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Abstract—This paper studies the application of the generalized
method of moments (GMM) to multi-reference alignment (MRA):
the problem of estimating a signal from its circularly-translated
and noisy copies. We begin by proving that the GMM estimator
maintains its asymptotic optimality for statistical models with
group symmetry, including MRA. Then, we conduct a compre-
hensive numerical study and show that the GMM substantially
outperforms the classical method of moments, whose application
to MRA has been studied thoroughly in the literature. We also
formulate the GMM to estimate a three-dimensional molecular
structure using cryo-electron microscopy and present numerical
results on simulated data.

Index Terms—generalized method of moments, multi-reference
alignment, single-particle cryo-electron microscopy, orbit recov-
ery problem

I. INTRODUCTION

Multi-reference alignment (MRA) is the problem of recov-
ering a signal x € R” from
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where R circularly-translates the signal by s elements, i.e.,
(Rez)[j] = z[(j —s) mod L], and &; “%" A(0,%). The
translations s; are sampled from an unknown distribution p.
Since the translations Ry, ,..., R, are unknown, we cannot
distinguish between (1) and the set of observations y; =
R, _3(Rsx)+¢; for any § € Z. Thus, our goal is to estimate x,
up to a circular translation. In group theory terminology, the
set of signals { Rz} is called the orbit of the signal under
the group of circular translations.

The MRA model is motivated by applications in signal
processing [1] and structural biology [2], [3], [4], [S]. In
particular, it has been demonstrated as a useful mathematical
abstraction for single-particle cryo-electron microscopy (cryo-
EM), an emerging technology to elucidate the 3-D structure
of biomolecules [6], [7], [8], [9], [10]. Cryo-EM is the chief
motivation of this paper, and is the main focus of Section V.

If the signal-to-noise ratio (SNR) is sufficiently high, one
can recover the signal x by estimating the circular transla-
tions Rs,,...,Rs, using a variety of synchronization algo-
rithms [11], [12], [13], [14], align them (i.e., undo the circular
translations), and average out the noise. However, low SNR
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hinders reliable shift estimation [15], [16], and thus in this
regime one must estimate the signal directly.

The method of moments (MoM) is a classical statistical
inference technique, tracing back to 1894 [17]. The MoM
estimator, which is described in detail in Section II-A, results
in a set of parameters whose moments agree with the empirical
moments of the observed data {y;}¥ ;. A single-pass through
the observations is required to compute the empirical mo-
ments. This single-pass requirement stands in contrast to main-
stream parameter estimation techniques, such as maximum
likelihood estimation, which usually iterates over the data.
Thus, the MoM is an attractive computational framework
for massive data sets. In addition, it was shown that in the
low SNR regime, when SNR — 0, N — oo, and L is
fixed, the MoM achieves the optimal sample complexity of
MRA, namely, the minimal number of observations needed for
recovery up to an arbitrary precision [18], [19], [20], [21], [22],
[23]. Notwithstanding, finding parameters that approximate
the observable moments, namely moment fitting, frequently
requires solving a system of nonlinear polynomial equations,
a challenging computational task for high-dimensional data.

A standard method for fitting the analytic and the empirical
moments is by minimizing a least-squares (LS) objective,
which often results in a sub-optimal solution. As a remedy,
this paper studies the generalized method of moments (GMM),
which suggests matching the moments by a weighted LS
objective [24], while providing an explicit expression of the
optimal set of weights. Choosing the optimal weights enjoys
appealing statistical properties, as discussed in Section III.

This work studies the GMM and its application to the
MRA problem. Applying the GMM to MRA raises two
main challenges: the dimensionality of the problem, which is
typically high, and the solution’s symmetry (i.e., the solution
is defined up to a symmetry). In particular, classical GMM
theory shows that the GMM provides an optimal estimator
if a single set of parameters fits the observable moments.
Namely, the polynomial system of equations has a unique
solution. Unfortunately, this is never the case for MRA as
the solution is defined up to a circular translation. Filling a
theoretical gap, this work proves that the GMM retains its
favorable statistical properties even when the statistical model
has an intrinsic group symmetry.

The paper is organized as follows. In Section II, we describe
in detail the MoM and the GMM estimators. Next, Section 111
discusses the properties of the GMM estimator and our the-
oretical work to extend it for models with intrinsic group
symmetry. Section IV provides a comprehensive numerical
study. Our study demonstrates that the GMM outperforms the



MoM in a variety of noise models and levels. We also provide
a heuristic to predict when the performance gap between the
GMM and the MoM is expected to be significant. Ultimately,
Section V formulates the GMM for the problem of recovering
a 3-D molecular structure using cryo-EM and presents initial
numerical results.

II. THE GENERALIZED METHOD OF MOMENTS
A. The method of moments

Before introducing the GMM framework, we begin by
presenting the classical MoM. Suppose that a random variable
y € R" is drawn from a distribution which can be character-
ized by a set of parameters §y € ©, where © is a compact
space. The goal is to recover the unknown parameters 6
from N samples y1, ..., yn. In the MoM, the underlying idea
is to estimate 6 from the first kj; empirical moments of the
observations. We calculate the empirical moments from the
data by averaging over the moments of individual observations.
In particular, the k-th empirical moment is defined as
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where y;-g’k is a tensor with ¥ entries. Each entry is given by
y2*(n) = H§=1 y;(n;), where n = (ni,...,ng) such that
1<n; <rfori=1,... k. By the law of large numbers, for
a large N we have,

My, =~ My(60) :==E[y®*], k=1,.... k.

where E[-] denotes expectation.

The MoM consists of two stages. First, one computes the
first kp; observable moments M, , for k=1,..., ky from the
data. In this work, we usually use the first two moments, that
is, kyy = 2. In the second stage, we wish to find a set of
parameters 6 so that M, ~ My (0) for k = 1,...,kpy; this
occasionally entails solving a system of polynomial equations.
When a closed-form solution is not available, it is common to
minimize a LS objective function,

kar

0K = arg gg(g]; [1M5(6) — My]If, (3)

where GAJI(,S denotes the LS estimator, and © is the parameter
space.

We note that the MoM is computationally attractive only
when the number of observations N is much larger than
the signal’s length L. This is true since the computational
complexity of the MoM is proportional to L*» N, whereas the
complexity of methods that maximize the likelihood function
(such as expectation-maximization) usually scales as T LN,
where T' is the number of passes through the data (which
tends to increase as the SNR decreases [25], [26]).

B. The GMM framework

In its most simplified form, the GMM generalizes (3) by
replacing the LS objective with a weighted LS. In particular,
a specific choice of weights guarantees favorable asymptotic

statistical properties, such as the minimal asymptotic variance
of the estimation error. We introduce these properties in detail
in Section III.

Let us define the moment function, f(0,y): © x R™ — R4,
The moment function needs to be chosen such that its expec-
tation value is zero only at a single point § = 6y. Namely,

E[f(0,9)] =0

We refer to (4) as the uniqueness of the parameter set
condition. Henceforth, we choose the moment function to be

f(aayl) = |:M1(9) —Yii-. ;MkM (6) - y?kM:| . (5)

For convenience, we treat each moment as a column vector
and the right hand side of (5) as their concatenation. For
example My(-) € R"”, and f(-) is in R™+"+-+7" While
we choose f as in (5), any moment function can be chosen
as long as it satisfies the uniqueness condition and a few
additional regularity conditions (as introduced in Appendix A).
This flexibility enables the GMM to be applied to a wide range
of problems, such as subspace estimation [27].

The estimated sample moment function is the average of f
over N observations:

if and only if 6 = 6. “)

1 N
v (0) = 5 2 [(0.3:). (6)
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The GMM estimator is defined as the minimizer of the
weighted LS expression,

éN = arg f,%%l gN(H)TWNgN(H). 7

Here, Wy is a fixed positive semi-definite (PSD) matrix. Note
that the LS estimator (3) is a special case of (7) when f is
chosen as in (5) and Wy = 1.

III. LARGE SAMPLE PROPERTIES

Before presenting the statistical properties of the GMM,

. d .
we fix notation. We denote by L oand S convergence in
probability and in distribution, respectively. Let

S = 1\}511 Cov [\/ﬁgN(Ho)} , (8)

be the covariance matrix of the estimated sample moment
function (6) at the ground truth 6. We denote by {Wx}3_,
a sequence of PSD matrices which converges almost surely
to a positive definite (PD) matrix W. The expectation of the
Jacobian of the moment function at the ground truth 6y is
denoted by Go = E [0 (60,y)/06"].

A. GMM with a unique set of parameters

The large sample properties of the GMM estimator, under
the uniqueness of the parameter set (4), were derived in [24],
and are presented in the following theorem.

Theorem IIl.1. Under the uniqueness of the parameter set (4),
and the regularity conditions A.1-A.8 of Appendix A, the GMM
estimator satisfies:

A. (Consistency) éN 2 6,.



B. (Asymptotic normality)
VN(y —00) % N(0,MSMT),

where M = [GEWGo]*GETW.

C. (Optimal choice of a weighting matrix) The minimum
asymptotic variance of Oy is given by (GFS—1Gp)~1
and is attained by W = S~

Theorem III.1 provides a matrix W that guarantees a
minimal asymptotic variance of the estimator’s error. In Ap-
pendix A, we present the regularity conditions of Theo-
rem III.1 in detail. While most of these conditions hold for the
MRA model, e.g., continuity of f(-), the intrinsic symmetry
of the MRA model (1) violates the uniqueness condition (4).
In the next section, we extend Theorem III.1 and prove that
the optimality of the GMM remains true even if there is a
unique orbit of signals that fits the moments, rather than a
unique signal.

The covariance matrix S of (8), which plays a central role in
Theorem III.1, is required to be a PD matrix, see Appendix A.
Therefore, the moment function must be chosen so that S is
full-rank; see for example [28]. In this work, we noticed that
if we remove the repeating entries of f (that appear due to the
inherent symmetries of the moments), the covariance is indeed
full rank (although, in some cases, ill-conditioned).

It is important to note that in practice, the ground truth 6,
is unknown a priori, so we cannot use the optimal weighting
matrix. A common heuristic is to replace (7) with an iterative
scheme called iterative GMM. However, for our specific choice
of moment function f (5), the covariance of g depends solely
on the observations {y;}Y,, and not on the parameter set 6,
namely,

Covlgn ()] = Cov |yi; ...y | ©)

Therefore, one can compute both the moment function and
the covariance matrix S (8) in a single pass. The algorithm is
detailed in Algorithm 1.

Algorithm 1: The GMM estimator

Output: The estimated parameters éGMM
Input: A set of observations {y;}¥ ,
1) Compute the estimated sample moment function gy,
given in (6)

2) Compute the covariance S = Cov |y;;. .. ;y?kM and
its inverse W = §~1

3) Solve arg mingeg gn (0)T Wagn (6)

B. GMM with a unique orbit

We are now ready to introduce the main theoretical contribu-
tion of this paper: extending Theorem III.1 to the case where
there is an orbit of signals that agrees with the observable
moments. This is the case, for example, in the MRA model (1)
as well as in cryo-EM [9].

Let A be a group acting on a vector space ©. We denote
the group action by a o §. To extend Theorem III.1, we make
the following two assumptions.

Assumption IIL.2. Global identification up to an orbit:
Vae A: E[f(0,y)] =0 if and only if § = a o 6.
Assumption IIL.3. Symmetry of the moment function:
Vae AV € ©Vie{l,.,N}: flaob,y;) = f(0,y;).

The next theorem shows that under the above assumptions,
the large sample properties of Theorem III.1 remain true
for problems with group symmetry. In particular, Assump-
tions III.2 and III.3 are sufficient to guarantee consistency, as
shown in Theorem IIl.4; the rest of the properties are direct
corollaries. The proofs of Theorem IIl.4 and Corollary III.5
are provided in Appendices B and C, respectively.

Theorem II1.4 (Consistency). Under Assumptions I11.2, 1113,
and the regularity conditions A.1-A.4 of Appendix A, there
exists a sequence {an}3_; C A, such that:

an © QN £> 90,
where éN is the GMM estimator.

Corollary IIL.5. Under Assumptions II1.2, 1II.3, and the
regularity conditions A.1-A.8 of Appendix A, there exists a
sequence {an}3_q C A, such that:

A. (Asymptotic normality)

\/N(QN o éN — 90) i N(O,MSMT),

where M = [GEW G| *GETW.

B. (Optimal choice of weighting matrix) The mini-
mum asymptotic variance of ay © éN is given by
(GETS~1Go)~" and is attained for W = S—1.

IV. APPLICATION OF GMM TO MRA
A. Moments

The first two moments of the MRA model (1) are given
by [21]:
Mi(z,p) =xxp=Cyp=Cyu,

My(z, p) = C,D,CL + %

Here, * denotes a convolution, C,, is a circulant matrix whose
first column is x, D, is a diagonal matrix whose diagonal
consists of the entries of p, and X is the covariance matrix
of the noise. These moments can be estimated from the
observations by the empirical moments M and M, as in (2).
By the law of large numbers, if N is large enough then
Ml ~ M1 and Mg ~ Mg.

In [21], it was shown that the first two moments suffice
to recover the orbit of x and p, for almost any non-uniform
distribution p and if the discrete Fourier transform (DFT)
of x is non-vanishing. Therefore, a natural candidate for the

moment function is
M (z,p) — y; )
z,P,Yi) = .
F@. o) (Mz(x,p)—yiyf

Since the second moment is a symmetric matrix, we remove
all recurrent entries (e.g., eliminate the left lower triangle
of the second moment matrix). Empirically, this modification
results in a full-rank covariance S. With a slight abuse of

(10)



notation, we continue using the notation of (10) after removing
the recurrent entries. Thus, f € REH(EADL/2,

Before diving into the numerical results, we need to verify
that the MRA model (1) and the moment function (10) satisfy
Assumptions III.2 and II.3. First, we note that Assump-
tion III.2 is satisfied since the first two moments determine
the orbit of the signal uniquely (under the aforementioned
conditions). Let us define a group element a; acting on
0 = [p; ] by a; 0 [p;x] = [R_;p; R;x]. Since M; and M, are
invariant under this group action, the moment function (10) is
invariant as well, and thus Assumption II1.3 holds.

B. Experimental setting

Due to the inherent symmetry of the MRA model, we define
the relative error as:

|Rst — x|z
|2

where Z is the signal estimate. The SNR is computed as

error(z, &) = , (11)

min
0<s<L—1

1113
SNR = Trace(X)’
where ¥ is the covariance matrix of the noise term in (1).

For each SNR value, we conducted 100 trials. In each
trial, we sampled a signal of length L = 15, drawn from
a normal distribution N'(0,7), and then normalized it such
that ||z|l2 = 1. We use low-dimensional signals since, in
this regime, the MoM has clear computational advantages
over methods that maximize the likelihood function, see
Section II-A. In addition, it was recently shown that for high-
dimensional signals, in contrast to the low-dimensional case,
the sample complexity of the MRA model is not governed
by moments [23]. The distribution p was drawn uniformly as
an element over the simplex. Uniform distribution is merely a
point on the continuous simplex, and therefore the distribution
is almost surely non-uniform. Using the sampled signal and
distribution, we generated N = 100, 000 observations accord-
ing to (1).

In the experiments, we compare the GMM estimator (7)
with the classical MoM, corresponding to GMM with W = I;
we refer to the latter as the LS estimator. We implemented both
estimators using the general purpose interior point solver of
MATLAB. While the objective functions of both the classical
MoM and the GMM are non-convex, empirically, it seems
that all local minima are global. Since the scale of the relative
error changes drastically for different SNR levels, we measure
the ratio between the relative errors of the GMM and the LS
estimators. In the figures presented in this section, the blue and
red lines represent, respectively, the mean and median of this
relative error ratio. For clarification, when the ratio is greater
than 1, the LS’s relative error is bigger than the relative error of
the GMM estimator. Namely, the GMM outperforms the LS.
The upper and lower limits of the boxes denote the 75th and
25th percentiles, respectively. The dots represent trials whose
ratios lie below the first quartile or above the third quartile.
Lastly, the dashed line represents the LS’s mean relative error,
which corresponds to the right vertical axis. We focus on the
range of SNR levels corresponding to relative errors that are

— *—-Mean
Median
— +—-Mean rel. error LS

Ratic of rel. errors: LS 7 GMM
Mean error of the LS estimator

SNR

Fig. 1: Homoscedastic noise model: The ratio between the
relative errors of the LS and the GMM estimators.

smaller than 1. The code to reproduce this section experiments
is publicly available at https://github.com/abasasa/gmm-mra.

C. Homoscedastic noise

We start with a homoscedastic noise model where, ¢; i
N(0,0%1); this noise model was considered by all previous
works on MRA, e.g., [21], [26], [29].

The first experiment compares the performance of the LS
and GMM estimators. The results are presented in Figure 1. As
expected, the mean relative error of the estimators decreases
as the SNR increases, as illustrated by the red dashed line.
For high SNR levels, the GMM estimator outperforms the LS
estimator by more than 20%. In low SNR levels, the GMM
estimator has only a slight advantage over the LS estimator.

D. The effect of adding the third moment

This paper is mainly focused on using the first two mo-
ments: the minimal number of moments required for sig-
nal estimation when the distribution of translations is non-
uniform [21]. This is also the number of moments we use for
the cryo-EM experiments in Section V.

We now examine a natural question: what is the effect
of adding the third moment to the moment function (10)?
Figure 2 compares the performance of the GMM estimator
with two and three moments. Adding the third moment indeed
leads to significant improvement for all SNR levels, especially
when the SNR is high. The superior numerical performance
of adding the third moment to the moment function comes at
a cost: the dimensionality (and thus the computational load)
grows from O(L?) to O(L?). In particular, in our experiments,
adding the third moment has increased the running time by a
factor ranging from 1.5 to 5 (depending on the SNR). Figure 3
compares the performance of the GMM and LS estimators
with the third moment. The trend of the ratio of relative errors
is similar (besides a single point) to the same experiment with
only the first two moments, as presented in Figure 1.

For the rest of the paper, we continue investigating the
GMM estimator using only the first two moments.
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Fig. 2: The effect of adding the third moment: The ratio
between the relative errors of the GMM estimator with the first
three moments (GMM-M3) and the GMM estimator with only
the first two moments (GMM-M5). Evidently, the GMM with
three moments outperforms the GMM with two moments.

— %—-Mean
Median
2 |~ *—-Meanrel.error LS

1.6
i R
5 B
1.4
; o

e

Ratio of rel. errors: LS / GMM
Mean error of the LS estimator

500 100 10 1 01 0.01

SNR
Fig. 3: Homoscedastic noise model with the third moment:

The ratio of the relative errors of the LS and the GMM esti-
mators when the moment function includes the third moment.

E. Heteroscedastic noise

Next, we investigate a scenario in which the noise term is

distributed as ¢; b N(0,%,), where X is a diagonal matrix
given by

202
X = (12)
Lo?

In this case, the noise level increases along the signal’s entries.
This model is similar to a popular noise model in cryo-EM [9].
Figure 4 compares the performance of the GMM and the LS
methods and shows that the GMM outperforms the LS by at
least 30% for most SNR levels. Note that the performance
of the LS estimator is similar in both the homoscedastic and
heteroscedastic noise models.

— *—-Mean
Median
— +—-Mean rel. error LS

o

Ratio of rel. errors: LS  GMM
Mean error of the LS estimater

SNR

Fig. 4: Heteroscedastic noise model: The ratio between the
relative errors of the LS and the GMM estimators.

F. When do we expect the GMM to outperform the MoM?

In the heteroscedastic noise model, the dispersion of eigen-
values is larger than in the homoscedastic case. Therefore, the
effect of including the weighting matrix Wi in (7) leads to
an increased performance gap between the LS and the GMM.
Accordingly, we conjecture that in general, if W is “far” from
the identity matrix in terms of large dispersion of eigenvalues,
then the performance of the GMM will be significantly better
compared to the LS estimator. To this end, we define the
distance between a matrix A € R™*™ and the identity matrix
by

) o ilogg (ﬁm)) -

_— 13
TAllr (13

where A;(A) is the j-th eigenvalue of A. This measure is
based on the geodesic distance with respect to the Riemannian
metric over the cone of PD matrices [30], with one additional
normalization factor ﬁ. This factor assigns the same dis-
tance for matrices that are equal up to a scalar multiplication,
i.e., 3(A) = d(cA) for any positive ¢ > 0. In weighted LS,
multiplication of the objective function by a scalar does not
affect the estimator, and thus the modification is needed.

We compare the measure (13) of the weighting matrix (9),
for the homoscedastic and heteroscedastic noise models; the
results are presented in Figure 5. For the homoscedastic
noise model, the minimum point of the geodesic distance
is around SNR ~ 0.1. Indeed, Figure 1 shows that at this
noise level, the performance of the GMM estimator performs
similarly to the LS estimator. In addition, we observe that
in high SNR homoscedastic noise and under heteroscedastic
noise, large geodesic distance is positively correlated with
superior performances of the GMM compared to LS. These
observations support our hypothesis that the geodesic distance
from the identity can be used as a heuristic tool to predict
when it would be beneficial to use the GMM.
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Fig. 5: Modified geodesic distance (13) of the weighting
matrix W from the identity matrix as a function of the SNR.
The two curves are of the homoscedastic and heteroscedastic
noise models, averaged over 20 trials. In the homoscedastic
noise model with SNR ~ 0.1, where the geodesic distance
between W and the identity matrix is small, the performance
of the GMM and the LS estimators is similar.

G. MRA with outliers

Motivated by the abundance of outliers in cryo-EM
datasets [9], we consider the following generative model

B {Rsix +¢€  wp. 1 — pou,
Yi =

W.P. Pout,

N(O, Zout) (14)

where py is the probability of an observation to be an outlier
and X, is the covariance matrix of the outliers’ distribution.
Under this statistical model, the analytical moments read

Ml(x7p> = (1 _pout)Cpxy
MQ(I’,/)) = (1 7p0ut)CmDpcz + (1 - p(mt)Z +p0ut20ut-

We assume that p,, and X, are known. As before, for
large N, the empirical moments approximate the analytical
moments.

1) Weighted LAD optimization: Robustness to outliers is
commonly obtained by replacing the LS objective with the
weighted least absolute deviations (LAD) objective func-
tion [31], given by

0%P = argmin |[Wiec| - [R(0, {y:} 1)) (15)

0cO

Here, |W,..| is a fixed weighting vector, - is the scalar product,
the absolute value is taken entrywise, and h(f, {y;}Y ;) is
the loss function. Intuitively, one might suggest defining h
of (15) as gy from (6). However, it was shown in [32] that the
estimation error of standard GMM based on /5 norm is lower
than any other £, norm for a moment function that satisfies
E [f(0o,yi)] = 0'. Therefore, we take a different approach.

I'This is not necessarily true for a biased moment function.

2) Geometric median estimator: We present an estimator
based on the geometric median of the moments. The geometric
median is a generalization of the univariate median to the
multidimensional case, and is defined as

Yi
L

where ¢ = L + (L + 1)L /2, the total number of elements of
the first and second moment. Notice that as before, we treat
yiyl as a vector in R(EADL/2 The geometric median does
not have a closed-form solution, and we approximate it using
the Weiszfeld algorithm [33].

We estimate the empirical moments by (16), and use it in
the loss function of the weighted LAD (15),

e (e} = (A ) = GRT(ds). (7

We name this estimator the geometric median estimator. In
order to construct Wy, we use an alternating optimization
scheme with two phases. The first phase minimizes (17)
for a fixed Wi, (initialized by vectors of ones). Then, we
update W,.. using the current estimation of x and p; see
Algorithm 2. As mentioned in Section I'V-F, a multiplication
of Wy by a scalar does not affect the GMM estimator, and
therefore we minimize Wy over the sphere in REH(LFDL/2)
denoted here by SLH(E+DL/2-1 " ysing Manopt’s BFGS
solver [34]. Empirically, updating W,.. once suffices.

;o (16)

N
— ) N — 1
GM({yi}it,) = arg TeR ; 2

Algorithm 2: Alternating weighted LAD

Output: The estimated parameter vector 6
Input:: A set of observations {y;}¥ ,, a loss function
h, and number of steps n
1) Initialize W (a common choice is a vector of ones)
2) Solve 6 = argmin|Wiec| - [R(6, {y;}Y,)| (first iteration)
0co

3) for j from 2 to n do

Weee = argmin
WeSL+H(L+1)L/2-1

0= argmin|Wie| - |R(0, {y: }X1)]
€6

W1 1h(9, {yi}Ls)]

end

3) Numerical Results: The geometric median estimator is
compared against the GMM in Figure 6 with p,, = 0.2 and
Sou = Tooeg ], where L = 15 is the signal length. As can
be seen, for low SNR levels, the geometric median estimator
exhibits superior numerical performance, while GMM works
better in a high SNR environment. We observed similar
results for different po, values, however the SNR level of the

transition point varies.

H. MRA with projection

The MRA with projection model is an extension of the
standard MRA model (1), which includes an additional linear
operator acting on the shifted signal. In this model, the i-th
observation is given by

yi = PRs,x + €, (18)
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Fig. 6: Outliers noise model (14): The ratio between the
relative error of the GMM and the geometric median estimator
for the outliers noise model (14) with poy, = 0.2.

where P is a fixed, known matrix of size K x L. As in (1),
the goal is to estimate € R” from y;,...,yny € RX. The
first and second moments of (18) are given by

Mi(z,p) = PCpuz,
My(x,p) = PC,D,CIPT + PEPT.

Motivated by cryo-EM, we focus on a matrix P that sam-
ples only the first K entries of the shifted signal. That
is, PR,z is a vector of length K consists of the entries
[(RSJJ)O, ey (Rs$)K,1].

Figure 7 compares the performance of the GMM and the
LS estimators as a function of K (namely, how many entries
are being kept) for a fixed noise level ¥ = 1072 ITx k. As
can be seen, the GMM outperforms the LS by at least 20%.
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Fig. 7: MRA with projection: The ratio between the relative
errors of the GMM and the LS estimators as a function of
the measurement length K. The covariance of the noise is

Y =10"2. Ik vk.

V. GMM FOR CRYO-EM: A PROOF OF CONCEPT

As aforementioned, the main motivation of this work stems
from the task of reconstructing the 3-D structure of molecular
structures using single-particle cryo-EM. Building upon [35],
we formulate the GMM for cryo-EM and show preliminary
numerical results. We note that the goal of the MoM in
the cryo-EM literature is not to reconstruct a high-resolution
molecular structure, but only to quickly constitute a low-
resolution, ab-initio model [9].

A. Mathematical background

Under some simplifying assumptions, the cryo-EM problem
involves recovering a 3-D volume ¢: R® — R from a
set of 2-D tomographic projection images. Each observation
(projection image) is modeled as [6]

Ij = P(R] 0 ¢) +¢;,

where the projection operator P: R? — R? is

P¢($1,l‘2) = / ¢($1,l‘2,$3)d1‘3.

The term £; models additive noise term, and R; is an element
of the group of 3-D rotations SO(3), which can be represented
as a 3 x 3 orthogonal matrix acting by

[R] o ¢(x1,m2,23)] = ¢(R;[z1 w2 w3]").

As in the MRA model (1), the group elements [?; are
unknown. We assume that each image is sampled on an n X n
Cartesian grid within the box [—1,1] x [—1,1].

The Fourier slice theorem states that the 3-D Fourier trans-
form of a tomographic projection is equal to a slice of the
Fourier transform of the volume. Thus, the Fourier transform
of (19) reads

Tj(z1,22) = (RT 0 §) (21, 22, 23) | sgm0 + &5 (20)

The common generative model of cryo-EM includes additional
complications—such as the microscope’s point spread func-
tion and heterogeneous mixture of molecules [9]—which are
disregarded here for simplicity.

Following [35], we formulate the problem of recovering
the 3-D structure ¢ from the first two moments. In polar
coordinates, we can write the first empirical moment as

19)

N
1 ~
Mi(ri,¢1) = N E Ii(r1, 1),
j=1

and the second empirical moment

MQ(rla ©Y1,T2, 902) =
QRN -
N > Li(r1,1, 72, 02) (1, 91,72, 02).
j=1
The first and second moment can be computed analytically
M1(¢,P) =E |:P(RT © ¢):| ;
— — 1)
Ma(6.p) = E [ P(RT 06) & P(RT 0 9)]

where the expectation is taken over the rotations and the noise.
The explicit expressions of M; and My of (21) are provided
in Appendix D.



Fig. 8: Reconstructing a 3-D structure from noisy cryo-EM projections with SNR~0.4. We present the structures from three
different viewing directions. The ground truth, the LS estimation (MoM), and the GMM estimation appear in gray, yellow,
and blue, respectively. The GMM outperforms the LS in both the FSC and relative error criteria. Its FSC value and relative
error are 4.2 and 0.58, respectively. The FSC value of the LS estimator is 4.5, and its relative error is 0.61.

B. Numerical results

1) Evaluation metrics: We used two metrics: relative error
and Fourier shell correlation (FSC). The relative error is com-
puted similarly to (11), except that the alignment is computed
over the group of 3-D rotations SO(3). FSC is a common
resolution measure in the cryo-EM field [36]. It measures
cross-correlation coefficients between two 3-D volumes over
corresponding shells in Fourier domain. Given two volumes,
1 and 4, the FSC in a shell « is calculated using all voxels &
on this x-th shell:

ZHK,H:/{ [p1(r)[p2(k)]
FSC(r) = .
\/ZHK,H:/{ lp1(K)[? ZHnH:n lp2(k)?

Usually, FSC curves decrease with «, and the resolution is de-
termined as the point where the FSC curves drop below a pre-
specified value. In this work, we use a threshold of 0.5 [37].
Therefore, higher resolution is indicated by a smaller FSC
value.

2) Example: Following [35], the LS estimator is formulated

as

where ) is a regularization parameter. As in the MRA problem,
we define the moment function of the GMM estimator as

f($7Pan)— <M2(¢7p>—f]®2j—‘rB>’ (22)

where B is an unbiasing term. We removed redundant entries,
due to the inherent symmetries of the moments. In order
to estimate the volumes, we used Manopt’s trust-regions
solver [34].

In the following experiment, the volume is a toy model,
composed of five Gaussians over R?, whose high-frequencies
were removed (see the blue volumes in Figure 8) [35]. The
toy model is sampled on a 23 x 23 x 23 Cartesian grid. The
distribution of rotations p was drawn randomly such that p
is invariant to in-plane rotations, i.e., p depends only on the
viewing direction. We generated N = 200,000 observations

according to (19), and added an i.i.d. white Gaussian noise,
corresponding to SNR ~ 0.4. Due to the simulated nature
of the volume, the FSC’s resolution units are measured in
1/pixel’s length.

The resulted volumes are depicted in Figure 8. The GMM
outperforms the LS in both criteria. Its FSC value and relative
error are 4.2 and 0.58, respectively. The FSC value of the LS
estimator is 4.5, and its relative error is 0.61. The code is pub-
licly available at https://github.com/ABASASA/GMM-Cryo.

C. lll-conditioning of the weighting matrix

The condition number of the GMM’s ideal weighting ma-
trix W in the MRA model was around 10*. Unfortunately, the
condition number of W in the cryo-EM experiments was much
higher. Figure 9 presents both the condition number of W and
the geodesic distance between W and the identity matrix. As
can be seen, as the SNR increases, so are the condition number
and the distance to the identity matrix. In particular, for most
SNR levels, W is ill-conditioned. This phenomenon must be
considered when applying GMM to cryo-EM experimental
datasets, as discussed in the next section.

VI. DISCUSSION

This paper is part of an ongoing effort to harness the
favorable computational properties of the method of moments
for constituting ab initio models of molecular structures using
cryo-EM [5], [35], [38], [39], [40]. We use several MRA
models as test cases and show that the GMM outperforms the
classical method of moments. Also, we prove that the GMM
retains its optimal statistical properties even when the signal
is determined up to a group action, as in MRA and cryo-EM.

Our ultimate goal is to apply the GMM technique to con-
stitute 3-D molecular structures using cryo-EM. However, our
study reveals a major computational challenge: the moment
function’s covariance matrix is severely ill-conditioned. Thus,
devising rigorous techniques to reduce the condition number
is a future research direction toward applying the GMM
framework to experimental cryo-EM datasets.
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Fig. 9: The condition number and the geodesic distance (13),
for the cryo-EM model (19), of the GMM weighting matrix
(computed at the ground truth) for different levels of white
noise.

In a broader perspective, we intend to study the GMM
for additional signal processing tasks in which the method
of moments plays an important role. Examples include super-
resolution [41] and multi-target detection [16], [42], [43].
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APPENDIX
A. Additional assumptions of the GMM

Note that by construction, gy
limy 0 gn(0) = E[f(0,y)] = g(0).
denote the corresponding quadratic forms,

Q) = g(0)"Wy(6), Qn(6) =gn(O) Wrgn (),

and the Jacobians,

of (6) satisfies
In addition, we

N
GO) =E[01(6,)/067), Gx(0) = 1 3 01(6,4:) /00"

Notice that we also have limy_, Qn(0) =
limy 00 Gn(0) = G(0).

The favorable statistical properties of the GMM rely on
several conditions, including the uniqueness of a set of pa-
rameters (4), see Section III. For completeness, we now
present the rest of the regularity conditions required for
Theorem III.1 [24], [44]. For the first assumption, we say
that a sequence of random variables with a joint cumulative
distribution function F' is strictly stationary if, for any 7, n,
t1,...,th €N,

Q(0) and

F(yt17yt27"'7ytn> = F(yt1+‘rayt2+‘r7"'7yt”+‘r)-

The above sequence (or process) of random variables is called
ergodic if E ﬁ

% iy - Bl IP] 0, as N > oo,

Assumption A.l. The sequence {y; | i € N} is strictly
stationary and ergodic.

Assumption A.2. (i) © is a compact space and (ii) 0y is an
interior point in ©.

Assumption A.3 (Regularity conditions for f). The moment
Sunction, f:© x R" — RY, satisfies: (i) f(-,y) is continuous
on O for every y € R"; (ii) g(-) exists and finite for every 6 €
©; (iii) g(-) is continuous on © and (iv) E [supycg || f(6,)]|]
is finite.

Assumption A.4 (Properties of the weighting matrix).
{Wn}_, is a sequence of PSD matrices, and W is a PD
matrix such that Wy 5w,

Assumption A.5 (Regularity conditions for f/06T). (i) The
Jacobian matrix Of(0,y)/00 exists and continuous on © for
every y € R and (ii) E [0f(0,y)/00T| exists and finite.

Assumption A.6 (Existence of the covariance). (i)
E[f(0,y)f(0,y)"]| exists and finite; in addition (ii) S
of (8) exists and it is a PD matrix.

Assumption A.7 (Continuity of G). G(0) is continuous on
some neighborhood Ngs of 0y and its symmetries under the
group A, given by

Ns(6o) ={0€©:3a € A, |6 —aob| <d} =
=Ugea{0 € ©:]|0 —aoby| <d}.

Assumption A.8 (Uniform Convergence of Gy). For Nj of
Assumption A.7, G (0) satisfies

sup [|Gn(6) — E[£(6,y)/067]| 5 0.
6Ny

B. Proof of Theorem II1.4

In this section, we prove consistency for the GMM estimator
under Assumptions III.2 and II.3. The proof is based on
similar arguments as in [27] and [44].

Lemma A.9 (Uniform Convergence in Probability of Qx (6)).
Under Assumptions I11.2, 111.3 and Assumptions A.1, A.2, A.3
and A.4, we have

sup [Qn (0) — Q)] 5 0.
6co
Proof. Since g(-) = E[f(-,y)], we have
lgn (0) =E[f(0,9)] ]2 = 0,
By definition,
sup |@n (0) — Q(0)] =
)

sup g% Wxgn —E[f(8, )] WE[f(0,9)]]. (24)

(23)

0 € 0O.

Since the terms of the right hand side of (24) are bounded and
arbitrary small as N — oo, we obtain (23), as required. [

Proof of consistency. Let § > 0 be a small enough constant
such that Assumption A.7 holds. By definition, N5(6) is in
the §-neighborhood of 6, and its orbit. Then, it is an open
set as an union of open sets under the standard metric in RP.



Therefore, its complementary set [N5(6,)]¢ is a closed set in
O. Since [N5(60)]¢ is a closed set in a compact set © C R?,
by Assumption A.2, [N;s(6)] is also compact. According to
Assumption A.3, the function g is continuous, and therefore
Q(0) is continuous as well. Using the extreme value theorem,
Q(0) has a minimum over a compact space [N5(6)]°.

Let us define ¢ := infggn;4,) Q(F), the infimum of the
asymptotic objective function outside the neighborhood. First,
we prove that € > 0. By Assumption A.4, W is a constant
PD matrix. Then, Q(f) = 0 <= ¢(f) = 0. However, by
Assumption II1.2, g(6) = 0 only for a # in the orbit of 6,
hence 6 € Ns(6p). Therefore, € > 0.

By Lemma A.9, supyce |Qn(0) — Q(0)| 2 0, so we can
choose a large enough N such that: |Qn () — Q(f)| < 5. In
addition, by definition QN(éN) < Qn(bp), since Oy is the
minimum of Q. Then, for large enough N we get:

Q0w < Qi) + 5 < () + 5 S QU0+ 5 <=

In other words, Oy € Ns(6p). Since 0 was chosen arbitrarily,
we conclude that there exists a sequence {an}3_; C A such
that ay o Oy 2 6. O

C. Proof of Corollary IIl.5
The following proofs extend the proofs of [44] to uniqueness
of an orbit solution. It is done by replacing 6 by an o y.

Proof of asymptotic normality of the parameters estimator.
By Assumption 1.3, we have Gy (apy o éN) = GN(éN).
From Theorem II1.4 and the mean value theorem, there exists
ay € A such that:

gn(an o 0n) = gn (o)

A\ « 25)
+Gn(an o 0n)(any 0 On — p).

Here, éj}, exists according to the mean value theorem. Note
that the i-th row of Gy (ay o6y ) is the corresponding row to

GN(BD), where 5O = Ay 0 + (1 — An,i)lan o Oy]®.
Multiplying 25) by GN(QN)TWN = GN((IN o QN)TWN
yields
Gn(On) " Wign(On) = Gn(an 0 On)" Wign (60)
+ Gy (an 0 On)T WGy (an o 03 )(an o On — by).

By definition, On is the minimum of Qx(-), and therefore
Gn(On)TWngn(0n) = 0. Thus,

\/N(G,N o éN — 6‘0) = —[GN(G,N o éN)TWN
Gn(an 0 03))] ™ Gn(an o On) WV Ngn (6o).

From the consistency of the estimator, we obtain:

(26)

Gn(an o éN) 2 Gy,
Gn(an 0 03) B Go.
Next, we denote
My = [Gn(an o On) " WxGy(an 0 03))] 7
xGn(an OéN)TWN\/Na

hence
lim My = [GEWGo]'GTW.
N—oo

The right hand side of (26) can be expressed as — My gn (6p).
Finally, from Slutsky’s theorem and the central limit theorem,
we derive the desired results. O

Proof of optimal choice of the weighting matrix. Let éN(W)

be the GMM estimator with the weighting matrix W. We

denote by V(W) the variance of the limiting distribution

of VNlay o Ox(W) — ). We prove that V(S~1) is the

minimum asymptotic variance, which is equivalent to prove

that V(W) —V(S~!) is a PSD matrix, for any PD matrix W.
According to Theorem III.4, we have

VNlay 0 On(W) — ] = V(W),

\/N[bN o éN(S_l) — 90] — V(S_l),

when N — oo. Here, {an}37_, and {bny}J_, are sequences

in A such that ay o On (W) 5 6o and by o On(S™) 5 6.

We start by relating VNlan o On(W) — 6] and v/ N[by o
On(S™1) — o] by

VN[ay 0 On (W) — o] = VN[by 0 Ox(S~") — 6o] @7

+VNlan 0 On (W) — by 0 x(S71)].

From the proof of Corollary III.5-A,
VNlan 0 05 (W) = 6] = —VNM(W)gn (6o) + 0p(1),

where M (W) = [GEWGo7'GEW and o0,(1) represents a
sequence of vectors {ay}%_; C RP*! such that for each
entry limy_, oo (ay); = 0. Therefore,

\/N[GN o éN<W) - bN o éN(S_l)} =
—VN[M(W) = M(S™")]gn (00) + 0p(1).
Now, we apply the asymptotic covariance of (27) and get:

VW) -V H=wn+C+C7T,

where Vi = limy_, Var [[M(W) — M(S~ Y]V Nan(60)] ,
and

C = lim Cov[VN[M(W) — M(S™")lgn (),
VNM(S™")gn(00)].

By construction, V; is a PSD matrix. For the choice of W =
S~1L, it is easy to see that C' = 0. Thus, we get the desired
result. O

D. Computational framework for cryo-EM

We follow the framework developed in [35]. This section
provides the complementary details which were omitted from
Section V.



1) Basis for the volume qAS We represent the Fourier trans-
form of ¢ by

Apm,sFos(R)Y"(0,0), (28)

where Y, (6, ¢) are the complex spherical harmonics, L is the
volume’s bandlimit, and Ay ,, s are the expansion coefficients.
The radial frequency functions F , are orthogonal for each
fixed ¢, where s = 1, ..., .S(¢) is referred to as the radial index.
Popular choices of radial functions include the spherical Bessel
functions [45], which are eigenfunctions of the Laplacian on
a closed ball with Dirichlet boundary conditions, as well
as the radial components of 3-D prolate spheroidal wave
functions [46].

We assume that the volume is band-limited with Fourier
coefficients supported within the radius of size 75+, where n
is the size of the Cartesian grid of the projection images I,
n X n. Note that since ¢ is real valued, its Fourier transform
is conjugate-symmetric, which imposes restrictions on the
coefficients Ay, s.

The advantage of expanding (E in terms of spherical harmon-
ics is that the space of degree ¢ spherical harmonics is closed
under rotation. In particular, rotating a spherical harmonic by
R € SO(3) can be expressed as

RT-Y["(x) = m(RfE)

-y

m/=—/{

/(x), r e S? @9)
where U‘(R) € CRHDX(24+1) are the Wigner matrices
(see [47, p. 343]).

2) Basis for the probability distribution of rotations: We
assume the probability density p over SO(3) is a smooth,
band-limited function, which can be expressed as

P P
=Y Y BpusUL,(R), ReSOQ).

p=0u,v=—p

(30)

By the Peter-Weyl theorem, {U*(R)}£_, form an orthonormal
basis of L?(SO(3)). The cutoff P is the band limit of p.
Following the arguments from [35], we assume that P < 2L.

3) Basis for the 2-D images fj Next, we represent fj using
a function space which is closed under in-plane rotations,
represented as elements of SO(2). By the Peter-Weyl theorem,
we can can expand a band-limited image I;:

R Q Tl _
Rop)= Y D anfar(R)e . 31)
=—Q t=1

Here, the radial frequency functions f, ., for fixed g, are taken
to be an orthonormal basis. Specifically, we choose f,; to
be the radial components of the 2-D prolate spheroidal wave
functions [46]. Following [35], we take Q = L.

4) Representation of the moments: We present the connec-
tion between the first two moments of the observed images
and the coefficients {A¢ s }o.m,s and {By, u, v}y, of the
volume and the distribution of rotations, respectively.

We index the images in terms of R € SO(3) (instead of j
in (19)):
Q T(9)

¢) = Z Z af,tfq,teiq@
q=—Q t=1

Using the Fourier slice theorem and a few algebraic steps, it
can be shown that the 2-D and the 3-D coefficients are related
via

(32)

L S#) ¢

q,t_ ZZ Z Afms mq )’YZ’;

l=|q| s=1 m=—¢

(33)

where 7 ! are constants depending on the radial functions:
T Y ,
Vs = g/ Yzq(§ e P Fy (k) fq.(k)Rdrde.
o Jo G34)

In practice, the coefficients 7', ©! are calculated via numerical
integration over a closed segments [35], [48].

5) First Moment: By taking the expectation over R ~ p
and applying the distribution’s expansion (30), we get

min(L,P) ( 1)m,+q

Z ZZAZWL&BZ —m,— q7£5 ;£+1

= |q| s=1m=—4¢
(35)
We note that the first moment is linear in both the volume’s
coefficients {Ag .5 }e,m.s and the distribution {B) v }p.u v
as in the MRA model.
6) Second Moment: We have:
E [aR all Z A517m1,31AZ27m2,527211 :1721:,:2

q1,t17q2,t2
£1,m7q,s1,

Lg,ma,s2

E : B ,*mlfmz,*thfqzcghqz (fl’ éQa my, mQ)
p

(_1)m1 +ma
2p+1
(36)
The first summation have the same range as in (35) for each
set (¢;, s;,m;). The second summation’s range is
max(|[l; —la|, |m1+m+2|, |g1+¢+2]) < p < min(l;+4s, P).
In addition:
Cghqz (éla EQ7 mi, m2) =
C(ly, my; o, malp,my +ma)C(l1, q1; L2, g2|p, 1 + g2),
(37)
is the product of two Clebsch-Gordon coefficients. The second
moment is a quadratic function of the volume’s coefficients

{A¢m.stem.s and is linear in the distribution’s coefficients
{Bp,uv}pu,vs similarly to the MRA model.



