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ABSTRACT
In this work, we consider the existence and topography of seams of conical intersections (CIs) for two key singlet–triplet systems, including
a uniformly scaled spin–orbit interaction. The basic one triplet and one singlet state system denoted as (S0,T1) and the two singlets and one
triplet system denoted as (S0,S1,T1) are treated. Essential to this analysis are realistic electronic structure data taken from a recently reported
neural network fit for the 1,21A and 13A states of NH3, including Hsf (spin-free) and Hso (spin–orbit) surfaces derived from high quality
ab initiowavefunctions. Three types of seams for the (S0,S1,T1) system are reported, which depend on the choice of the electronic Hamiltonian,
He. The nonrelativistic CI seam [He =Hsf, (S0,S1)], the energy minimized nonrelativistic singlet–triplet intersection seam [He =Hsf, (S0,T1)],
and the fully relativistic seam in the spin-diabatic representation (He =Htot =Hsf +Hso) are reported as functions of R(N–H). The derivative
couplings are computed using He = Htot and Hsf from the fit data. The line integral of the derivative coupling is employed to juxtapose the
geometric phase in the relativistic, He = Htot, and nonrelativistic, He = Hsf, cases. It is found for the (S0,T1) system that there is no CI in the
spin-adiabatic representation, while for the (S0,S1,T1) system, CI can only be formed for two pairs of spin-adiabatic electronic states. The
geometric phase effect thus needs to be handled with care when it comes to spin-nonconserving dynamics simulations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0067660

I. INTRODUCTION

In electronically nonadiabatic processes, distinct adiabatic
potential energy surfaces can intersect along a seam with the topol-
ogy of a double cone known as a conical intersection (CI).1–4 One
extensively studied nonadiabatic process, internal conversion (IC),
is a spin-conserving transition of the molecule from one electronic
state to another. CIs are key to understanding internal conversion
behavior as they serve as efficient funnels that transfer population
between states.5–10 Nonadiabatic behavior near a CI can be captured
in an on-the-fly approach11–13 or with the help of quasi-diabatic
coupled potential energy surfaces.9,10,14–16

In the nonrelativistic case (Coulomb electronic Hamiltonian),
CIs induce the geometric or Berry phase in which a real-valued elec-
tronic wavefunction changes sign when traversing along a closed
loop that encloses an odd number of CIs.17–20 The sign change
renders the adiabatic electronic wavefunction double-valued.
This double-valuedness needs to be removed from the total

wavefunction by a geometry-dependent phase factor. It has been
shown that the geometric phase (GP) effect can influence the multi-
state reaction dynamics significantly.21–24 In a recent study, it was
reported that dynamics on the single lower adiabatic surface and
the influence of the GP effect are nontrivial, and excluding it can
produce catastrophic results in adiabatic quantum dynamics.25

The above discussion focuses on CIs for spin conserving pro-
cesses. However, recently, much work has been done11,12,26–30 to
include spin–orbit coupling in the electronic Hamiltonian, using on-
the-fly techniques, to enable simulations of the spin-nonconserving
process intersystem crossing (ISC), a process of interest in photo-
chemistry and photobiology.31–33 The principal difference between
IC and ISC is that IC is spin-conserving, while ISC is not. Transitions
between states with different spin multiplicities open new reaction
pathways that may compete with IC.

IC can be treated either on-the-fly or with predetermined cou-
pled fit surfaces. On-the-fly dynamics facilitates incorporation of the
spin–orbit interaction into the spin-diabatic approximation since
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the adiabatic electronic wavefunctions, solution to the electronic
Schrödinger equation, are available at all time steps. For fit surface
driven dynamics, the required spin–orbit coupling (or other prop-
erties) matrix elements are made available as functional forms, fit
to the adiabatic ab initio data. This requires smooth data through-
out the range of the fit. Adiabatic representations are not smooth
near a conical intersection, where the derivative coupling is singular,
and the GP must be considered. The discontinuity in the wavefunc-
tion affects wavefunction-based matrix elements. For example, the
switching of wavefunction on a path that goes through a CI cre-
ates an artificial discontinuity in properties such as electronic dipole
moments and spin–orbit coupling.34,35 This discontinuity prevents
the property from being fit with smooth functions over the entire
nuclear coordinate space. A numerically better-behaved representa-
tion is the diabatic representation, which is related to the adiabatic
representation by a unitary transformation (the AtD transformation;
see below). In the diabatic representation, there is no singularity in
derivative coupling as they are all zero. Unfortunately, strict diabatic
states do not exist for molecules with three or more atoms; hence,
although “quasi-diabatic” is a more precise expression for what we
do here, we will drop the qualifier “quasi” for simplicity.36 The dia-
batic representation renders the dipoles and spin–orbit coupling
(SOC) matrix elements continuous functions of nuclear coordinates
and can be readily fit by robust machine learning methods such
as artificial neural networks (NNs).37–39 This enables formulation
of nonadiabatic dynamics codes to treat ISC based on accurate fit
ab initio data.

In this work, using previously reported data, the (relativis-
tic) spin–orbit interaction, in the Breit–Pauli approximation,40,41 is
incorporated into a spin conserving nonadiabatic Hamiltonian in
the commonly used spin-diabatic representation (defined below),
producing the spin nonconserving fully coupled potential energy
surfaces to be used in the dynamics. Here, the treatment will be
limited to systems with even numbers of electrons. The restriction
to systems with an even number of electrons allows time reversal
symmetry to be used to make all the Hamiltonian matrix elements
real-valued42 as they are in the nonrelativistic case. See Appendix A
for a brief discussion of time reversal symmetry. Working in this
fully coupled state space, analytic and numerical tools are used to
demonstrate (for the first time) the existence of non-intuitive (see
Sec. III) CI seams in the relativistic system, which are located, and
their topographies are analyzed. Line integrals of derivative cou-
plings along prescribed paths will describe the GP effect and help
locate CIs. Our numerical analysis is enabled by neural network
(NN) fit coupled potential energy surfaces and NN fits of spin–orbit
coupling (SOC) data.43

This work is organized as follows. In Sec. II, we introduce
the requisite electronic Hamiltonian, Htot = Hsf + Hso, where Hsf
is the spin-free nonrelativistic Hamiltonian and Hso describes the
spin–orbit coupling. Note that the derivative coupling operator d/dR
is spin-free, which renders our bases spin diabatic. Two systems
will be treated, (S0,T1) being a generic “singlet–triplet” intersection
with all components of the triplet included and (S0,S1,T1), which
describes a singlet conical intersection perturbed by a nearby triplet.
Also described is the scaling of Hso used to emphasize its effects.
The numerical analysis carried out here is enabled by the fact that
the electronic structure data (ESD) including those obtained for Hso
are available from fit functions. The fit data can be used to obtain,

for example, the derivative couplings of Htot, the (total) relativis-
tic Hamiltonian (a key quantity; see below) by a divided difference
with little computational effort. Section III presents the numeri-
cal results with emphasis on how the presence of the triplet and
SOC impacts the conical intersection seam of the two fundamen-
tal nonadiabatic topographies, which have been studied previously
in a surface hopping context.44 Our analysis makes use of the circu-
lation of the derivative coupling to confirm the existence of CI, an
approach espoused and successfully implemented for nonrelativis-
tic wavefunctions by Baer.45–47 Section IV summarizes and discusses
directions for future studies.

II. ELECTRONIC HAMILTONIANS AND DERIVED
QUANTITIES
A. Two electronic Hamiltonians

The Hamiltonian studied in this work has the following form:

Htot = Hsf +Hso. (1)

Here, Hsf is the spin-free part. Hso is the spin–orbit coupling
term. The spin-free Hamiltonian satisfies the electronic Schrödinger
equation

[H(d)x (R) − IE(a)I (R)]d
I(R) = 0. (2)

Here, (a), (d) denote the adiabatic and diabatic representation,
R denotes the nuclear coordinates, and x = sf. H(d)sf is the model
(nonrelativistic) diabatic Hamiltonian, which is an Nstate × Nstate

matrix that is fit to the ab initio ESD (energy, energy gradients, and
derivative coupling).

The derivative coupling between states with the samemultiplic-
ity can be obtained from ab initio calculations or the model Hamil-
tonian. For a detailed discussion on obtaining it through ab initio
methods such as multireference configuration interaction (MRCI),
we refer the reader to Ref. 48. In the fit model Hamiltonian, the basis
is assumed diabatic and the adiabatic derivative coupling is evaluated
with the following equation when Ea

I (R) ≠ Ea
J (R):

f aIJ = ⟨Ψa
I(q,R)∣∇RΨa

J(q,R)⟩ ≈
dI(R)†(∇RHx)dJ(R)

Ea
I (R) − Ea

J (R)
. (3)

The derivative coupling obtained using Eq. (3) is not restricted to
x = sf, that is, states with the same multiplicity in Eq. (2). All that
is required is that Hx used in Eq. (2) be the same as that used in
Eq. (3). Considering a multistate system with singlets and triplets,
I, J can represent states composed of linear combinations of triplet
and singlet components. The gradients of Hx that appear in Eq. (3)
can be determined by divided differences from the fit model
Hamiltonian.

We now turn to the two practical examples introduced in Sec. I,
the system (S0,T1) one singlet and one triplet. The total Hamiltonian
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has the form of a 4 × 4 matrix,

H ∣S0⟩ ∣T1⟩ ∣T0⟩ ∣T−1⟩
⟨S0∣ Es B0 − iA0 iC0 B0 + iA0

⟨T1∣ B0 + iA0 Et 0 0

⟨T0∣ −iC0 0 Et 0

⟨T−1∣ B0 − iA0 0 0 Et

(4)

Here, Es is the Hsf determined electronic energy of the singlet and
Et is the electronic energy of the triplet. It is convenient to transform
the triplet wavefunction to the following time reversal adapted basis:

∣Ttr
+ = (∣T1⟩ + ∣T−1⟩)/

√
2,

∣Ttr
− = i(∣T1⟩ − ∣T−1⟩)/

√
2,

∣Ttr
0 = −i∣T0⟩.

(5)

Here, the superscript tr (suppressed below) denotes the time rever-
sal basis. The SOC matrix elements will be real using a time reversal
basis.42 While this is a significant simplification, dealing with the
complex matrix is possible11 but will not be discussed here. Define
Xj =
√
2Aj, Yj =

√
2Bj, and Zj = Cj (j = 0, 1); the Hamiltonian matrix

then becomes

H ∣S0⟩ ∣T−⟩ ∣T+⟩ ∣T0⟩
⟨S0∣ Es X0 Y0 Z0

⟨T−∣ X0 Et 0 0

⟨T+∣ Y0 0 Et 0

⟨T0∣ Z0 0 0 Et

(6)

The representation is called the spin-diabatic representation44 since
there is no derivative coupling between functions with different S,
MS values. For dynamics purposes, one should expect such repre-
sentations to be smooth over the entire accessible nuclear coordinate
space.

By diagonalizing (6), we obtained the spin-adiabatic represen-
tation.44 It is clear that the triplets in the spin-adiabatic representa-
tion are no longer threefold degenerate. In fact, one can write down
the following eigenvalues:

λ2 = Et ,
λ3 = Et ,

λ1 =
1
2
(Es + Et −

√
(Es − Et)2 + 4(X2

0 + Y2
0 + Z2

0)),

λ4 =
1
2
(Es + Et +

√
(Es − Et)2 + 4(X2

0 + Y2
0 + Z2

0)),

(7)

clearly evincing a double degeneracy in the spin-adiabatic rep-
resentation. Moreover, requiring λ1 = Et or λ4 = Et will give
X2
0 + Y2

0 + Z2
0 = 0. This means that the system will exhibit an unex-

pected four state degeneracy in the N − 4 dimensional subspace in
which Et = Es and X0 = Y0 = Z0 = 0, an occurrence that is expected
to be rare.

We next examine the system with two singlets S0, S1 and one
triplet T1. Since S0 and S1 are coupled adiabatic states with a seam of

CIs in the nonrelativistic case, before introducing the SOC term to
the total Hamiltonian, one needs to use a suitable diabatization tech-
nique to diabatize the singlets and transform the spin–orbit coupling
to that representation, making it smooth.

For a two state diabatization, the adiabatic to diabatic transfor-
mation reads

⎛
⎜
⎝

∣Sd0⟩
∣Sd1⟩

⎞
⎟
⎠
=
⎛
⎜
⎝
cos θ − sin θ
sin θ cos θ

⎞
⎟
⎠

⎛
⎜
⎝
∣Sa0⟩
∣Sa1⟩

⎞
⎟
⎠
. (8)

In previous papers, we have shown that the adiabatic spin–orbit
coupling obtained from standard quantum chemistry packages is
not continuous in the vicinity of CIs due to the rapid switching
of adiabatic electronic wavefunctions in this region.35 To remove
the discontinuity and get a smooth function, SOC also needs to be
transformed to the diabatic representation,

⎛
⎜⎜⎜
⎝

Wd
0,p

Wd
1,p

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

⟨Sd0 ∣Hso∣T1,p⟩

⟨Sd1 ∣Hso∣T1,p⟩

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

cos θ − sin θ

sin θ cos θ

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

⟨Sa1∣Hso∣T1,p⟩

⟨Sa1∣Hso∣T1,p⟩

⎞
⎟⎟⎟
⎠
.

(9)

Here, p = −, +, 0 and Wd
i,− = Xd

i , W
d
i,+ = Yd

i , and Wd
i,0 = Zd

i , see
below, for time reversal adapted components of the triplet. While
it is still possible to skip the diabatization step and use the adia-
batic spin–orbit coupling term to do the dynamics calculation,29,49
one can expect that approach to fail when a CI seam exists.

In the spin-diabatic representation, Htot then has the following
form:

∣S0⟩ ∣S1⟩ ∣T−⟩ ∣T+⟩ ∣T0⟩
⟨S0∣ Hd

11 Hd
12 Xd

0 Yd
0 Zd

0

⟨S1∣ Hd
21 Hd

22 Xd
1 Yd

1 Zd
1

⟨T−∣ Xd
0 Xd

1 Et 0 0

⟨T+∣ Yd
0 Yd

1 0 Et 0

⟨T0∣ Zd
0 Zd

1 0 0 Et

(10)

The above matrix can be diagonalized to get the spin-adiabatic rep-
resentation of the two singlets and one triplet system. Apart from
a fixed eigenvalue λ3 = Et , it is challenging to determine explicit
expressions for eigenvalues as the eigenequation is quartic. This par-
tial solution is reported in Appendix B, with λ3 = Et being a non-
degenerate eigenvalue for the above matrix, which cannot form a CI
with neighboring states. Note that this does not eliminate the exis-
tence of CIs for other paired states, roots (E1,E2) or (E4,E5). Here
and below, we use (/) [(,)] to denote nonrelativistic (relativistic)
intersections (or close approach).

B. The derivative coupling and its relation
to the geometric phase

According to the GP theorem,18,19,50 the real-valued wavefunc-
tion changes sign when traversing a loop that contains an odd num-
ber of CIs. Since it is more convenient to transport matrix elements
than functions along such a path, it is useful to use an alternative sig-
nature of the geometric phase. As we show below, transporting the

J. Chem. Phys. 155, 174115 (2021); doi: 10.1063/5.0067660 155, 174115-3

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

derivative coupling along such a path provides the useful surrogate.
To do this, define the following vectors whose origin is a CI:

hIJ = dI∇RHsdJ,

2gIJ = (hII − hJJ),
2sIJ = (hII + hJJ).

(11)

The g, h vectors are the well-known orthogonal intersection adapted
coordinates that lift the degeneracy linearly near a CI.51 Define the
polar coordinate system (ρ, θ) originating at the CI as ρ cos θ = gR1
and ρ sin θ = hR2, where ∣∣gIJ∣∣ = g and ∣∣hIJ∣∣ = h. The Hamiltonian
for small R can then be written as

H(R) =
⎛
⎜
⎝
s(R) − gR1 hR2

hR2 s(R) + gR1

⎞
⎟
⎠
, (12)

and the AtD transformation d(R) between states I and J is given by

⎛
⎜
⎝
Ψ(d)I (r;R)
Ψ(d)J (r;R)

⎞
⎟
⎠
=
⎛
⎜
⎝
cos θ/2 − sin θ/2
sin θ/2 cos θ/2

⎞
⎟
⎠

⎛
⎜
⎝
Ψ(a)I (r;R)
Ψ(a)J (r;R)

⎞
⎟
⎠
. (13)

Using Eqs. (3) and (13), one arrives at

f aIJ = −∇R(θ/2). (14)

When θ increases from 0 to 2π, the line integral becomes the
circulation, and we have

∮ f I,J,CI(R) ⋅ d(R) = ∫
2π

0

1
2
dθ = π. (15)

To summarize, the circulation of the derivative coupling reflects the
GP effect and, in turn, can be used to demonstrate the existence
of a conical intersection as has been done by Baer.46,47,52–55 Rela-
tions such as Eq. (15) are relevant in the construction of sub-Hilbert
spaces.1

C. Locating seams
In the absence of an analytic formula for the eigenvalues of

the Hamiltonian in Eq. (10), we turn to Lagrange multipliers (LMs)
to locate the degeneracies, the CI seams. A geometry constrained
Lagrange multiplier method is used to locate energy minimized
crossings of state I and J = I ± 1 in the spin-adiabatic represen-
tation.56,57 Here, I, I ± 1 can represent any of the spin-adiabatic
eigenstates. The Lagrangian used in the optimization is defined as
follows:

LIJ = (EI + EJ)/2 + λ1ΔEIJ + λ2HIJ +∑nc
i=1κiKi. (16)

Here, Ki corresponds to the i-th geometric constraint.

The constraints for the location of a conical intersection read

gIJ(R) ⋅ δR + ΔEIJ = 0,
h(R) ⋅ δR = 0,
∇K ⋅ δκ +K = 0.

(17)

The first two constraints (λ1, λ2) constrain the solution to be on the
CI seam. A certain number of geometrical constraints K = 0 can be
placed in the optimization. The average energy of the two states is
minimized. It is then possible to get an energyminimized crossing in
the spin-adiabatic representation by solving the following equation
iteratively:

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

∇∇L (g)(h) (∇K)
(g)†

(h)†
0 0

0 0
0

(∇K)† 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

δR

δλ1

δλ2

δκ

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

= −

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

∇L
ΔEIJ

0

K

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

. (18)

The first and second order gradient terms in Eq. (18) are evaluated
by divided difference differentiation using the smooth analytic fit
surfaces ofHd and SOC.

III. NUMERICAL EXAMPLE
We consider the three lowest states of NH3, which are the two

singlet (S0,S1) states and one triplet (T1). A coupled diabatic state
representation is required for the singlets, which exhibit a seam
of conical intersection. An adiabatic representation of the triplet
and the dipole, transition dipole, and spin–orbit coupling surfaces
has been reported in a previous paper.43 We summarize the results
of that report below. The spin–orbit coupling matrix elements are
scaled by a factor of 20 to emphasize their contributions while not
disturbing their geometry dependence.

A. Hsf and Hso ab initio results and fit surface
representations

The coupled potential energy surfaces and spin–orbit coupling
surfaces sample 2956 ab initio points with a fitting rms error <10%.
The neural network surfaces are used in the numerical calcula-
tions below and provide the diabatic Hamiltonian matrix of the
two singlets, the energy of the triplet, and six SOC matrix elements
between singlets and triplet. The energy and energy gradients of S0,
S1, and T1 and derivative coupling between S0 and S1 used in this
work were obtained previously using multireference configuration
interaction (MRCI) with all single- and double-excitation wavefunc-
tions using the COLUMBUS program.58 The basis set used is aug-
cc-pVTZ with an extra Rydberg s-function on N(s, 0.028).
The molecular orbitals are obtained from state-averaged multi-
configuration self-consistent field (MCSCF) treatment that averages
S0, S1, and T1 with equal weights and a complete active space consist-
ing of eight electrons in nine orbitals. The resultingMRCI expansion
consists of 33 869 430 configuration interaction functions (CSFs) for
the singlets and 59 141 259 CSFs for the triplet. The SOC matrix
elements are calculated in the Breit–Pauli approximation and were
obtained from the MOLPRO59 MRCI with the same basis set and
active space as that used in COLUMBUS.
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B. Locating the seams (S0,S1,T1)
Figure 1 plots the diagonal elements of the 5 × 5 spin-diabatic

Hamiltonian matrix as a function of the N–H distance along a C2v
path. This plot in the spin-diabatic representation anticipates two
crossings in the spin-adiabatic representation, the nonrelativistic
(T1/S0) crossing that will become the (E1,E2) CI in the spin-adiabatic
representation and the second crossing is (S0/S1) using Hsf, which
will become the (E4,E5) CI in the spin-adiabatic representation.
Figure 2 provides a detailed picture of the energies in the (S0/S1)
CI region for C2v geometries. Both spin-diabatic and spin-adiabatic
representations are shown. In the latter representation, the triplets
are no longer degenerate, and they can cross with the singlets in
different places on the potential energy surfaces.

Using a point near the crossing as starting guess, we use the
Lagrangemultiplier (LM)method to locate (E1,E2) and (E4,E5), exact
CIs with minimized energy in the full spin-adiabatic space. A typical
search using the LM method is reported in Table I, which demon-
strates the efficiency of the algorithm. Theminimum energy crossing
point energies are reported in Table II. One can see that although
the separation of the singlet and triplet energies is only ∼16 cm−1 in
the Franck–Condon region according to Appendix C, it may lead to
energy differences as much as hundreds of wavenumbers between
the nonrelativistic CIs and those in spin-adiabatic representation.
Moreover, running the search algorithm for (E2,E3) crossings and
(E3,E4) crossing leads to nonconvergence. This is consistent with the
analysis in Sec. II and Appendix B that state 3 does not cross with
neighboring states.

We next turn to one of the key issues in this (and future) work,
the differences between the nonrelativistic and relativistic CI seams.
We initially focus on the g and h vectors. The g and h vectors for
CIs (E1,E2) and (E4,E5) are plotted in Figs. 3 and 4, respectively. At
the (E4,E5) crossing, the g and h vectors are similar to those of the
nonrelativistic (S0/S1) CI reported in Ref. 60. Here, the S0 and S1
contributions to E4 and E5 are preeminent. On the other hand, the
(E1,E2) crossing behaves differently from the (E4,E5) crossing as the
h vector contains large contribution from the gradients of spin–orbit
coupling. Furthermore, while (S0/S1) and (E4,E5) are true CIs
(for different Hamiltonians), (S0/T1) is not, so an (S0/T1), (E1/E2)
comparison is somewhat unfair. Detailed seams are plotted in

FIG. 1. Electronic energy of S0, S1, and T1 plotted as a function of N–H distance.

FIG. 2. Zoomed-in view of the rectangular selected region in Fig. 1: the upper
panel denotes the spin-diabatic representation, and the bottom panel denotes the
spin-adiabatic representation.

Figs. 5 and 6. The CI points in the plots are LM energy mini-
mized points with constraints on NH bond distance. From Fig. 5,
the (S0/S1) CI seam is seen to be similar to the (E4,E5) seam in
their geometry dependence but different in energy, which proves
that state mixing is not obvious. Inclusion of SOC changes the
energies of degenerate points. In Fig. 6, the pseudoseam (S0/T1)
and (E1,E2) seam are juxtaposed. Differences are evident due to
the strong triplet–singlet mixing in this region. Given that only the
(E1,E2) seam has any interstate coupling (Hso), the inclusion of a
geometry dependent SOC changes not only the energies but also
their geometry dependence dramatically. This is consistent with the
earlier g, h observations. For a background discussion of the geome-
try dependence of SOC matrix elements of NH3, we refer the reader
to Ref. 43.

TABLE I. Convergence of a conical intersection search for an (E1,E2) CI a.b × 10c is
written as a.b(c).

Iterations ΔE12 ∣∣L∣∣ E1 (cm−1) E2 (cm−1)

0 1.0(−3) 9.0(−3) 40 443 40 672
1 5.6(−4) 4.3(−3) 40 378 40 501
2 3.6(−4) 2.7(−3) 40 348 40 426
3 2.2(−4) 1.7(−3) 40 320 40 369
4 1.3(−4) 5.9(−4) 40 311 40 339
5 5.9(−5) 9.8(−5) 40 313 40 326
6 2.4(−5) 6.3(−5) 40 315 40 320
7 7.7(−6) 3.4(−5) 40 318 40 319
8 3.2(−6) 7.1(−6) 40 320 40 320
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TABLE II. Energy of CIs: minx(1,2) and minx(4,5). The intersections (S0/T1) and (S0/S1) are included for comparison with
minx(1,2) and minx(4,5), respectively.

E1 (cm−1) E2 (cm−1) E3 (cm−1) E4 (cm−1) E5 (cm−1)

Htot
minx(1,2) 40 320 40 320 40 440 42 367 42 707
minx(4,5) 40 332 40 352 40 465 42 512 42 512

S0 (cm−1) S1 (cm−1) T1,+1 (cm−1) T1,−1 (cm−1) T1,0 (cm−1)

Hsf
minx(S0/T1) 40 675 42 787 40 675 40 675 40 675
minx(S0/S1) 42 373 42 373 40 392 40 392 40 392

FIG. 3. g and h vector at minx(4,5) in the spin-adiabatic representation.

FIG. 4. g and h vector at minx(1,2) in the spin-adiabatic representation.

C. Geometric phase
The evaluation of the circulation of the derivative coupling, its

line integral along a closed loop, is done by integrating the relativis-
tic derivative coupling in the spin-adiabatic representation in the
g–h plane in the polar coordinate system (ρ, θ) defined in Sec. II.
The derivative coupling obtained using the analytic surface has an
arbitrary phase as a consequence of the diagonalization. Such a prob-
lem can be avoided by computing the derivative coupling at θ and θ
+ dθ and comparing them to select the correct phase. When dθ is
small enough, the evolution in the eigenvector is trivial and easy to

FIG. 5. The S0–S1 seam and E4–E5 seam plotted as a function of N–H distance.

FIG. 6. The S0–T1 seam and E1–E2 seam plotted as a function of N–H distance.
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FIG. 7. The contour that is used to evaluate the circulations in Tables III and IV. CI between states 1 and 2 is placed at (0,0) and is marked with an arrow. Left panel: Table III.
Right panel: Table IV.

distinguish from the one with the opposite sign. In all following cal-
culations (which necessarily employed the fit surfaces), 10 000 steps
are used in the evaluation of the circulation.

In an electronic Hamiltonian, the derivative coupling con-
tains a nonremovable part when Nstate ≥ 2.61 When Nstate = 2, the
(ab initio) derivative coupling may still contain a nonremovable part
unless special care is taken.15,62 These assertions are obtained by cal-
culating the circulation of the derivative coupling placing the origin
exactly at minx(E1,E2), minx(E4,E5), and minx(S0/S1) determined
above with different radii, as shown in the left panel of Fig. 7. The
results are reported in Table III. The circulation in the two-state
representation is strictly π, while in a five-state representation, it
deviates from π as ρ increases, a consequence of the dimension of
the embedding space, as explained in Ref. 61. Thus, this method for
proving the existence of conical intersection works best for small
radii.

Next, we place the origin off the CI seam and increase ρ until a
CI is captured, as in the right panel of Fig. 7. The line integral method

TABLE III. Circulation C(E1,E2), C(E4,E5), and C(S0/S1) with respect to radius ρ.

ρ C(E1,E2) C(E4,E5) C(S0/S1)

0.0001 3.141 592 3.141 592 3.141 593
0.001 3.141 578 3.141 581 3.141 593
0.01 3.140 278 3.140 305 3.141 593
0.02 3.136 141 3.136 227 3.141 593
0.04 3.116 289 3.117 041 3.141 593
0.06 3.068 837 3.072 432 3.141 593
0.08 2.965 988 2.978 875 3.141 593
0.1 2.784 950 2.815 622 3.141 593

can be used to verify the existence of a conical intersection. This can
be useful especially when the position of a CI is unknown. Table IV
shows the circulation when the loop radius increases from ρ = 0.042
to ρ = 0.043; the sudden increase in the circulation marks that the
CI is suddenly included in the loop. Figure 8 plots fIJθ, I = 1, J = 2,
and the energies along the closed loop for ρ = 0.043 and ρ = 0.042. It
can be seen from Fig. 8 that energy and the derivative coupling plot
can both be misleading in determining the presence of CI, especially
when the energy difference is small. In such a situation, f IJθ and its
circulation are a better method, being sensitive to the CI’s existence.
Note that the circulation for ρ = 0.043 is ∼0.1, which is again the non-
removable part. This value, however, can be larger when ρ increases.
One should not let this affect the determination of the change in the
circulation when using the line integral method.

We determine the circulation along a path that connects
minx(E1,E2) and minx(E4,E5), as shown in Fig. 9. As has been
mentioned above, states (E2,E3) and (E3,E4) do not form a CI.
This is verified using the circulation plotted in the right panel

TABLE IV. Circulation for displaced loops C(E1,E2) with respect to radius ρ(dθ
= 2π/10 000). Origin is placed slightly off the CI.

P C

0.001 0.000 043 29
0.01 0.004 406
0.02 0.018 561
0.04 0.087 590
0.042 0.098 233
0.043 3.037 963
0.05 2.993 763
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FIG. 8. fijθ and energy as a function of θ. The left/right panel corresponds to ρ = 0.043/0.042 in Table IV.

of Fig. 9. The integral captures the CI of pair state (E1,E2) and
(E4,E5) with desired accuracy (ρ = 0.001). The circulation for f23

and f34 remains near zero (∼10−3) along the path, even if we
used a much large radius (ρ = 0.1). This is consistent with the
nonexistence of minx(E2,E3) or minx(E3,E4) along or near the
path.

The derivative coupling defined in the nonrelativistic case has
been used in dynamics simulations to determine the hopping direc-
tion and probabilities between states with the same multiplicity. It
would then be natural for one to think about employing the cur-
rent nonrelativistic code with theminimummodification by treating

the three components of triplets as individual states that can interact
with other states. However, according to the analysis and numer-
ical examples above, the CI can only exist between certain pair of
states in such a system. Specifically, the derivative coupling between
different components of triplet precludes any transition possibility
between them. Thus, further modification may be needed in order
to treat the triplet components correctly. Future work will focus on
the dynamic simulation using current surfaces, accounting for the
geometric phase of conical intersection in the spin-adiabatic rep-
resentation and incorporating a correct treatment of singlet–triplet
transition.

FIG. 9. Energy and circulation ∮ fijdθ for points along the linear path connecting minx(1,2) and minx(4,5). Note that for illustration purpose, the tick on the y axis is not
consistent.
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IV. CONCLUSION
Conical intersections, derivative couplings, the geometric phase

effect, and related quantities are studied for spin–orbit coupled sys-
tems using the spin-diabatic approximation with an even number
of electrons. The relativistic wavefunctions are expanded in a spin-
diabatic basis whose members are time reversal adapted. The use
of time-reversal adapted bases for systems with even numbers of
electrons makes the electronic Hamiltonian real-valued, greatly sim-
plifying the analysis. We work in the Breit–Pauli approximation. In
an elementary four state representation (one singlet and one triplet),
one eigenvalue in the spin-adiabatic representation is always double-
degenerate, and there is no conical intersection. In a frequently used
five-state representation (two singlets, one triplet) readily general-
ized to n singlets,m triplets, conical intersections can only be formed
at the (E1,E2) and (E4,E5) crossing. Formal results are juxtaposed
with those of a numerical example, the 1,21A and 13A states of
ammonia with an enhanced spin–orbit interaction. The geometric
phase effect in the spin-adiabatic state representation is discussed
and will be treated in future dynamics simulations.
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APPENDIX A: TIME REVERSAL SYMMETRY63

The time reversal operator (T) is singled out for special treat-
ment since it is anti-unitary, that is, T = UK, where U is the unitary
and K is the complex conjugation. T2 has two outcomes: T2 = +1
(even number of electrons) and = −1 (odd number of electrons). For
an even number of electrons in the time reversal adapted basis, Tψj=
j = 1, . . ., N, we can have

ψj = Tψj. (A1)

Therefore, for an even number of electrons in a time reversal adapted
basis where [T,H] = 0,

⟨ψi∣H∣ψj⟩∗ = ⟨Tψi∣TH∣ψj⟩,
⟨Tψi∣TH∣ψj⟩ = ⟨Tψi∣H∣Tψj⟩ = ⟨ψi∣H∣ψj⟩,

(A2)

and H is real-valued. To derive the results in Eq. (5), we illustrate
for two electrons, where ψ+ ∼αα, ψ− ∼ββ, and ψ0± ∼αβ ± βα. T is

given by T = σy(1)σy(2)K, where σy = (0 −i

i 0
). Hence, for example,

Tαα = ββ and Tαβ = −βα, and it follows that the left-hand side of
Eq. (5) in the main text is time reversal adapted.

APPENDIX B: THE FIXED EIGENVALUE
IN (S0,S1,T1) SYSTEM

Consider the symmetric matrix

⎛
⎜⎜⎜⎜
⎝

a11 a12 x1 y1 z1
a12 a22 x2 y2 z2
x1 x2 a33 0 0

y1 y2 0 a33 0

z1 z2 0 0 a33

⎞
⎟⎟⎟⎟
⎠
.

The eigenvalues are λ1 = a33, with λ2, λ3, λ4, and λ5 being the
solution to a quartic equation.

The coefficients of the quartic equation are related to the
solution of Eqs. (B1)–(B4), where

λ2 + λ3 + λ4 + λ5 = a11 + a22 + 2a33, (B1)

λ2λ3 + λ2λ4 + λ2λ5 + λ3λ4 + λ3λ5 + λ4λ5
= −a212 + a11a22 + 2a11a33 + 2a22a33
+ a233 − x21 − x22 − y21 − y

2
2 − z

2
1 − z22, (B2)

λ2λ3λ4 + λ2λ3λ5 + λ2λ4λ5 + λ3λ4λ5
= −2a212a33 + 2a11a22a33 + a11a233 + a22a233 − a22x21
− a33x21 + 2a12x1x2 − a11x22
− a33x22 − a22y21 − a33y

2
1 + 2a12y1y2 − a11y

2
2 − a33y

2
2

− a22z21 − a33z21 + 2a12z1z2 − a11z22 − a33z22, (B3)

λ2λ3λ4λ5 = − a212a233 + a11a22a233 − a22a33x21 + 2a12a33x1x2
− a11a33x22 − a22a33y21 + x

2
2y

2
1 + 2a12a33y1y2

− 2x1x2y1y2 − a11a33y
2
2 + x

2
1y

2
2 − a22a33z

2
1 + x22z21

+ y22z
2
1 + 2a12a33z1z2 − 2x1x2z1z2 − 2y1y2z1z2

− a11a33z22 + x21z22 + y21z
2
2. (B4)

Let λ2 = a33. Substituting into (B1), we have

λ3 + λ4 + λ5 = a11 + a22 + a33. (B5)

Simplifying Eq. (B4) − a33∗ [(B3) − ((B2) − a33∗ (B5))] and using
λ2 = a33, we obtain (x1y2 − x2y1)2 + (y2z1 − y1z2)2 + (x1z2 − x2z1)2

= 0.
Note that the equation holds only when x1y2 = x2y1, x1z2 = x2z1,

and y1z2 = y2z1 are satisfied simultaneously. Although this can be
achieved in theory, one would expect that in practical problem, the
SOC vector from different singlets with the triplet cannot be linear
dependent. It contradicts with the assumption that λ2 = a33, and thus,
λ1 = a33 is a unique eigenvalue of the symmetric matrix above.

APPENDIX C: ENERGY SPLITTING IN SPIN-ADIABATIC
REPRESENTATION

As has been noted above, the eigenvalues in the (S0,S1,T1) sys-
tem cannot be written down analytically. However, it is still neces-
sary to present the actual effect of spin–orbit coupling on the energy
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FIG. 10. Energy splitting as a function of the scaled SOC.

splitting of triplets. Figure 10 shows the triplets splitting relative
to Et. The point showed in the plot is the S1 minimum, which is
in the Frank–Condon region. The reason for choosing points in
the Frank–Condon region is that the state mixing is limited. From
Fig. 10, the splitting becomes larger when the absolute value of
spin–orbit coupling increases. This is not surprising as the triplets
itself do not couple with other triplets, and the splitting can only be
controlled through their coupling with singlets. For ammonia, one
may expect that the splitting is small as its spin–orbit coupling is only
around 15 cm−1. However, when the spin–orbit coupling is scaled
by factor of 20, the splitting cannot be overlooked. It is also expected
that the splitting will increase with increased state mixing, for exam-
ple, near singlet–triplet crossing or conical intersection. Under such
circumstances, the energy splitting has to be taken into account.

In practical problems, one may expect that the SOC in one
direction is significantly larger than other components. This feature
has been used to simplify the cluster growing algorithm to select the
correct phase of spin–orbit coupling.35,43 The relative splitting can be
manipulated with the dominate component(s), as shown in Fig. 11.
When the SOC matrix elements in one singlet state with the triplet
dominates (examples 1, 2, 3 in Fig. 11), the splitting will be focused
on one triplet component and the other two triplet components are

FIG. 11. Energy splitting due to different dominate components in the SOC matrix
element. From left to right, five examples are shown. Here, rest means any
component left in (x1, y1, z1, x2, y2, z2).

almost degenerate. This can be viewed as an approximation to the
four-state case where the eigenvalues are strictly doubly degenerate.
In order to have a relatively large splitting on both triplet compo-
nents, one requires that the SOC matrix element between different
triplet components and different singlets is comparable, for exam-
ple, the last example in Fig. 11 when x1 ≈ y2≫ the rest of SOCmatrix
elements. For better illustration, our discussion in this work will use
the SOC that is scaled 20 times, as in Fig. 10. It should be pointed out
that when scaled 20 times, the SOC is around 300 cm−1, which is a
reasonable value.
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