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Dihedral multi-reference alignment
Tamir Bendory, Dan Edidin, William Leeb, and Nir Sharon

Abstract—We study the dihedral multi-reference alignment
problem of estimating the orbit of a signal from multiple
noisy observations of the signal, acted on by random elements
of the dihedral group. We show that if the group elements
are drawn from a generic distribution, the orbit of a generic
signal is uniquely determined from the second moment of the
observations. This implies that the optimal estimation rate in
the high noise regime is proportional to the square of the
variance of the noise. This is the first result of this type for
multi-reference alignment over a non-abelian group with a
non-uniform distribution of group elements. Based on tools
from invariant theory and algebraic geometry, we also delin-
eate conditions for unique orbit recovery for multi-reference
alignment models over finite groups (namely, when the dihedral
group is replaced by a general finite group) when the group
elements are drawn from a generic distribution. Finally, we
design and study numerically three computational frameworks
for estimating the signal based on group synchronization,
expectation-maximization, and the method of moments.

I. INTRODUCTION

We study the dihedral multi-reference alignment (MRA)
model

y = g · x+ ε, g ∼ ρ, ε ∼ N (0, σ2I), (I.1)

where
• x ∈ RL is a fixed (deterministic) signal to be estimated;
• ρ is an unknown distribution defined over the simplex

∆2L;
• g is a random element of the dihedral group D2L,

drawn i.i.d. from ρ, and acting on the signal by circular
translation and reflection (see Figure 1);

• ε is a normal isotropic i.i.d. noise with zero mean and
variance σ2.

We wish to estimate the signal x from n realizations (ob-
servations) of y,

yi = gi · x+ εi, i = 1, . . . , n, (I.2)

while the corresponding group elements g1, . . . , gn are un-
known. We note, however, that the signal can be identified
only up to the action of an arbitrary element of the dihedral
group. Therefore, unless a prior information on the signal
is available, the goal is estimating the orbit of signals
{g · x|g ∈ D2L}. This type of problem is often dubbed
an orbit recovery problem.

The model (I.1) is an instance of the more general MRA
problem that was studied thoroughly in recent years [9], [14],
[8], [3], [2], [21], [4], [39], [36], [11], [10], [43], [1], [32],
[6], [35], [27], [30], [28], [22], [17], [19]. In its generalized

version, the MRA model is formulated as (I.1), but the signal
x may lie in an arbitrary vector space (not necessarily RL),
the dihedral group D2L is replaced by an arbitrary group
G, and g ∼ ρ is a distribution over G (in some cases, an
additional fixed linear operator acting on the signal is also
considered, e.g., [10], [8], [18], [12]). The goal is to estimate
the orbit of x, under the action of the group G.

Most of the previous studies on MRA have considered the
uniform (or Haar) distribution ρ over the group elements.
In particular, it was shown that in many cases, such as
x ∈ RL and a uniform distribution over ZL, the third
moment suffices to recover a generic signal uniquely, and
consequently n/σ6 → ∞ is a necessary condition for
accurate estimation of generic signal [8], [34], [39], [14]. In
fact, this follows from a general result that in the low SNR
regime σ → ∞ (with a fixed dimension L), a necessary
condition for signal identification is n/σ2d → ∞, where d
is the lowest order moment that identifies the orbit of signals
uniquely [8], [4], [11], [39] (see [43] for sample complexity
analysis in high dimensions).

The effect of non-uniform distribution on the sample
complexity was first studied in [2] for the abelian group
ZL and x ∈ RL. It was shown that in this case the second
moment suffices to identify the orbit of generic signals
uniquely for almost any non-uniform distribution (rather than
the third moment if the distribution is uniform). In this
work, we extend [2] for the non-abelian group D2L and
show that for a generic distribution and signal, the second
moment identifies the orbit of solutions. This implies that
a necessary condition for accurate orbit recovery under the
model (I.1) for σ → ∞ and fixed L is n/σ4 → ∞. This
is the first result of this type for multi-reference alignment
over a non-abelian group with a non-uniform distribution
of group elements. The fact that the group D2L is non-
abelian makes the analysis of the orbit recovery problem
significantly more difficult. The reason is that this action of
the dihedral group on RN cannot be diagonalized as we
explain in Remark II.1. It follows that there is no basis
where the entries of the moment tensors are monomials.
By contrast, a previous work for the cyclic group ZL took
advantage of the fact that the entries of the moment tensors
are monomials when expressed in the Fourier basis [2]. The
main theoretical results are summarized as follows.

Theorem I.1 (informal statement of the main theorem).
Consider the dihedral MRA problem (I.1) with a generic
probability distribution ρ. Then, the first and second order
moments of y are sufficient to uniquely identify almost all
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(a) Signal (b) Shifted signal (c) Shifted and reflected signal

Fig. 1: An example of the action of the dihedral group. The MRA problem (I.1) entails estimating a signal, up to a global
circular shift and reflection, from multiple noisy copies of the signal acted upon by random elements of the dihedral group.

orbits.

Corollary I.2 (sample complexity). Consider the dihedral
MRA problem (I.1) in the low SNR regime σ → ∞. For
a generic probability distribution and a generic signal,
n/σ4 → ∞ is a necessary condition for accurate orbit
identification.

Theorem I.1 is formulated in technical terms in Theo-
rem II.3, which is proved in Section II-B. The proof is based
on algebraic geometry tools and is not constructive, namely,
it does not provide an explicit algorithm of how to recover
the signal from the first and second moment. Section II-B
also discusses the precise meaning of the notion of generic
signal and distribution. In Section II-C, we use invariant
theory to delineate general conditions for orbit recovery
from the second moment in general MRA models over finite
groups.

The MRA model is mainly motivated by the molecu-
lar structure reconstruction problem in single-particle cryo-
electron microscopy (cryo-EM) [12]. The aim of a cryo-EM
experiment is constituting a 3-D molecular structure from
multiple observations. In each observation, the 3-D structure
is acted upon by a random element of the non-abelian group
of 3-D rotations SO(3). In addition, the distribution over
SO(3) is usually non-uniform and unknown [51], [37], [7],
[47]. Therefore, this paper is an important step towards un-
derstanding the statistical properties and sample complexity
of the cryo-EM problem

Section III introduces three statistical estimation frame-
works to recover the orbit of x. The first framework is
based on estimating the missing group elements using the
method of group synchronization [49], [10]. Once the group
elements were accurately estimated, estimating the signal
can be obtained by aligning the observations and averaging
out the noise. However, reliable estimation of group elements
is possible only if the noise level is low enough. To estimate
the signal in high noise levels, we also suggest maximizing
the marginalized maximum likelihood using expectation-
maximization (EM). The EM algorithm provides accurate

estimations in a wide range of SNR regimes, although we
have no theoretical guarantees to support it. Unfortunately,
the computational burden of EM rapidly increases with the
number of observations n and the noise level. As a third
method, we propose an estimator based on the method
of moments, which works quite well in all SNRs and
whose computational burden is roughly constant with the
noise level and moderately increases with n. According to
Theorem I.1, we only use the first and second moments for
the estimation. As with EM, characterizing the properties of
the method of moments is left for future research; see further
discussion in Section III.

II. THEORY

A. The dihedral group

The dihedral group D2L is a group of order 2L, which
is usually defined as the group of symmetries of a regular
L-gon in R2. It is generated by a rotation r of order L corre-
sponding to rotation by an angle 2π/L and a reflection s of
order 2. Since rotation does not commute with reflection, the
group D2L is not abelian, but the relation rs = sr−1 holds
instead. Since r has order L, r−1 = rL−1. The elements of
D2L can be enumerated as

{1, r, . . . , rL−1, s, rs, . . . , rL−1s},

where 1 is the identity element. Note that the subset
{1, r, . . . , rL−1} is a normal subgroup1 isomorphic to the
cyclic group ZL. MRA over the group ZL was studied
thoroughly, see for example [9], [14], [2].

There are two natural ways to describe the action of the
dihedral group, D2L, on RL one in the time (or spatial) do-
main and one in the Fourier (frequency) domain. Explicitly,
in the time domain, the action of the dihedral group on a
signal x ∈ RL is given by

(r · x)[`] = x[(`− 1) mod L],

(s · x)[`] = x[−` mod L].
(II.1)

1A subgroup H < G is normal if it is invariant under conjugation by
elements of G.
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Namely, r cyclically shifts a signal by one entry, and s
reflects the signal. The action of the dihedral group is
illustrated in Figure 1.

If we apply the discrete Fourier transform to RL, then we
can identify RL with the real subspace of CL consisting of
L-tuples (x̂[0], . . . , x̂[L− 1]) ∈ CL satisfying the condition
x̂[`] = x̂[−` mod L], where x̂[`] is the conjugate of x̂[`]. In
this case, the action of D2L is given by:

(r · x̂)[`] = e2πι`/Lx̂[`],

(s · x̂)[`] = x̂[`] = x̂[−` mod L].
(II.2)

Remark II.1. We can see from this description that the
action of D2L cannot be diagonalized for the following
reason. If the action could be diagonalized, then there would
have to be a basis for RL which consists of simultaneous
eigenvectors of the rotation r and the reflection s. However,
the only eigenvector of the rotation r which is also invariant
under the action of the reflection s is the vector (1, 0, . . . , 0).
For a further reference, see [46, p. 37].

B. Unique orbit recovery in dihedral MRA

We are now ready to present and prove the main result
of this paper. Let ρ ∈ ∆2L be a probability distribution
on D2L. We denote the probability of rk by p[k] and the
probability of rks by q[k]. Let p and q represent the vectors
(p[0], . . . , p[L − 1]) and (q[0], . . . , q[L − 1]), respectively.
Let Cz ∈ RL×L be a circulant matrix generated by z ∈ RL,
namely, the i-th column of Cz is given by z[(i− `) mod L]
for ` = 0, . . . , L−1. Let Dz ∈ RL×L be a diagonal matrix
whose entries are z. A direct calculation shows that the first
two moments of the observations of (I.1) are given by the
following expressions (compare with [2]).

Lemma II.2. Consider the dihedral MRA model (I.1). The
first moment of y, M1 ∈ RL, is given by

Ey := M1(x, ρ) = Cxp+ Csxq = Cpx+ Cqsx. (II.3)

The second moment of y, M2 ∈ RL×L, is given by

EyyT := M2(x, ρ) = CxDpC
T
x +CsxDqC

T
sx+σ2I. (II.4)

Hereafter, we assume that the noise variance σ2 is known,
and thus the bias term σ2I can be removed. Indeed, the
variance of the average of each observation 1√

L

∑L−1
`=0 yi[`]

(which is invariant under the group action) is an unbiased
estimator of the noise variance, and is consistent as σ4/n→
0. We also remark that in many applications, including cryo-
EM, the noise level can often be readily estimated from the
data [12].

To present the main result of this paper, it will be con-
venient to consider the Fourier counterpart of the moments,
defined by

M̂1 = EFy = FM1(x, ρ),

M̂2 = EFy(Fy)∗ = FM2(x, ρ)F ∗,

where F ∈ CL×L is the discrete Fourier transform (DFT)
matrix.

We say that a condition holds for generic signals (or
distributions) if the set of signals (distributions) for which the
condition does not hold is defined by polynomial conditions.
The precise meaning of generic signals, in the context of this
work, is discussed at the end of this section.

The main result of this paper is as follows.

Theorem II.3 (Orbit recovery). For generic signal x and
generic distribution ρ, the D2L orbit of x is uniquely deter-
mined by M̂1[0] = x̂[0] and at most ∼ 2.5L entries of the
matrix M̂2. More precisely, there exist non-zero polynomials
Q1, . . . , Qr such that if Q1(x, ρ), . . . , Qr(x, ρ) are not all
zero, then for any (z, ρ′) with M1(z, ρ′) = M1(x, ρ) and
M2(z, ρ′) = M2(x, ρ), z is in the same D2L orbit as x.

Remark II.4. Our method of proof necessarily requires that
all of the entries of Fx are non-zero, where F is the discrete
Fourier transform matrix; similar assumptions are often
stated in the MRA literature, see for example [14], [3], [39],
[11]. However, our proof also requires that additional, less
explicit, polynomials in the entries of x, ρ be non-vanishing.
This is discussed at the end of the proof.

Proof. Let us define

p̂ = (p̂[0], . . . , p̂[L− 1]),

q̂ = (q̂[0], . . . , q̂[L− 1]),

x̂ = (x̂[0], . . . , x̂[L− 1]).

Note that the second moment in Fourier domain can be
written as

M̂2 =
1

L

(
Dx̂Cp̂Dx̂ +Dx̂Cq̂Dx̂

)
. (II.5)

Moreover, since p, q, x are real, we have the symmetry
relations

x̂[L− i] = x[i],

p̂[L− i] = p̂[i],

q̂[L− i] = q̂[i].

Define

Mi,j = p̂[i+j]x̂[i]x̂[j]+ q̂[L− i−j]x̂[L− i]x̂[L−j], (II.6)

so Mi,j is LM̂2[i, L−j]. Our goal is to show that knowledge
of M̂1[0] and O(L) of the entries Mi,j determine the orbit
of x.

Since ρ is a probability distribution, we note that

p̂[0]+ q̂[0] = p[0]+ . . .+p[L−1]+q[0]+ . . .+q[L−1] = 1.
(II.7)

Thus, Mi,−i = |x̂[i]|2. It follows that knowledge of
M2(x, ρ) determines the power spectrum of x. Replacing x
by the vector whose Fourier transform has entries x̂[i]/|x̂[i]|,
we may assume that each x̂[i] lies on the unit circle. Since
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x̂[0] is real, we take x̂[0] = 1. With this assumption, the
formula for Mi,j can be written as

Mi,j = p̂[i+ j]x̂[i]x̂[j] + q̂[L− i− j]/(x̂[i]x̂[j]). (II.8)

Given a vector x and distribution ρ, consider the set I
of vectors z ∈ RL such that M1(z, ρ′) = M1(x, ρ) and
M2(z, ρ′) = M2(x, ρ) for some probability distribution ρ′

on the dihedral group D2L. We will show that for generic
(x, ρ) there are only 2L possible z’s in this set. Note that the
distribution is uniquely determined by the signal z, because
the moments are linear functions of the distribution. Since
the D2L orbit of x is contained in the set I , we conclude
that the orbit of x is determined by the moments of degree
one and two.

Determining that the set I consists of at most 2L vectors is
equivalent to showing that the following system of equations
has at most 2L solutions:

p̂′[i+ j]ẑ[i]ẑ[j] + q̂′[L− i− j]/(ẑ[i]ẑ[j]) = Mi,j , (II.9)

where |ẑ[i]| = 1, ẑ is the Fourier transform of a vector in
RL, and ρ̂′ = (p̂′, q̂′) is the Fourier transform of a probability
distribution on D2L. Consider the equations

p̂′[1]ẑ[`]ẑ[1−`]+q̂′[L−1]/(ẑ[`]ẑ[1− `]) = M`,1−`, (II.10)

for ` = 0, . . . , L−1, where the indices are taken modulo L.
For each fixed `, we can view equation (II.10) as a linear
equation in p̂′[1], q̂′[L−1]. For the system to have a solution,
it must be consistent. Taking the pair of equations when
` = 1 and ` = m+ 1 with m ≥ 1, we obtain

q̂′[L− 1] =(
ẑ[1]ẑ[m+ 1]2M1,0 − ẑ[1]2ẑ[m]ẑ[m+ 1]Mm+1,−m

)
ẑ[m+ 1]2 − ẑ[1]2ẑ[m]2

.

(II.11)

Equating equation (II.11) with m = 1 and m = n + 1, we
see that ẑ[n + 1] satisfies the following quadratic equation
in terms of ẑ[1], ẑ[2], ẑ[n]:

(M2
2,−1ẑ[1]ẑ[2]−M1,0ẑ[1]3)ẑ[n+ 1]2

+M2
n+1,−n(ẑ[1]4ẑ[n]− ẑ[2]2ẑ[n])ẑ[n+ 1]

+M2
1,0ẑ[1]ẑ2[2]ẑ[n]2 −M2

2,−1ẑ[1]3ẑ[2]ẑ2[n]

= 0.

(II.12)

Note that expressions of the form M2
i,j refer to exponents

in this formula.
If n > 2, the three equations from (II.9) with (i, j) =

(n + 1, 0), (n, 1), (n − 1, 2), respectively, yield three linear
equations for p̂′[n + 1], q̂′[L − n − 1] whose coefficients
are rational expressions in ẑ[1], ẑ[2], ẑ[n− 1], ẑ[n], ẑ[n+ 1].

The same analysis as above shows that ẑ[n+ 1] satisfies an
additional quadratic equation in ẑ[1], ẑ[2], ẑ[n− 1], ẑ[n]:

(M2
n,1ẑ[1]ẑ[n]−M2

n−1,2ẑ[2]ẑ[n− 1])ẑ[n+ 1]2

+Mn+1,0(ẑ[2]2ẑ[n− 1]2 − ẑ[1]2ẑ[n]2)ẑ[n+ 1]

+ (M2
n−1,2ẑ[1]2ẑ[2]ẑ[n− 1]ẑ[n]2

−M2
n,1ẑ[1]ẑ[2]2ẑ[n− 1]2ẑ[n])

= 0.

(II.13)

Since ẑ[n + 1] satisfies the two non-equivalent quadratic
equations (II.12) and (II.13), we can solve for ẑ[n + 1]
in terms of ẑ[1], ẑ[2] and ẑ[n] and we obtain the fol-
lowing expression for ẑ[n + 1] as a rational function of
ẑ[1], ẑ[2], ẑ[n− 1], ẑ[n]:

ẑ[n+ 1] =
a

b
, (II.14)

where

a = M2
1,0M

2
n,1(ẑ[1]2ẑ[2]2ẑ[n]3 − ẑ[1]4ẑ[2]2ẑ[n− 1]2ẑn)

+M2
2,−1M

2
n,1(ẑ[1]2ẑ[2]3ẑ[n− 1]2ẑ[n]− ẑ[1]4ẑ[2]ẑ[n]3)

+M2
1,0M

2
n−1,2(ẑ[1]5ẑ[2]ẑ[n− 1]ẑ[n]2 − ẑ[1]ẑ[2]3ẑ[n− 1]ẑ[n]2),

(II.15)

and

b = Mn−1,1Mn+1,−n(ẑ[1]ẑ[2]2ẑ[n]2 − ẑ[1]5ẑ[n]2)

+M2
n−1,2M

2
n+1,−n(ẑ[1]4ẑ[2]ẑ[n− 1]ẑ[n]− ẑ[2]3ẑ[n− 1]ẑ[n])

+M2
n+1,0M

2
2,−1(ẑ[1]ẑ[2]3ẑ[n− 1]2

− ẑ[1]3ẑ[2]ẑ[n]2) +M2
n+1,0M

2
1,0(ẑ[1]5ẑ[n]2 − ẑ[1]3ẑ[2]2ẑ[n− 1]2).

(II.16)

When n = 2, the equations in (II.9) corresponding to
(i, j) = (2, 1) and (i, j) = (1, 2) are identical so we need
another method to express ẑ[3] as a rational function of
ẑ[1], ẑ[2]. To get a second quadratic equation in this case,
consider the equations of (II.9) corresponding to the pairs
(2, 0), (1, 1), (3,−1) to obtain the quadratic equation

(M2
1,1ẑ[1]2 −M2

2,0ẑ[2])ẑ[3]2

+M2
3,−1ẑ[1](ẑ[2]2 − ẑ[1]4)

+ ẑ[1]4ẑ[2](M2
2,0ẑ[1]2 −M2

1,1ẑ[2])

= 0.

(II.17)

We then obtain the following expression for ẑ[3] = a1
b1

as a
rational function of ẑ[1] and ẑ[2]:

a1 = ẑ[1]ẑ[2](M2
1,0M

2
2,0ẑ[1]4 −M1,0M

2
1,1ẑ[1]2ẑ[2]

−M2,0M2,−1ẑ[1]2ẑ[2] +M1,0M2,0ẑ[2]2),
(II.18)

b1 = M1,0M3,−1ẑ[1]4 −M2,−1M3,−1ẑ[1]2ẑ[2]

−M1,1M3,−2ẑ[1]2ẑ[2] +M2,0M3,−2ẑ[2]2.

At this point we have shown that knowledge of ẑ[1], ẑ[2]
determine ẑ[n + 1] for n ≥ 2, assuming that the rational
expressions (II.14) and (II.18) are well defined (see the
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discussion at the end of the proof). We can also use the
quadratic equations (II.12) (with n = 3) and (II.17) to obtain
a second expression for ẑ[3]2 as a rational function of ẑ[1]
and ẑ[2]. Equating this expression for ẑ[3]2 with the square
of the expression for ẑ[3] given by (II.18), we obtain the
following palindromic quartic equation for ẑ[2] in terms of
ẑ[1]:

A0ẑ[1]8 +A1ẑ[1]6ẑ[2] +A2ẑ[1]4ẑ[2]2

+A1ẑ[1]2ẑ[2]3 +A0ẑ[1]4 = 0,
(II.19)

where

A0 = M2
1,0M

2
2,0 −M1,0M2,0M3,−2M3,−1

A1 = −2M2
1,0M1,1M2,0 − 2M1,0M2,−1M

2
2,0

+M1,1M2,0M
2
3,−2 +M1,0M1,1M3,−2M3,−1

+M2,−1M2,0M3,−2M3,−1 +M1,0M2,−1M
2
3,−1

A2 = M2
1,0M

2
1,1 + 2M1,0M1,1M2,−1M2,0 + 2M2

1,0M
2
2,0

+M2
2,−1M

2
2,0 −M2

1,1M
2
3,−2 −M2

2,0M
2
3,−2

−2M1,1M2,−1M3,−2M3,−1 −M2
1,0M

2
3,−1

−M2
2,−1M

2
3,−1.

Taking the complex conjugate of (II.19) and using the fact
that ẑ[i] lies on the unit circle so ẑ[i] = ẑ[i]−1, we obtain

A0ẑ[1]−8 +A1ẑ[1]−6ẑ[2]−1 +A2ẑ[1]−4ẑ[2]−2

+A1ẑ[1]−2ẑ[2]−3 +A0ẑ[1]−4= 0.
(II.20)

Multiplying (II.20) by ẑ[1]8ẑ[2]4, we obtain a second quartic
equation satisfied by ẑ[2]:

A0ẑ[1]8 +A1ẑ[1]6ẑ[2] +A2ẑ[1]4ẑ[2]2

+A1ẑ[1]2ẑ[2]3 +A0ẑ[2]4= 0.
(II.21)

Now take
√
−1(A0(II.21) − A0(II.19)) and we obtain the

following equation with real coefficients

ẑ[1]2ẑ[2](B1ẑ[1]4 +B2ẑ[1]2ẑ[2] +B1ẑ[2]2) = 0, (II.22)

where B1 = 2=(A0A1) and B2 = 2=(A0A2) (= stands for
the imaginary part of a complex number). Since ẑ[1], ẑ[2] 6=
0, we see that ẑ[2] satisfies the real palindromic equation

B1ẑ[1]4 +B2ẑ[1]2ẑ[2] +B1ẑ[2]2 = 0. (II.23)

Since the equation is palindromic, if ẑ[2] is a root then
1/ẑ[2] = ẑ[2] is also necessarily a root.

At this point we have shown that given ẑ[1], there
are (at most) two possible values for ẑ[2] provided that
B1, B2 are non-zero. Once we have ẑ[1], ẑ[2], the val-
ues of ẑ[3], . . . , ẑ[L/2] are uniquely determined, assuming
that the rational expressions (II.14) and (II.18) are well-
defined. However, we have no constraints on ẑ[1] other
than it lies on the unit circle. Indeed, the polynomial
equations (II.12), (II.13), (II.17), (II.23) are weighted ho-
mogeneous where the variable ẑ[n] has weight n. In other
words, if (ẑ[1], ẑ[2], ẑ[3], . . . , ẑ[L/2]) is a solution, then

(λẑ[1], λ2ẑ[2], . . . , λL/2ẑ[L/2]) will be a solution for any
λ ∈ S1. When L is even we obtain a constraint on ẑ[1] by
noting that ẑ[L/2]2 = 1 since z[L/2] = 1/z[L/2] because
L/2 = L − L/2. Hence we must have (λL/2)2 = 1; i.e.,
λL = 1, so λ is an L-th root of unity. Hence our system can
have at most 2L solutions. When L is odd, we observe that
ẑ[(L− 1)/2] = ẑ[L− (L− 1)/2] = ẑ[(L+ 1)/2] = ẑ[(L+
1)/2]−1, and so ẑ[(L−1)/2]ẑ[(L+1)/2] = 1; and replacing
ẑ[k] with λkẑ[k], we find λLẑ[(L− 1)/2]ẑ[(L+ 1)/2] = 1,
i.e., λL = 1. Hence, our system can only have at most 2L
solutions in this case as well.

Generic Conditions. To complete the proof, we ex-
plain why for generic (x, ρ) with all x̂[i] non-zero, the
quadratic equation (II.23) is non-zero and the rational
expressions (II.14) and (II.18) are well-defined. To show
that (II.23) is non-vanishing for generic (x, ρ) we must
show that A0A1 and A0A2 are not pure real. This is a real
polynomial condition on A0, A1, A2, which are themselves
polynomials in the entries of ρ and x. To prove that this
condition holds generically, it suffices to prove that this is the
case for a single choice of (x, ρ). Moreover, since the sim-
plex is Zariski dense in the linear subspace

∑
p[i]+q[i] = 1,

it suffices to verify this when the vector ρ lies in this
subspace without necessarily being a probability distribution.
Applying the Fourier transform, it suffices to verify that the
condition holds for a single pair (x̂, p̂) with p̂[0] + q̂[0] =
1. The expressions for A0, A1, A2 are determined by the
moment entries M1,0,M2,−1,M3,−2,M2,0,M1,1,M3,−2,
which are in turn determined by the seven values
x̂[1], x̂[2], x̂[3], p̂[1], p̂[2], q̂[L−1], q̂[L−2]. In particular if we
set {x[1], x[2], x[3]} = {1, 1,

√
−1}, {p̂[1], p̂[2]} = {1, 1}

and {̂q[L−1], q[L−2]} = {1 +
√
−1,
√
−1}, then B1 = 16

and B2 = −32.
Since (z, ρ′) = (x, ρ) automatically satisfies the system

of equations (II.9), it follows that ẑ[1] = λx[1], where λ is
an L-th root of unity. Moreover, we know that that when
ẑ[1] = x̂[1], the quadratic equation (II.23) has solutions
ẑ[2] = {x̂[2], 1/x̂[2]}. Hence, if ẑ[1] = λx̂[1], then (II.23)
has solutions ẑ[2] = {λ2x̂[2], 1/(λ2x̂[2])}. It follows that
the rational expression (II.18) is well-defined as long the
polynomial expressions

(M2
1,0M

2
2,0ẑ[1]4 −M1,0M

2
1,1ẑ[1]2ẑ[2]

−M2,0M2,−1ẑ[1]2ẑ[2] +M1,0M2,0ẑ[2]2),

and

(M1,0M3,−1ẑ[1]4 −M2,−1M3,−1ẑ[1]2ẑ[2]

−M1,1M3,−2ẑ[1]2ẑ[2] +M2,0M3,−2ẑ[2]2),
(II.24)

are both non-zero when {ẑ[1], ẑ[2]} = {λx̂[1], λ2x̂[2]}
or {ẑ[1], ẑ[2]} = {λx̂[1], 1/(λ2x̂[2])}. If this is the
case, then it follows that ẑ[3] = λ3x̂[3] or ẑ[3] =
1/(λ3x̂[3]) because we know that (x̂[1], λx̂[2], λ3x̂[3]) and
(x̂[1], 1/(λ2x̂[2]), 1/(λ2x̂[3])) are the first three entries of a
vector in the D2N orbit of the vector x̂. Using (II.15) and
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(II.16), we can now continue recursively to obtain sufficient
genericity conditions on the pair (x, ρ).

Remark II.5. As can be seen from the proof, we only use
∼ 5L/2 of the entries of Mi,j (out of L2 entries overall)
to determine the orbit of x. Precisely, we only use the ∼
5L/2 entries M`,−`,M`,1−`,M`+1,0,M`,1 and M`−1,2 for
` = 0, . . . , L/2. A similar observation was made in [16].

C. General theory for MRA with a general distribution over
finite groups

The purpose of this section is to discuss the theory of
moments for the MRA problem for finite groups. Our goal
is to highlight the mathematical differences between uniform
and generic distributions on the group G. Precisely, the
dihedral MRA model (I.1) we consider here is a special
case of the following MRA problem:

Recover a signal x ∈ V from moment measurements
of gi · x + εi, where the group elements gi are chosen ‘at
random’ from a finite group G and V is a finite dimensional
vector space.

1) Uniform distribution: The case of a uniform distribu-
tion of the group elements g ∈ G was studied in depth in [8].
For the uniform distribution, the n-th moment

Mn =
1

|G|
∑
g∈G

gx⊗n,

is a tensor whose components generate the vector space
of invariant polynomial functions of degree n on V . An
important theoretical result whose proof uses Jennrich’s
algorithm for decomposing a three-tensor is the following
theorem:

Theorem. [8, Theorem D.2] Let G be a finite group and
let V be the regular representation of G over R, then the
generic orbit Gx consists of linearly independent vectors
and consequently generic recovery is possible from degree
3 invariants.

(The regular representation of a finite group is the |G|
dimensional vector space of functions G → R where the
group G acts by (g ◦ f)(h) = f(g−1h).)

Since RL is the regular representation of the cyclic group
ZL, the Theorem above implies that for the uniform distri-
bution on ZL the generic vector x ∈ RL can be recovered
from the third order moment: a result originally proved in
[14], [39]. Note, however, that this result cannot be applied
for the action of D2L on RL because RL is not the regular
representation of D2L since its dimension is smaller than
the order of the group D2L. As a result, we do not know
if the first three moments suffice to recover a generic orbit
when the distribution in D2L is uniform.

2) Generic distributions: We now give a theoretical anal-
ysis of the situation where the group elements gi are taken
from a generic distribution on the finite group G, as we do
here for the dihedral group D2L and as was done in [2] for
the cyclic group ZL.

Observe that a probability distribution on a finite group is
a function ρ : G → R satisfying the conditions ρ(g) ≥ 0
for all g ∈ G and

∑
g∈G ρ(g) = 1. Thus, a probabil-

ity distribution is a vector ρ in the regular representation
which lies in the simplex ∆|G| ⊂ R(G), where R(G)
denotes the regular representation. By definition, the n-
th order moment associated to a probability distribution ρ
on G, Mn :=

∑
g∈G ρ(g)(gx)⊗n is a n-tensor of invariant

polynomials of bidegree (1, n) on R(G)× V . Of particular
interest in this paper is the second order moment M2(x, ρ) =∑
g∈G ρ(g)(gx)(gx)T , when G is the dihedral group. In this

case, the second order moment gives a collection of invariant
functions of total degree 3 on R(G)× V .

The following result which is of purely theoretical interest
states that the orbit of a generic pair (ρ, x) ∈ R(G) can be
determined from the full collection of degree 3 invariant
polynomials.

Proposition II.6. The set of all degree 3 invariants on
R(G)× V determines the G-orbit of a generic pair (ρ, x).

Proof. As in [8] it suffices to show that the orbit of a generic
(ρ, x) ∈ R(G)×V consists of linearly independent vectors.
Note that projection map R(G)×V → R(G) is G-invariant.
Thus the projection of the orbit G(ρ, x) to R(G) is the G-
orbit of ρ in R(G). It then follows from [8, Theorem D.2]
that Gρ consists of linearly independent vectors and hence
so does G(ρ, x). We can then recover the orbit from degree
three invariants.

Remark II.7. Note that there is no way to estimate all of
the degree invariants in R(G)×V from a given set of MRA
measurements. For this reason, Proposition II.6 is only of
theoretical interests. In particular, note that even from a
theoretical point of view our results for the dihedral group
acting on V = RL are much stronger that the guarantee
given by Proposition II.6 since they state that quite a small
subset of the degree three invariants of R(G) × V are
sufficient to recover generic orbits.

a) List recovery.: Following the terminology of [8,
Section 1.4], we say that a signal x admits list recovery from
a set of moment measurements if there are a finite number
of orbits with same moments. As was done in [8, Section
4.2.2], one can use the Jacobian criterion to determine if a
collection of MRA moments with generic distribution allows
list recovery for a generic orbit x.

Precisely, let f1, . . . , fr ∈ R[p1, . . . , pg, x1, . . . , xL]G

be a collection of invariant polynomials of degrees
(1, d1), . . . , (1, dr) corresponding to some set of entries of
the moment tensors
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Md1(ρ, x), . . . ,Mdr (ρ, x). Then these moments are suffi-
cient to allow list recovery of a generic signal if and only
if the rank of the Jacobian matrix J(f1, . . . , fr) equals
|G| − 1 + L. The rank of the Jacobian can be effectively
computed in examples, but this will be considered in another
work.

An easy consequence of the Jacobian criterion is the
following corollary.

Corollary II.8. If |G| >
(
L+1

2

)
+ L, then list recovery is

impossible from second order moments.

Proof. Since the second order moment tensor is symmetric,
the total number of first and second order moments is L +(
L+1

2

)
which is smaller than G − 1 + L so list recovery is

impossible.

b) Orbit recovery.: Using methods from algebraic ge-
ometry we can also give a criterion for when a collection
of moment polynomials allows for generic orbit recovery.
However, this criterion involves computing the dimension
and degree of an algebraic variety. Such calculations can be
done symbolically using a computer algebra system but not
efficiently [15, Appendix D].

To simplify the discussion we focus on the first and second
order moments and recall the strategy used in the proof of
Theorem II.3. Given a generic probability distribution ρ =
{pg}g∈G=D2L

and a generic vector x ∈ V = RL, we proved
that the following system of bilinear equations in the 3L−1
unknowns x′, p′g has at most 2L = |G| solutions∑

g pggx− p′ggx′ = 0,∑
g(pg(gx)T gx− p′g(gx′)T gx′) = 0.

(II.25)

(Note that the number of unknowns is 3L − 1 because∑
g∈G p

′
g = 1 since ρ′ is a probability distribution and

we can therefore express one of the pg in terms of the
other ones.) The next proposition shows that our verification
was equivalent to proving a statement about an incidence
variety associated to the group G and vector space V =
RL. To formulate the result, we first establish notation
for the action of a finite group G on a vector space V .
Let I ⊂ (R(G) × V )2 be the subvariety defined by the
bilinear equations (II.25), where the x, x′, {pg}, {p′g} are all
considered variables. Since ρ, ρ′ are probability distributions∑
g∈G pg =

∑
g∈G p

′
g so we can view this as a system of

equations in 2(dimV + |G| − 1) variables.
In the language of algebraic geometry, I is called an

incidence variety. The geometry of the incidence variety I
characterizes when orbit and list recovery are possible.

Proposition II.9. Let G be a finite group acting on a vector
space V , and let I ⊂ (R(G)×V )2 be an incidence defined
in (II.25).

1) If dim I = dimV + |G|−1, then for a generic signal x
and probability distribution ρ = {pg}g∈G, list recovery

is possible from the first and second order moments
M2(x, ρ).

2) If dim I = dimV + |G| and in addition deg I = |G|,
then for a generic signal x and probability distribution
ρ = {pg}g∈G, orbit recovery is possible from the first
and second orders moment M2(x, ρ).

Proof. Consider the projection π : I → R(G)×V defined by
(x, ρ, x′, ρ′) 7→ (x, ρ). If dim I = dimV + R(G)− 1, then
the generic fiber of π must be 0-dimensional. Hence, for a
generic vector x ∈ V and probability distribution ρ ∈ R(G),
there can be at most a finite number of pairs (x, ρ, x′, ρ′) ∈
I . In other words, there are finite number of vectors x′

such that there exist a distribution ρ′ with the property that
M1(x, ρ) = M1(x′, ρ′) and M2(x, ρ) = M2(x′, ρ′) This
proves part (i).

Note that for each g ∈ G, the set Xg = {(x, ρ, gx, gρ)|x ∈
V, ρ ∈ R(G)} is a dimV + |G| − 1-dimensional subvariety
of I , which is isomorphic to R(G) × V . In particular, if
dim I = dimV + |G| then it must necessarily be an irre-
ducible component of the variety V in the sense of algebraic
geometry. Hence, if dim I = dimV + |G| − 1 then I has
at least |G| irreducible components. and therefore its degree
must be at least |G|. Hence, if dim I = dim |V | + |G| − 1
and deg I = |G|, then I has exactly |G| irreducible compo-
nents and for generic x, ρ there will be exactly |G| pairs
(x, ρ, x′, ρ′) ∈ I . Hence each x′ must necessarily equal
gx for some g ∈ G. Therefore, the first and second order
moments recover generic orbits x in this case.

III. ALGORITHMS

In this section, we introduce three algorithmic paradigms
to estimate the signal x from dihedral MRA observations
y1, . . . , yn as in (I.2). We first introduce the three methods,
and then compare them numerically in Section III-D.

A. Group synchronization

If the group elements g1, . . . , gn ∈ D2L were known, es-
timating the signal can be done by aligning the observations
and averaging out the noise:

xest =
1

n

n∑
i=1

g−1
i yi. (III.1)

This motivates synchronization methods to estimate the
unknown group elements from the observations. Synchro-
nization starts by aligning all pairs of observations yi, yj ,
i 6= j, so that

yi ≈ gijyj , (III.2)

for some group element gij ∈ D2L. A standard alignment
procedure is based on cross-correlating the observations.
In more general groups, other common features can be
harnessed; see for example [31], [50]. The relation (III.2) is
merely a proxy to gi ·x ≈ gijgj ·x, which in turn means that
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gig
−1
j ≈ gij . At this stage, one reduces the MRA problem

to the problem of group synchronization [49], where we aim
at estimating the unknown group elements g1, . . . , gn from
a subset of their ratios gig−1

j , often corrupted with noise.
Early synchronization studies addressed the problem over

compact groups, such as, finite groups, phases, and rotations.
The common property of all synchronization cases over
compact groups is that we can reduce them all to synchro-
nization over rotations, or a subgroup of rotations, by using
a faithful orthogonal representation [20], [23], [40], [52].
Further generalizations extended synchronization methods
to non-compact groups, and in particular to the Euclidean
group, see e.g., [38], [44], [17].

Specifically for the dihedral MRA problem (I.1), we start
by computing the cross-correlation between any observation
yi and any other observation yj and its reflection syj . The
maximal value indicates the best alignment as in (III.2). The
resulting ratios gij ≈ gig−1

j serve as an input for a standard
spectral algorithm [49], which uses a rounding procedure
onto the dihedral group, resulting in estimates of the group
elements g̃1, . . . , g̃n. The orbit of the signal is then estimated
by averaging over the synchronized observations

xest =
1

n

n∑
i=1

g̃−1
i yi. (III.3)

Unfortunately, in low SNR environments the error of es-
timating the ratios gig−1

j , and thus of estimating g1, . . . , gn,
grows rapidly [5], [42], [41], [13]. Thus, in such regimes
we consider techniques which aim to recover the signal
x directly, bypassing the estimation of the missing group
elements {gi}ni=1. Next, we present two such methods, based
on expectation-maximization and the method of moments.

B. Maximum likelihood estimation using expectation-
maximization

The log-likelihood function of (I.1) is given by

`(x, ρ) = log p(y1, . . . , yn;x, ρ)

=
N∑
i=1

log

2L∑
j=1

ρ[j]
1

(2πσ2)L/2
e−
||yi−g[j]·x||

2

2σ2 ,
(III.4)

where g[1], . . . , g[2L] are the elements of D2L. This is the
standard likelihood function of a Gaussian mixture model,
but all centers are connected through the orbit of D2L acting
on x. We wish to find the signal x and distribution ρ that
maximize (III.4). In the sequel, we assume no prior informa-
tion on the signal and the distribution. If such information
is available, then it is useful to consider the log-posterior
distribution log p(x, ρ|y1, . . . , yn), which is equal to the log-
likelihood plus the log of the prior terms.

To maximize the likelihood function, we devise an
expectation-maximization (EM) algorithm [25]. The EM
algorithm has been successfully applied to other MRA
setups [14], [2], [36], [33] as well as for cryo-EM [45],

[48], [12]. Although EM is not guaranteed to achieve the
maximum of the non-convex likelihood function (III.4), it
is guaranteed that each EM iteration does not reduce the
likelihood. In addition, for the general discrete MRA model,
it was shown that at low noise, this landscape is “benign”,
namely, there are no spurious local optima (besides the
maximum likelihood) and only strict saddle points. At high
noise, this landscape may develop spurious local optima,
depending on the specific group. In addition, it was shown
that the likelihood landscape is locally convex [27].

EM is an iterative algorithm, and each step consists of
two steps. In the first step, called the E-step, the expectation
of the complete likelihood (namely, the joint likelihood of
x, ρ and the group elements) is computed. The expectation is
taken with respect to the group elements (i.e., the nuisance
variables), given the current estimates of the signal xt and
the distribution ρt:

Q(x, ρ|xt, ρt) = E
{

log p(y1, . . . , yn, g1, . . . , gn;x, ρ)
}

=
n∑
i=1

E
{
− 1

2σ2
‖yi − gi · x‖2 + log ρ[gi]

}
+ constant

=

N∑
i=1

2L∑
j=1

wi,j

{
− 1

2σ2
‖yi − g[j] · x‖2 + log ρ[j]

}
+ constant,

(III.5)

where

wi,j =
ρt[j]e

−1

2σ2
‖yi−g[j]·xt‖2∑2L

j=1 ρt[j]e
−1

2σ2
‖yi−g[j]·xt‖2

. (III.6)

The second step, called M-step, maximizes Q with respect
to x and ρ. In our case, the update step reads:

xt+1 =
1

n

N∑
i=1

2L∑
j=1

wi,jg
−1[j]yi

ρt+1[j] =

∑n
i=1 wi,j∑n

i=1

∑2L
j=1 wi,j

.

(III.7)

If prior information is available (and thus the EM tries to
maximize the posterior distribution rather than the likeli-
hood), then it will act as a regularizer on the solution of
the M-step. The EM algorithm iterates between computing
the weights (III.6) and updating the parameters (III.7) until
a stopping criterion is met.

C. The method of moments

The idea behind the method of moments is finding a pair
(x, ρ) whose moments match the empirical moments of the
observations. In particular, according to Theorem I.1, only
the first two moments are required to uniquely characterize
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the orbit of generic x and ρ. The empirical moments can be
computed from the data simply by averaging:

M1
est =

1

n

n∑
i=1

yi,

M2
est =

1

n

n∑
i=1

yiy
T
i .

(III.8)

By the law of large numbers, and using Lemma II.2, for
large n we have

M1
est ≈M1(x, ρ) = Cpx+ Cqsx,

M2
est ≈M2(x, ρ) = CxDpC

T
x + CsxDqC

T
sx,

(III.9)

where Cz ∈ RL×L is a circulant matrix generated by z ∈
RL, and Dz ∈ RL×L is a diagonal matrix whose entries are
z. As n→∞, M1

est→M1(x, ρ) and M2
est→M2(x, ρ) almost

surely.
A common practice is to estimate (x, ρ) from M1

est and
M2

est by minimizing a non-convex least squares objective:

min
x̃∈RL,[p,q]∈∆2L

∥∥∥M2
est − Cx̃DpC

T
x̃ − Csx̃DqC

T
sx̃

∥∥∥2

F

+ λ
∥∥∥M1

est − Cpx̃− Cqsx̃
∥∥∥2

2
.

(III.10)

The solution of (III.10) is the method of moments estimator.
While the objective function (III.10) is non-convex, it seems
to provide accurate estimates in many cases. In the low
SNR regime, the method of moments is tightly connected
to the maximum likelihood estimator. Specifically, in this
regime likelihood optimization reduces to a sequence of least
squares optimization problems that match moments [35],
[26]. Since we use only two moments, the method of
moments (III.10) can be interpreted as an approximation of
the maximum likelihood estimator.

D. Numerical experiments

This section compares numerically the algorithmic
methods discussed above: synchronization, expectation-
maximization, and the method of moments. We define
signal-to-noise ratio (SNR) as ‖x‖2 /(Lσ2). To account for
the group symmetry, we define relative error as

relative error = min
g∈D2L

‖g · xest − x‖
‖x‖

, (III.11)

where xest is the signal estimate. The entries of the ground-
truth x of length L = 10 were drawn i.i.d. from a normal
distribution with mean zero and variance one, and the dis-
tribution ρ was uniformly sampled from the simplex ∆2L.

We consider two regimes: (i) a relatively small number
of observations (n = 1000) and moderate SNR levels,
and (ii) large n and low SNR. The code to reproduce
all experiments is publicly available at https://github.com/
nirsharon/DihedralMRA. The results below represent the
average over 50 trials. We initialized the EM algorithm from

10
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10
1

10
2

10
-3

10
-2

10
-1

10
0

Fig. 2: The relative error of the three methods under mod-
erate SNR levels with n = 1000 observations. As the SNR
deteriorates, the synchronization method fails to estimate the
group elements, and thus the signal, accurately.

a single random point and halted it when the difference of
the likelihood between two consecutive iterations dropped
below 10−4, or after a maximum of 400 iterations. For the
method of moments, we minimized (III.10) using the trust-
regions method; we initialized the optimization algorithm
from 10 different random initial guesses and chose the one
that yields the least value of the cost (III.10). The number
of trust-regions iterations was limited to 200.

a) Moderate SNR regime.: We begin with a noise
regime where the synchronization approach presents a viable
alternative to EM and the method of moments. Figure 2
shows the relative error of the three methods as a function
of the SNR with n = 1000 observations. The method of
moments shows inferior results compared to synchronization
and EM since the empirical moments do not approximate
the population moments accurately enough for such a small
number of observations. For high SNR, the performance
of synchronization and EM are comparable. The synchro-
nization behavior is thus compatible with current knowl-
edge about the synchronization problem and the spectral
algorithm specifically, see, e.g., [24], [29]. However, as
the SNR drops, synchronization fails to estimate the group
elements accurately, while both the method of moments
and EM present consistent error rates. This phenomenon
agrees with theoretical findings regarding alignment in the
presence of high noise [5] and synchronization when applied
to such corrupted input data [50]. As the SNR approaches
1, when the signal and the noise are of the same order, the
synchronization method introduces relative error close to 1,
meaning it contributes no information about the solution.



10

b) Low SNR.: We discard the synchronization algo-
rithm in the low SNR regime as it cannot cope with high
noise levels, as demonstrated in Figure 2. In addition,
since the first step of the synchronization method involves
pairwise alignment, the synchronization input consists of
O(n2) group elements, and so the computational complexity
of this method makes it impractical for as many as n = 105

observations.
Figure 3a shows relative errors as a function of SNR. The

EM outperforms the method of moments for SNR values
above 1/10. For lower SNR levels, the method of moments
shows similar estimation rates. In the high SNR regime, the
error curves of both methods scale as SNR−1/2, namely as
σ, which is the same estimation rate as if the group elements
were known. In particular, the numerical slope of the EM
method is −0.4999 and the method of moments presents
a numerical slope of −0.5104. In the low SNR regime,
however, the error curves scale as SNR−1 ∝ σ2. While this
slope is expected for the method of moments that directly
uses the first two moments (and thus its standard deviation
is proportional to σ2), the moments do not appear explicitly
in the EM iterations. Specifically, the numerical slopes for
SNR values below 1/10 were −1.0561 and −1.1058 for the
method of moments and EM, respectively. This rate implies
that accurate estimation requires n � σ4, corroborating
our theoretical findings (Corollary I.2) that no algorithm
can achieve better estimation rates in the low SNR regime.
A similar phenomenon was observed by previous MRA
studies [48], [14], [2], [18]. For the connection between EM
and the method of moments in the low SNR regime, see [35],
[27], [26].

Figure 3b presents the corresponding average runtime.
The runtime of EM increases as the SNR decreases, while
the runtime of the method of moments remains roughly
constant. The reason for the growth in runtime is revealed
in Figure 4, where we display the average number of EM
iterations as a function of SNR. The figure shows that the
number of iterations is inversely proportional to the SNR.
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