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Abstract—Phasor measurement units (PMUs) have become
instrumental in modern power systems for enabling real-time,
wide-area monitoring and control. Accordingly, many studies
have investigated efficient and robust dynamic state estimation
(DSE) methods in order to accurately compute the dynamic
states of generation units. Nonetheless, most of them forego the
dynamic-algebraic nature of power networks and only consider
their nonlinear dynamic representations. Motivated by the lack
of DSE methods based on power network’s differential-algebraic
equations (DAEs), this paper develops a novel observer-based
DSE framework in order to perform simultaneous estimation
of the dynamic and algebraic states of multi-machine power
networks. Specifically, we leverage the DAE dynamics of a power
network around an operating point and combine them with a
PMU-based measurement model capable of capturing bus volt-
ages and line currents. The proposed 7{.. observer, which only
requires detectability and impulse observability conditions which
are satisfied for various power networks, is designed to handle
various noise, unknown inputs, and input sensor failures. The
results obtained from performing extensive numerical simulations
on the IEEE 9-bus and 39-bus systems showcase the effectiveness
of the proposed approach for DSE purposes.

Keywords—Transmission power networks, dynamic state esti-
mation, differential-algebraic equation, robust .. observer.

I. INTRODUCTION

ITH the vast utilization of Phasor Measurement Units
W (PMUs), power systems monitoring can be conveniently
performed in real-time, thereby paving the possibility of imple-
menting estimation-based feedback controls on power networks
[1]. Consequently, this results in the prevalence of research
on dynamic state estimation (DSE) in the past two decades.
Numerous approaches have been proposed accordingly. For
instance, Kalman Filter (KF)-based DSE and its variants, such
as Extended Kalman Filter, Unscented Kalman Filter, Ensemble
Kalman Filter, as well Particle Filter-based approach have been
investigated for centralized/decentralized DSE [2]. In addition
to these stochastic approaches, deterministic observers and their
applications in DSE have also been recently proposed and
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studied. For example, the work in [3] presents a comparative
study between KF-based methods with a state observer designed
for nonlinear systems, while [4] focuses on the estimation of a
synchronous generator’s internal states based on a nonlinear
ordinary differential equation (ODE) model.

In spite of these advances, the majority of literature on DSE
overlook the dynamic-algebraic structure of power networks in
their investigations, especially in a centralized DSE framework
for multi-machine power networks. For example, the works
in [3], [5]-[7] consider nonlinear differential representations
of power networks—usually obtained by means of the Kron
reduction technique—which only consist of generators’ dynam-
ics. Although the resulting ODE models have a smaller number
of states, the elimination of algebraic constraints and variables
introduces several downsides. First of all, it is argued in [8] that
the nonlinear ODE model may fail to accurately capture the
power network’s dynamics with respect to topological changes,
which can be triggered by faults. Secondly, it is not clear how
more detailed loads’ dynamics can be incorporated on the basis
of ODE models. Thirdly, if nonlinear ODEs of power networks
are employed, it is difficult to study the DSE in which the
PMUs are also installed on non-generator buses (such as load
buses and non-generator unit buses) as the relations between
bus voltages at non-generator buses and generators’ states need
to be established.

In addition to the above arguments, PMUs are initially
designed to measure voltage and current phasors in power
systems [9] and some literature focusing on the state estimation
problem in power systems are considering that a PMU installed
on a bus is able to measure the complex quantities of bus
voltage and line currents [10]-[13]. Hence, the use of such
measurement model in DSE analysis should have been widely
considered. Indeed, there exist approaches for DSE based on
such measurement model. One of the prominent approaches
is referred to as the two-stage method [14]-[16]. In the first
stage, the algebraic variables (e.g. bus voltages) are estimated
based on information collected from PMUs and in the second
stage, the estimated bus voltages are used by the state estimator
to estimate the actual generators’ variables. For instance, the
works in [14], [15] implement the Least Absolute Value (LAV)
method in the first stage and Unscented KF in the second stage,
whereas in [16], the authors develop an adaptive KF to deal with
unknown dynamics and measurement errors in the first stage
while utilizing the Extended KF to estimate the dynamic states.
It is important to note that, albeit this two-stage approach retains
the dynamic-algebraic structure of the power network, two state



estimation algorithms have to be performed separately, thereby
increasing the computational burden required for performing
DSE.

Motivated by the aforementioned limitations, in this work, we
exploit the simultaneous dynamic and algebraic nature of power
networks to perform DSE from a descriptor system and control-
theoretic perspective. Indeed, this particular research direction
is less prominent in power systems literature. One of the earliest
works in this direction is found in [17], where the authors study
the observability of power networks based on its DAE model
using a linearization technique. Recently, a DSE approach in
which distributed sliding-mode and algebraic observers are
employed simultaneously to estimate each generator’s electrical
frequency is proposed in [ 18] whereas in [ 19], high-order sliding
mode observers are developed to estimate generators’ rotor
speeds and complex bus voltages based on simple nonlinear,
power network differential-algebraic equations (DAEs)—both
works become the basis of [20]. These studies, however, are
conducted based on an overly simplified power network model
using some assumptions including the use of a 2"-order swing
equation to represent generators’ dynamics, the negligence of
transmission lines’ resistances and reactive power flows, the
consideration of a uniformly-flat bus voltage profile, and PMUs
measuring generator’s rotor angle installed only on generator
buses. Such simplification may not be sufficient to aid frequency
regulation in power systems through an output-feedback control
framework—for instance, to perform load following control
[21]. A new approach to estimate both dynamic and algebraic
states of generators in a decentralized framework is recently
proposed in [22], where an algebraic observer is developed to
estimate the load angle and quadrature-axis internal voltage of
each generator. In order to estimate the relative rotor speed, the
authors in [22] combine the Immersion and Invariance technique
[23] with the Dynamic Regressor and Mixing [24] in their
observer design. Due to the decentralized fashion however, this
DSE approach relies on PMUs placed on generator terminals.

To that end, in this paper we construct a novel DSE framework
built upon DAE representations of power networks which
dynamics are studied around an operating point. This framework
considers the aforementioned measurement model in which
PMUs are capable of measuring bus voltage and line current
phasors—such model allows PMUs to be placed arbitrarily: on
generator, load, or even non-generator unit buses. Unlike other
DSE methods, e.g. in [3], [6], [7], [25] and also others that are
based on decentralized DSE framework such as [22], this feature
allows for flexible PMU placements since every generator ter-
minal may not be equipped with a PMU [14]. In contrastto [18]—
[20], our work herein utilizes a DAE representation of power
networks with (i) more detailed and comprehensive 4"-order
generator’s transient dynamics, stator’s algebraic constraints,
generator’s real and reactive power, and the network’s complex
power balance equations, and (ii) more realistic and practical
PMU-based measurement equations.

To perform the DSE, a new robust H ., observer design for
linear DAE:s is introduced. Indeed, there exist several observer
designs developed in the literature especially for linear DAEs
and descriptor systems [26], [27]. For example, to provide a
more robust state estimates in the presence of disturbance,

numerous H, observers are proposed in [28]-[30]. Although

the observers developed in [28]-[30] do consider disturbance,

due to their relatively complex linear matrix inequality (LMI)

formulations, their applicability and effectiveness to perform

DSE in power networks have never been studied. Our H

observer, on the other hand, has much simpler LMI formulations

and this allows it to be employed to perform DSE with minimal
computational efforts. The main contributions of in this paper
include:

o The unification of an in-depth differential-algebraic model of
power networks—encompassing generators’ transient mod-
els, stator algebraic constraints, generators’ complex power,
and power balance equations—together with a PMU-based
measurement model to allow a more realistic approach for
performing DSE in power networks. The DAEs capture the
power network’s dynamics around a certain operating point
and become the foundation for the observer-based DSE.
A careful analysis on the regularity, index characterization,
impulsiveness, detectability, and impulse observability of the
linearized power network’s DAEs is also presented.

e A novel LMI-based H., DAE observer is introduced—this
"H o~ observer is then employed to perform robust DSE for the
linearized dynamics of power networks. The key features of
this observer are attributed to the more straightforward design
as well as the simplicity of the associated LMI formulations
used to compute the observer gain matrix. In order to tackle
unknown inputs, a robust proportional-integral (PI) version
of the H., DAE observer—developed by augmenting the
original DAE dynamics with an unknown inputs model—
is also proposed. Since we utilize a static-gain observer, the
complexity of performing DSE is considerably much lower
than using the two-stage approach as in [14]. One primary
advantage of the robust H., DAE observer—as opposed to
KF-based filters—is that it requires no information regarding
the statistical properties of the noise.

o The effectiveness of the proposed approach to address DSE
in power networks is demonstrated through the IEEE 9-
bus and 39-bus systems, in which the proposed H., DAE
observer is tested for estimating generators’ internal states
and unmeasured bus voltages following a three-phase fault
under various scenarios, including the presence of Gaussian
and non-Gaussian process and measurement noise as well
as unknown inputs. Numerical advantages of the developed
observer over the two-stage approach [14], [15], which com-
bines LAV with KF in performing DSE are also showcased.
A preliminary version of this paper was published in [31].

The supplemental document [32] provides the complete proofs

of the theorems presented in this paper. The paper’s organization

is as follows. Section II, presents the linearized semi-explicit

DAEs of power networks with a PMU-based measurement

models while Section III provides a brief study on the regularity,

index characterization, and impulsiveness of the linear DAEs
as well as some conditions to ensure detectability and impulse

observability. In Section IV, simple Luenberger and robust H

DAE observers are designed. Section V presents a way to

modify the observers to handle unknown inputs and input sensor

failures based on a PI framework. Thorough numerical studies
are presented out in Section VI and the results are discussed



accordingly. Finally, the paper is summarized in Section VII.

Notation. The notations R and R | denote the set of real and
positive real numbers, while the notation C denotes the set of
complex numbers. The notations C_ and C denote the set of
all complex numbers such that the real parts are on the open left-
half and closed right-half of the complex plane. The symbols
R™ and RP*? denote the sets of row vectors with n elements
and matrices with size p-by-q with elements in R. The matrix O
denotes the zero matrix of appropriate dimension. The operator
Blkdiag(-) constructs a block diagonal matrix while the symbol
* is used to represent symmetric entries in symmetric matrices.

II. THE LINEARIZED DAE MODEL OF POWER NETWORKS

We consider a power network consisting N number of buses,
modeled by a graph (N, &), where N' = {1,...,N} is the
set of nodes and £ C N x N is the set of edges. It is then
straightforward to define N; C AN as the set of buses that
are connected to bus 7. The set of buses equipped with PMUs
are denoted by Ay C N. Note that N consists of generator
and load buses, ie., N = GU L where § = {1,...,G}
collects the buses containing G synchronous generators while
£ = {1,...,L} collects the L buses that contain loads only.
Note that for bus ¢ € G, it might also contain a load. Throughout
the paper, complex bus voltages are expressed in rectangular
forms—that is, v; := [vgr; vp]' fori € N.

A. Synchronous Generator Model & Power Flow Equations

In this work, we leverage the standard 4"-order dynamics of
a two-axis, transient model of synchronous generators, which
excludes turbine governor and exciter dynamics. The dynamics
of a synchronous generator ¢ € G can be written as [9]

0; = w; — Wo (1a)

M;w; = T — (e;i — Iiﬁidi) igi — (e’di — x;iiqi) Tdi (1b)
— Di(w; — wo)

Témé;i = _e;i — (xai — xy;) iai + Epai (1¢)

Tooiai = —€as + (Tqi = 704,) igi- (1d)

The time-varying parts in (1) include ¢; := 4;(t) denotes the
generator rotor angle, w; := w;(t) denotes the generator rotor
speed, e, := e, (t) and e, := e;(t) are the transient voltages
along ¢ and d axes, Ths; := Ta;(t) denotes the generator’s
mechanical input torque, Eyq; := Eyq; (t) denotes the internal
field voltage, while i4; and ig; are generator’s stator currents
at ¢ and d axes. The constants in (1) are as follows: M, is the
rotor’s inertia constant (pu x s2), D; is the damping coefficient
(pu X s), x4; and x4; are the direct-axis synchronous reactance
(pu), :c’qi and z/;; are the direct-axis transient reactance (pu),
T(;Oi and T, are the open-circuit time constants (s), and wy
denotes the rotor’s synchronous speed (rad/s). Note that each
synchronous generator has a total of four dynamic states, given
by &; := [0; w; e}, el;], whereas generator’s mechanical
input torque and internal field voltage are considered as inputs,
ie., w; := [T Efdi]T. Note that these inputs may not be
available for measurement. The relations among generator’s
rotor angle, transient voltage, stator’s current, and terminal
voltage are represented by the stator electrical circuit, which
can be described by the following algebraic constraints [9]

/ . . /-
€g; — VRiSin d; + vr; cos0; — Rgiia; + Tgilgi =0 (2a)

/ . . /.

€qi — URi COS0; — vy Sin0; — Rgjigi — wg;tqi =0,  (2b)
where Rj; indicates stator’s resistance (pu). We define ¢ (¢)
as generator’s stator currents constructed as igi = [zd7 iqi]T

Together, (1) and (2) form the generator’s DAE.
The power flow equations resembling the power balance
between generators and loads can be expressed as [9]

Pgi+ P = Gy (vh; + 7))
N
(3a)
+ ZGij (vRiVRj+vrivrj)+ Bij (ViiVRj — VRiVI;)
J#i
Qc,i +Qri = —Byi (v + %)
N
(3b)
— ZGi_j ('URiUIj _UIiURj)+Bij ('URiURj +UIiUIj) )
i

for all generator bus ¢ € G whereas G;; and B;; respectively
denote the conductance and susceptance between bus ¢ and j.
In the left-hand sides of (3a) and (3b), Pr, ; and (), ; denote the
real and reactive load power, which can be time-varying and
nonlinearly related with the bus voltage v; [9], where Pg ; and
Q¢,; are generator’s real and reactive power, computed as

Pg i = (VRitai + Vritgi) sin6; + (VRitqi — Vrita;) cosd; (4a)
QGJ' = (URiZ.di + U]iiqi) COSs 51 + (Uliidi — URiiqi) sin 51*. (4b)
The power flow equations for load buses 7 € L are the same as

in (3) but with an exception that P;; = 0 and Q¢ ; = 0. The
multi-machine power networks (1)-(4) can be lumped into

o(t) = f(2(t),14(t), u(t), 0=g(&(t),iy(t),v(t)), ()
where the nonlinear mapping f : R*“ x R2¢ x R?¢ — R*“ and
g : RYC x R?G x R2N — R2G+2N represent the differential
and algebraic equations for the power networks. The vectors
T = {i'i}ieg S R4G, ig = {ig,i}ieg S RQG, u = {ﬁi}ieg S
R2¢, v:={v; }ien € RV represent generators’ internal states,
stator currents, inputs, and power network’s bus voltages. In (5),
14 and v act as algebraic variables.

B. Power Network’s Linearized DAE Model

The linearization of power networks (5) around a particularly
stable operating point 07, wy, e} e/}, i, 19;, Toyir B fori €
G, P, and QY , fori € £, and v for i € N are performed as
follows. First, the synchronous generator’s linearized dynamics

model can be computed and given as

EpAxz(t) = ApA&(t) + DpAi,(t) + BpAa(t). (6)
In (6), A% := & —&°, Aiy := iy — i), and A := u—u’. The
linearized stator’s algebraic equations, with Av, := v, — v)
in which v, := {v;};e¢ collects the voltages of all generator
buses, can be expressed as

0= AAA.’f}(t) + DAAig(t) + GAA’Ug(t). (7)
Finally, the linearized power flow equations are given as
0=AcAZ(t) + DgAiy(t) + GaaAvy(t) 8a)
+ GarAv(t)
0= GraAvy(t) + GrrAv(t), (8b)

where Av; := v;—v! and v := {v; };c . populates the voltages
of all load buses. Readers are referred to [32, Appendix A] for
the details on the matrices above. It is worth noting that the form
of the matrices in (8) depends on the type of the loads—whether



they are of constant impedance, current, or power [9]. Now, from
(7), we have Aiy(t) = —D ' AaAZ(t) — D' GaAvy(t).
Note that the premise on the nonsingularity of D4 is not
restrictive since, by the construction of D 4 provided in [32,
Appendix Al], it follows that Dgl exists if and only if

RZ + alyxl;, 0, Vieg.
Substituting the expression for A, into (6) and (8) yields

o7 o] (st A B o o

E () A a(t) B,
where in (9), Av T := [Av; Avl—r], u := Au, and
A =Ap — DDDglAA, Ay = [—DDDzlGA O] ,

_[Ag —DgD,' Ay [ G Gear
As = [ o ] A= [GLG GLL:|
with G in A, is equal to Ggg — DgD ' G 4. From (9), a
compact linear DAE for power networks can be written in a
descriptor form Ex(t) = Ax(t) + B,u(t), where E € R”,
A € R", B, € R™ are constant matrices with n = 4G +
2N and m = 2G, FE is singular with rank(E) := r where r
equals to rank(Ep) = 4G, x € R™ comprises differential and
algebraic variables AZ and Av such that x| = [A:i—r AUT} ,
and u € R™ denotes the deviation of control inputs around their
steady-state values. The measurement model for linear DAE (9)
with PMUs is provided in the next section.
C. Power Network’s Measurement Model with PMUs

For a PMU installed on bus j € N}y, itis practical to consider
that it has the capability to measure (i) bus voltage v; and (ii)
line currents for all branches that are connected to bus j [10],
[11], [33], [34]. Define /; C N as the set of buses connected
to bus j. A line current I, = Igji + jlrj, constitutes the
current flowing on a branch originating from bus j to bus k.
The set of line currents measured by a PMU at bus j € N}y is
defined as Z; := {IL;;}ren; such that |Z;| = |N;|. To obtain
the expressions for line currents, we need to utilize the branch
admittance matrix Yy, which is constructed as

Yy = B’,};] € C2EIxINT

where Y; € CIE*IVT and Y; € CIEXINT are the from and to
branch admittance matrices [35]. As such, all line currents can
be computed using the method provided in [11]. That is
[IR} - [Re(Yﬁ) —Im(th):| .
I] - Im(th) Re(th) ’
where @7 = [{vri}tjenr {vii}ien] is the rearranged net-
work’s bus voltages (since v has different ordering from v given
in Section II-A). This configuration allows a PMU installed on
bus j € Ny to measure the following quantities

y, =[vr; vy {Irpdien, Urndien,]

where each Igj;;, and I can be linearly obtained from bus
voltages \iia the utilizatign of Yy, thanks to (11), provided as
y;(t) = C;9(t) where C; is given as [11]

ejT 0
0 e;r
SiRe(Yy) —S8;Im(Yy)
Siim(Yy:)  SjRe(Yy)

(10)

(1)

T

Cj =

In the above, e; is the vector of standard basis in RN with 1
at row j and zero otherwise and S; € RMWil*2I€l i5 a binary,
selection matrix that selects the corresponding row of Y; which
are originating from bus j. The overall measurement model for
power networks with PMUs can then be expressed as

y(t) = CCupo(2), (12)
where in (12), the vector y € R? lumps the measured outputs,
C = {01}76 Ny and Chy is an orthogonal matrix such that
o(t) = Cpro(t). The branch admittance matrix Yy, in (10) can
be constructed from MATPOWER [35].

III. REGULARITY, INDEX CHARACTERIZATION, AND
OBSERVABILITY OF POWER NETWORKS

The linearized power network’s DAE (9) with measurement
(12) can be lumped into the following state-space equations

|Ea(t) = Az(t) + Byu(t), y(t) =Ca(t),| (13

where C = [0 CC)]. As opposed to ODEs, the existence
and uniqueness of solutions for DAEs are not always guaranteed
for any initial conditions. On that regard, one of the most
important property for DAEs is regularity. That is, a linear DAE
is said to be regular if and only if it has a unique solution
for every consistent initial condition [36]. The regularity of
DAE can be characterized from the matrix pair (E, A), i.e.,
the DAE (13) is regular if and only if there exists s € C such
that det (sE — A) # 0. For the case of power networks (13),
first define A() as the set of finite poles of a linear DAE pair

A(E,A) :={seC| det(sE — A) =0}.

Now, the regularity condition of power networks becomes
. SED — A1 _A2
det (sE — A) = det ([ " A, Al ) (14)

By considering a finite s ¢ A(E, A) such that sEp — A; is
nonsingular, the right-hand side of (14) is equivalent to

det (A4 + A3 (sEp — Ay) " A2) £0. (15)

Hence, the DAE (13) is regular if and only if (15) holds for
some finite s ¢ A(E, A). It is difficult to assess the regularity
of DAE (13) due to weak structure in (13) or lack thereof.
However, several researches have been conducted to analyze
the solvability of simplified power network’s DAEs—see [8],
[37]. It is discovered therein that, for a lossless power network
with unity magnitude on all bus voltages, the regularity of the
linearized DAE model is ensured if and only if there exist paths
such that every load is connected to a generator bus.

Another important property in linear DAE is the differentia-
tion index, which refers to the number of differentiations that
need to be executed in order to transform the DAE into an ODE.
It is understood that the DAE model of the aforementioned
simplified power networks is of index one if only if it is regular
[8], [37]. For power networks model considered in this paper, it
is revealed that if A, is of full rank, then DAE (13) is impulse-
free*, of index one, and regular—shown in the result below (the
proof is provided in [32, Appendix B]).

*Linear DAEs that are impulse-free do not contain impulsive terms in their
solutions for given arbitrary initial conditions.



Theorem 1. Suppose that the matrix A4 in DAE (13) is of
full rank. Then, the power networks DAE (13) is impulse-free,
of index one, and regular.

The above proposition provides another alternative other than
(15) to determine the regularity of the power networks model.
Because of its useful implications, the following statement is
assumed throughout the paper.

Assumption 1. The matrix A4 in DAE (13) is of full rank.

The matrix A, describes the relation among loads and gen-
erators via power flow equations. Thus, the nonsingularity of
A, simply translates to the connectivity among generators and
loads, which is similar to the results presented in [8], [37] on
the regularity of the DAE. Note that Assumption 1 is mild and
holds for the IEEE test cases considered in the numerical study
section.

Before a state observer can be designed, it is crucial to assess
whether the DAE’s internal states can be estimated via limited
measurements. There exist numerous concepts for observability
in DAEs, in addition to detectability—see [36]. However, as
we are looking to design observers with the least possible
assumptions, we choose herein to consider detectability and
impulse observability—discussed as follows. The DAE (13)
is said to be detectable if and only if there exists a matrix
L € R™*P such that the DAE described by the matrix pair
(E,A — LC) is stable, that is, A(E,A — LC) € C_ or
equivalently, all finite eigenvalues of (E, A — LC') are on open
left-half of complex plane. The detectability of DAE (13) can
be ensured if the following rank condition holds [36]

rank <[8EC_ A]) =n, VsecCy,

which is akin to the PBH test for detectability of linear differ-
ential systems. On the other hand, the impulse observability (or
I-observability) condition concerns with the ability to observe
impulsiveness of the actual states from the impulsive behavior
of the measurements. The condition that ensures I-observability
of a linear DAE is given by [36]

(16)

E A
rank [ (O E| | =n+ rank(E). (17
o C

The following result presents a reduced equivalent condition to
achieve I-observability for power network’s DAE.

Theorem 2. The DAE (13) is I-observable if and only if

As Ay AZIAg C]—\z
rank ( | Ep O =rank I o =n. (18)
O CCy o C

See [32, Appendix C] for the proof of Theorem 2. On that regard,
the following assumption is considered.

Assumption 2. The PMUs are distributed in such a way that
the power network’s DAE (13) is detectable and I-observable,
i.e.,, (16) and (18) are satisfied.

The above assumption is crucial for enabling power system’s
DSE using observers—detailed in Section I'V. It is worth noting
that this assumption is also mild and easily satisfied since we
use similar number and location of PMUs as in the literature.
Regardless, the problem of placing PMUs in order to achieve
detectability and I-observability is not covered in this work

as this problem deserves a standalone dedication and an in-
depth analysis which are beyond the scope of this paper and
as such, is left for future research. In the following section, we
explore several DAE state observer designs that can be utilized
to perform DSE based on DAE (13).

IV. SYNTHESIS OF LUENBERGER DAE STATE OBSERVERS

There exist two different realizations of state observer for
DAE: DAE observer and ODE observer. The former is consid-
ered herein mainly due to (i) its simplicity as no equivalence
transformation required and (ii) it only assumes detectability
and I-observability. This is in contrast to many ODE observers
where the original DAE needs to be transformed into a spe-
cific restricted system equivalent while requiring more stricter
conditions, e.g. in [38]. With that in mind, two kinds of DAE
observer are presented. in this section: (a) a simple Luenberger
observer and (b) a robust H ., observer. First, based on [39], the
next Luenberger DAE state observer for (13) is proposed

Ex(t) = A#(t) + Byu(t) + L(y(t) —g(t))|  (192)
9(t) = Ca(t), (19b)

where & € R™ denotes the estimate of the actual system’s state
x, Yy € RP is the output estimate, and L € R™*? is the observer
gain matrix. Our goal is finding L such that lim;_, o (x(t) —
Z(t)) = 0 for arbitrary initial states xo, & and inputs u(t)
for all t > 0. If the state estimation error is defined as e(t) :=
x(t) — &(t), the error dynamics can be written as

Eé(t) = (A — LC)e(t). (20)
Note that the existence of L such that (20) is stable is guaranteed
due to the detectability condition in Assumption 2. A linear DAE
that is impulse-free, regular, and stable is called admissible [40],
[41]. To that end, we seek for a systematic way to compute L
that makes the error dynamics in (20) to be admissible. The
following result from [40] provides a sufficient and necessary
condition for the admissibility of DAE (20).
Lemma 1 ([40]). A linear DAE denoted by (E, A) is admis-
sible if and only if there exist X € ST, and Y € R(n=r)xn
such that the following LMI is feasible

ANXE+EYY)+ (XE+EYTY)TA<0, (21

where E+ € R(=7)%n g gp orthogonal complement of E.

Using (21), a condition for admissibility of state estimation error
dynamics is obtained—see [32, Appendix D] for the proof.
Theorem 3. The state estimation error dynamics in (20) is
admissible if and only if there exist X € S} |, Y € R(—r)xn
and W € R™*P such that the following LMI is feasible

A'XE+E'XA+A"EY'Y+YELA

—C"W-wTC <0, (22

where the gain matrix L can be recovered as L = (WP_l)T
and E+ € R"=")%" s an orthogonal complement of E.

Remark 1. Although the satisfaction of LMI (22) ensures the
stability of error dynamics (20), the convergence rate to which
& (t) approaches x(t) as t — oo can be relatively poor. As a
potential remedy, one can minimize the maximum eigenvalue of
E" X E by solving the following convex optimization problem

Pl min x;s.t0(22),x>0,X>0,kI—E"XE > 0.
5, XY W



Theorem 3 provides a systematic method to find L that makes
(20) admissible as the LMI in (22) can be solved using standard
semidefinite programming (SDP) solvers.

The above Luenberger DAE state observer (19) assumes an
ideal operating condition of power networks in the sense that
no disturbance is present. Nevertheless, in a more practical set
up, disturbances can manifest in various forms: from unknown
inputs, process and measurement noise, to cyber-attacks. Hence,
in addition to the the Luenberger observer (19), here we also
design a robust H., DAE observer to minimize the effect of
disturbance to the state estimation error. The power network’s
DAE subject to external disturbances can be written as

Ei(t) = Az(t) + B,u(t) + B,w(t) (23a)
y(t) = Cx(t) + Dyw(t), (23b)

where w € R? lumps all disturbances into a single vector and
matrices B, and D,, describe how the external disturbances
are distributed in the system. Specifically, B,, takes into ac-
count any disturbances affecting the system’s dynamics whereas
D,, considers disturbances affecting the measurements. It is
presumed from now on that matrices B,, and D,, are known.
By utilizing the same Luenberger state observer as in (19), the
estimation error dynamics can be derived as follows

Eé(t) = (A—- LC)e(t) + (B, — LD,,)w(t) (24a)
e(t) =Te(t), (24b)

where € € R" is the performance of error dynamics with respect
to the user-defined performance matrix I' € R™*"™, The next
result summarizes the design of a robust H., DAE observer.

Theorem 4. For the state estimation error dynamics in (24), it
holds that (a) it is stable whenever w(t) = 0 for all t > 0 and
(b) ||e(t)||2L2 < ’y||w(t)\|12 where v > 0 for every bounded
disturbance w(t) and zero initial error eq = 0, if there exist
XeSt,,Ye RO=1)%1 gnd W € R P such that
ATXE+E'XA+E+4+T'T  «
B/ XE+BJE''Y -D]W —4I
is feasible where the matrix E is defined as
E=A"E''Y+Y'E'A-C'W-W'C.

Moreover, the matrix L can be computed as L = (WP’l)T
and E+ € R("=")%" is an orthogonal complement of E.

<0, (25

The proof of Theorem 4 can be obtained from [32, Appendix
E]. The LMI (25) guarantees the boundedness of estimation
error performance in the sense that ||€(¢) ||2L2 < y||w(t) ||2L2 for
every bounded disturbance w(t) and and zero initial error. To
minimize the impact of w(t), the following convex problem can
be considered

P2 min
"X, Y, W
while the multi-objective optimization problem below can be

considered to improve the estimation error convergence rate
P3

v; s.to (25),v>0, X =0,

min
7,5, X, Y W
subject to (25), v,k >0, X = 0, kI — ETXE = 0,

where c;, co € R4 are predefined constants.

Cc1K + c27y

V. TACKLING UNKNOWN INPUTS AND SENSOR FAILURES

In generators particularly equipped with brushless excitation
systems, it is difficult to measure the exciter’s field current and
voltage [42]. Consequently, the field voltage 4 is not always
available for the observer [43]-[45]. To that end, this section
focuses on extending the DAE state observers introduced in
Section IV to consider unknown inputs through a proportional-
integral (PI) framework. To start, consider the disturbed power
networks DAE (23) with unknown inputs

Ex(t) = Ax(t) + B,u(t) + B,v(t) + B,w(t) (26a)
y(t) = Cx(t) + Dyw(t), (26b)
where v € R represents unknown inputs and B, € R"*" is a
known matrix dictating how the unknown inputs are distributed
in the network. The idea here is to eliminate the effect of
unknown inputs (as well as input sensor failures) by estimating
the dynamic behavior of the unknown inputs and exploiting
the estimate to compensate the state estimation error caused by
unknown inputs. An estimate of unknown inputs’ dynamics is
provided as v(t) = P (¢) for some matrix ¥ of appropriate
dimension [46]. The matrix ¥ is typically designed based on
the knowledge of unknown inputs’ dynamics. However, when
the dynamics are unknown, the choice ¥ = O can provide a
sufficient estimate [47]. The augmented linearized DAEs, which
is a reformulation of (26), can be expressed as

5 T|E[o SIER8 )0+ [5]e0
—— —~

E¢ £(t) Ag &(t) B¢ Bu ¢
y(t) = [C O] [‘”(“] Dowlb),
v
Cg \w_/

£(t)
with rank (FE¢) = r + v. The above DAE can be reduced into
Ef(t) = Agk(t) + Bugcult) + By gw(t) (27a)
y(t) = Ce&(t) + Dyw(t), (27b)
where § := [azT VT] "€ RS is the state vector of the augmented

DAE. The linear DAE (27) retains the properties of the power
networks DAE (13), which is shown in the result below.

Theorem 5. The augmented linear DAE (27) is impulse-free,
of index one, and regular. Moreover, the augmented linear DAE
(27) is detectable and I-observable if and only if the power
networks DAE in (13) is detectable and I-observable.

The implication of Theorem 5 ( [32, Appendix F] has the
proof) is the existence of an impulse-free DAE state observer for
the augmented system (27). If é € R is an estimate of £ where
€7 := [27 07| and &, ¥ are estimates of x, v respectively,
the PI Luenberger DAE state observer can be constructed as

b 31 oo e
— o 5 hra

——"
E¢ P Ag £(t) Bu¢ L¢
£(t)
N t(t)
n=[c o] |2 }
C: ~——

£()



where Ay(t) := y(t) — y(t) and L € R°*? is the observer
gain matrix and comprised of proportional and integral gains.
The above observer dynamics can be simplified into

Ee(t) = Aed(t) + Bucu(t) + Le (y(t) — 9(t)
y(t) = Cek(1).

Setting e¢ := & — é , the state estimation error dynamics can be

derived from (27) and (28) and given as

Ecec(t)=(A¢ — LCeec(t) + (Bug — LeDy)w(t) (292)
e(t) =Teceg(t). (29b)

where €¢ € R® is the performance of augmented error dynamics

and I's € R*** is the user-defined performance matrix. Since

the state estimation error dynamics (29) share a similar structure
to that of (24), the LMI in (25) can be utilized.

(28a)
(28b)

VI. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we perform numerical simulations to study
the applicability and performance of the proposed DAE ob-
servers in estimating the trajectories of both algebraic and
dynamic states of selected IEEE test networks under various
conditions around a certain operating point. All simulations are
performed using MATLAB R2020a running on 64-bit Windows
10 with a 3.4GHz Intel? Core™ i7-6700 CPU and 16 GB of
RAM, whereas all convex linear programs (LPs) and SDPs are
solved through YALMIP [48] optimization interface along with
MOSEK [49] solver. The dynamical simulations for all DAEs
are carried out using MATLAB’s ODEs solver ode15i.

A. Power Networks Test Cases: Parameters and Setup

Herein we consider two power networks of contrasting size:
the Western System Coordinating Council (WSCC) 3-machine,
9-bus system (referred to as Case-9) and the New England 9-
machine, 39-bus system (referred to as Case-39). The single-
line diagrams for Case-9 and Case-39 are available in [9] and
[50, Appendix A]. The steady-state operating points utilized
to construct the matrices in (6)-(8) are acquired from solving
the power flow equations (3) using MATPOWER [35]. Each
synchronous generator parameters appearing in (1) and (2) are
obtained from Power System Toolbox [9] case files d3m9bm . m
for Case-9 and datane.m for Case-39. The power base for
both systems is chosen to be 100 MVA and synchronous speed
wp := 2760 rad/sec. All loads are assumed to be of constant
power type. For Case-9, the loads at buses number 5, 7, and 9 are
specified as 0.9+ 50.3 pu, 1.0+ 350.35 pu, and 1.25 4 50.5 pu.
Since Case-39 consists of 21 loads, they are not specified here—
the details can be seen from MATPOWER data file named
case39.m.

B. DSE Under a Three-Phase Fault Contingency

To examine the performance of the proposed observers in
performing DSE under a contingency event, a dynamic response
is generated by applying a three-phase fault, where for Case-
9, the fault occurs at Bus-4 of Line 4-5 at ¢ = 25 sec within
a 60 sec simulation window and then cleared at the near and
remote ends after 50 msec and 200 msec. The three-phase fault
for Case-39 occurs at Bus-3 of Line 3-4 at ¢ = 20 sec, which
is cleared at the near and remote ends after 50 msec and
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Figure 1. State estimation results for Case-9 with Gaussian noise: (a) the

internal states of Generator-2 and (b) complex voltage at Bus-8.
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Figure 2. The comparison of estimation error norm for Case-9 and Case-39
with Gaussian noise.
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Figure 3. State estimation results with non-Gaussian measurement noise: (a)
transient voltage at Generator-3 with Cauchy noise (Case-9) and (b) rotor
angle and speed at Generator-10 with Laplace noise (Case-39).

70 msec. It is assumed herein that the input w(¢) is known to
the observers at all times. We also impose a Gaussian process
noise assuming a diagonal covariance matrix which entries
are the square of 10% of the largest state changes [45] as
well as a Gaussian measurement noise with variance 0.012
for Case-9 and 0.0052 for Case-39. Particularly for Case-9,
two PMUs are installed with configuration Ny, = {4,6},
where for Case-39, we follow [51] to install 9 PMUs such
that Ay = {2,6, 10,19, 20, 22,23, 25,29}. It is worth noting
that these PMU locations render the power networks to be
detectable and I-observable—according to (16) and (18). The
two observers presented in Section IV are implemented: the
gain for the standard Luenberger DAE observer is obtained from
solving P1 while the one for the H , observer is computed from
solving P2, from which we get k = 2.2x1073,v = 5.78x 1072
for Case-9 and k = 1, v = 5.24 X 10~2 for Case-39. The
initial conditions for observer’s states are randomized with 10%
maximum deviation from the actual states’ steady-state values,
except for generators’ rotor speed, which are set to be equal to
the synchronous speed wy. The disturbance matrices are chosen
to be B, = [I O] € R™"*? and D,, = [O I] € Rrxq
where ¢ = n + p.

The results of this numerical study on Case-9 are provided in
Fig. 1. Despite Bus-2 and Bus-8 are not equipped with PMUs,
their terminal voltages and Generator-2’s internal states can be
estimated. It is worth noting the high noise attenuation provided

Table 1
THE CORRESPONDING RMSE (30) FOR VARIOUS CONFIGURATIONS OF
PMU ON Case-9 WITH LUENBERGER AND H oo DAE OBSERVERS.

RMSE
Remark PMU conf. Ny
Luenberger Obs. | Hoo Obs.
{4,6} 0.906128 0.149777
2 PMUs:
3 branch buz only | {48} 0.857766 0.131873
{6,8} 0.586053 0.128455
3 PMUs: {4,5,8} 0.906862 0.128968
two 3-branch bus, | {4,7,8} 0.833687 0.130704
load bi
one foac bus {4,8,9} 0.680171 0.118765
4 PMUs: {1,2,5,7} 0.734701 0.141977
two generator bus, {1,3,7,9} 0.764526 0.129512
two load b
Wo foac bus 12,3,5,9} 0.686932 0.126877
{4,5,6} 0.7572617 | 0.153421%
multiple PMUs: T T
two 3-branch bus, | 14:5,6,7} 0.746314 0.145797
multiple load bus {4,5,6,7,9} 0.644191F 0.127354F

T this value corresponds to the average of RMSE after performing the DSE five
times to compensate for noise variability.

Table II
THE COMPARISON OF RMSE (30) FOR DSE WITH UNKNOWN INPUTS
USING FIVE DIFFERENT TYPES OF OBSERVERS.

c RMSE & ~ (for Hoo Observers only)
ase
Luenb. Obs. H oo Obs. PI Luenb. S-PI H o O-PI H o
0.5030 0.4396 0.1890
9 09100 1 2 4aq | 06733 | 0968 | 4 = 1.068
. 1.1531 0.2085 0.0779
39 3.6294 y=1.318 | 2317 | 20318 | 4= 1.318

by the H ., DAE observer, compared to the standard Luenberger
DAE observer. Similar results are also observed for Case-39,
which are not shown here for conciseness. The comparison of
estimation error norm is shown in Fig. 2. It can be seen that
the H, observer provides a superior state tracking—this is
indicated by the low estimation error norm. Motivated by the
work in [52], we briefly test the DAE observers in handling
non-Gaussian measurement noise such as Cauchy and Laplace
noise. Following [4], the Cauchy noise is generated by setting
Wy = a+b-tan(7(Ry — 0.5)), where a = 0,b =5 x 1074,
and Ry is a random number inside (0, 1) and implemented on
Case-9, while the Laplace noise is characterized by the signal
Wi = m — s - sgn(Ry) - In(1 — 2|Ry]), where m = 0,
s = 1 x 1073, and R; is a number randomly chosen inside
the set (—0.5,0.5] and implemented on Case-39. The results are
presented in Fig. 3, from which it can be claimed the superiority
of the H., DAE observer over the Luenberger observer.

C. Effect of PMU'’s Configuration on Estimation Quality

This section studies the influence of varying number of PMU
together with different configuration towards the quality of DSE
and as such, we limit our study to Case-9 only. The root-mean-
square error (RMSE) [4], [14], [53], a metric used in the DSE
literature, is utilized to quantify the estimation quality

(30)
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Figure 4. State estimation results for Case-9 with unknown inputs: (a) the
rotor angle and speed of Generator-2 and (b) complex voltage at Bus-2.

where e[k| is the sampled estimation error and ky denotes
the final time such that k¢T" = 60sec where T' = 0.05 sec
is a constant period such that e[k] = x(kT) — @(kT). The
results of this study are shown in Tab. I. The first column in
Tab. I describes different scenarios pertaining to the number
and location of PMUs, whereas the second column shows
the PMU configurations. It can be seen that, for the same
number of PMUs, both observers yield varying RMSE. The
Hoo DAE observer produces smaller RMSE compared to the
Luenberger observer. It is also observed that different placement
of PMUs produces different RMSE. There is no clear pattern
to indicate that particular PMU locations return better or worse
estimation error and/or noise attenuation. To that end, a further
study is required to reveal the relation between PMU locations
and estimation quality in a dynamic-algebraic state estimation
framework. Nonetheless, we observe that adding more PMUs
generally reduces the RMSE in both observers. This observation
is expected since increasing the number of PMUs implies that
more states are measured (and therefore, less states are needed
to be estimated), thereby decreasing the total estimation error.

D. Estimation Performance with Unmeasurable Inputs

As mentioned in Section V, Ths; and Eyg; are difficult to
measure practically. To that end, here we consider the case when
the actual control inputs are unknown to the observers. Instead,
the observers are given static, steady-state control inputs [9].
Note that, due to the three-phase fault, the actual T; and E4;
for all 7 € G are fluctuating and settle to a slightly different
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Figure 5. State estimation results for Case-39 with unknown inputs: (a) the
transient voltage of Generator-2 and (b) complex voltage at Bus-8.

steady-state value. For this purpose we choose B, := B,, such
that v = m. The PMU locations and Gaussian noise for both
power networks are set to remain the same as in Section (VI-B),
with an exception that the variance of Gaussian measurement
noise is increased to 0.052 for Case-9. Five different observers
are benchmarked:

o Luenb. Obs.: the Luenberger observer (19) with P1.

o Hoo Obs.: the robust H, observer (19) with P2.

e PI Luenb. Obs.: the PI Luenberger observer (27) with P1.
o S-PI H, Obs.: the robust PI H ., observer (27) with P2.
e O-PI Hoo Obs.: the robust PI H ., observer (27) with P3.

The performance matrices for the robust observers are chosen
to be I' := 0.5I and I'¢ := 0.1I, whereas the constants in
P3 for the O-PI H ., observer are set to be ¢; = ¢y = 1.
The state estimation results are given in Fig. 4 for Case-9.
Specifically, in Fig. 4a, we show the comparison of three PI
observers in estimating some internal states of Generator-2. It is
clear that the estimation from PI Luenberger observer is the most
vulnerable to noise. Strong noise attenuation is demonstrated by
the S-PI H., observer. However, it is relatively inaccurate in
tracking the actual states trajectory for 25 sec <t < 40 sec.
This is presumed to be caused by the assumed steady-state
unknown input dynamics [47]. The O-PI H . observer provides
a sufficient noise attenuation at steady-state (although not as
good as the S-PI H ., observer) as well as small tracking error
when the states are fluctuating. Fig. 4b depicts the estimates of
complex voltage at Bus-2 with the three H ., observers. It is



seen that the standard H ., observer provides the least accurate
estimation compared to the robust PI observers. Despite the fact
that O-PI ‘H . observer is able to properly track the actual states
especially for 25 sec <t <40 sec with a relatively small error,
at steady-state, it is observed from a detailed inspection that its
state estimates are experiencing more fluctuations compared to
the resulting state estimates from the S-PI H ., observer, which
is a consequence of higher performance index v from the O-PI
Hoo Observer—as seen from Tab. II. Note that higher v means
lower noise attenuation. Similar results are also obtained from
Case-39—see Fig. 5. The summary of RMSE for both cases is
presented in Tab. II, where it is seen that the O-PI H, observer
has the smallest RMSE. Thus, it can be concluded that the O-PI
H oo Observer is able to provide superior state estimates, relative
to the other observers, when the inputs are unknown.

E. Comparison with A Robust Two-Stage DSE Method

In this section we finally compare the proposed DSE frame-
work utilizing the standard and O-PI H, observers with the
two-stage approach introduced in [14] to perform DSE on Case-
9. In the first stage of the latter approach, a linear phasor estima-
tor is utilized to estimate bus voltages based on measurements
provided by the PMUs. The estimated bus voltage values are
later used to aid DSE in estimating generators’ states in the
second stage. The linear phasor estimator implements the Least
Absolute Value (LAV) method pioneered in [53] for the purpose
of power system’s state estimation. It is demonstrated therein
that the LAV method can provide better estimates than the
weighted least square method in some instances. Due to the
two-stage nature, this approach can only be implemented in
discrete-time. In each iteration corresponding to a time step k,
the noisy measurements from PMUs—denoted by y[k|—are
sampled. Afterwards, the following convex LP is solved [53]

P
P4 min Z|7§|, subject to g[k] = CCpo + 7,
T,V i—1

where vectors © € R?Y and # € R" denote the estimates of
bus voltages and measurement noise, respectively. Using 0 [k]
and our knowledge on Ts; and Eg4; for all i € G, the dynamic
states can be estimated by implementing a simple discrete-time
KF [54].

In the first instance of this comparative simulation, the pres-
ence of Gaussian process and measurement noise are assumed.
Three PMUs are installed such that Ny {4,6,8}. The
estimators also have the perfect information of T; and Ey4;
at all times. In the two-stage approach (coined as LAV + KF),
the LAV solves P4 in every iteration whereas the KF utilizes
the discrete-time dynamics of the power network discretized
using the forward Euler method. The time period for this case
is chosen to be 0.05 sec. The transient response is generated by
introducing a fault at ¢ = 15 sec. The comparison results are
presented in Fig. 6a. Itis apparent that the # ., observer provides
better estimates than the two-stage approach: the LAV-KF yields
less accurate estimates during transient periods, in addition to
the noisy estimates. Next, in the second instance, we assume
that the estimators do not have access to the actual time-varying
values of T; and E'y4; and instead, they are only fed with their
estimated steady-state values. Fig. 6b shows the comparison
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Figure 6. The estimation of Generator-3 rotor speed and Bus-3 real voltage
in Case-9: (a) the Hoo observer and LAV-KF with noise only, (b) the O-PI
Hoo observer and LAV-KF with noise and unknown inputs (UI), and (¢) the
corresponding estimation error norm.

of estimation results between the O-PI H ., observer with the
two-stage approach. The superiority of the standard and O-PI
H o observers is also evident from the much smaller estimator
error norm—see Fig. 6¢c. On the matter of simulation running
time, the two-stage approach is also considerably much slower:
644.9 sec against 15.7 sec for the case with noise; 629.3 sec
against 14.6 sec for the case with noise and unknown inputs.

VII. CONCLUDING REMARKS AND FUTURE WORK

This paper develops a novel DSE framework on the basis of a
detailed, linearized DAE model of power systems—considering



a high-order of generator’s dynamics, stator’s algebraic con-
straints, generator’s complex power, and the network’s power
balance equations—with PMU-based measurements sensing
only bus voltages and line currents. A novel robust H., DAE
observer is proposed, which only requires detectability and
impulse observability to operate—these conditions are easily
satisfied for the proposed power network’s model with a few
PMUs. The numerical test results showcase the performance
of several observers in estimating generators’ internal states and
unmeasured bus voltages under various conditions. In particular,
it is revealed that the standard and O-PI robust H ., observers
are superior compared to the Luenberger observers and the two-
stage approach that is based on LAV and KF in performing DSE
in the presence of noise and unknown inputs.

The utilization of a linear DAE representation of transmission
power networks inevitably becomes the major limitation in this
approach. On that regard, extending the proposed approach
based on a nonlinear, DAE representation of power networks
is a worthy direction for future research. We also plan to study
the effectiveness of the proposed approach in managing sensor
failures from PMUs as well as potential cyber-attacks.
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