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Abstract

The q-th order spectrum is a polynomial of degree q in the entries of a signal x ∈ CN , which is
invariant under circular shifts of the signal. For q ≥ 3, this polynomial determines the signal uniquely,
up to a circular shift, and is called a high-order spectrum. The high-order spectra, and in particular
the bispectrum (q = 3) and the trispectrum (q = 4), play a prominent role in various statistical
signal processing and imaging applications, such as phase retrieval and single-particle reconstruction.
However, the dimension of the q-th order spectrum is Nq−1, far exceeding the dimension of x, leading to
increased computational load and storage requirements. In this work, we show that it is unnecessary to
store and process the full high-order spectra: a signal can be uniquely characterized up to symmetries,
from only N + 1 linear measurements of its high-order spectra. The proof relies on tools from algebraic
geometry and is corroborated by numerical experiments.

1 Introduction

Let x̂ ∈ CN be the discrete Fourier transform (DFT) of a signal x ∈ CN . The bispectrum of x is defined
by the triple products

M3(x)[k1, k2] := x̂[k1]x̂[k2]x̂[−k1 − k2], k1, k2 = 0, . . . , N − 1, (1.1)

where all indices should be considered as modulo N . The bispectrum is designed to be invariant under
circular shifts, namely, under the mapping x[n] 7→ x[n − s] for any s ∈ Z. This is true since circularly
shifting x by s entries is equivalent to multiplying its k-th DFT coefficient by the phase e−2πιks/N , where
ι =
√
−1. In particular, denoting the shifted signal by xs, it is easy to see that

M3(xs)[k1, k2] := x̂s[k1]x̂s[k2]x̂s[−k1 − k2]
= x̂[k1]e

−2πιk1s/N x̂[k2]e
−2πιk2s/N x̂[−k1 − k2]e2πι(k1+k2)s/N

= M3(x)[k1, k2],

(1.2)

for any s, k1, k2 = 0, . . . , N − 1. Since each entry of the bispectrum is a monomial of degree 3 it is also
invariant under multiplication by e2πι`/3 for ` = 0, 1, 2 and we refer to it as a third-order invariant. In
addition, the bispectrum determines almost all signals uniquely, up to symmetries (see, for example, [47,
13]). The signal and all its symmetries are called the orbit of x, and thus we say that the bispectrum
determines the orbit of x uniquely, for almost any x.

Similarly to the bispectrum, the trispectrum, a fourth-order invariant, is defined as

M4(x)[k1, k2, k3] = x̂[k1]x̂[k2]x̂[k3]x̂[−k1 − k2 − k3], k1, k2, k3 = 0, . . . , N − 1. (1.3)

The trispectrum enjoys similar properties as the bispectrum: it is invariant under circular shifts and
multiplication by e2πι`/4 for ` = 0, 1, 2, 3, and determines almost all orbits uniquely. The bispectrum
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and the trispectrum are known in the signal processing and statistics communities for many years [54],
and have been used in a variety of signal processing applications, such as separating Gaussian and non-
Gaussian processes [22, 8], cosmology [39, 56, 30, 23], seismic signal processing [42], image deblurring [24],
feature extraction for radar [25], analysis of EEG signals [43], classification [58], and multi-reference
alignment [13, 4, 37, 18].

The bispectrum and the trispectrum can be further generalized to higher-order invariants. In partic-
ular, the q-th order invariant is defined by a product of q DFT coefficients

Mq(x)[k1, . . . , kq−1] = x̂[k1]x̂[k2] . . . x̂[kq−1]x̂[−k1 − k2, . . .− kq−1]. (1.4)

For any q ≥ 3, Mq(x) determines almost any orbit. Throughout the work, we treat Mq(x) as a column

vector in CNq−1
, where the bispectrum corresponds to q = 3 and the trispectrum to q = 4. We refer

to (1.4) for q ≥ 3 as high-order spectra. For q = 1 and q = 2, (1.4) reduces to, respectively, the mean
and the power spectrum which do not determine a signal or its orbit uniquely [10] unless additional
information on the signal, such as sparsity, is available [14, 28]..

This work is motivated by two imaging applications: phase retrieval and single-particle reconstruc-
tion. These are introduced in detail in Section 2. In the former application, linear measurements of the
trispectrum naturally arise in the data generative model, while the bispectrum was exploited in the latter
to design computationally efficient algorithms. However, the high-dimensionality of high-order spectra
raises a challenge: a high-order spectrum consists of N q−1 entries and thus its dimension far exceeds the
signal’s dimension, especially for large N . This naturally raises the question whether the full high-order
spectrum is required for signal recovery, or whether its concise summary suffices. To answer this ques-
tion, we consider the problem of recovering a signal from linear measurements of its high-order spectrum.
Specifically, the measurement model reads

y = AMq(x), (1.5)

where A ∈ CK×Nq−1
and Mq(x) ∈ CNq−1

so that y ∈ CK . Trivially, if K = N q−1 and A is invertible,
then if the orbit of x can be recovered from Mq(x) (which is true for almost all signals for q ≥ 3), it can
be also recovered from A−1y. However, this work establishes that the invertibility of A is not a necessary
condition. Our main result shows that the orbit of a signal can be determined uniquely from y even if the
rank of A is as low as N + 1. In other words, only N + 1 (generic) linear measurements of a high-order
spectrum suffice to determine a (generic) signal uniquely, up to symmetries. This result is summarized
by the following theorem.

Theorem 1.1. Suppose that the orbits of generic signals x ∈ CN are determined uniquely from the q-th
order spectrum (1.4). Then, the orbit of a generic signal x is also determined uniquely from (1.5) for
almost any matrix A ∈ CK×Nq−1

with K ≥ N + 1.

Theorem 1.1 is a corollary of a more general theoretical result—Theorem 3.1—which is based on
algebraic geometry tools. While the result holds for any high-order spectra q ≥ 3, our main interest is
the bispectrum (q = 3) and the trispectrum (q = 4). Thus, we state the following corollary.

Corollary 1.2. Almost every signal x ∈ CN is determined uniquely, up to symmetries, from generic
N + 1 linear measurements of its bispectrum or its trispectrum.

Section 4 corroborates our theoretical results with a numerical study. We show that indeed a signal
can be recovered, up to symmetries, from slightly more than N measurements. We also show numerically
that a signal can be recovered from a few of its high-order spectrum entries. While our proof does not
cover the latter case, in Section 5 we formulate a conjecture stating that, with high probability, a signal
can be recovered from O(N) random samples of its high-order spectra.
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2 Motivation

2.1 Ultra-short pulse characterization using multi-mode fibers

Femtosecond-scale pulses are a key ingredient in investigations of ultrafast phenomena, such as chemical
reactions, and electron dynamics in atoms and molecules [29, 26, 51, 53]. In particular, characterizing the
shape of an ultrashort optical pulse is an essential task. Unfortunately, sensor technology does not yet
have short enough response time to recover ultrashort pulses directly, and thus developing technological
and computational methods to circumvent this barrier is required. For example, in a popular method
called frequency-resolved optical gating, the sought signal interacts with shifted versions of itself, resulting
in a quartic map that can be used to recover a signal (up to some intrinsic symmetries) [53, 16, 20, 15].

Recently, a novel method for pulse characterization in a single-shot using multi-mode fibers (which are
typically used for communication purposes) has been proposed and implemented [57, 59]. The technique
uses a nonlinear measurement of transmitted light through a multi-mode fiber to extract the spectral
phase of an optical pulse of interest. Two-photon absorption on an array of detectors produces a nonlinear
pattern, from which the signal can be recovered. This experimental technique has a number of advantages:
it is a single-shot method, its experimental setup is very simple, and it produces accurate estimates in the
presence of noise (namely, it is robust against noise). While this method shows great potential and has
attracted the attention of leading figures in the optical imaging community, its mathematical foundations
remain obscure. Consequently, there is a great need to develop a supporting mathematical theory that
will allow the harnessing of the full potential of this technique.

The problem of pulse characterization using multi-mode fibers can be mathematically formulated as
acquiring linear measurements of the pulse’s trispectrum (1.3) [57]. In particular, each linear measurement
(namely, each row of the matrix A (1.5)) is itself a trispectrum of a signal in CN . The results of this
paper suggest that one can acquire only a few samples (i.e., a few linear measurements of the pulse’s
trispectrum) and still guarantee full recovery of the sought pulse.

2.2 Invariants for reconstructing molecular structures

Single-particle cryo-electron microscopy (cryo-EM) is an emerging technology to reconstruct the high-
resolution three-dimensional structure of macromolecules, such as proteins and viruses [5, 44, 55]. Recent
substantial developments in the field has led to an abundance of new molecular structures, garnering its
recognition by the 2017 Nobel Prize in Chemistry.

In a cryo-EM experiment, biological macromolecules suspended in a liquid solution are rapidly frozen
into a thin ice layer. The three-dimensional orientation of particles within the ice are random and
unknown. An electron beam then passes through the sample, and a two-dimensional tomographic pro-
jection, called a micrograph, is recorded. The goal is to reconstruct a high-resolution estimate of the
three-dimensional electrostatic potential of the molecule from a set of micrographs. Under some sim-
plifying assumptions, the cryo-EM problem entails estimating the three-dimensional structure X from
multiple observations:

Ii = PRωiX + εi, i = 1, . . . , N, (2.1)

where P is a fixed tomographic projection, Rω1 , . . . , RωN are random three-dimensional rotations (elements
of the group SO(3)), and ε is a noise term. The full mathematical model is elaborated in [9].

The main computational challenge in cryo-EM stems from the compounding effect of unknowing the
three-dimensional rotations and the high noise level: the power of the noise might be 100 times greater than
the power of the signal. Such noise levels hamper accurate estimation of the missing three-dimensional
rotations [12, 3]. Therefore, it is common to estimate the three-dimensional structure directly, without
estimating the missing rotations, for example, by maximizing the marginal likelihood [48].
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Zvi Kam was the first to propose circumventing rotation estimation by computing polynomials of the
signal that are invariant to three-dimensional rotations [32]. Those polynomials can be understood as
an extension of the one-dimensional bispectrum (1.1) to the statistical model of cryo-EM (2.1)1. Kam’s
idea was extended in recent years and used to construct ab inito models, see for example [38, 11, 50,
36]. In addition, it was thoroughly studied for multi-reference alignment and multi-target detection:
mathematical abstractions of the cryo-EM problem [13, 21, 45, 40, 6, 12, 35, 19, 33]; see further discussion
on the multi-reference alignment model in Section 5 and Conjecture 5.2. The invariants-based approach
was also studied for the problem of X-ray free-electron lasers (XFEL): a new exciting technology for
single-particle reconstruction [41, 52, 34].

One of the main challenges to apply Kam’s method to experimental cryo-EM datasets is that com-
puting the bispectrum (or higher-order spectra) inflates the dimensionality of the problem. For example,
for a three-dimensional structure of size L×L×L, the bispectrum proposed by Kam [32] is composed of
O(L5) elements, namely, it increases the dimensionality by a factor of O(L2). Our results indicate that
one can safely reduce the bispectrum’s dimension by multiplying it by a random matrix of significantly
lower rank, without losing information.

3 Theory

The goal of this section is to state and prove the main theoretical contribution of this paper, which implies
Theorem 1.1 as a corollary. Appendix A surveys some definitions and results from the field of algebraic
geometry required to fully comprehend the result.

3.1 Main theoretical result

We start by formulating our problem in algebraic geometry terms. Let G be a finite group acting on CN
and suppose that we are given R polynomial functions f1, . . . , fR, which are invariant under the action
of G. These functions define a polynomial map T : CN → CR. Because the functions are G invariant,
we obtain a map of varieties T̃ : CN/G → CR, where CN/G is the variety of G orbits in CN . Now, let
A ∈ CK×R be a matrix and consider the composite map S = A ◦ T̃ : CN/G→ CK .

We are now ready to state the main theorem of this paper.

Theorem 3.1. If the map T̃ : CN/G→ CR is birational onto its image, then for generic choice of matrix
A of rank at least N + 1, the map S = A ◦ T̃ is also birational onto its image, meaning that the generic
orbit x ∈ CN/G can be recovered from the measurements A ◦ T̃ .

In less precise terms, Theorem 3.1 states that if the measurements determined by the map T̃ are
sufficient to recover generic G orbits, then for a generic choice of a K ×R matrix of rank at least N + 1,
the measurements A ◦ T̃ are also sufficient.

Remark 3.2. Although Theorem 3.1 is stated for complex signals (i.e., vectors in CN ) the field C can be
replaced by other fields such as the reals R or even the rationals Q.

3.2 Proof of Theorem 3.1

Let X be the closure of the image of CN/G in CR under the map T̃ . Since T̃ maps CN/G birationally
onto its image, X is an N -dimensional subvariety of CR. We must show that for a generic matrix A of

rank at least N + 1, X maps birationally onto its image under the linear transformation CR A→ CK .

1We refer the reader to [31] for a rigorous extension of the concept of bispectrum to any compact group.
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A fundamental theorem in algebraic geometry [49, Theorem 1.8] states that any N -dimensional affine
variety admits a birational map to a hypersurface in CN+1. However, the proof (cf. [49, Proposition A.7])
of this result shows that if we consider a generic (hence linearly independent) collection of N + 1 linear
forms l1, . . . , lN+1, then the projection CR → CN+1, x 7→ (l1(x), . . . , lN+1(x)) maps X birationally onto
its image. Now if A is a generic K × R matrix of rank at least N + 1, then the first N + 1 rows of A

define a generic collection of N + 1 linear forms. Hence, the composite CR A→ CK
πN+1→ CN+1 is as in the

proof of [49, Theorem 1.8], where πN+1 is the projection onto the first N + 1 coordinates. Therefore, if
the map X → (πN+1 ◦A)(X) is birational, so the map X → A(X) must also be birational.

Remark 3.3. The proof of Theorem 1.1 follows by taking T to be the q-th order spectrum with q ≥ 3 and
in our setup R = N q−1. The finite group G is the product group ZN ×Zq. The ZN factor acts in the time
domain by cyclic shifts and the Zq factor is identified with the group q-th roots of unity acting by scalar
multiplication.

3.3 Example

While Theorem 1.1 implies that N+1 generic linear measurements of the q-th order spectrum are sufficient
to recover generic signals, it does not indicate which linear measurements suffice. The following heuristic
shows that we can recover a large class of real signals x ∈ RN , up to circular shifts, from a small set of
bispectrum or trispectrum measurements [13]. To this end, we make three assumptions. First, the power
spectrum of the signal does not vanish and is known, and thus we can assume that the magnitudes of all
Fourier coefficients are one; this is indeed the case in ultra-short pulse characterization using multi-mode
fibers [57]. In addition, we assume that the mean of the signal is known, and thus x̂[0] is known (and
real). Finally, we assume that the phase of x̂[1] is an N -th root of unity. Recall that the circular shift
symmetry implies that x̂[1] can be multiplied by e2πιm/N for an arbitrary m ∈ Z. Therefore, the third
assumption implies that we can fix x̂[1] = 1 without loss of generality. Based on these three assumptions,
one can easily read off x̂[2] from M3(x)[2, N − 1] := x̂[2]x̂[1]x̂[1], where x̂[`] is the conjugate of x̂[`] and
we used the symmetry x̂[`] = x̂[−`] since x is real. Continuing recursively, the k-th Fourier coefficient can
be determined, given x̂[0], . . . , x̂[k − 1], from M3(x)[k,N − 1] := x̂[k]x̂[1]x̂[k − 1]. The same recursion can
be applied to the trispectrum.

4 Numerical experiments

We conducted three sets of numerical experiments. The first experiment examines recovering a signal x ∈
RN from K random linear measurements of its bispectrum and trispectrum. Recall that we treat the
bispectrum and the trispectrum as vectors in CN2

and CN3
, respectively, and that we observe

y = AMq(x), q = 3, 4. (4.1)

In the second experiment, each row of the matrix A is a bispectrum (for q = 3) or a trispectrum (q = 4)
of a random signal. Therefore, the measurement matrix is more structured than in the first experiment.
This experiment simulates the setup of ultra-short pulse characterization using multi-mode fibers—one
of the motivating applications of this paper (see Section 2). The third experiment studies signal recovery
from K random samples of its bispectrum and trispectrum. The sampling problem can be formulated as
in (4.1), where the matrix is A ∈ {0, 1}K×Nq−1

, each row of A consists of only one non-zero entry, and
each column has at most one non-zero entry. We note that the second and third cases are not covered
by Theorems 1.1 and 3.1 (see further discussion in Section 5). In all experiments, the entries of x ∈ RN
were drawn independently from a normal distribution with zero mean and variance one. We note that the
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symmetry groups of real signals are smaller since rescaling by a root of unity can only be a sign flip and
only if q is even. For the bispectrum, we used signals of length N = 30, and for the trispectrum N = 10.

To recover the signal, we formulated a non-convex least squares problem

min
x∈RN

‖y −AMq(x)‖22, (4.2)

which was minimized using a standard steepest decent algorithm. To account for the non-convexity of the
problem, we initialized the algorithm from three random points, resulting in three candidate solutions.
The candidate solution that attained the smallest value of (4.2) was declared as the signal estimate. From
our experiments, it seems that three initializations suffice to avoid getting trapped in a local minimum.
This observation concurs with previous papers on bispectrum inversion, indicating that the non-convexity
of bispectrum inversion is often times benign [13, 21].

To account for the circular shift symmetry, the bispectrum recovery error is computed by

bispectrum relative error = min
s=0,...,N−1

‖Rsx̂− x‖2
‖x‖2

, (4.3)

where x̂ is the signal estimate, and Rs is the operator that circularly shifts the signal by s entries.
Similarly, to account for the additional sign flip symmetry, the trispectrum recovery error is defined as

trispectrum relative error = min
s=0,...,N−1,z=±1

‖z ·Rsx̂− x‖2
‖x‖2

. (4.4)

A trial was declared successful if the relative recovery error dropped below 5 × 10−5, and all figures
show the success rate over 1000 trials. The code to reproduce all experiments is publicly available at
https://github.com/krshay/recovery-high-order-spectra.

Experiment 1. Recovery from K random linear measurements. In this experiment, we examined
the success rate of signal recovery from K random linear measurements of the bispectrum (1.1) and the
trispectrum (1.3), for different values of K. In particular, each entry of the sensing matrix A ∈ RK×Nq

was drawn from an i.i.d. Gaussian distribution with zero mean and variance 1. Figure 1 reports the
success rate for the bispectrum and the trispectrum as a function of K. As can be seen, the signal can
be recovered from a few random linear measurements of both the bispectrum and trispectrum. Notably,
the success rate is far from zero when K is only slightly larger than N , providing a numerical support to
our theoretical results.

Experiment 2. Recovery from K structured linear measurements. The second experiment,
whose results are presented in Figure 2, examines the success rate from K linear measurements, where
each measurement is a bispectrum (left panel) or a trispectrum (right panel) of a random signal. Namely,
each raw of the matrix A (1.5) is a bispectrum or a trispectrum of a random signal. The entries of the
random signals were drawn i.i.d. from a Gaussian distribution with zero mean and variance 1. Therefore,
in this case the measurement operator is structured, and resembles the setup of the ultra-short pulse
characterization using multi-mode fibers application described in Section 2. The results are only slightly
worse than the case of random sensing vectors (Figure 1).

Experiment 3. Recovery from K random samples. In our second numerical experiment, we
examined signal recovery from K random samples of its bispectrum and its trispectrum. The K samples
were drawn from a uniform distribution over all possible sets of size K. Figure 3 illustrates the success
rate of signal recovery from random samples as a function of K. Remarkably, for both the bispectrum and
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(a) Bispectrum, N = 30
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(b) Trispectrum, N = 10

Figure 1: The success rate of recovering a signal x ∈ RN from K random linear measurements of its
bispectrum and its trispectrum. The red vertical line specifies N . As can be seen, for K slightly larger
than the signal’s dimension, signal recovery is possible.
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(b) Trispectrum, N = 10

Figure 2: The success rate of recovering a signal x ∈ RN from K linear measurements; each measurement
is a bispectrum (left panel) or a trispectrum (right panel) of a random signal. The red vertical line specifies
N . Evidently, the results are only slightly worse than the experiment depicted in Figure 1.
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(b) Trispectrum, N = 10

Figure 3: The success rate of recovering a signal x ∈ RN from K random samples of its bispectrum and
its trispectrum. The red vertical line specifies N . Clearly, the success rate grows quickly for K slightly
larger than N , but not as fast as in Figure 1.

the trispectrum, we see a significant success rate for K � N q−1. This indicates that recovery is possible
from a few samples of the bispectrum or the trispectrum, perhaps merely O(N) samples. Nevertheless,
the success rates in Figure 3 are poorer than those reported in Figure 1, indicating that it is harder to
recover a signal from random samples of its high-order spectra than from random linear measurements of
its high-order spectra.

5 Future studies

In this paper, we have shown that one can identify a signal, up to symmetries, from O(N) (generic) linear
measurements of its high-order spectra (e.g., bispectrum, trispectrum). This result has direct implications
to imaging applications, such as ultra-short pulse characterization and single-particle reconstruction. The
proof is based on tools from the field of algebraic geometry. Our numerical experiments also indicate
that a signal can be recovered from a few random samples of its bispectrum or trispectrum. However,
unfortunately, our proof cannot be extended to the latter case since the notion of generic measurement, as
it is understood in the field of algebraic geometry, cannot be used for a finite set of possible measurement
operators. Nevertheless, we hope to fill this theoretical gap in a future study using tools from combinatorics
and probability. We formulate the following conjecture.

Conjecture 5.1 (Random sampling of high-order spectra). The orbit of a generic signal x ∈ CN can be
recovered from O(N) random samples of its high-order spectra with high probability.

As mentioned in Section 2.2, a prime motivation of this work is single-particle reconstruction using
cryo-EM. From a mathematical perspective, the cryo-EM problem (2.1) is a special case of the multi-
reference alignment model. This model entails estimating a signal x from N realizations y1, . . . , yN of a
random variable y whose distribution is characterized by

y = T (g ◦ x) + ε, x ∈ Ξ, g ∈ G, (5.1)

where T is a known (deterministic) linear operator, g is a random element of some compact group G,
acting on a vector space x ∈ Ξ, and ε is a noise term [7, 9]. Remarkably, it was shown that the method
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of moments—a classical inference technique—achieves the optimal estimation rate of the multi-reference
alignment model when the noise level is much larger than the signal [45, 6, 1, 2] (in the finite-dimensional
case [46]).

Recall that the q-th statistical moment is defined as E{y⊗q}, where the expectation is taken against
the distribution of the group elements over G and the noise, y⊗q is a tensor with N q entries, and the
entry indexed by n = (n1, . . . , nq) ∈ ZqN is given by

∏q
i=1 y[ni]. Notably, in the multi-reference alignment

model (5.1), y depends linearly in x, and therefore the moments are polynomials of the signal x. In par-
ticular, often times the statistical moments coincide with high-order spectra, e.g., [13, 6]. We believe that
under the multi-reference alignment model, our proof technique can be generalized to the identification
of a signal from a few linear measurements of the high-order statistical moments of y. We conjecture the
following generalization of Theorem 1.1.

Conjecture 5.2 (Mutli-reference alignment). Suppose that the q-th moment of y (5.1) determines x
uniquely (possibly, up to some intrinsic symmetries). Then, x is determined uniquely (up to the same
intrinsic symmetries) from O(N) random linear measurements or random samples of the q-th moment
of y.

Remark 5.3. Recently, Conjecture 5.2 was partly verified for the dihedral multi-reference alignment
model [17].
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A Required algebraic geometry definitions and results

Let K be a field (specifically, K = R or K = C). A subset of KN which is the locus of zeros of a
collection of polynomials in K[x1, ..., xN ] is called an (affine) algebraic set. The Zariski topology on KN

is the topology whose closed sets are algebraic subsets. (Note that the empty set and KN are algebraic
sets, and arbitrary intersections of algebraic sets are algebraic, so this defines a topology.) A Zariski
closed set is also closed in the Euclidean topology. The complement of an algebraic set is a Zariski open
set. A non-empty Zariski open set is open and dense in the Euclidean topology, and its complement has
Euclidean dimension strictly less than N .

An algebraic set X is irreducible if it cannot be expressed as the union of algebraic subsets X1, X2,
with X1, X2 not empty or equal to X. An irreducible algebraic set is called an algebraic variety. Any
algebraic set is the union of a finite number of irreducible algebraic sets. An algebraic subset Y , which is
a subset of an algebraic set X, is called an algebraic subset of X. When Y is a variety (i.e., irreducible),
then Y is called a subvariety of X. The algebraic subsets of an algebraic set X define a topology on X,
which we also call the Zariski topology on X. We say that a generic point of an algebraic variety X has
a certain property if there is a non-empty Zariski open set of points having this property.

A polynomial mapping f : X → Y of affine algebraic varieties is called birational if it is an isomorphism
on a Zariski dense open set. More generally, we say that f is birational onto its image if the mapping
X → f(X) ⊂ Y is birational. In this case, the polynomial mapping is injective on a dense open subset of
X and we say that f is generically injective. More specifically, if the polynomial mapping f corresponds
a collection of measurements on the vectors in X, and if f is birational onto its image, then we say that
the generic vector can be recovered from the measurements f .

If G is a finite group acting linearly on KN , then a classical result in invariant theory states that
the set of G-orbits KN/G is an affine algebraic variety. For a reference, see [27, Theorem 3.5]. Note
that KN/G will be embedded in KM for some M ≥ N . For example, if G = {±1} acting on C2 by
(−1)(a, b) = (−a,−b), then the quotient C2/G is the subvariety of C3 defined by the equation Y 2−XZ = 0,
where X,Y, Z correspond to the {±1} invariant functions x2, xy, y2 on C2. More generally, if X is an
algebraic subset of KN which is invariant under the action of the group G, then X/G is an algebraic
subset of KN/G. The quotient X/G is characterized by the property that if f : X → Y is a polynomial
map which is constant on G orbits (i.e., f(gx) = f(x) for any g ∈ G), then f factors through a polynomial
map X/G→ Y .
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