (P1), while those in the inelastic regime (P2 and 

L) diverge from the analytical value. However, the asymmetry of the degree of transformation 

is 1.06 meaning that its higher in tension than in compression. 
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Figure 3. a) Tension and compression asymmetric stress-strain curves, and b) evolution of the 

monoclinic volume fraction during a pseudoelastic cycle in SC[101]. 

The slightly lower CTS in c40 than BS is due to the void acting as an additional nucleation 

site phase transformation, where a high local stress concentration builds up and triggers the 

TMPT at the early deformation stage at point P1 in Figure 4. It can be also noticed that the 

monoclinic bands and the interfaces between the variants lay at an angle ±π/4 with respect to 

the loading direction. Likewise, by setting the applied load to generate a maximum von Mises 

stress of 2000 MPa, we see a maximum stress zone (MSZ) (stress ൒2000 MPa) that is 

surrounded by ±π/4 lines. As the deformation proceeds, the MSZ does not correlate with the 

transformation bands especially at high-load regimes (points P2 and L). The reason, which also 

explains the asymmetry, is that the transformation energy is related to the eigen strains. One 

could simplify the transformation criteria for a given variant as 𝝈෥: 𝜺଴଴=Ec where Ec is the 

critical energy needed to destabilize the tetragonal phase and is 𝝈෥ the local stress tensor. By 

applying the rotation of π/4, the new eigen strain tensors read 𝛆ଵ
଴଴ ൌ ቀെ0.0642 0.030

0.030 0.088
ቁ and 

𝛆ଶ
଴଴ ൌ ቀ0.088 0.030

0.030 െ0.0642
ቁ. Thus, under pure uniaxial compression along y-axis, the dominant 

term of the transformation energy would come from the variant 2 as -0.0642(-|σ22|), while under 

pure uniaxial tension it will come from variant 1 as +0.088|σ22|. Hence variant 1 is favored in 

tension and variant 2 is predominant in compression. Likewise, the amount of stress required 

to reach Ec is lower in tension than in compression (see Figure 4). We attribute the lower 

asymmetry in c40 than BS to the presence of circular void that absorbs the hydrostatic part of 

the eigen strain and mitigate the TMPT-induced volume expansion. The results unravel that 

asymmetry mechanisms in 3Y-STZ are rooted from the non-deviatoric nature of the Bain 

tensors. 
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Since ceramics are mainly used in compressive loading conditions, the study of further 

effects, such as size, shape, and distribution of the defects, will be conducted in compression 

only. 

 

Figure 4. Distribution of stress and evolution of the monoclinic phase in c40 during 

compressive and tensile deformation of SC[101].  

 

3.1.1 Effect of void size and distribution 

Here we consider two additional specimens with void diameter of 20 nm (c20) and 80 

nm (c80) to study the effects of void size on the overall stress-strain response. The stress-strain 

curves in Figure 5a show that as the diameter of void increases, the CTS decreases from 540 

MPa for c20 to 520 MPa for c40, and to 440 MPa for c80, and the materials increasingly 

softens. One of the reasons would be the boundary effects as the diameter increases; hence, a 

longer stress plateau and larger hysteresis loop are obtained for c80. The similar results of c20 
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and c40 cases suggest that a smaller diameter would results in flaw tolerance and void-

insensitive strength [9]. Figure 5b shows that by keeping the same void fraction and only 

changing density in patterned distributions with diameters of 10 nm (c10p) and 20 nm (c20p), 

the stress strain curves display slightly different hysteresis size. This can be explained by the 

presence of a high transformation zone between the voids in c10p and c20p (see Figure 5d). 

However, in all these specimens, the interface of the variants lays on the plan having an angle 

±π/4. It is worth emphasizing the increase in the forward TMPT degree and reduction of the 

high stress zone (HSZ) where its value is higher than or equal to the applied stress of 2 GPa, 

as the void diameter increases from 20 nm to 40 nm and then to 80 nm, seen in Figure 4 and 

Figure 5c. The stress and TMPT distribution in Figure 5d show that changing the distribution 

of voids does not affect the deformation mechanism except in the saturation stage (Figure 5b) 

where c40 has a steeper slop than c10p and c20p. 

 

Figure 5. a) Compressive stress-strain curves for different circular void sizes, b) compressive 

stress-strain curves for different void distribution with the same void fraction, and c) 

distributions of stress and monoclinic phase at the end of loading for c20 and c80, and d) for 

different distribution of voids in SC[101]. 
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3.1.2 Elliptic voids  

We study the effect of defect shape by using elliptic voids with semi-major axis 25 nm 

aligned in the horizontal (e25d), vertical (e25v) and diagonal (e25d) directions and elliptic 

voids with semi-major axis of 60 nm (e60h, e60v, and e60d). The results in Figure 6 show 

negligible difference between c40, e25h, e25v and e25d with CTS of about 520 MPa, possibly 

due to their “quasi-circular” shapes. However, visible variations can be noticed between e60h, 

e60v and e60d, both in terms of CTS (400 MPa, 420 MPa and 540 MPa, respectively) and 

hysteresis size. Figure 6d shows that e60h generates more transformation than e60h and e60v. 

Figure 6. Comparison of the compressive stress-strain curves of elliptic voids a) e25h and e60h, 

b) e25v and e60v, and c) e25d and e60d with BS and c40 samples, and d) evolution of the 

average monoclinic phase in e60h, e60v and e60d in SC[101]. 

Assuming that crack propagates and/or pores coalesce after saturation of 

transformation, the stress intensity factor could be approximated as [68]: 

𝐾ூ ൌ 𝜎௦𝑌cosሺ𝜒ሻ√𝜋𝑎 ,  𝑌 ൌ ටsec ቀ
గ௔

ଶௐ
ቁ,                                  (23) 
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where 𝜎௦ is the saturation stress and 𝜒 is the orientation angle of long axis of the elliptic defect 

of length a. Therefore, the stress intensity factor is 5.6 MPa.m1/2 for the e60d, 7.4 MPa.m1/2 for 

e0h, and 0 MPa.m1/2 for e60v. The stress intensity factor of e60d with an orientation ±
గ

ସ
, being 

an average representation of the various angles, agrees well with the room temperature 

experimental data of Casellas et al. [36] with the stress intensity factor of 3.9 MPa.m1/2, 5.0 

MPa.m1/2 and 5.8 MPa.m1/2 for the as-sintered, heat-treated for 2 hours, and heat-treated for 10 

hours 2.5Y-STZ specimens, respectively. Vasylkiv et al. [69] reported a fracture toughness 

between 7.2 and 9.2 MPa.m1/2 for as-sintered 3Y-STZ, which correlates well with our 

simulation result for e0h. In addition, the calculated stress concentration factor at points P1 and 

L for e60h in tension are 13.06 and 20.3, respectively. Here again, the stress concentration 

factor of the elastic regime agrees well with the analytical value [70] reading 1 ൅ 2 ൈ ௠௔௝௢௥ ௔௫௜௦

௠௜௡௢௥ ௔௫௜௦
 

ൌ 1 ൅ 2 ൈ ଺଴

ଵ଴
ൌ 13 . These results can be understood from the distribution of stress and 

monoclinic phase in Figure 7. While the maximum stress is always located at the ellipse 

vertices, the alignment of the long axis of e60d at π/4 plays in favors of its higher transformation 

since the transformation bands and interfaces are in the ±π/4 plane. In can be seen that 

additional transformation bands appear at the vertices of e60d (with dashed circles) contrary to 

e60h and e60v. However, the localization of the HSZ on the ±π/4 plan in SC[101] generates 

less stress concentration in e60d, which explains its higher onset stress. 
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Figure 7. Distributions of stress and monoclinic phase at P2 and L for different orientations of 

the elliptic void in SC[101]. Additional bands in e60d are indicated with dashed circles. 

3.2 Defected SC[001] single crystal 

In this section, we present and discuss the simulation results for the single crystal with 

an orientation angle of [001] with respect to the vertical loading direction by applying a rotation 

of 90o to the eigen strain tensors and stiffness matrices. The compressive stress-strain curves 

in Figure 8a with pure linear elastic unloading confirmed that only plasticity occurs in both BS 

and c40. However, due to the stress concentration building up around the void, the yield stress 

is lower for c40 (1400 MPa) than for BS (1520 MPa). This explains the larger plastic strain in 

c40 than BS. However, in tension, the specimens display both transformation and plasticity. 

To elucidate this chain of events, we notice that a rotation of 90o generates the new Bain strain 

tensors 𝜺ଵ
଴଴ ൌ ቀെ0.0181 െ0.0761

െ0.0761 0.0419
ቁ and 𝜺ଶ

଴଴ ൌ ቀെ0.0181 0.0761
0.0761 0.0419

ቁ. The dominant 

transformation energy term reads -0.0419|σ22| (negative and thus always < Ec) under uniaxial 

compression, and +0.0419|σ22| in uniaxial tension, which explains the absence of TMPT in 

compression and the presence of TMPT in tension. Besides, because the plastic driving force 

in Eq. 13 is maximum for this orientation, both tensile and compressive samples display plastic 

deformation. However, the tensile yield stress is less than the compressive one because of the 

local stress effects of TPMT. The tensile CTS is also lower for c40 (770 MPa) than for BS (920 

MPa), like the compressive SC[101] sample. 
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Figure 8. Comparison of the stress-strain curves of c40 with BS under (a) compression and (b) 

tension in SC[001]. 

The confinement of the plastic gliding around the void generates a butterfly plastic zone 

with wings pointing towards the vertices of samples (see the first column of Figure 9), which 

provides incentives to understand the stronger hardening in c40 compared to BS (Figure 8). 

The second column of Figure 9 confirms the absence of transformation in c40 for this specific 

crystal orientation. For the tensile specimen, the distribution of the equivalent plastic strain 

shows dendritic-like bands touching the voids, rather than a butterfly shape. This larger plastic-

affected zone explains the higher residual strain of c40 in tension than in compression in Figure 

8. The positive shear term in eigen strain tensor of variant 2 increases its stability over variant 

1 and explains its predominance in Figure 9. The deflection noted between P2 and L in Figure 

8b corresponds to partial reorientation of variant 2 into variant 1 highlighted by the white 

dashed ellipse in the last column of Figure 9. When transformation appears for this crystal 

orientation, they are arranged in vertical bands with interfaces laying along [001] direction. 

Comparing the last two columns for point U in Figure 9, we can see that the residual monoclinic 

phase is trapped between the plastic bands. Since we have properly enforced the loading-

unloading conditions contrary to other PFMs [71, 72], in Eq. 12, no change is noted in the 

plastic strain distribution between L and U.  
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Figure 9. Distributions of equivalent plastic strain and monoclinic phase at points P2, L and U 

for c40 in compression and tension in SC[001]. Partial reorientation of variant 2 into variant 1 

is highlighted by a white dashed ellipse. 

3.2.1 Effect of void size and distribution  

We study the size effect using c80 and the void distribution effect using c20p. The 

results in Figure 10 shows lower yield stress for c80 (1100 MPa). Despite having nearly, the 

same yield stress than c40, a noticeable difference is observed between their plastic hardenings, 

which causes lower plastic strain in c20p (0.8%) than in c40 (1.0%). Such results can be 

explained by the plasticity of the area enclosed between the four circles of c20p (Figure 10b) 

that favors local effects. Likewise, the lower yield stress and hardening in c80 explains its 

larger plastic strain (1.8%) than c40. However, the variation of the void size and distribution 

did not trigger TMPT (Figure 10b). 
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Figure 10. (a) Comparison of the compressive stress-strain curves of c80 and c20p with c40, 

and (b) distributions of equivalent plastic strain and monoclinic phase therein at point L in 

SC[001]. 

3.2.2 Elliptic voids 

Based on the results of SC[101] in section 3.1, we focus here only on e60h, e60v and 

e60d SC[001] samples. The results in Figure 11 show significant dependence of the stress-

strain curves on orientation of the major axis of ellipse. The yield stress and equivalent plastic 

strain are respectively 920 MPa and 2.6% for e60h, 1480 MPa and 0.96% for e60v, and 1100 

MPa and 1.7% for e60d.  

 

Figure 11. (a) Comparison of the stress-strain curves of e60h, e60v and e60d with c40, and (b) 

distributions of von Mises stress, equivalent plastic strain and monoclinic phase in e60v at point 

L in SC[001]. 

The stress distribution in e60h and e60d in Figure 12 shows that the central zone 

covering the width of the ellipse does not carry out the load due to the presence of void. The 

plastic zone has butterfly shape with a larger size for e60h due its strong hindering on the load 
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transfer than e60d, which explains its larger residual strain at point U. A striking difference is 

that contrary to e60v in Figure 11b, e60h and e60d show parasitic TMPT after loading at point 

L, part of which remains trapped by the plastic deformation after unloading at point U. Such 

interesting finding can be related to the local positive axial and shear stresses concentration 

around the ellipse vertices (Poisson effects) which is large enough in SC[001] to trigger the 

apparition of variant 1. Because most of this parasitic TMPT is trapped by the high plastic zone, 

no effect is observed in the corresponding stress-strain curves in Figure 11a. 

Figure 12. Distributions of von Mises stress, equivalent plastic strain and monoclinic phase at 

points L and U for e60h, and e60d in SC[001]. The dashed circles show presence of TMTP in 

defect SC[001] contrary to the bulk SC[001] studied in [27]. 

3.3 Defected SC[100] single crystal 

In this section, we present and discuss the simulation results for the defected single 

crystal having an orientation angle of [100] with respect to the vertical loading direction by 

applying a rotation of 0o to the eigen strain tensors and stiffness matrices. For this specific case,  

both plasticity and TMPT were reported in our previous work [27] during compression of the 

bulk sample. For the defected sample, Figure 13a shows a combination of transformation and 

plasticity under compression, and only plasticity in tension, which are the opposite of those of 

SC[001] in the section 3.2. A major difference is that the curves in Figure 13a do not exhibit 

distinct portions between TMPT and plasticity. This due to the higher CTS for this crystal 

orientation. In fact, by applying a rotation of 0o, the Bain strain tensors remain 𝜺ଵ
଴଴ ൌ

ቀ0.0419 0.0761
0.0761 െ0.0181

ቁ and 𝜺ଵ
଴଴ ൌ ቀ 0.0419 െ0.0761

െ0.0761 െ0.0181
ቁ. Therefore, the compressive 

transformation energy can be approximated as 0.0181|σ22| for both monoclinic variants, with 

variant 2 being favoured by its negative shear terms. Thus, much more stress is required to 
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reach the critical energy Ec compared to the other orientations. The critical TMPT stress is 

1390 MPa for c40 and 1560 MPa for BS. The values are so close to the yield stress that no 

distinction is possible between the two mechanisms. However, in tension, this transformation 

driving force becomes -0.0181|σ22|, which explains the absence of TMPT in tensile loading. 

While the residual plastic strain is 0.1% like c40 in compressive SC[001], the variation of the 

elastic stiffness explains the larger strain in SC[100] at point L.  

 

Figure 13. Comparison of the compressive stress-strain curves of c40 with BS (no voids) under 

(a) compression and (b) tension in SC[100]. 

 

Figure 14 shows monoclinic phase with horizontal interfaces, where the high stress 

creates horizontal plastic bands in compression, even if a butterfly-like plastic zone is noticed 

near the circular void. However, in tension, there is only plasticity with butterfly zone shape, 

and no substantial TMPT, even there is some trace of monoclinic phase at the end of the 

loading. A striking difference however is that contrary to compression of SC[001], tensile 

deformation of c40 in SC[100] displays slight phase transformation, shown in the zoom-in  

topography in the 4th column of Figure 14. Since TMPT occurs in a catalytic way in single 

crystals, the lower amount of monoclinic phase suggest that it has appeared near the end of 

loading, i.e. after initiation of plasticity, which may have hindered its subsequent evolution. 
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Figure 14. Distributions of equivalent plastic strain and monoclinic phase a points L and U for 

c40 in compression and tension in SC[100]. 

3.3.1 Elliptic void  

Considering elliptic voids with 60 nm semi-major axis generates different results 

illustrated in Figure 15. The CTS in Figure 15a is lower for e60h (980 MPa) than c40, e60v 

(1520 MPa) and e60d (1420 MPa). The insets in Figure 15b highlight horizontal transformation 

bands and plastic zones, the latter being located at the interface. The suggest possible interface 

fracture in 3Y-STZ. These fine strips of high plastic zone pin TMPT and cause some residual 

monoclinic phase after unloading. 

 

Figure 15. Comparison of the compressive stress-strain curves of e60h, e60v and e60d with 
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c40 (a), and distributions of von Mises stress, equivalent plastic strain and monoclinic phase at 

point L in e60v (b) in SC[100]. 

The distribution of stress, equivalent plastic strain and monoclinic phase in e60h and 

e60d in Figure 16 show that phase transformation and plastic deformation occur in mainly in 

HSZ for these samples which maximum plasticity always occurring at the ellipse vertices, 

which in turn prevents from complete shape recovery and complete reverse transformation.  

 

Figure 16. Distributions of von Mises stress, equivalent plastic strain and monoclinic phase a 

points L and U for e60h, and e60d in SC[100]. 

3.4 Deformation modes  

The deformation mode of the samples c40, e60h, e60v, and e60d are shown in Figure 

17 for the three single crystals SC[101], SC[001] and SC[100]. For SC[101] all samples have 

the same compressed shape that reminds the third deformation mode of a cantilever beam. For 

SC[001], all specimens have a compressed shape like the second deformation mode of a 

cantilever beam. However, SC[100] samples exhibit different compressed shape due the 

simultaneous occurrence of TMPT and plasticity and its lower elastic modulus along the 

loading direction. The second row highlights that presence of only plasticity does not affect the 

void, which can be explained by the volume conservation during plastic deformation. However, 

the volume expansion accompanying TMPT induces visible effects on the deformation mode 

and evolution of the void. In e60h, the void nearly disappears after compression induced 

TMPT, while in e60v, the volume expansion opens the crack. For c40, also the TMPT displays 

partial closure but less than in e60h, even if it is better than in e60v. This renders possible to 

develop in 3Y-STZ a high capacity to accommodate their TMT-induced volume expansion 

sand thus carry more fatigue lifetime, especially in the high cycle regime. 
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Figure 17. Deformation modes of c40, e60h, e60v and e60d in SC[101], SC[001] and SC[100] 

at point L. 

4. Conclusion  

We used an elastoplastic phase-field model to investigate the deformation mechanisms 

of defected 3Y-STZ considering circular and elliptic voids with different size, orientation, and 

distribution. Our findings unravel the characteristics of static defect behavior and their effects 

on asymmetrical mechanical behavior of 3Y-STZ in tension and compression. 

Results point to a high dependency of the mechanical behavior of samples on their 

crystal orientation. In SC[101] specimen, only transformation is observed both in tension and 

compression, irrespective of the defect characteristics. However, the critical transformation 

stress, the average volume fraction of monoclinic phase and the size of hysteresis loop change 

drastically by increasing the diameter of circular void or the orientation of elliptic void. We 

found that the tension-compression asymmetry of the TMPT features (e.g., critical stress, 

hysteresis size, activated variant, and degree of transformation) is linked to the activation of 

different monoclinic variants. In SC[001], only plasticity is observed in compression but both 

TMPT and plasticity are activated in tension, with different shape of the plastic zone in 

compression (butterfly shape) and tension (dendritic-like shape). In addition, parasitic TMPT 

is noticed for horizontal elliptic voids perpendicular to the loading direction, or diagonal elliptic 
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voids aligned at 45o from the loading direction. Defected SC[100] samples display 

simultaneous TMPT and plasticity with no distinct compressive transformation and yield 

stresses, and they exhibit only plasticity in tension. Presence of high plastic zone at the interface 

of the different variants suggests possible fracture at these locations. Comparison of the shape 

of different samples after compression pointed out that the volume expansion associated with 

TMPT can assist the crack closure for circular or horizontal elliptic voids but opens the crack 

for vertical elliptic voids parallel to the loading direction. In the absence of TMPT, the volume 

change after plastic deformation was negligible which is consistent with the isochore nature of 

plasticity. The knowledge of the behavior of static defects obtained from the present study will 

set the grounds for proper exploration of the dynamic fracture mechanisms by providing clear 

understanding of the energy distribution, stress relaxation, stress concentration and stress 

intensity ahead of the crack front. Proper investigation of interface and grain boundary fracture 

in 3Y-STZ samples, as well as the possible improvement of its fatigue life by mitigation of 

volume expansion through defect engineering will be tackled in our future  research.  
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