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Two-dimensional multi-target detection: an
autocorrelation analysis approach

Shay Kreymer and Tamir Bendory

Abstract—We consider the two-dimensional multi-target detec-
tion problem of recovering a target image from a noisy measure-
ment that contains multiple copies of the image, each randomly
rotated and translated. Motivated by the structure reconstruction
problem in single-particle cryo-electron microscopy, we focus
on the high noise regime, where the noise hampers accurate
detection of the image occurrences. We develop an autocorrela-
tion analysis framework to estimate the image directly from a
measurement with an arbitrary spacing distribution of image
occurrences, bypassing the estimation of individual locations
and rotations. We conduct extensive numerical experiments, and
demonstrate image recovery in highly noisy environments. The
code to reproduce all numerical experiments is publicly available
at https://github.com/krshay/MTD-2D.

Index Terms—Autocorrelation analysis, multi-target detection,
cryo-electron microscopy.

I. INTRODUCTION

WE study the multi-target detection (MTD) problem of
estimating a target image f : R2 → R from a noisy

measurement that contains multiple copies of the image,
each randomly rotated and translated [1], [2], [3], [4], [5].
Specifically, let M : {0, . . . , N − 1}2 → R be a measurement
of the form

M [~̀] =

p∑
i=1

Fφi [
~̀− ~̀i] + ε[~̀], (1)

where
• {φi}pi=1 ∼ Unif[0, 2π) are uniformly distributed rota-

tions;
• Fφi [

~̀] := fφi(
~̀/n) is a discrete copy of f , rotated by

angle φi about the origin; n is a fixed integer;
• {~̀i}pi=1 ∈ {n+ 1, . . . , N − n}2 are arbitrary transla-

tions;
• ε[~̀] is i.i.d. Gaussian noise with zero mean and

variance σ2.
The rotations, translations and the number of occurrences

of f in M are unknown. Importantly, since the rotations
are unknown, it is possible to reconstruct the target image
only up to a rotation. Section II-A introduces the image
model of f in detail. Figure 1 presents an example of a
measurement M at different signal-to-noise ratios (SNRs). We
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(a) No noise.

2

0

2

4

6

8

(b) SNR = 10.

20

15

10

5

0

5

10

15

20

(c) SNR = 0.5.

Fig. 1: Three measurements at different noise levels: no
noise (left); SNR = 10 (middle); SNR = 0.5 (right). Each
measurement contains multiple rotated versions of the target
image in arbitrary locations. In this work, our goal is to
estimate the target image directly from the measurement. We
focus on the low SNR regime (e.g., panel (c)) in which the
image occurrences are swamped by the noise, and the locations
and rotations of the image occurrences cannot be detected
reliably.

define SNR :=
‖F 0‖2F
Aσ2 , where A is the area in pixels of F 0 (the

unrotated image), and σ2 is the noise variance.
The MTD model arises in several scientific applications,

such as passive radar [6], astronomy [7], motion deblur-
ring [8], and system identification [9]. In particular, it
serves as a mathematical abstraction of the cryo-electron mi-
croscopy (cryo-EM) technology for macromolecular structure
determination [10], [11], [12]. In a cryo-EM experiment [13],
biological macromolecules suspended in a liquid solution are
rapidly frozen into a thin ice layer. An electron beam then
passes through the sample, and a two-dimensional tomo-
graphic projection is recorded. Importantly, the 2-D location
and 3-D orientation of particles within the ice are random and
unknown. This measurement, called micrograph, is affected
by high noise levels and the optical configuration of the
microscope. This transformation is typically modeled as a
convolution of the model (1) with a point spread function,
whose Fourier transform is called contrast transfer func-
tion (CTF) [14], [15].

In the current analysis workflow of cryo-EM data [16],
[17], [18], the 2-D projections are first detected and extracted
from the micrograph, and later rotationally and translationally
aligned to reconstruct the 3-D molecular structure. This ap-
proach fails for small molecules, which induce low contrast,
and thus low SNR. This makes them difficult to detect and
align [5], [10], [16], [19], rendering current cryo-EM algorith-
mic pipeline ineffective. For example, in the limit SNR→ 0,
reliable detection of signals’ locations within the measurement
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is impossible [5, Proposition 3.1].
The MTD model was devised in [5] in order to study the re-

covery of small molecules directly from the micrograph, below
the current detection limit of cryo-EM [10], [20]. An autocor-
relation analysis technique (see Section II-B) was implemented
to recover low-resolution 3-D structures from noiseless simu-
lated data under a simplified model. Autocorrelation analysis
consists of finding an image that best explains the empirical
autocorrelations of the measurement. For any noise level, those
autocorrelations can be estimated to any desired accuracy
for sufficiently large N . Computing the autocorrelations is
straightforward and requires only one pass over the data, which
is advantageous for massively large datasets, such as cryo-EM
datasets [16]. As such, autocorrelation analysis provides an
attractive alternative to other computational methods, such
as maximum likelihood estimation, which is intractable for
the MTD problem [2]. In addition, autocorrelation analysis
allows to account for the CTF, under mild conditions. These
conditions are summarized in Proposition 2 in Appendix A.

In order to further investigate the method proposed in [5]
from analytical and computational perspectives, the MTD
model was studied in [1] for one-dimensional signals and
under the assumption that the signal occurrences are either
well-separated or follow a Poisson distribution. In [2], the
mathematical framework was extended to account for arbitrary
spacing of one-dimensional signal occurrences. In [3], [4], the
authors laid the foundations for analyzing the MTD problem
in two dimensions, where the sought images are arbitrarily
rotated, but still well-separated. This case, where each image
in the measurement is separated by at least a full image
diameter from its neighbors, is presented in Figure 2a. Notably,
when computing the entries of the measurement’s autocor-
relations which are smaller than the image’s diameter, each
image occurrence interacts only with itself (as demonstrated
in Figure 2b), significantly simplifying the relations between
the autocorrelations of the measurement and the target image.

This work extends the analysis of the MTD model and
generalizes previous works [1], [2], [3], [4] by considering
two-dimensional images that are both arbitrarily rotated, and
arbitrarily spaced; the image occurrences are only required
to not overlap. When dealing with an arbitrary spacing
distribution of the images in the measurement (see Figure 2c),
the autocorrelations of the measurement involve intricate in-
teractions between adjacent image occurrences (see for in-
stance Figure 2d), leading to complicated relations between
the autocorrelations of the measurement and the sought image.

The main contribution of this paper is in developing an
autocorrelation analysis framework for the two-dimensional
MTD problem with an arbitrary spacing distribution. We
define the separation functions between a pair and a triplet
of adjacent image occurrences in the measurement, allowing
us to relate the autocorrelations of the measurement with
those of the target image. Then, we devise an algorithm for
the recovery of the target image from a measurement, and
demonstrate a successful reconstruction in noisy regimes (see
Section III). It is thus a significant step towards efficiently
estimating a molecular structure directly from a noisy cryo-EM
micrograph [5].

(a) An example of a noise-
less well-separated measure-
ment with three arbitrarily ro-
tated and translated copies of a
target image.

(b) The measurement from (a)
and two of its shifted versions.

(c) An example of a noiseless
measurement with three arbi-
trarily rotated and translated
copies of a target image.

(d) The measurement from (c)
and two of its shifted versions.

Fig. 2: A comparison between a well-separated measure-
ment (a) and a measurement with an arbitrary spacing distribu-
tion (c). The third-order autocorrelation of a measurement M
of the form (1) is the product of M with two shifted copies
of itself (the shifts are marked by the red arrows). For
well-separated measurements, as presented in panel (b), any
given image occurrence in M is only ever correlated with
itself, and never with another image occurrence. In contrast,
for the arbitrary spacing distribution case studied in this paper
and illustrated in panel (d), the third-order autocorrelation
involves complicated interactions between neighboring image
occurrences, and consequently between the autocorrelations of
the measurement and the target image.

II. MATHEMATICAL FRAMEWORK

A. Image model

We consider an image f : R2 → R, which is supported
on the unit disk D = {~x ∈ R2 : |~x| ≤ 1}. We assume that f
has a finite expansion in the basis of Dirichlet Laplacian
eigenfunctions; this is a standard assumption in the litera-
ture [4], [21], [22], which is akin to assuming that the image is
bandlimited. This implies that we can expand the image (see
Appendix B) as

f(r, θ) =
∑

(ν,q):λν,q≤λ

αν,qψν,q(r, θ), for r ≤ 1, (2)

in polar coordinates (r, θ), where λ is called the bandlimit
frequency. The expansion coefficients are denoted by αν,q ,



IEEE TRANSACTIONS ON SIGNAL PROCESSING 3

and
ψν,q(r, θ) = Jν (λν,qr) e

iνθ, for r ≤ 1, (3)

where ν ∈ Z≥0, Jν is the ν-th order Bessel function
of the first kind, and λν,q > 0 is the q-th positive root
of Jν , where λν,q = λ−ν,q . This expansion is known as the
Fourier-Bessel expansion. The number of required coefficients
is given by the sampling criterion provided in [22], [23], which
is the analog of the classical Nyquist sampling rate. For each
fixed ν, we define

gν(r, θ) =
∑

q:λν,q≤λ

αν,qψν,q(r, θ), (4)

so that

f(r, θ) =

νmax∑
ν=−νmax

gν(r, θ), (5)

where νmax := max{ν : λν,1 ≤ λ}.
The basis of Dirichlet Laplacian eigenfunctions is steer-

able: rotating f is equivalent to modulating the expansion
coefficients αν,q . Specifically, fφ(r, θ) := f(r, θ + φ) can be
computed by multiplying each term in (5) by eiνφ:

fφ(r, θ) =

νmax∑
ν=−νmax

eiνφgν(r, θ). (6)

As actual cryo-EM measurements are discretized on a
Cartesian grid, we will focus on the analysis of a discrete
version of f , under the assumption of point-wise sampling.
The discrete image Fφ : Z2 → R is thus defined by

Fφ[~̀] = fφ(~̀/n), for ~̀ ∈ Z2, (7)

where n is a fixed integer that determines the sampling
resolution. In our case, n is the radius of f , in pixels.
Since fφ is supported on the unit disk D, it follows that Fφ is
supported on {~̀ ∈ Z2 : |~̀| ≤ n}.

Let Ψν,q : Z2 → C be the discretization of the Dirichlet
Laplacian eigenfunctions (3)

Ψν,q[~̀] = ψν,q(~̀/n), (8)

and let Ψ̂ν,q : Z2 → C be the discrete Fourier transform (DFT)
of Ψν,q

Ψ̂ν,q[~k] =
∑
~̀∈Z2

Ψν,q[~̀]e
−2πi~̀·~k/(4n). (9)

With this notation,

Fφ[~̀] =
∑

(ν,q):λν,q≤λ

αν,qΨν,q[~̀]e
iνφ

=

νmax∑
ν=−νmax

( ∑
q:λν,q≤λ

αν,qΨν,q[~̀]

)
eiνφ, (10)

and the DFT of Fφ, F̂φ : Z2 → C, is given by

F̂φ[~k] =
∑
~̀∈Z2

Fφ[~̀]e−2πi
~̀·~k/(4n). (11)

Using (9) and the linearity of the DFT, we conclude

F̂φ[~k] =
∑

(ν,q):λν,q≤λ

αν,qΨ̂ν,q[~k]eiνφ. (12)

B. Autocorrelation analysis

The autocorrelation of order q of a random sig-
nal z ∈ RN×N is defined as

Aqz[
~̀
1, . . . , ~̀q−1] := Ez

[ 1

N2

∑
~i∈Z2

z[~i]z[~i+ ~̀
1] · · · z[~i+ ~̀

q−1]
]
,

(13)
where ~̀

1, . . . , ~̀q−1 are integer shifts. Indexing out of
bounds is zero-padded, that is, z[~i] = 0 out of the
range {0, . . . , N − 1} × {0, . . . , N − 1}. In this work, we use
the first three autocorrelations which are explicitly given by

A1
z = Ez

 1

N2

∑
~i∈Z2

z
[
~i
] , (14)

A2
z

[
~̀
]

= Ez

 1

N2

∑
~i∈Z2

z
[
~i
]
z
[
~i+ ~̀

] , (15)

A3
z

[
~̀
1, ~̀2

]
= Ez

 1

N2

∑
~i∈Z2

z
[
~i
]
z
[
~i+ ~̀

1

]
z
[
~i+ ~̀

2

] .
(16)

As N2 grows indefinitely, the empirical autocorrelations of z
almost surely (a.s.) converge to the population autocorrelations
of z

lim
N→∞

1

N2

∑
~i∈Z2

z[~i]z[~i+ ~̀1] · · · z[~i+ ~̀q−1]
a.s.
= Aqz[

~̀
1, . . . , ~̀q−1],

(17)
by the law of large numbers.

Our goal is to relate the autocorrelations of the measurement
with the discretized target image F . In particular, the first-
order autocorrelation is defined as

A1
M :=

1

N2

∑
~i∈Z2

M [~i]. (18)

This is the mean of the measurement. The second-order
autocorrelation of M , A2

M : Z2 → R, is defined by

A2
M [~̀1] :=

1

N2

∑
~i∈Z2

M [~i]M [~i+ ~̀
1], (19)

and the third-order autocorrelation A3
M : Z2 × Z2 → R by

A3
M [~̀1, ~̀2] :=

1

N2

∑
~i∈Z2

M [~i]M [~i+ ~̀
1]M [~i+ ~̀

2]. (20)

We now introduce the well-separated model of the MTD
problem. Then, we address the arbitrary spacing distribution
case of the MTD problem, which is the main contribution of
this work.

C. MTD with well-separated images

We first discuss the well-separated case of the 2-D MTD
problem, which was studied in [3] and [4]. In this case, we
assume that each image in the measurement M is separated by
at least a full image diameter from its neighbors. Specifically,
we assume that

|~̀i1 − ~̀i2 | > 4n, for all i1 6= i2. (21)
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Figure 2a presents an example of a measurement obeying
the separation condition (21). To compute the third-order
autocorrelation (20), we compute the product of M with its
two shifts. As demonstrated in Figure 2b, for ~̀-s in the range

L = {0, . . . , 2n}2, (22)

any given occurrence of F in M is only ever correlated with
itself, and never with another occurrence.

To understand the relation between the autocorrelations of
the measurement and the target image F , we first need to
define the target image’s autocorrelations. Specifically, Sα1 , the
mean of the image, is given by

Sα1 :=
1

(2n+ 1)2

∑
~̀∈Z2

F [~̀], (23)

where the superscript α emphasizes the dependence on the
Fourier-Bessel expansion coefficients of F . The rotationally-
averaged second-order autocorrelation of F , Sα2 : Z2 → R, is
given by

Sα2 [~̀1] :=
1

(2n+ 1)2
1

2π

∫ 2π

0

∑
~̀∈Z2

Fφ[~̀]Fφ[~̀+ ~̀
1]dφ, (24)

and Sα3 : Z2 × Z2 → R, the rotationally-averaged third-order
autocorrelation of F , is given by

Sα3 [~̀1, ~̀2] :=
1

(2n+ 1)2
1

2π

∫ 2π

0

∑
~̀∈Z2

Fφ[~̀]×

× Fφ[~̀+ ~̀
1]Fφ[~̀+ ~̀

2]dφ. (25)

The autocorrelations of the target image, Sα1 , Sα2 and Sα3 are
supported on J := {−2n, . . . , 2n}2 ⊂ Z2, and are invariant
to rotations.

In [3], it was shown that under the separation condition (21),
for any fixed level of noise σ2, density γ and image radius n,
in the limit N →∞ we have that

A1
M

a.s.
= γSα1 , (26)

A2
M [~̀1]

a.s.
= γSα2 [~̀1] + σ2δ[~̀1], (27)

A3
M [~̀1, ~̀2]

a.s.
= γSα3 [~̀1, ~̀2]

+ γSα1 σ
2(δ[~̀1] + δ[~̀2] + δ[~̀1 − ~̀2]), (28)

for ~̀1, ~̀2 ∈ L (defined in (22)), where

δ[~̀] =

{
1 if ~̀= ~0,

0 otherwise,
(29)

is the Kronecker delta function. Here, γ is the density of the
target images in the measurement and is defined by

γ = p
(2n+ 1)2

N2
. (30)

As such, (26) - (28) relate the autocorrelations of the mea-
surement with the target image F . Previous works [1], [2],
[3], [4] demonstrated successful signal and image estimations
from the autocorrelations of the measurement. Importantly, the
aforementioned relations between the autocorrelations of M
and F do not directly depend on the location of individual

image occurrences in the measurement, but only through the
density parameter γ. Therefore, detecting the image occur-
rences is not a prerequisite for image recovery, and thus image
recovery is possible even in very low SNR regimes.

D. MTD with an arbitrary spacing distribution

We now discuss the case of arbitrary spacing distribution
of image occurrences in M . In contrast to the well-separated
model, the autocorrelations of M may now involve correlating
distinct occurrences of F , in various relative positions and
rotations. This is illustrated in Figures 2c and 2d. There, a
measurement with an arbitrary spacing distribution and its two
shifted versions are presented to illustrate the computation of
the third-order autocorrelation (20). In this case, the autocor-
relation of the measurement is a sum of the autocorrelation of
the image with itself (as in the well-separated case (26) - (28)),
with additional cross-terms contributed by its close neighbors.

Specifically, the autocorrelations of the measurement are
related to the target image not only through its autocorrela-
tions, but also through the distribution of its occurrences in
the measurement. To characterize this distribution, we define
the pair separation and triplet separation functions.

Definition 1 (Pair separation function). The pair separation
function (PSF) ξ is defined as

ξ[~̀1] :=
1

p

p∑
i=1

p∑
j=1
j 6=i

δ[~̀i − ~̀j − ~̀1], (31)

where p is the number of copies of the target image in the
measurement, and {~̀i}pi=1 are the arbitrary translations, as
defined in (1).

The PSF ξ[~̀1] is the probability that an occurrence of F
in M has a neighboring image positioned at ~̀1 with respect
to its center. Similarly to the PSF, we can define the average
interaction of a triplet of image occurrences as follows:

Definition 2 (Triplet separation function). The triplet separa-
tion function (TSF) ζ is defined as

ζ[~̀1, ~̀2] :=
1

p2

p∑
i=1

p∑
j1=1
j1 6=i

p∑
j2=1
j2 6=i

δ[~̀i − ~̀j1 − ~̀1] · δ[~̀i − ~̀j2 − ~̀2],

(32)
where p and {~̀i}pi=1 are as defined in (31).

The TSF ζ[~̀1, ~̀2] is the probability that an occurrence of F
in M has neighboring images that are positioned at both ~̀

1

and ~̀2 with respect to its center.
Using brute force algorithms, the complexity of computing

the PSF and the TSF is, respectively, O(p2) and O(p3).
To accelerate computations, a fast nearest neighbor search
method [24] is utilized to reconstruct the set of image locations
in the measurement, {~̀i}pi=1, as a binary trie. Then, for
each occurrence, only a constant number of nearest neighbors
are scanned and counted. In practice, this algorithm reduces
computation time by a few orders of magnitude.

Recall that in the arbitrary spacing distribution case (the
main focus of this work), autocorrelations of the target image
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with its close neighbors also contribute to the autocorrelations
of the measurement. To this end, we need to define the
average interaction of an image with its rotated copies. Let
us define the rotationally-averaged second-order autocorrela-
tion Sα2,pair : Z2 → R as follows

Sα2,pair[
~̀
1] :=

1

(2n+ 1)2

( 1

2π

)2 ∫ 2π

0

∫ 2π

0

∑
~̀∈Z2

Fφ[~̀]×

× Fη[~̀+ ~̀
1]dφdη, (33)

where the two terms are rotated independently about the origin.
We further define the third-order autocorrelation of a pair of
target images, Sα3,pair : Z2 × Z2 → R,

Sα3,pair[
~̀
1, ~̀2] :=

1

(2n+ 1)2

( 1

2π

)2 ∫ 2π

0

∫ 2π

0

∑
~̀∈Z2

Fφ[~̀]×

× Fφ[~̀+ ~̀
1]Fη[~̀+ ~̀

2]dφdη, (34)

where one of the instances is rotated independently rel-
ative to the two others, and of a triplet of target im-
ages, Sα3,trip : Z2 × Z2 → R,

Sα3,trip[~̀1, ~̀2] :=
1

(2n+ 1)2

( 1

2π

)3 ∫ 2π

0

∫ 2π

0

∫ 2π

0

∑
~̀∈Z2

Fφ[~̀]×

× Fη[~̀+ ~̀
1]Fι[~̀+ ~̀

2]dφdηdι, (35)

where all three instances are rotated independently.
As before, the autocorrelations of F are supported
on J = {−2n, . . . , 2n}2.

Based on these definitions, the autocorrelations for
the arbitrary spacing distribution case are summarized
in Proposition 1. The proof is given in Appendix C.

Proposition 1. For any fixed level of noise σ2, density γ,
image radius n, in the limit N →∞, the autocorrelations for
the two dimensional arbitrary spacing distribution case are
given by

A1
M

a.s.
= γSα1 , (36)

A2
M [~̀1]

a.s.
= γSα2 [~̀1]

+ γAα(ξ)[~̀1]

+ σ2δ[~̀1], (37)

A3
M [~̀1, ~̀2]

a.s.
= γSα3 [~̀1, ~̀2]

+ γBα(ξ)[~̀1, ~̀2] + γCα(ζ)[~̀1, ~̀2]

+ γSα1 σ
2(δ[~̀1] + δ[~̀2] + δ[~̀1 − ~̀2]), (38)

where Lneighbors := {−4n+ 2, . . . , 4n− 1}2, and ~̀
1, ~̀2 ∈ L

(defined in (22)). The terms Aα(ξ), Bα(ξ), and Cα(ζ) are
linear functions of the PSF and the TSF, and their explicit
expressions are, respectively, provided in (61), (62) and (63),
in Appendix C.

Compared to the well-separated case, the contribution of the
target images that violate the separation condition is summa-
rized in three terms, Aα(ξ), Bα(ξ), and Cα(ζ). They involve
the second- and third-order autocorrelations of the image F

with its neighbors, Sα2,pair, S
α
3,pair and Sα3,trip, defined above. For

the well-separated case, based on (21), those terms are equal
to zero, and the autocorrelations reduce to (26) - (28).

Similarly to the well-separated case, (36) - (38) relate the
autocorrelations of the measurement with those of the target
image. Here, the relations also depend on the unknown PSF
and TSF. Crucially, accurate estimation of these functions
is not essential: as the individual locations and rotations
associated with individual image occurrences, these are also
nuisance variables.

E. Computing the autocorrelations and gradients

To compute the autocorrelations presented in Sections II-C
and II-D, we use their Fourier representation. We leave the
technical details of this section to Appendix D, and state here
the concluding expressions.

Let V denote the set of all the pairs (ν, q) in the ex-
pansion (2). We define the column vector ω~k,φ ∈ CV

by (ω~k,φ)ν,q = Ψ̂ν,q[~k]eiνφ, and the column vector α ∈ CV
by (α)ν,q = αν,q; the latter encodes the parameters de-
scribing the target image. With this notation, F̂φ[~k] can be
expressed compactly as F̂φ[~k] = α>ω~k,φ. In addition, let V0
denote the set of all the pairs (0, q). We define the column
vector ω0~k ∈ CV0 by (ω0~k)q = Ψ̂0,q[~k], and the column
vector α0 ∈ CV0 by (α0)q = α0,q . It follows that

Ŝα2 [~k1] =
1

4νmax(2n+ 1)2

4νmax∑
ν=0

|α>ω~k1,φν2 |
2, (39)

Ŝα2,pair[
~k1] =

1

(2n+ 1)2

(
α0
>ω0−~k1

)(
α0
>ω0~k1

)
, (40)

Ŝα3 [~k1, ~k2] =
1

6νmax(2n+ 1)2

6νmax−1∑
ν=0

(
α>ω~k1,φν3

)
×

×
(
α>ω~k2,φν3

)(
α>ω−~k1−~k2,φν3

)
, (41)

Ŝα3,pair[
~k1, ~k2] =

1

4νmax(2n+ 1)2
α0
>ω0~k2

×

×
4νmax−1∑
ν=0

(
α>ω~k1,φν2

)(
α>ω−~k1−~k2,φν2

)
, (42)

Ŝα3,trip[~k1, ~k2] =
1

(2n+ 1)2

(
α0
>ω0~k1

)(
α0
>ω0~k2

)
×

×
(
α0
>ω0−~k1−~k2

)
, (43)

where φν2 := 2πν/(4νmax), φν3 := 2πν/(6νmax), and νmax
is defined in (5). In this form, computing the gradients of
the autocorrelations with respect to α is straightforward. The
gradients are given in (69) - (73) in Appendix D.
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F. Image recovery from autocorrelations

Recall that the second stage of the autocorrelation analysis
framework entails recovering the image from the measure-
ment’s autocorrelations. Following [1], [2], [3], [4], and based
on (36) - (38), we formulate a non-convex least squares prob-
lem for estimating the coefficients vector α that represents
the target image F from the autocorrelations of the measure-
ment M :

min
α,γ>0,ξ,ζ

w1

(
A1
M − γSα1

)2
+ w2

∑
~̀
1∈L

(
A2
M [~̀1]− γ(Sα2 [~̀1] +Aα(ξ)[~̀1])− σ2δ[~̀1]

)2
+ w3

∑
{~̀1,~̀2}∈L×L

(
A3
M [~̀1, ~̀2]− γ(Sα3 [~̀1, ~̀2] +Bα(ξ)[~̀1, ~̀2]

+Cα(ζ)[~̀1, ~̀2] + Sα1 σ
2(δ[~̀1] + δ[~̀2] + δ[~̀1 − ~̀2]))

)2
, (44)

where the weights are set to w1 = 1/2, w2 = 1/2n2,
w3 = 1/2n3, where n2 = 4n2 is the number of elements in
the set L, and n3 = 16n4 is the number of elements in
the set L × L, such that each term in (36) - (38) is equally
weighted. This is a non-convex (polynomial of degree 6)
optimization problem, and thus there is no guarantee to con-
verge to a global optimum. Nevertheless, similarly to previous
papers on MTD, our numerical results (Section III) suggest
that standard gradient-based methods succeed in recovering α
from only a few random initial guesses.

Recall that ξ and ζ are treated throughout this work as
nuisance variables—we do not aim at estimating them, as
long as the estimation of the target image F (or, more
precisely, its expansion coefficients) succeeds. Those functions
are unknown and depend on the density γ, which is also
unknown. Fortunately, numerical experiments indicate that
for an accurate estimate of γ, the image can be accurately
recovered with approximated ξ and ζ.

The approximation of ξ and ζ is done by simulating the
image occurrences’ locations {~̀′i}

p
i=1 according to (1) for a

given value of γ. Specifically, for a given γ, we calculate p,
the number of target images in the measurement, from (30),
and then simulate p random locations, such that there are
no overlaps. From these simulated locations, we calculate ξ′

and ζ ′ numerically according to (31) and (32), respectively.
While these functions do not describe accurately our specific
measurement M and its actual separation relations, we noticed
that when γ is accurately estimated, we succeed in estimat-
ing α using the approximated ξ′ and ζ ′.

Moreover, numerical experiments (see Section III-B) in-
dicate that a successful estimate of γ is achieved when we
initialize the optimization procedure with a close enough
initial γ′ and corresponding ξ′ and ζ ′. Thus, the proposed
scheme consists of two stages. First, we initialize the opti-
mization problem (44) with an arbitrary γ′ and corresponding
approximated ξ′ and ζ ′ from simulated locations as explained
above, and minimize (44) until a satisfactory estimate of γ is
achieved. This step might be repeated several times until γ
does not change significantly between iterations. Second, we

Algorithm 1 Image recovery in the arbitrary spacing distribu-
tion case

1: Set initial values for γ and α: γ′ and α′.
2: repeat
3: Simulate the image occurrences’ locations {~̀′i}

p
i=1

according to (1) with γ′, and calculate initial guesses ξ′

and ζ ′ according to (31) and (32).
4: Minimize (44) until a satisfactory estimate γ′ is

achieved, while ξ = ξ′ and ζ = ζ ′ remain fixed.
5: until the value of γ′ does not change significantly
6: Simulate the image occurrences’ locations {~̀′′i }

p
i=1

with the estimated γ′ from stage 4, and calculate ξfinal
and ζfinal according to (31) and (32).

7: Minimize (44) until a satisfactory estimate of α is
achieved, while ξ = ξfinal and ζ = ζfinal remain fixed.

initialize the optimization procedure again with the estimated γ
and the updated estimates of the PSF and TSF, denoted by ξfinal
and ζfinal, to ultimately estimate α by minimizing (44) for
fixed ξfinal and ζfinal. The scheme is described in Algorithm 1.

The described scheme is much more efficient than minimiz-
ing (44) directly since we do not run the optimization over the
variables ξ and ζ. Although we only approximate ξ and ζ, we
observe only a slight degradation in accuracy compared to an
ideal case of known ξ and ζ (see Section III-C).

G. Computational complexity

The estimation of the vector of coefficients α consists of
three main ingredients. First, we calculate the empirical auto-
correlations of the measurement M according to (18) - (20).
The computational complexity of this stage is of O(n4N2),
since we are interested in O(n4) shifts in the set L × L,
where L is defined in (22), and computing the autocorre-
lations consists of O(N2) multiplications and summations.
Since n � N , we compute each autocorrelation directly,
and not using FFT, as described in Section II-B. Crucially,
this stage is done only once. Second, we aim to estimate
the separation functions. The running time of estimating ξ
and ζ using the algorithm explained in Section II-D is neg-
ligible; this computation may be repeated a few times at the
beginning of the optimization procedure. In addition, since
we are not interested in the accurate separation functions,
the estimation might be done using only a fraction of the
data. Third, at each iteration of the minimization of (44),
we calculate the rotationally-averaged autocorrelations of the
target image, Sα1 , Sα2 , Sα2,pair, S

α
3 , Sα3,pair and Sα3,trip, and

their gradients with respect to α, as detailed in Section II-E.
Following [4, Proposition 4.2], this step can be done in O(n5)
operations, such that the total computational complexity of the
minimization procedure is of O(n5V ), where V is the number
of iterations. Since N � n, and empirically N � V (in our
experiments, a few hundred iterations suffice to achieve accu-
rate recoveries), overall estimating the vector of coefficients α
can be done in O(n4N2 + n5V ) = O(n4N2) operations.



IEEE TRANSACTIONS ON SIGNAL PROCESSING 7

(a) Target image. (b) Estimated image with SNR = 10. (c) Estimated image with SNR = 0.5.

Fig. 3: Recovery of the target image (a) from measurements at different noise levels using Algorithm 1. The relative error
is 0.012 for SNR = 10, and 0.047 for SNR = 0.5.
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(a) Initial density of γ′ = 0.09.
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(b) Initial density of γ′ = 0.01.

Fig. 4: Examples of an estimation of the density γ∗ = 0.1 (marked by horizontal black line) from initial guesses
of γ′ = 0.09 (left) and γ′ = 0.01 (right) by minimizing (44) for three different cases: (1) the PSF ξ and TSF ζ are known;
(2) approximating the PSF and TSF with an initial density γ′; (3) treating the MTD problem as well-separated and assuming
no PSF or TSF. The estimate of γ through the iterations of the optimization procedure is presented. For γ′ = 0.01, the
approximation of γ was repeated after 100 iterations (marked by the vertical dashed black line).

III. NUMERICAL EXPERIMENTS

In this section, we present numerical results for
the recovery procedure described in Section II-F.
The optimization problem (44) was minimized using
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm,
while ignoring the positivity constraint on γ (namely, treating
it as an unconstrained problem).

To take the in-plane rotation symmetry into account, we
measure the estimation error by

relative errorα := min
φ∈[0,2π)

‖α∗ − αφ‖2
‖α∗‖2

, (45)

where α∗ is the true vector of expansion coefficients, and αφ
is the vector of coefficients of the estimated image, rotated
by angle φ. The relative error of estimating the density γ is
defined by

relative errorγ :=
|γ∗ − γ|
γ∗

, (46)

where γ∗ is the true density, and γ is the estimated density.
The code to reproduce all experiments is publicly available

at https://github.com/krshay/MTD-2D.

A. Recovery from noisy measurements

In Figure 3 we present a successful recovery of a tar-
get image from noisy measurements using Algorithm 1.
The target image is of radius n = 4 pixels, and it is ex-
panded using its first 34 Fourier-Bessel coefficients. We con-
sider a dataset that consists of 1000 measurements, each
of size 7000× 7000 pixels, generated according to (1) with
density γ = 0.1, at different noise levels. The noise levels
are visualized in Figure 1. As expected, the recovery error de-
grades as the noise level increases. The relative error is 0.012
for SNR = 10, and 0.047 for SNR = 0.5.

https://github.com/krshay/MTD-2D
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(a) Mean estimation error as a function of the measurement size.
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(b) Mean running time as a function of the measurement size.

Fig. 5: The left panel shows the mean estimation error of recovering the vector of coefficients α, as a function of the measurement
size N2, by: (1) Minimization of (44), assuming known PSF and TSF; (2) Algorithm 1 (with approximated PSF and TSF);
(3) Minimization of (44), assuming no PSF and TSF (treating the measurement as well-separated). The black dashed line
illustrates a slope of −1/2, i.e., the recovery error for case (1) decays as 1/

√
N2. The right panel shows the corresponding

running time for Algorithm 1. The black dashed line illustrates a slope of 1, implying a linear increase in computation time
with the measurement size N2 for large enough N , agreeing with Section II-G.

B. Estimating the density parameter γ

Recall that the first stages of Algorithm 1 consist of
successfully estimating the density γ. In particular, we ob-
served that a successful estimation of γ is possible even with
an inaccurate PSF and TSF. To demonstrate it, we present
in Figure 4a an example of estimation of the density γ
from a noisy measurement with true density γ∗ = 0.1, and
an initial guess of γ′ = 0.09. The measurement’s size
is N = 25000 pixels, with SNR = 0.5. The target images in
the measurement are of radius n = 2 pixels, and are expanded
using their first 10 Fourier-Bessel coefficients. We report
the estimated γ through the iterations of the optimization
procedure, for three different cases. In the first case, we assume
that the PSF and TSF are known, and estimate γ∗ accurately up
to an error of 0.0016. Of course, in practice those functions
are unknown. Next, we simulate the locations of the target
images assuming γ′ = 0.09, and use the approximated PSF
and TSF in the optimization, while they remain fixed along
the iterations. Remarkably, the estimation of γ in this case is
successful as well, with an estimation error of 0.0036. Finally,
we try to estimate the density assuming the measurement is
well-separated, without success; the attained recovery error
is 0.041. The last result indicates that the terms in (37), (38)
that encapsulate the contribution of neighboring images are
crucial for the success of the recovery procedure, and cannot
be ignored.

We repeated the same experiment with an initial guess
of γ′ = 0.01, far from the ground truth; the results are
presented in Figure 4b. For this case, two repetitions of
stages 3 and 4 of Algorithm 1 were required, and we report
a recovery error of 0.0013. As in the previous experiment,

for the case of known PSF and TSF, the recovery error
is 0.0016, and the recovery error when we assume that the
measurement is well-separated is 0.041, which re-emphasizes
the significance of the separation functions ξ and ζ in the
arbitrary spacing distribution case. This experiment indicates
that our algorithmic scheme succeeds even without a good
approximation of γ.

C. Recovery error as a function of the measurement size

Figure 5a presents recovery error as a function of the mea-
surement size. We consider noiseless measurements in differ-
ent sizes with an arbitrary spacing distribution. The measure-
ments are generated according to (1) with density γ = 0.1. The
target images in the measurements are of radius n = 2 pixels,
and are expanded using their first 10 Fourier-Bessel coeffi-
cients. We examine three cases. In the first case, we assume
the PSF and TSF are known. In the second case, we apply
Algorithm 1 that uses approximated separation functions.
In the third case, we falsely assume our measurement is
well-separated, i.e., we do not take the effect of the PSF and
TSF into account. In all cases, we try to estimate the vector of
coefficients α from 10 random initial guesses, and calculate the
estimation error for the estimate whose final objective function
is minimal. We then calculate the mean over 50 trials.

Not surprisingly, when the PSF and TSF are known we
get a small recovery error. For the first case, the error decays
as 1/

√
N2, where N2 is the total number of entries in the

measurement. This is the same estimation rate as if the
translations and rotations were known (that is, the estimation
rate of averaging over i.i.d. Gaussian variables). We get the
same estimation rate for Algorithm 1 when N2 is below 108,
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corresponding to relative error greater than approximately 1%.
For larger N2, the error curve stagnates because of the inaccu-
rate estimation of ξ and ζ, thus limiting the possible estimation
error of the algorithm. Notably, we do not achieve successful
recovery for the third case, regardless of the measurement
size, which is in correspondence with the numerical results for
the one-dimensional case [2]. This emphasizes the importance
of the extension of the MTD model from the well-separated
case to the arbitrary spacing distribution case.

Figure 5b presents the running time of Algorithm 1 as
a function of the measurement size. As expected from the
computational complexity analysis of Section II-G, for a large
enough measurement size N2, the running time of Algorithm 1
increases linearly with N2.

D. Recovery error as a function of SNR

Computing the q-th order autocorrelation consists of the
product of q noisy terms, and thus the variance of its estimation
scales as σ2q/N . Under the assumption that the locations
of the images are known (but the rotations are not), it was
shown [25], [26], [27], [28], [29] that the sample complexity
of estimating the image in the low SNR regime scales as σ3,
or, equivalently, as SNR−1.5. Figure 6 presents recovery errors
as a function of the SNR. We consider measurements with
different SNRs, and N = 7000 pixels. The target images in the
measurements are of radius n = 2 pixels, and are expanded
using their first 10 Fourier-Bessel coefficients. We used 3
random initializations, and calculated the mean over 40 trials.
In the low SNR regime, the error indeed scales as SNR−1.5,
although the locations of the images are unknown. Notably, for
low SNRs the performance gap between the methods is neg-
ligible. In this regimes, the dominant factor is the noise, and
the inaccuracy in the separation functions is inconsequential.
For high SNRs, we notice a small performance gap between
the methods, as was also noted in Figure 5a.

E. Comparison with an oracle-deconvolution method

To stress the ability of Algorithm 1 to handle high
noise levels, we compare its performance against an
oracle-deconvolution method; the results are presented in
Figure 7. The oracle-deconvolution method aims to find
the locations of the image occurrences in the measurement
as the peaks of the convolution of the measurement with
the target image. The peaks were found using the func-
tion photutils.detection.find peaks from the Photutils Python
package [30], while forcing the peaks to be separated by at
least an image diameter. Once the locations are identified (an
estimate of the shifts {`i}pi=1 in (1)), the image occurrences
are extracted from the measurement and averaged. Importantly,
this algorithm receives as an input the underlying image F
and the number of image occurrences p, and thus the name
”oracle.” To avoid searching over different rotations (in order
to find the best match), we consider only in this experiment
rotationally-symmetric target images, so that the convolution
is done only once.

In the experiment, we consider measurements in differ-
ent SNRs with N = 20000 pixels. The target images in the
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Fig. 6: Mean estimation error of recovering the vector of
coefficients α, as a function of SNR, by: (1) Minimization
of (44), assuming known PSF and TSF; (2) Algorithm 1 (with
approximated PSF and TSF).
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Fig. 7: Mean estimation error of recovering a rotationally-
symmetric target image F , as a function of SNR, by: (1) Al-
gorithm 1; (2) the oracle-deconvolution method described in
Section III-E. Evidently, the deconvolution-based method fails
at low SNR.

measurements are of radius n = 3 pixels, and are expanded
using their first 10 Fourier-Bessel coefficients. We used 2
random initializations, and calculated the mean over 10 tri-
als. As expected, for high SNR regimes, the method of
oracle-deconvolution deconvolution performs better than Al-
gorithm 1. However, in low SNR regimes, where detecting
the locations of the target images becomes harder, the method
fails miserably.

IV. CONCLUSION

This paper is motivated by the effort of reconstructing
small 3-D molecular structures using cryo-EM, below the
current detection limit. The main contribution of this study
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is expanding the analysis to account for an arbitrary spacing
distribution of images, corroborated by extensive numerical
experiments. In the future, we hope to extend the frame-
work of this paper to deal with the more general case of
cryo-EM—where the images are different tomographic pro-
jections of a three-dimensional molecular structure taken from
unknown viewing directions [5]—with an arbitrary spacing
distribution between the projection images.

In this work, we focused on the homogeneous MTD prob-
lem, i.e., where all target images are identical, up to a rotation.
A possible future study may consider the heterogeneous case,
where the image occurrences are drawn either from a discrete
or a continuous distribution of possible images, and the goal
is to recover the entire set of images.

In addition, since we acquire many copies of the target im-
age, one can imagine that as N increases, the sampling spacing
may be increased as well. Based on algebraic-geometry re-
sults [28], a similar analysis was conducted for the simpler
problem of one-dimensional discrete multi-reference align-
ment [31]. Extending [31] to the MTD model might allow
reducing the sampling rate of cryo-EM datasets, and thus alle-
viate the computational burden—a significant drawback of the
current implementation. Designing other inference techniques,
such as maximum likelihood estimators [2], [32], for the two-
dimensional MTD problem is also an interesting research
thread.

In recent years, a various deep learning techniques has
been used to solve inverse imaging problems, often surpassing
the performance achieved by analytical methods [33], with
recent endeavors in the cryo-EM literature [34], [35]. Initial
experiments (not presented here) were conducted in attempt to
solve the MTD problem by learning from the autocorrelations
of the measurement, showing promising results for estimating
the density γ and for providing a good initial estimate for the
sought target image. This indicates that learning techniques
have the potential to robustly estimate the density, and perhaps
additional parameters, and by that to efficiently bypass the first
three stages of Algorithm 1. We expect that this strategy will
improve robustness and reduce the computational complexity.

ACKNOWLEDGMENT

The authors are grateful to Ti-Yen Lan, Nicholas Mar-
shall, and Amit Singer for insightful discussions. The authors
would like to thank Nir Sharon for providing computational
resources, and for the anonymous reviewers for their insightful
comments.

REFERENCES

[1] T. Bendory, N. Boumal, W. Leeb, E. Levin, and A. Singer, “Multi-
target detection with application to cryo-electron microscopy,” Inverse
Problems, vol. 35, no. 10, p. 104003, 2019.

[2] T.-Y. Lan, T. Bendory, N. Boumal, and A. Singer, “Multi-target detection
with an arbitrary spacing distribution,” IEEE Transactions on Signal
Processing, vol. 68, pp. 1589–1601, 2020.

[3] N. F. Marshall, T.-Y. Lan, T. Bendory, and A. Singer, “Image recovery
from rotational and translational invariants,” in ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2020, pp. 5780–5784.

[4] T. Bendory, T.-Y. Lan, N. F. Marshall, I. Rukshin, and A. Singer, “Multi-
target detection with rotations,” arXiv preprint arXiv:2101.07709, 2021.

[5] T. Bendory, N. Boumal, W. Leeb, E. Levin, and A. Singer, “Toward
single particle reconstruction without particle picking: breaking the
detection limit,” arXiv preprint arXiv:1810.00226, 2018.

[6] S. Gogineni, P. Setlur, M. Rangaswamy, and R. R. Nadakuditi, “Passive
radar detection with noisy reference channel using principal subspace
similarity,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 54, no. 1, pp. 18–36, 2017.

[7] T. J. Schulz, “Multiframe blind deconvolution of astronomical images,”
JOSA A, vol. 10, no. 5, pp. 1064–1073, 1993.

[8] A. Levin, “Blind motion deblurring using image statistics,” Advances in
Neural Information Processing Systems, vol. 19, pp. 841–848, 2006.

[9] K. Abed-Meraim, W. Qiu, and Y. Hua, “Blind system identification,”
Proceedings of the IEEE, vol. 85, no. 8, pp. 1310–1322, 1997.

[10] R. Henderson, “The potential and limitations of neutrons, electrons
and X-rays for atomic resolution microscopy of unstained biological
molecules,” Quarterly Reviews of Biophysics, vol. 28, no. 2, pp. 171–
193, 1995.

[11] E. Nogales, “The development of cryo-EM into a mainstream structural
biology technique,” Nature methods, vol. 13, no. 1, pp. 24–27, 2016.

[12] X.-C. Bai, G. McMullan, and S. H. Scheres, “How cryo-EM is revolu-
tionizing structural biology,” Trends in Biochemical Sciences, vol. 40,
no. 1, pp. 49–57, 2015.

[13] J. Frank, Three-dimensional electron microscopy of macromolecular
assemblies: visualization of biological molecules in their native state.
Oxford University Press, 2006.

[14] A. Heimowitz, J. Andén, and A. Singer, “Reducing bias and variance
for CTF estimation in single particle cryo-EM,” Ultramicroscopy, vol.
212, p. 112950, 2020.

[15] H. Erickson and A. Klug, “Measurement and compensation of defo-
cusing and aberrations by Fourier processing of electron micrographs,”
Philosophical Transactions of the Royal Society of London. B, Biological
Sciences, vol. 261, no. 837, pp. 105–118, 1971.

[16] T. Bendory, A. Bartesaghi, and A. Singer, “Single-particle cryo-electron
microscopy: Mathematical theory, computational challenges, and oppor-
tunities,” IEEE Signal Processing Magazine, vol. 37, no. 2, pp. 58–76,
2020.

[17] S. H. Scheres, “RELION: implementation of a Bayesian approach to
cryo-EM structure determination,” Journal of Structural Biology, vol.
180, no. 3, pp. 519–530, 2012.

[18] A. Punjani, J. L. Rubinstein, D. J. Fleet, and M. A. Brubaker,
“cryoSPARC: algorithms for rapid unsupervised cryo-EM structure
determination,” Nature methods, vol. 14, no. 3, pp. 290–296, 2017.

[19] C. Aguerrebere, M. Delbracio, A. Bartesaghi, and G. Sapiro, “Funda-
mental limits in multi-image alignment,” IEEE Transactions on Signal
Processing, vol. 64, no. 21, pp. 5707–5722, 2016.
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APPENDIX A
THE EFFECT OF THE CONTRAST TRANSFER FUNCTION

Let us consider a measurement y ∈ RN×N given by

y = h ∗M, (47)

where M ∈ RN×N is as defined in (1), h ∈ RN×N is a point
spread function, and ∗ is a circular convolution. The Fourier
transform of the point spread function, called the contrast
transfer function (CTF), is denoted by ĥ. The measurement y
represents a cryo-EM micrograph affected by the optical
configuration of the microscope through convolution with a
point spread function. The CTF is assumed to be known, and
in practice is estimated from the data [14].

The goal of this appendix is to derive conditions on h such
that one can recover the autocorrelations of M from y. Once
the autocorrelations of M were recovered, one can estimate the
target image using Algorithm 1. The conditions are presented
in the following proposition.

Proposition 2. Reconstructing the first three autocorrelations
of M from y (47) is possible if ĥ[~k] 6= 0 for all ~k ∈ Z2,
where ĥ is the CTF.

Proof. Recall that we first compute the first three autocorrela-
tions of the measurement, as presented in (18) - (20). For the
first-order autocorrelation (the mean) of the measurement y
we have that

ŷ[~0] = ĥ[~0]M̂ [~0], (48)

where ŷ ∈ CN×N is the Fourier transform of y,
and M̂ ∈ CN×N is the Fourier transform of M . The
reconstruction of the mean of M is possible from

M̂ [~0] = ŷ[~0]/ĥ[~0], (49)

if ĥ[~0] 6= 0.
For the second-order autocorrelation of y, we consider its

Fourier transform—the power spectrum—defined as

Py[~k] = |ŷ[~k]|2. (50)

Hence, we have that for any frequency ~k ∈ Z2, the power
spectrum of y is given by

Py[~k] = |ĥ[~k]|2PM [~k], (51)

and reconstruction of the second-order autocorrelation of M
is possible by

PM [~k] = Py[~k]/|ĥ[~k]|2, (52)

if ĥ[~k] 6= 0 for all ~k ∈ Z2.
For the third-order autocorrelation of y, we consider its

Fourier transform—the bispectrum—defined as

By[~k1, ~k2] = ŷ[~k1]ŷ[~k2]∗ŷ[~k2 − ~k1]. (53)

Thus, for any pair of frequencies ~k1, ~k2 ∈ Z2, the bispectrum
of y is given by

By[~k1, ~k2] = ĥ[~k1]ĥ[~k2]∗ĥ[~k2 − ~k1]BM [~k1, ~k2], (54)

and again, reconstruction of the third-order autocorrelation
of M is possible by

BM [~k1, ~k2] = By[~k1, ~k2]/(ĥ[~k1]ĥ[~k2]∗ĥ[~k2 − ~k1]), (55)

if ĥ[~k] 6= 0 for all ~k ∈ Z2. To conclude, the reconstruction
of all first three autocorrelations of the measurement M is
possible if ĥ[~k] 6= 0 for all ~k ∈ Z2.

APPENDIX B
BANDLIMITED FUNCTIONS ON THE UNIT DISK

We follow the analysis and notation of [3]. We assume that f
is supported on the unit disk. We assume that it is bandlimited
in the basis of Dirichlet Laplacian eigenfunctions on the unit
disk D = {~x ∈ R : |~x| ≤ 1}, which are solutions to the
eigenvalue problem{

−∆ψ = λψ in D
ψ = 0 on ∂D,

(56)

where −∆ = −(∂xx + ∂yy) is the Laplacian, and ∂D is the
boundary of the unit disk. In polar coordinates (r, θ), these
eigenfunctions are of the form

ψν,q(r, θ) = Jν (λν,qr) e
iνθ, for r ≤ 1, (57)

where ν ∈ Z≥0, Jν is the ν-th order Bessel function of the
first kind, and λν,q > 0 is the q-th positive root of Jν . Recall
that Jν is a solution to the differential equation

f ′′(r) +
1

r
f ′(r) +

(
1− ν2

r2

)
f(r) = 0. (58)

Therefore, by writing the Laplacian in polar coordinates we
have

−∆ψν,q(r, θ) = −
(
∂rr +

1

r
∂r +

1

r2
∂θθ

)
ψν,q(r, θ)

= λ2n,qψν,q(r, θ), (59)

that is, λ2ν,q is the eigenvalue associated with ψν,q . Hence, the
assumption that f is bandlimited can be written as

f(r, θ) =
∑

(ν,q):λν,q≤λ

αν,qψν,q(r, θ), for r ≤ 1, (60)

where λ is the bandlimit frequency, and αν,q are the associated
expansion coefficients.
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APPENDIX C
PROOF OF PROPOSITION 1

The second-order autocorrelation of a measurement M at
shift ~̀1 = (`1y, `1x) consists of the following components:

1) The second-order autocorrelation between the target
image F and ~̀

1-shifted F : Sα2 [~̀1] (same as in the
well-separated case).

2) The second-order autocorrelation between ~̀1-shifted F
and a neighboring F at location ~̀neigh = (i, j) such
that `1y − (2n − 1) ≤ j ≤ 2n + `1y − 1 and `1x −
(2n− 1) ≤ i ≤ 2n+ `1x − 1.

3) Noise components (same as in the well-separated case).
Overall, the term that is added to the model in the arbitrary
spacing distribution case is given by

Aα(ξ)[~̀1] =

2n+`1y−1∑
j=`1y−(2n−1)

2n+`1x−1∑
i=`1x−(2n−1)

ξ[i, j]Sα2,pair[(i, j)− ~̀1].

(61)
The third-order autocorrelation of a measurement M at

shifts ~̀
1 = (`1y, `1x), ~̀

2 = (`2y, `2x) consists of the
following components:

1) The third-order autocorrelation between the target im-
age F , ~̀1-shifted F and ~̀2-shifted F : Sα3 [~̀1, ~̀2] (same
as in the well-separated case).

2) The third-order autocorrelation between ~̀
1-

shifted F , ~̀
2-shifted F and a neighboring F at

location ~̀neigh = (i, j) such that max{`1y, `2y} −
(2n − 1) ≤ j ≤ 2n + min{`1y, `2y} − 1
and max{`1x, `2x} − (2n − 1) ≤ i ≤
2n+ min{`1x, `2x} − 1.

3) The third-order autocorrelation between ~̀1-shifted F , a
neighboring F at location ~̀neigh = (i, j) and ~̀

2-shifted
neighboring F such that `1y − (2n − 1) ≤ j ≤ 2n +
`1y−`2y−1 and `1x−(2n−1) ≤ i ≤ 2n+`1x−`2x−1.

4) The third-order autocorrelation between ~̀2-shifted F , a
neighboring F at location ~̀neigh = (i, j) and ~̀

1-shifted
neighboring F such that `2y − (2n − 1) ≤ j ≤ 2n +
`2y−`1y−1 and `2x−(2n−1) ≤ i ≤ 2n+`2x−`1x−1.

5) The third-order autocorrelation between ~̀
1-shifted F ,

a neighboring F at location ~̀neigh1 = (j1, i1) and ~̀
2-

shifted another neighboring F from location ~̀neigh2 =
(j2, i2) such that `1y − (2n − 1) ≤ j1 ≤ 2n +
`1y − 1 and `1x − (2n − 1) ≤ i1 ≤ 2n + `1x − 1,
and max{j1, `1y} − (2n − 1) − `2y ≤ j2 ≤ 2n +
min{j1, `1y} − 1− `2y and max{i1, `1x} − (2n− 1)−
`2x ≤ i2 ≤ 2n+ min{i1, `1x} − 1− `2x.

6) The third-order autocorrelation between ~̀
2-shifted F ,

a neighboring F at location ~̀neigh1 = (j1, i1) and ~̀
1-

shifted another neighboring F from location ~̀neigh2 =
(j2, i2) such that `2y − (2n − 1) ≤ j1 ≤ 2n +
`2y − 1 and `2x − (2n − 1) ≤ i1 ≤ 2n + `2x − 1,
and max{j1, `2y} − (2n − 1) − `1y ≤ j2 ≤ 2n +
min{j1, `2y} − 1− `1y and max{i1, `2x} − (2n− 1)−
`1x ≤ i2 ≤ 2n+ min{i1, `2x} − 1− `1x.

7) Noise components (same as in the well-separated case).
Overall, the term that is added to the model

in the arbitrary spacing distribution case is given

by Bα(ξ)[~̀1, ~̀2] + Cα(ζ)[~̀1, ~̀2], where Bα(ξ)[~̀1, ~̀2]
and Cα(ζ)[~̀1, ~̀2] are given in (62) and (63), respectively.

APPENDIX D
COMPUTING THE DISCRETE FOURIER TRANSFORMS OF

THE AUTOCORRELATIONS IN SECTION II-E
We look at the discrete Fourier transform (DFT) of Sα2 as

defined in (24), Ŝα2 : J → C:

Ŝα2 [~k1] =
∑
~̀
1∈J

Sα2 [~̀1]e−2πi(
~k1·~̀1)/(4n)

=
1

(2n+ 1)2

∑
~̀
1∈J

( 1

2π

∫ 2π

0

∑
~̀∈Z2

Fφ[~̀]Fφ[~̀+ ~̀
1]dφ

)
×

× e−2πi(~k1·~̀1)/(4n)

=
1

(2n+ 1)2
1

2π

∫ 2π

0

∑
~̀∈Z2

Fφ[~̀]e−2πi((−
~k1)·~̀)/(4n)×

×
∑
~̀
1∈J

Fφ[~̀+ ~̀
1]e−2πi(

~k1·[~̀+~̀1])/(4n)dφ

=
1

(2n+ 1)2
1

2π

∫ 2π

0

F̂φ[−~k1]F̂φ[~k1]dφ

=
1

(2n+ 1)2
1

2π

∫ 2π

0

|F̂φ[~k1]|2dφ, (64)

since Fφ[~̀] is real-valued. From (10) we see that the prod-
ucts Fφ[~̀]Fφ[~̀ + ~̀

1] that appear in (24) are bandlimited
by 2νmax with respect to φ. Therefore, we can replace the
integral over φ in (64) by a summation over angles sampled
at the Nyquist rate, that is,

Ŝα2 [~k1] =
1

(2n+ 1)2
1

4νmax

4νmax−1∑
ν=0

|F̂φν2 [~k1]|2, (65)

where φν2 := 2πν/(4νmax). To proceed, we need the following
calculation:

1

2π

∫ 2π

0

Fφ[~̀+ ~̀
2]dφ

=
1

2π

∫ 2π

0

νmax∑
−νmax

( ∑
q:λν,q≤λ

αν,qΨν,q[~̀+ ~̀
2]

)
eiνφdφ

=

νmax∑
−νmax

( ∑
q:λν,q≤λ

αν,qΨν,q[~̀+ ~̀
2]

)
1

2π

∫ 2π

0

eiνφdφ

=

νmax∑
−νmax

( ∑
q:λν,q≤λ

αν,qΨν,q[~̀+ ~̀
2]

)
δ[ν]

=
∑

q:λ0,q≤λ

α0,qΨ0,q[~̀+ ~̀
2]. (66)

Now we look at the DFT of Sα2,pair as defined in (33),
Ŝα2,pair : J → C. Using (66) we have that:

Sα2,pair[
~̀
1] =

1

(2n+ 1)2

∑
~̀∈Z2

( ∑
q:λ0,q≤λ

α0,qΨ0,q[~̀]
)
×

×
( ∑
q:λ0,q≤λ

α0,qΨ0,q[~̀+ ~̀
1]
)
,
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Bα(ξ)[~̀1, ~̀2] :=

2n+min{`1y,`2y}−1∑
j=max{`1y,`2y}−(2n−1)

2n+min{`1x,`2x}−1∑
i=max{`1x,`2x}−(2n−1)

ξ[i, j]Sα3,pair[
~̀
2 − ~̀1, (i, j)− ~̀1]

+

2n+`1y−`2y−1∑
j=`1y−`2y−(2n−1)

2n+`1x−`2x−1∑
i=`1x−`2x−(2n−1)

ξ[i, j]Sα3,pair[
~̀
2, ~̀1 − (i, j)]

+

2n+`2y−`1y−1∑
j=`2y−`1y−(2n−1)

2n+`2x−`1x−1∑
i=`2x−`1x−(2n−1)

ξ[i, j]Sα3,pair[
~̀
1, ~̀2 − (i, j)] (62)

Cα(ζ)[~̀1, ~̀2] :=

2n+`1y−1∑
j1=`1y−(2n−1)

2n+`1x−1∑
i1=`1x−(2n−1)

2n+min{j1,`1y}−1−`2y∑
j2=max{j1,`1y}−(2n−1)−`2y

2n+min{i1,`1x}−1−`2x∑
i2=max{i1,`1x}−(2n−1)−`2x

ζ[(j1, i1, j2, i2)]×

× Sα3,pair[(j1 − `1y, i1 − `1x), (j2 + `2y − `1y, i2 + `2x − `1x)]

+

2n+`2y−1∑
j1=`2y−(2n−1)

2n+`2x−1∑
i1=`2x−(2n−1)

2n+min{j1,`2y}−1−`1y∑
j2=max{j1,`2y}−(2n−1)−`1y

2n+min{i1,`2x}−1−`1x∑
i2=max{i1,`2x}−(2n−1)−`1x

ζ[(j1, i1, j2, i2)]×

× Sα3,trip[(j1 − `2y, i1 − `2x), (j2 + `1y − `2y, i2 + `1x − `2x)] (63)

and

Ŝα2,pair[
~k1] =

1

(2n+ 1)2

∑
~̀
1∈J

Sα2,pair[
~̀
1]e−2πi(

~k1·~̀1)/(4n)

=
1

(2n+ 1)2

∑
~̀
1∈J

∑
~̀∈Z2

( ∑
q:λ0,q≤λ

α0,qΨ0,q[~̀]
)
×

×
( ∑
q:λ0,q≤λ

α0,qΨ0,q[~̀+ ~̀
1]
)
e−2πi(

~k1·~̀1)/(4n)

=
1

(2n+ 1)2

( ∑
q:λ0,q≤λ

α0,q

∑
~̀∈Z2

Ψ0,q[~̀]e
−2πi(−~k1·~̀)/(4n)

)
×

×
( ∑
q:λ0,q≤λ

α0,q

∑
~̀
1∈J

Ψ0,q[~̀+ ~̀
1]e−2πi(

~k1·(~̀+~̀1))/(4n)
)

=
1

(2n+ 1)2

( ∑
q:λ0,q≤λ

α0,qΨ̂0,q[−~k1]
)( ∑

q:λ0,q≤λ

α0,qΨ̂0,q[~k1]
)
.

We look at the DFT of Sα3 as defined in (25), Ŝα3 : J×J → C:

Ŝα3 [~k1, ~k2] =
∑

~̀
1,~̀2∈J

Sα3 [~̀1, ~̀2]e−2πi(
~k1·~̀1+~k2·~̀2)/(4n)

=
1

(2n+ 1)2

∑
~̀
1,~̀2∈J

( 1

2π

∫ 2π

0

∑
~̀∈Z2

Fφ[~̀]×

× Fφ[~̀+ ~̀
1]Fφ[~̀+ ~̀

2]dφ
)
e−2πi(

~k1·~̀1+~k2·~̀2)/(4n)

=
1

(2n+ 1)2
1

2π

∫ 2π

0

∑
~̀∈Z2

Fφ[~̀]e−2πi(−
~k1−~k2)·~̀/(4n)×

×
∑
~̀
1∈J

Fφ[~̀+ ~̀
1]e−2πi

~k1·(~̀+~̀1)/(4n)×

×
∑
~̀
1∈J

Fφ[~̀+ ~̀
2]e−2πi(

~k2·(~̀+~̀2))/(4n)dφ

=
1

(2n+ 1)2
1

2π

∫ 2π

0

F̂φ[~k1]F̂φ[~k2]F̂φ[−~k1 − ~k2]dφ. (67)

From (10) we see that the products Fφ[~̀]Fφ[~̀+ ~̀
1]Fφ[~̀+ ~̀

2]
that appear in (25) are bandlimited by 3νmax with respect to φ.
Therefore, we can replace the integral over φ in (67) by a
summation over angles sampled at the Nyquist rate, that is,

Ŝα3 [~k1, ~k2] =
1

(2n+ 1)2
1

6νmax

6νmax−1∑
ν=0

F̂φν3 [~k1]×

× F̂φν3 [~k2]F̂φν3 [−~k1 − ~k2], (68)

where φν3 := 2πν/(6νmax). The DFT of Sα3,pair as defined
in (34), Ŝ3,pair : J × J → C:

Ŝα3,pair[
~k1, ~k2] =

∑
~̀
1,~̀2∈J

Sα3,pair[
~̀
1, ~̀2]e−2πi(

~k1·~̀1+~k2·~̀2)/4n

=
1

(2n+ 1)2

∑
~̀
1,~̀2∈J

( 1

2π

∫ 2π

0

1

2π

∫ 2π

0

∑
~̀∈Z2

Fφ[~̀]Fφ[~̀+ ~̀
1]×

× Fη[~̀+ ~̀
2]dφdη

)
e−2πi(

~k1·~̀1+~k2·~̀2)/4n

=
1

(2n+ 1)2
1

2π

∫ 2π

0

1

2π

∫ 2π

0

∑
~̀∈Z2

Fφ[~̀]e−2πi(−
~k1−~k2)·~̀/4n×

×
∑
~̀
1∈J

Fφ[~̀+ ~̀
1]e−2πi

~k1·[~̀+~̀1]/4n×

×
∑
~̀
2∈J

Fη[~̀+ ~̀
2]e−2πi

~k2·[~̀+~̀2]/4ndφdη

=
1

(2n+ 1)2
1

2π

∫ 2π

0

1

2π

∫ 2π

0

F̂φ[~k1]F̂η[~k2]F̂φ[−~k1 − ~k2]dφdη

=
1

(2n+ 1)2
1

2π

∫ 2π

0

F̂φ[~k1]F̂φ[−~k1 − ~k2]dφ
1

2π

∫ 2π

0

F̂η[~k2]dη
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=
1

(2n+ 1)2
1

2π

∫ 2π

0

F̂φ[~k1]F̂φ[−~k1 − ~k2]dφ×

× 1

2π

∫ 2π

0

∑
~̀
2∈J

Fη[~̀+ ~̀
2]e−2πi

~k2·(~̀+~̀2)/4ndη

=
1

(2n+ 1)2
1

2π

∫ 2π

0

F̂φ[~k1]F̂φ[−~k1 − ~k2]dφ×

×
∑
~̀
2∈J

( ∑
q:λ0,q≤λ

α0,qΨ0,q[~̀+ ~̀
2]

)
e−2πi

~k2·(~̀+~̀2)/4n

=
1

(2n+ 1)2

∑
q:λ0,q≤λ

α0,qΨ̂0,q[~k2]
1

2π

∫ 2π

0

F̂φ[~k1]F̂φ[−~k1 − ~k2]dφ.

Using (10) we get that the products Fφ[~̀]Fφ[~̀+~̀1] that appear
in (34) are bandlimited by 2νmax with respect to φ. Therefore,
we can replace the integral over φ above by a summation over
angles sampled at the Nyquist rate, that is,

Ŝα3,pair[
~k1, ~k2] =

1

(2n+ 1)2

∑
q:λ0,q≤λ

α0,qΨ̂0,q[~k2]×

× 1

4νmax

4νmax−1∑
ν=0

F̂φν2 [~k1]F̂φν2 [−~k1 − ~k2],

where φν2 = 2πν/(4νmax). Finally, we compute the DFT
of Sα3,trip as defined in (35), Ŝα3,trip : J × J → C. Using (66)
we get

Sα3,trip[~̀1, ~̀2] =
1

(2n+ 1)2

∑
~̀∈Z2

( ∑
q:λ0,q≤λ

α0,qΨ0,q[~̀]×

×
∑

q:λ0,q≤λ

α0,qΨ0,q[~̀+ ~̀
1]

∑
q:λ0,q≤λ

α0,qΨ0,q[~̀+ ~̀
2]
)
,

and its DFT:

Ŝα3,trip[~k1, ~k2] =
∑

~̀
1,~̀2∈J

Sα3,trip[~̀1, ~̀2]e−2πi(
~k1·~̀1+~k2·~̀2)/4n

=
1

(2n+ 1)2

∑
~̀
1,~̀2∈J

∑
~̀∈Z2

( ∑
q:λ0,q≤λ

α0,qΨ0,q[~̀]×

×
∑

q:λ0,q≤λ

α0,qΨ0,q[~̀+ ~̀
1]×

×
∑

q:λ0,q≤λ

α0,qΨ0,q[~̀+ ~̀
2]
)
e−2πi(

~k1·~̀1+~k2·~̀2)/4n

=
1

(2n+ 1)2

( ∑
q:λ0,q≤λ

α0,q

∑
~̀∈Z2

Ψ0,q[~̀]e
−2πi(−~k1−~k2)·~̀/4n

)
×

×
( ∑
q:λ0,q≤λ

α0,q

∑
~̀
1∈J

Ψ0,q[~̀+ ~̀
1]e−2πi[

~k1]·[~̀+~̀1]/4n
)
×

×
( ∑
q:λ0,q≤λ

∑
~̀
2∈J

α0,qΨ0,q(~x+ ~x2)e−2πi[
~k2]·(~x+~x2)/4n

)
=

1

(2n+ 1)2

( ∑
q:λ0,q≤λ

α0,qΨ̂0,q[~k1]
)( ∑

q:λ0,q≤λ

α0,qΨ̂0,q[~k2]
)
×

×
( ∑
q:λ0,q≤λ

α0,qΨ̂0,q[−~k1 − ~k2]
)
.

Let V denote the set of all the pairs (ν, q) in the ex-
pansion (2). We define the column vector ω~k,φ ∈ CV

by (ω~k,φ)ν,q = Ψ̂ν,q[~k]eiνφ, and the column vector α ∈ CV
by (α)ν,q = αν,q; the latter encodes the parameters de-
scribing the target image. With this notation, F̂φ[~k] can be
expressed compactly as F̂φ[~k] = α>ω~k,φ. In addition, let V0
denote the set of all the pairs (0, q). We define the column
vector ω0~k ∈ CV0 by (ω0~k)0,q = Ψ̂0,q[~k], and the column
vector α0 ∈ CV0 by (α0)0,q = α0,q . It follows that

Ŝα2 [~k1] =
1

4νmax(2n+ 1)2

4νmax∑
ν=0

|α>ω~k1,φν2 |
2,

Ŝα2,pair[
~k1] =

1

(2n+ 1)2

(
α0
>ω0−~k1

)(
α0
>ω0~k1

)
,

Ŝα3 [~k1, ~k2] =
1

6νmax(2n+ 1)2

6νmax−1∑
ν=0

(
α>ω~k1,φν3

)
×

×
(
α>ω~k2,φν3

)(
α>ω−~k1−~k2,φν3

)
,

Ŝα3,pair[
~k1, ~k2] =

1

4νmax(2n+ 1)2
α0
>ω0~k2

×

×
4νmax−1∑
ν=0

(
α>ω~k1,φν2

)(
α>ω−~k1−~k2,φν2

)
,

Ŝα3,trip[~k1, ~k2] =
1

(2n+ 1)2

(
α0
>ω0~k1

)(
α0
>ω0~k2

)(
α0
>ω0−~k1−~k2

)
,

where φν2 := 2πν/(4νmax), φν3 := 2πν/(6νmax), and νmax is
defined in (5).

In this form, it is straightforward to compute the gradients
which are required for the optimization problem 44, in the
frequency domain:

∇αŜα2 [~k1] =
1

2νmax(2n+ 1)2

4νmax∑
ν=0

(α>ω~k1,φν2
)ω−~k1,φν2

,

(69)

∇αŜα2,pair[
~k1] =

1

(2n+ 1)2

(
(α>ω̃0~k1

)ω̃0−~k1

+ (α>ω̃0−~k1)ω̃0~k1

)
, (70)

∇αŜα3 [~k1, ~k2] =

6νmax−1∑
ν=0

1

6νmax(2n+ 1)2
×

×

((
α>ω~k1,φν3

)(
α>ω~k2,φν3

)
ω−~k1−~k2,φν3

+
(
α>ω~k1,φν3

)(
α>ω−~k1−~k2,φν3

)
ω~k2,φν3

+
(
α>ω~k2,φν3

)(
α>ω−~k1−~k2,φν3

)
ω~k1,φν3

)
,

(71)

∇αŜα3,pair[
~k1, ~k2] =

4νmax−1∑
ν=0

1

4νmax(2n+ 1)2
×
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×

((
α>ω~k1,φν2

)(
α>ω̃0~k2

)
ω−~k1−~k2,φν2

+
(
α>ω~k1,φν2

)(
α>ω−~k1−~k2,φν2

)
ω̃0~k2

+
(
α>ω̃0~k2

)(
α>ω−~k1−~k2,φν2

)
ω~k1,φν2

)
,

(72)

∇αŜα3,trip[~k1, ~k2] =
1

(2n+ 1)2

(
(α>ω̃0~k1

)(α>ω̃0~k2
)ω̃0−~k1−~k2

+ (α>ω̃0~k1
)(α>ω̃0−~k1−~k2)ω̃0~k2

+ (α>ω̃0~k2
)(α>ω̃0−~k1−~k2)ω̃0~k1

)
. (73)
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