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Abstract

An elastoplastic phase-field model is used to investigate the deformation mechanisms of yttria
stabilized tetragonal zirconia in presence of defects. A remarkable tension-compression
asymmetry is detected. A higher strength and a lower degree of transformation are observed in
compression than in tension. Also, deformation mechanism is asymmetric depending on the
crystal orientation. For some cases (other cases), phase transformation is absent in tension (in
compression), while both transformation and plasticity are present in compression (in tension).
Such tension-compression asymmetry is attributed to activation of different monoclinic
variants with different Eigen strain tensors in tension versus compression. Results also reveal
a higher degree of transformation and plasticity with lower onset stresses as the void size
increases. Elliptic voids exhibit a directional effect with a maximum stress intensity factor of
5.6 MPa.m!? when the long semi-axis is diagonally oriented with respect to the loading

direction, and this prediction is comparable to experiments.
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1. Introduction

The ever-increasing complexity in engineering applications require high-performance
materials [1]. A prime example is the need of strong, temperature-resistant, and damage
tolerant materials for full-fledged development of next-generation hypersonic vehicles, fuel-
efficient jet engines, and nuclear energy reactors [2-4]. Ceramics are usually strong and
temperature/corrosion resistant making them potential candidates for such applications, but
they suffer from low damage tolerance. Such multiple requirements cannot be currently
satisfied simultaneously [5]. A core issue is that all materials are prone to cracks when their
deformed microstructure reaches its strain-hardening limit [5]. Therefore, a main engineering
challenge is to increase the fracture toughness which is a critical mechanical property

determining the structural integrity and reliability of engineering components and devices.

It is well-established that plastic deformation and phase transformation have the
commonality of increasing fracture toughness via strain energy absorption and stress relaxation
in shape memory alloys (SMAs) [6-8]. However, in the case of shape memory ceramics, the
brittleness is not easy to overcome. While some transformable ceramics such as yttria-
stabilized tetragonal zirconia (YSTZ) can potentially increase fracture toughness, plastic
deformation is mostly limited therein and the transformation-induced volume expansion may
also result in microcracking [9, 10]. Fracture behavior of such materials need to be fully
understood, especially at the lower length scales where ubiquitous nanoscale defects control

the brittle fracture behavior.

YSTZ ceramics, with dopant concentration less than 4% mol., display a reversible
tetragonal-to-monoclinic phase transformation (TMPT) and possible plastic yielding [11-13].
This TMPT is accompanied by a significant shape recovery of up to 7% shear strain, and a
volume expansion of 3~5% [14], which induces shape memory effect, superelasticity [15], and
transformation toughening [16]. Such a high capacity to accommodate the shape variation and
large inelastic strain, along with their outstanding strength, hardness, and resistance to
oxidation and corrosion have paved the way for unique engineering applications of YSTZ,
including thermal barrier coating, wear and bearing parts [13], refractors, gas sensors, and
pacifiers [17, 18]. However, their limited plasticity and relatively low damage tolerance,
particularly their tensile brittleness [19], are the main obstacles to their extended applicability
[5]. During material processing or service, the volume expansion associated with the TMPT
can generate defects (nano and micro voids and cracks) at localized regions [20-22]. On the

other hand, under some conditions, the same volume expansion can heal/close the some cracks
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as they form [23, 24], which can limit and/or delaying crack growth and toughen the material
during service [25]. Therefore, understanding how TMPT and plasticity interact with flaws is
of particular importance in YSTZ where the crystal orientation is a determinant factor of the

deformation mechanisms [26, 27] and mechanical properties [28].

Since the first fatigue study of zirconia by Dauskardt and Ritchie [29], researchers have
found that all toughened ceramics display a degradation of their mechanical properties when
subjected to cyclic loads [30-32]. The fracture in zirconia is reported to initiate at defects
(voids, cracks and flaws) [33]. Likewise, interlamellar gaps, open pores and microcracks were
evidenced on the fracture surface of zirconia [34] (see Figure 1a). Microscopic observations
also highlight failure initiation sites in 3Y-STZ dominated by pores and voids [22] (see Figure
1 b). These results were confirmed by the scanning electron microscopy (SEM) observations
of Govila [35] and Casellas et al. [36] showing that pores constitute important failure origins
in YSTZ. Experimental fatigue studies in YSTZ [21, 31, 37], magnesia-partially stabilized
zirconia [38] and ceria-stabilized tetragonal zirconia [20, 39] reveal that TMPT-induced crack-

tip shielding ensures a stable/small crack growth under constant load, which progressively

contribute to deterioration of strength during cyclic loading [40].

Figure 1. (a) Cross-sectional SEM micrograph showing the defect morphology of as-sprayed

zirconia coats [34], and (b) Failure-initiation sites at pores[22].

Quantitative understanding of the deformation mechanisms of defect filled zirconia
ceramics is needed [41]. Because experimental methods are limited by their time and length
scales, numerical approaches such as molecular dynamics (MD) and phase-field modelling
(PFM) stand out as practical alternatives [42]. At the atomistic level, Zhang and Asle Zaeem

conducted MD simulations of YSTZ to determine the critical crack width ensuring its closure



[43], self-healing, dislocation migration and formation of amorphous phase in single crystals
[25], nanoscale flaw tolerance in bicrystal [9], and competition between twin-boundary-
induced and void-induced TMPT in polycrystals [44]. At the microscale, Mamivand et al.
developed an elastic PFM [45] to study transformation toughening ahead of a crack tip in
zirconia under monotonic tensile loading [46]. In a recent work, Cissé and Asle Zaeem [27]
proposed a fully thermomechanical coupled elastoplastic PFM to investigate the orientation-
dependent deformation mechanisms in 3Y-STZ (TMPT and plasticity). This robust and
transferable model was also used later to study the elastocaloric effect in SMAs [47, 48], predict
the fracture toughening in SMAs [49]. This model has been recently extended to incorporate
the asymmetry of both martensitic transformation and plasticity, thermomechanical training
and stress-assisted two-way shape memory effects [50]. Nonetheless, these considerable efforts
have not been able to fully explain the very low fatigue life of zirconia-based shape memory
ceramics.

The objective of this work is to numerically unveil how TMPT and plasticity interact with
defects and provide insights on the effects of the shape, orientation, size and distribution of
defects on localized and generalized thermomechanical behaviors in compression and tension
of specifically orientated 3Y-STZ single crystals. Even if dislocation-mediated plasticity is
temperature-dependent both in tetragonal and monoclinic phases, our work is conducted at high
temperature where dislocations are mobile, which help simplify the formulation. The
simulations are aimed to provide the deformation mechanisms and potentially guide the future
experiments for enhancing 3Y-STZ fracture toughness. The rest of this article paper is
organized in three sections; Section 2 gives the PFM and governing equations, Section 3 is

dedicated to the simulation results, and Section 4 provides conclusive perspectives.

2. Thermo-Elastic-Plastic Phase-Field Model

PFM is a powerful computational method that enables access to nano and micro length and
time scales to investigate the evolution of nano/microstructures during phase transformation
[51]. It uses orders parameters (OPs) as state variables to describe the involved processes. The
TMPT can be well described by PFM using non-conserved long-range OPs, noted by
1, (7, t) for the v™" monoclinic variant (product phase) [45]. A full forward transformation into
the v®" variant corresponds to 1, = 1, whereas 1,,(r,t) = 0 expresses an absence of the vt"

variant. The total free energy F;,; of the system is composed of the chemical or bulk free energy



(Fpi), the gradient free energy (Fyq), the thermal free energy (Fyy,), and the elastic free energy
(F el)'

2.1 Chemical free energy

The chemical free energy is the non-equilibrium homogeneous free energy driving the
TMPT under stress-free conditions. Its density is defined as a 2-4-6 Landau polynomial of the
primary OPs [51] so that to be insensitive to their signs and their permutations:
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where N is the total number of monoclinic variants, and A(T), B(T) and C(T) are positive
temperature-dependent coefficients that can be calibrated from the transition temperature,
equilibrium OPs, and transformation latent heat [52]. They are related to the energy gap
between tetragonal (equivalent to austenite phase) and monoclinic (equivalent to martensite

phase), AF(T), as follows,
B(T) = 4A(T) — 124F, C(T) = 3A(T) — 124F, and AF(T) =Q(T/Ty, —1), (2)

where Q is the latent heat of phase transformation, and T, is the equilibrium temperature. We
proposed the following continuous function of temperature for coefficient A(T) [47, 50] so that
simulate complete thermochemical deformation and account for the nonlinear increase of the

critical transformation stress (CTS):

AT = {Q exp [k1 (TI% - 1)] forT<T,
Q exp [kz <T_0 - 1)] forT >T,

where k; and k, are positive constants.

, (3)

2.2 Gradient free energy

While the OPs are assumed to be homogeneous within each phase/domain, they change
smoothly across the narrow regions called interfaces that separate the tetragonal and
monoclinic phases. The gradient free energy is a heterogeneous penalty-like term for the spatial
variations of the OPs. It helps guarantee the smooth phase transformation across the interfaces.

An isotropic formulation of its density gives this simplified expression:
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where V is the gradient operator, and f is a coefficient related to the energy and/or
thickness of the interface so that an appropriate value should replicate its energy density or
finite width. For instance, Yeddu et al. [53] derived the following expression of the gradient

energy coefficient:

Bo =228, (26)

where y is the interfacial energy, and ¢ is the interface thickness.
2.3 Thermal free energy

The thermal free energy is a function of temperature and its density is given by the classic
equation [50]

Gen(T) = C, |(T = T9) = Tin (Tlo)] 5)

where C,, is the specific heat of the tetragonal and monoclinic phases.

2.4 Elastic free energy

The elastic free energy helps accommodate the microstructural changes due to the
stretching/compression of atoms within the tetragonal phase and/or the lattice compatibility

along the different interfaces during the TMPT. Its density is expressed as
1 1
Fa(e®,n,) = Z8K(n,): 89 = 5 (e — &7 = P)iK(n,): (e — 67 = &™), (6)

where K(1,,) is the equivalent stiffness tensor, €(r) is the total strain tensor describing the
macroscopic shape of the system, £ (r) is the transformation strain tensor, £P! () is the plastic
strain tensor, and &°'(r) is the elastic strain tensor at a given location r. The elastic
inhomogeneity is considered by defining an equivalent stiffness tensor K(1,,) given by [27,

50]:

K(,) = K" + (K" — KD, (7)

m
x
v=1




in which KT and KM refer to the stiffness tensor of the tetragonal and monoclinic phases,
respectively. The transformation strain tensor £ is related to the stress-free eigen strain tensor

£99 of the different monoclinic variants by [27, 50]:

N
£ =) n2eld. ®)
v=1

Since we study crystals having different orientations, we will apply rotation operations to
transfer the stress-free strain tensor and elastic stiffness matrix from the local coordinates of
the different single crystals to the same global coordinate system, so that the short axis a; and
long axis c; of the tetragonal phase coincide with the x and z-directions, respectively:

%% = Ry Ryeiy )

Cg'kl = RiijanoRlpCmnop' (10)

in which, &2 and Cinnop are the elements of the eigen strain tensor and elastic stiffness matrix

in the local coordinate systems, respectively, siGjOO and Cgkl are their representations in the

global coordinate system, and R;; is a rotation matrix which, for a crystal having an orientation
angle @, is given by

cos(¢) sin(w)] . (11

Rij(o) = [—sin(<p) cos(g)

A complete computation of the plastic strain requires a yield criterion, a hardening rule,
and a plastic flow rule. We use a Jo-type yield criterion along with the loading-unloading

condition

F, = 6,m(0,9) —0, =0 and —;:a>0, (12)

in which &, is a modified von Mises equivalent stress accounting for the orientation
dependency [27], and g, is the yield stress. These specific stress variables are expressed,

respectively, as

— pl
gy = 0g + Hy&pg,

where oy,, 0,,, and g,, are the two-dimensional (2D) components of the stress tensor, gy, is

the initial yield stress, H,, is the hardening modulus, and sg(l] is the equivalent plastic strain that

reads
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where €F, e¥”. and £, are the components of the plastic strain tensor.
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2.5. Governing equations

2.5.1 Evolution of transformation order parameters

The time and space evolutions of OPs are obtained by solving by time-dependent Ginzburg-
Landau (TDGL) equation [54] relating their rates to the variational form of the total free energy
with respect to the same OPs:

an, __ oF (15)
ot on,’

where M is the kinetic coefficient describing the mobility of the interfaces.

2.5.2 Evolution of temperature

The rate-dependency of TMPT is caused by the heat release/absorption during
forward/reverse phase transformation, which changes the temperature in the material under
adiabatic deformation. The time evolution and space distribution of the temperature is given
by the heat conduction equation:

aT 5 .
pCpaz/lV T+gq, (16)

where ¢ is the rate of heat source, and A is the thermal conductivity of the material. Assuming
that the rate of internal heat source is related to not only the latent heat of phase transformation,

but also the intrinsic dissipation of plasticity, the rate of heat source becomes:

m
. .pl .
q=(oym — O_y)ESq + Z Qny, (17)
v=1
where éfé is a scalar denoting the rate of equivalent plastic strain, and (X) denotes the positive

part of scalar X.

2.5.3 Evolution of plastic strain

The evolution of the plastic strain is obtained from the normality rule and the consistency

condition so that the plastic flow rule reads
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where y is the rate of the plastic strain magnitude and is obtained from the consistency

condition:
Fy=aﬂ:d+aﬂf/=0. (19)
Jdo ady
Discretizing the Hooke’s law as
o = C(ny): e + C(n,): (& — &7 — &P, (20)

the rate of the plastic multiplier can be written as

. NP [C: (-7 + C: eel]

) 21
Np:C:Np+Hy 1)

aF, . .
where NP = a—y is the flow direction.
g

2.5.4 Mechanical equilibrium equations

The above governing equations are coupled to the mechanical equilibrium that gives the
displacement field. Neglecting the body forces for a 2D solid domain (£2) subjected to surface
force (t*) on a portion ({2;) of its boundary (9£2) and/or a displacement vector (u%) on a
boundary portion (£2,,), the mechanical equilibrium equations are expressed in term of the

Cauchy stress tensor o as follows,

Voe=0inf), on=t*on{;, and u=uonll,. (22)

2.6. Details of numerical simulations and material properties

We applied the "Fully Coupled" approach so that the nonlinear equations describing the
solution is a single large system where all the field variables and their coupling terms are solved
at once within the same iteration. It converges more robustly and uses less iterations than the
"Segregated" method which solves the unknowns sequentially within a single iteration. Within
each iteration, the nonlinear system of equations is linearized and solved. We also used the
MUMPS "Direct" algorithm solver which is more robust and general than the "Iterative" solver
which converges slower for ill-conditioned problems, such as those with a very high geometric
aspect ratio and/or a high gradient in material properties. The size of the study domain is 0.25

x 0.25 pm?, and we use free quadratic triangular elements with a minimum mesh size of 1 nm
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and a maximum mesh size of 5 nm to discretise the domain. We have chosen this range to
accurately capture the all-possible features of TMPT and the tetragonal-monoclinic interface.
This mesh is small enough to provide the details and results similar to MD simulations [55]
while allowing the use of larger sample size and smooth response that can be related to
macroscopic results and experimental tests. The governing equations are solved using the input

parameters given in Tables 1 and the elastic constants of the monoclinic and tetragonal phases

in Table 2.

Table 1. Material properties and simulation parameters for 3Y-STZ (at. %).

Model parameter Value

Kinetic coefficient M (m>.J!.s™) 1 *

Gradient energy coefficient 8 (J.m™") 1x107% [27]

Latent heat Q (MJ.m?) 108.8 [56]

Energy coefficient parameter k2 2%

Equilibrium temperature 7o (K) 883 [56]

Mass density p (kg.m?) 6100 [57]

Thermal conductivity A (W.m™' K1) 3 [57]

Specific heat Cp (Jkg'.K ™) 600 [57]

Initial yield stress oo (MPa) 2500 [58]

Isotropic hardening modulus H, (GPa) 50 [28]

Thermal coefficient (K/MPa) 1.0 [59]

Eigen strain for variant 1 00 — (88‘;22 —0000716811) [60-62]
Eigen strain for variant 2 00 — (_0006}7121 :88;21) [60-62]

* These parameters are adjusted to reproduce the transformation stress reported in [58].

Table 2. Elastic properties of the tetragonal and monoclinic phases.

Parameter Cu Cs3 Ci3 Cu
Phase (GPa) (GPa) (GPa) (GPa)
Monoclinic [63, 64] 361 264 62 59
Tetragonal [64, 65] 327 258 55 100
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3. Results and Discussions

Based on previous MD simulations [26] and experimental observations [28, 66], we select
three single crystals (SC): [101] orientated (SC[101]) where only transformation was observed,
[001] orientated (SC[001]) where both TMPT and plasticity were reported, and [100] orientated
(SC[100]) where only plasticity was observed. We considered various size, shape, orientation,
and distribution of voids, shown in Figure 2, where all elliptic voids have a short semi-minor
axis of 10 nm. All the simulations consist of pseudoelastic cycles operated at 7. = 905 K, i.e.,
22 K above the equilibrium temperature, To. A maximum compressive or tensile stress of 2
GPa is applied linearly during a ramp of 1.0 ps, followed by a complete unloading to 0 MPa

during another linear ramp of 1.0 ps.

(a) (b) (c) (d) (e)
- y k‘\\ 0000 ®

( a { } 0000 e 6
® \ o

() (g (h) | (i

ttrrrtrett

Figure 2. Square simulation samples of side length 250 nm, with (a) a circular void of 40 nm

diameter (c40) which is taken as the reference sample, (b) a circular void of 20 nm diameter
(c20), (c) a circular void of 80 nm diameter (c80), (d) patterned circular voids of 10 nm
diameter (c10p), (e) patterned circular voids of 20 nm diameter (c20p), (f) an elliptic void with
horizontal semi-major axis of 25nm (e25h), (g) an elliptic void with horizontal semi-major axis
of 60 nm (e60h), (h) an elliptic void with vertical semi-major axis of 60 nm (e60v), (i) an
elliptic void with diagonal semi-major axis of 60 nm (e60d), and (j) meshed defect-free bulk

specimen (BS) under compression using 10,000 quadratic elements of size 2.5 nm.
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3.1 Defected SC[101] single crystal

We first study the behavior of single crystalline 3Y-STZ having an orientation angle [101]
with respect to the vertical loading direction by applying a rotation of 45° to the eigen strain
tensors and stiffness matrices. In Figure 3, we compare the results for the defect-free bulk
sample (BS) to the defected reference specimen with a circular void of 40 nm diameter (c40).
Similar to our previous work [27], only phase transformation occurs for this crystal orientation
even in the presence of void. This is demonstrated by the absence of residual strain in the stress-
strain curve in Figure 3a after unloading. This curve, along with the evolution of the total
surface-averaged volume fraction of monoclinic phase in Figure 3b, highlights a noticeable
asymmetry of the deformation of both BS and ¢40 samples. This quantitative analysis of TMPT
in Figure 3b reveals an initial negligible increase in the monoclinic volume fraction, followed
by a rapid increase between points P1 and P2, then a modest increase toward near saturation
until point L (maximum stress).

For all samples, the stress-strain curves in tension exhibit a flatter stress plateau and a lower
CTS in tension (440 MPa for c40) than in compression (520 MPa for c40). This means that the
3Y-STZ is more deformable in tension with a larger hysteresis loop than in compression. This
latter point is also visible in Figure 3b where a higher fraction of monoclinic phase is obtained
in tension (0.93 for ¢40) than in compression (0.88 for c40). These results are consistent with
the experimental data reported by Liu and Chen [67] where both Mg-PSZ and 3Y-STZ show
an asymmetric behavior with a ratio of CTS, located at P1 in the Figure 3a, for tension over
compression between 2/3 and '2. In our work, the saturation stress, located at P2 in the Figure
3a where most of TMPT is complete, in tension (610 MPa) and in compression (-810 MPa)
generates an asymmetry ratio of nearly 2/3. In addition, we have stress concentration factors
for c40 in tension 0f 2.96, 11.9, and 8.96 at points P1, P2 and L, respectively. From a theoretical
perspective where the stress concentration factor is 3, we see a good agreement of this
analytical value with the tensile elastic regime (P1), while those in the inelastic regime (P2 and
L) diverge from the analytical value. However, the asymmetry of the degree of transformation

is 1.06 meaning that its higher in tension than in compression.
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Figure 3. a) Tension and compression asymmetric stress-strain curves, and b) evolution of the

monoclinic volume fraction during a pseudoelastic cycle in SC[101].

The slightly lower CTS in c40 than BS is due to the void acting as an additional nucleation
site phase transformation, where a high local stress concentration builds up and triggers the
TMPT at the early deformation stage at point P1 in Figure 4. It can be also noticed that the
monoclinic bands and the interfaces between the variants lay at an angle +n/4 with respect to
the loading direction. Likewise, by setting the applied load to generate a maximum von Mises
stress of 2000 MPa, we see a maximum stress zone (MSZ) (stress =2000 MPa) that is
surrounded by /4 lines. As the deformation proceeds, the MSZ does not correlate with the
transformation bands especially at high-load regimes (points P2 and L). The reason, which also
explains the asymmetry, is that the transformation energy is related to the eigen strains. One
could simplify the transformation criteria for a given variant as &: €°°=E. where E. is the

critical energy needed to destabilize the tetragonal phase and is @ the local stress tensor. By

—0.0642 0.030) and

applying the rotation of 7/4, the new eigen strain tensors read €9° = ( 0.030  0.088

00 _ (0.088 0.030

2 (0030 —006 42). Thus, under pure uniaxial compression along y-axis, the dominant

term of the transformation energy would come from the variant 2 as -0.0642(-|G22|), while under

pure uniaxial tension it will come from variant 1 as +0.088|G22|. Hence variant 1 is favored in
tension and variant 2 is predominant in compression. Likewise, the amount of stress required
to reach E. is lower in tension than in compression (see Figure 4). We attribute the lower
asymmetry in c40 than BS to the presence of circular void that absorbs the hydrostatic part of
the eigen strain and mitigate the TMPT-induced volume expansion. The results unravel that
asymmetry mechanisms in 3Y-STZ are rooted from the non-deviatoric nature of the Bain

tensors.
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Since ceramics are mainly used in compressive loading conditions, the study of further

effects, such as size, shape, and distribution of the defects, will be conducted in compression
O/U P1

Figure 4. Distribution of stress and evolution of the monoclinic phase in c40 during

only.
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compressive and tensile deformation of SC[101].

3.1.1 Effect of void size and distribution

Here we consider two additional specimens with void diameter of 20 nm (c20) and 80
nm (c80) to study the effects of void size on the overall stress-strain response. The stress-strain
curves in Figure 5a show that as the diameter of void increases, the CTS decreases from 540
MPa for c20 to 520 MPa for c40, and to 440 MPa for ¢80, and the materials increasingly
softens. One of the reasons would be the boundary effects as the diameter increases; hence, a

longer stress plateau and larger hysteresis loop are obtained for c80. The similar results of ¢20
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and c40 cases suggest that a smaller diameter would results in flaw tolerance and void-
insensitive strength [9]. Figure 5b shows that by keeping the same void fraction and only
changing density in patterned distributions with diameters of 10 nm (c10p) and 20 nm (c20p),
the stress strain curves display slightly different hysteresis size. This can be explained by the
presence of a high transformation zone between the voids in ¢10p and c20p (see Figure 5d).
However, in all these specimens, the interface of the variants lays on the plan having an angle
+m/4. It is worth emphasizing the increase in the forward TMPT degree and reduction of the
high stress zone (HSZ) where its value is higher than or equal to the applied stress of 2 GPa,
as the void diameter increases from 20 nm to 40 nm and then to 80 nm, seen in Figure 4 and
Figure 5c. The stress and TMPT distribution in Figure 5d show that changing the distribution
of voids does not affect the deformation mechanism except in the saturation stage (Figure 5b)

where c40 has a steeper slop than ¢10p and c20p.
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Figure 5. a) Compressive stress-strain curves for different circular void sizes, b) compressive
stress-strain curves for different void distribution with the same void fraction, and c)

distributions of stress and monoclinic phase at the end of loading for c20 and ¢80, and d) for

different distribution of voids in SC[101].
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3.1.2 Elliptic voids

We study the effect of defect shape by using elliptic voids with semi-major axis 25 nm
aligned in the horizontal (e25d), vertical (e25v) and diagonal (e25d) directions and elliptic
voids with semi-major axis of 60 nm (e60h, e60v, and ¢60d). The results in Figure 6 show
negligible difference between c40, e25h, e25v and e25d with CTS of about 520 MPa, possibly
due to their “quasi-circular” shapes. However, visible variations can be noticed between e60h,
e60v and e60d, both in terms of CTS (400 MPa, 420 MPa and 540 MPa, respectively) and

hysteresis size. Figure 6d shows that e60h generates more transformation than e60h and e60v.
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Figure 6. Comparison of the compressive stress-strain curves of elliptic voids a) e25h and e60h,

b) e25v and e60v, and c¢) €25d and e60d with BS and c40 samples, and d) evolution of the

average monoclinic phase in e60h, e60v and e60d in SC[101].

Assuming that crack propagates and/or pores coalesce after saturation of

transformation, the stress intensity factor could be approximated as [68]:

K; = o,Ycos(y)vVma, Y = |sec (%), (23)



where g, is the saturation stress and y is the orientation angle of long axis of the elliptic defect

of length a. Therefore, the stress intensity factor is 5.6 MPa.m'? for the €60d, 7.4 MPa.m'”? for

eOh, and 0 MPa.m'? for e60v. The stress intensity factor of e60d with an orientation i%, being

an average representation of the various angles, agrees well with the room temperature
experimental data of Casellas et al. [36] with the stress intensity factor of 3.9 MPa.m'?, 5.0
MPa.m'? and 5.8 MPa.m'? for the as-sintered, heat-treated for 2 hours, and heat-treated for 10
hours 2.5Y-STZ specimens, respectively. Vasylkiv et al. [69] reported a fracture toughness
between 7.2 and 9.2 MPa.ml/2 for as-sintered 3Y-STZ, which correlates well with our
simulation result for eOh. In addition, the calculated stress concentration factor at points P1 and

L for e60h in tension are 13.06 and 20.3, respectively. Here again, the stress concentration

factor of the elastic regime agrees well with the analytical value [70] reading 1 + 2 X %

=14+2X i—g = 13 . These results can be understood from the distribution of stress and

monoclinic phase in Figure 7. While the maximum stress is always located at the ellipse
vertices, the alignment of the long axis of e60d at /4 plays in favors of its higher transformation
since the transformation bands and interfaces are in the +m/4 plane. In can be seen that
additional transformation bands appear at the vertices of e60d (with dashed circles) contrary to
e60h and e60v. However, the localization of the HSZ on the +n/4 plan in SC[101] generates

less stress concentration in e60d, which explains its higher onset stress.
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Figure 7. Distributions of stress and monoclinic phase at P2 and L for different orientations of

1500

the elliptic void in SC[101]. Additional bands in e60d are indicated with dashed circles.

3.2 Defected SC[001] single crystal

In this section, we present and discuss the simulation results for the single crystal with
an orientation angle of [001] with respect to the vertical loading direction by applying a rotation
of 90° to the eigen strain tensors and stiffness matrices. The compressive stress-strain curves
in Figure 8a with pure linear elastic unloading confirmed that only plasticity occurs in both BS
and c40. However, due to the stress concentration building up around the void, the yield stress
is lower for c40 (1400 MPa) than for BS (1520 MPa). This explains the larger plastic strain in
c40 than BS. However, in tension, the specimens display both transformation and plasticity.

To elucidate this chain of events, we notice that a rotation of 90° generates the new Bain strain

—0.0181 —0.0761) and 8(2)0:(—0.0181 0.0761

—0.0761 0.0419 0.0761 0.0419). The dominant

tensors €20 = (

transformation energy term reads -0.0419|022| (negative and thus always < E¢) under uniaxial
compression, and +0.0419|022| in uniaxial tension, which explains the absence of TMPT in

compression and the presence of TMPT in tension. Besides, because the plastic driving force
in Eq. 13 is maximum for this orientation, both tensile and compressive samples display plastic
deformation. However, the tensile yield stress is less than the compressive one because of the
local stress effects of TPMT. The tensile CTS is also lower for c40 (770 MPa) than for BS (920
MPa), like the compressive SC[101] sample.
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Figure 8. Comparison of the stress-strain curves of c40 with BS under (a) compression and (b)

tension in SC[001].

The confinement of the plastic gliding around the void generates a butterfly plastic zone
with wings pointing towards the vertices of samples (see the first column of Figure 9), which
provides incentives to understand the stronger hardening in c40 compared to BS (Figure 8).
The second column of Figure 9 confirms the absence of transformation in c40 for this specific
crystal orientation. For the tensile specimen, the distribution of the equivalent plastic strain
shows dendritic-like bands touching the voids, rather than a butterfly shape. This larger plastic-
affected zone explains the higher residual strain of ¢40 in tension than in compression in Figure
8. The positive shear term in eigen strain tensor of variant 2 increases its stability over variant
1 and explains its predominance in Figure 9. The deflection noted between P2 and L in Figure
8b corresponds to partial reorientation of variant 2 into variant 1 highlighted by the white
dashed ellipse in the last column of Figure 9. When transformation appears for this crystal
orientation, they are arranged in vertical bands with interfaces laying along [001] direction.
Comparing the last two columns for point U in Figure 9, we can see that the residual monoclinic
phase is trapped between the plastic bands. Since we have properly enforced the loading-
unloading conditions contrary to other PFMs [71, 72], in Eq. 12, no change is noted in the

plastic strain distribution between L and U.

19



ni+2 1, comp.

0.02

0.015 ;
0.01

0.005 ¢
0

£P! tension n,+2 1, tension

0.02 '
)
.

0.015
0.01

0.005

2
1.5
1
0.5
0

0

0.02 0.02 2
0.015 . 0.015 1.5
0.01 0.01 # 1
0.005 i 0.005 0.5
0 Y g,
0.02 0.02 T. ' ) d 2
0.015 . 0.015 ' 1.5
0.01 0.01 ' ) : 1
0.005 ; 0.005 ' L 0.5
0 Y ‘ - “ ‘ - 0

Figure 9. Distributions of equivalent plastic strain and monoclinic phase at points P2, L and U
for c40 in compression and tension in SC[001]. Partial reorientation of variant 2 into variant 1

is highlighted by a white dashed ellipse.

3.2.1 Effect of void size and distribution

We study the size effect using ¢80 and the void distribution effect using c20p. The
results in Figure 10 shows lower yield stress for ¢80 (1100 MPa). Despite having nearly, the
same yield stress than c40, a noticeable difference is observed between their plastic hardenings,
which causes lower plastic strain in ¢20p (0.8%) than in c¢40 (1.0%). Such results can be
explained by the plasticity of the area enclosed between the four circles of c20p (Figure 10b)
that favors local effects. Likewise, the lower yield stress and hardening in ¢80 explains its
larger plastic strain (1.8%) than c40. However, the variation of the void size and distribution

did not trigger TMPT (Figure 10b).
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Figure 10. (a) Comparison of the compressive stress-strain curves of ¢80 and c20p with c40,
and (b) distributions of equivalent plastic strain and monoclinic phase therein at point L in

SC[001].

3.2.2 Elliptic voids

Based on the results of SC[101] in section 3.1, we focus here only on e60h, e60v and
e60d SC[001] samples. The results in Figure 11 show significant dependence of the stress-
strain curves on orientation of the major axis of ellipse. The yield stress and equivalent plastic
strain are respectively 920 MPa and 2.6% for e60h, 1480 MPa and 0.96% for e60v, and 1100
MPa and 1.7% for e60d.
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Figure 11. (a) Comparison of the stress-strain curves of e60h, e60v and e60d with c40, and (b)
distributions of von Mises stress, equivalent plastic strain and monoclinic phase in e60v at point

L in SC[001].

The stress distribution in e60h and e60d in Figure 12 shows that the central zone
covering the width of the ellipse does not carry out the load due to the presence of void. The

plastic zone has butterfly shape with a larger size for e60h due its strong hindering on the load
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transfer than e60d, which explains its larger residual strain at point U. A striking difference is
that contrary to e60v in Figure 11b, e60h and e60d show parasitic TMPT after loading at point
L, part of which remains trapped by the plastic deformation after unloading at point U. Such
interesting finding can be related to the local positive axial and shear stresses concentration
around the ellipse vertices (Poisson effects) which is large enough in SC[001] to trigger the
apparition of variant 1. Because most of this parasitic TMPT is trapped by the high plastic zone,

no effect is observed in the corresponding stress-strain curves in Figure 11a.
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Figure 12. Distributions of von Mises stress, equivalent plastic strain and monoclinic phase at
points L and U for e60h, and e60d in SC[001]. The dashed circles show presence of TMTP in
defect SC[001] contrary to the bulk SC[001] studied in [27].
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3.3 Defected SC[100] single crystal

In this section, we present and discuss the simulation results for the defected single
crystal having an orientation angle of [100] with respect to the vertical loading direction by
applying a rotation of 0° to the eigen strain tensors and stiffness matrices. For this specific case,
both plasticity and TMPT were reported in our previous work [27] during compression of the
bulk sample. For the defected sample, Figure 13a shows a combination of transformation and
plasticity under compression, and only plasticity in tension, which are the opposite of those of
SC[001] in the section 3.2. A major difference is that the curves in Figure 13a do not exhibit
distinct portions between TMPT and plasticity. This due to the higher CTS for this crystal
orientation. In fact, by applying a rotation of 0°, the Bain strain tensors remain £J° =

(0.0419 0.0761) and 800:(0.0419 —0.0761
0.0761 -0.0181 1 —-0.0761 -0.0181

transformation energy can be approximated as 0.0181|G22| for both monoclinic variants, with

). Therefore, the compressive

variant 2 being favoured by its negative shear terms. Thus, much more stress is required to
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reach the critical energy Ec compared to the other orientations. The critical TMPT stress is
1390 MPa for c40 and 1560 MPa for BS. The values are so close to the yield stress that no
distinction is possible between the two mechanisms. However, in tension, this transformation
driving force becomes -0.0181|622|, which explains the absence of TMPT in tensile loading.
While the residual plastic strain is 0.1% like c40 in compressive SC[001], the variation of the

elastic stiffness explains the larger strain in SC[100] at point L.
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Figure 13. Comparison of the compressive stress-strain curves of c40 with BS (no voids) under

(a) compression and (b) tension in SC[100].

Figure 14 shows monoclinic phase with horizontal interfaces, where the high stress
creates horizontal plastic bands in compression, even if a butterfly-like plastic zone is noticed
near the circular void. However, in tension, there is only plasticity with butterfly zone shape,
and no substantial TMPT, even there is some trace of monoclinic phase at the end of the
loading. A striking difference however is that contrary to compression of SC[001], tensile
deformation of c40 in SC[100] displays slight phase transformation, shown in the zoom-in
topography in the 4" column of Figure 14. Since TMPT occurs in a catalytic way in single
crystals, the lower amount of monoclinic phase suggest that it has appeared near the end of

loading, i.e. after initiation of plasticity, which may have hindered its subsequent evolution.
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c40 in compression and tension in SC[100].

3.3.1 Elliptic void

Considering elliptic voids with 60 nm semi-major axis generates different results
illustrated in Figure 15. The CTS in Figure 15a is lower for e60h (980 MPa) than c40, e60v
(1520 MPa) and e60d (1420 MPa). The insets in Figure 15b highlight horizontal transformation
bands and plastic zones, the latter being located at the interface. The suggest possible interface
fracture in 3Y-STZ. These fine strips of high plastic zone pin TMPT and cause some residual

monoclinic phase after unloading.
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Figure 15. Comparison of the compressive stress-strain curves of e60h, e60v and e60d with
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c40 (a), and distributions of von Mises stress, equivalent plastic strain and monoclinic phase at

point L in e60v (b) in SC[100].

The distribution of stress, equivalent plastic strain and monoclinic phase in e60h and
e60d in Figure 16 show that phase transformation and plastic deformation occur in mainly in
HSZ for these samples which maximum plasticity always occurring at the ellipse vertices,

which in turn prevents from complete shape recovery and complete reverse transformation.
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Figure 16. Distributions of von Mises stress, equivalent plastic strain and monoclinic phase a
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3.4 Deformation modes

The deformation mode of the samples c40, e60h, e60v, and e60d are shown in Figure
17 for the three single crystals SC[101], SC[001] and SC[100]. For SC[101] all samples have
the same compressed shape that reminds the third deformation mode of a cantilever beam. For
SC[001], all specimens have a compressed shape like the second deformation mode of a
cantilever beam. However, SC[100] samples exhibit different compressed shape due the
simultaneous occurrence of TMPT and plasticity and its lower elastic modulus along the
loading direction. The second row highlights that presence of only plasticity does not affect the
void, which can be explained by the volume conservation during plastic deformation. However,
the volume expansion accompanying TMPT induces visible effects on the deformation mode
and evolution of the void. In e60h, the void nearly disappears after compression induced
TMPT, while in e60v, the volume expansion opens the crack. For ¢40, also the TMPT displays
partial closure but less than in e60h, even if it is better than in e60v. This renders possible to
develop in 3Y-STZ a high capacity to accommodate their TMT-induced volume expansion

sand thus carry more fatigue lifetime, especially in the high cycle regime.
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Figure 17. Deformation modes of c40, e60h, e60v and e60d in SC[101], SC[001] and SC[100]
at point L.

4. Conclusion

We used an elastoplastic phase-field model to investigate the deformation mechanisms
of defected 3Y-STZ considering circular and elliptic voids with different size, orientation, and
distribution. Our findings unravel the characteristics of static defect behavior and their effects

on asymmetrical mechanical behavior of 3Y-STZ in tension and compression.

Results point to a high dependency of the mechanical behavior of samples on their
crystal orientation. In SC[101] specimen, only transformation is observed both in tension and
compression, irrespective of the defect characteristics. However, the critical transformation
stress, the average volume fraction of monoclinic phase and the size of hysteresis loop change
drastically by increasing the diameter of circular void or the orientation of elliptic void. We
found that the tension-compression asymmetry of the TMPT features (e.g., critical stress,
hysteresis size, activated variant, and degree of transformation) is linked to the activation of
different monoclinic variants. In SC[001], only plasticity is observed in compression but both
TMPT and plasticity are activated in tension, with different shape of the plastic zone in
compression (butterfly shape) and tension (dendritic-like shape). In addition, parasitic TMPT

is noticed for horizontal elliptic voids perpendicular to the loading direction, or diagonal elliptic
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voids aligned at 45° from the loading direction. Defected SC[100] samples display
simultaneous TMPT and plasticity with no distinct compressive transformation and yield
stresses, and they exhibit only plasticity in tension. Presence of high plastic zone at the interface
of the different variants suggests possible fracture at these locations. Comparison of the shape
of different samples after compression pointed out that the volume expansion associated with
TMPT can assist the crack closure for circular or horizontal elliptic voids but opens the crack
for vertical elliptic voids parallel to the loading direction. In the absence of TMPT, the volume
change after plastic deformation was negligible which is consistent with the isochore nature of
plasticity. The knowledge of the behavior of static defects obtained from the present study will
set the grounds for proper exploration of the dynamic fracture mechanisms by providing clear
understanding of the energy distribution, stress relaxation, stress concentration and stress
intensity ahead of the crack front. Proper investigation of interface and grain boundary fracture
in 3Y-STZ samples, as well as the possible improvement of its fatigue life by mitigation of

volume expansion through defect engineering will be tackled in our future research.
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