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Abstract 22 

The human embryo is a complex structure that emerges and develops as a result of cell-level 23 

decisions guided by both intrinsic genetic programs and cell-cell interactions. Given limited 24 

accessibility and associated ethical constraints of human embryonic tissue samples, researchers 25 

have turned to the use of human stem cells to generate embryo models to study specific 26 

embryogenic developmental steps. However, to study complex self-organizing developmental 27 

events using embryo models, there is a need for computational and imaging tools for detailed 28 

characterization of cell-level dynamics at the single cell level. In this work, we obtained live cell 29 

imaging data from a human pluripotent stem cell (hPSC)-based epiblast model that can 30 

recapitulate the lumenal epiblast cyst formation soon after implantation of the human blastocyst. 31 

By processing imaging data with a Python pipeline that incorporates both cell tracking and event 32 

recognition with the use of a CNN-LSTM machine learning model, we obtained detailed 33 

temporal information of changes in cell state and neighborhood during the dynamic growth and 34 

morphogenesis of lumenal hPSC cysts. The use of this tool combined with reporter lines for cell 35 

types of interest will drive future mechanistic studies of hPSC fate specification in embryo 36 

models and will advance our understanding of how cell-level decisions lead to global 37 

organization and emergent phenomena.  38 

  39 
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Insight, innovation, integration 40 

Human pluripotent stem cells (hPSCs) have been successfully used to model and understand 41 

cellular events that take place during human embryogenesis. Understanding how cell-cell and 42 

cell-environment interactions guide cell actions within a hPSC-based embryo model is a key step 43 

in elucidating the mechanisms driving system-level embryonic patterning and growth. In this 44 

work, we present a robust video analysis pipeline that incorporates the use of machine learning 45 

methods to fully characterize the process of hPSC self-organization into lumenal cysts to mimic 46 

the lumenal epiblast cyst formation soon after implantation of the human blastocyst. This 47 

pipeline will be a useful tool for understanding cellular mechanisms underlying key embryogenic 48 

events in embryo models.  49 

  50 
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Introduction 51 

Human embryo development is a complex process in which cells go through major 52 

reorganization and progressive fate specification. Pre-implantation human development leads to 53 

the formation of the blastocyst, a hollow sphere of trophectoderm cells with an inner cell mass 54 

(ICM) composed of both epiblast cells (i.e. embryonic stem cells), which will later form the 55 

embryo proper, and hypoblast cells, which will later go on to form the yolk sac. Once the 56 

blastocyst begins implantation into the uterine wall, there are a number of developmental events 57 

all working in parallel and affecting each other in ways we still don’t understand. These 58 

processes include the invasion of trophectoderm cells into the uterine wall and their 59 

differentiation into cytotrophoblast and syncytiotrophoblasts as well as the development of the 60 

epiblast into a lumenal rosette structure enclosing a central cavity. Soon after, the epiblast cells 61 

next to invading trophectoderm cells differentiate into the amnion, with the remaining epiblast 62 

cells next to the hypoblast remaining pluripotent, leading to the formation of a bipolar epiblast-63 

amnion tissue. While crucial to a successful pregnancy, these developmental events are difficult 64 

to study due to both technical limitations and ethical considerations1,2. For years, researchers 65 

have tried understanding human development with the use of animal models including mouse 66 

and monkey models3–7. Recently, there have been increasing efforts towards the development of 67 

in vitro models of human development with the use of human pluripotent stem cells (hPSCs) 68 

including human embryonic stem cells (hESCs)8–11.  69 

Studies have shown that hPSCs have an intrinsic property to self-organize and 70 

differentiate to form complex in vivo-like structures. Leveraging this capability, researchers have 71 

successfully created a variety of hPSC-based embryo models that recapitulate key steps in early 72 

human development12–15. A developmental process of particular interest to our group has been 73 
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the formation of lumenal hPSC cysts and the differentiation of hPSCs into amnion cells. Shao et 74 

al.13were the first to show that hPSCs could differentiate into amnion cells. They engineered a 75 

3D biomimetic platform with a soft gel bed made with the basement membrane matrix GeltrexTM 76 

and a 3D matrix overlay made with a low concentration of GeltrexTM diluted in culture medium. 77 

In this system, hPSC clusters would undergo lumenogenesis and form lumenal structures 78 

containing a central cavity. Over time, three types of cysts resulted from lumenal hPSC clusters: 79 

cyst composed of amnion cells, cysts composed of undifferentiated hPSCs, and asymmetric cysts 80 

containing amniotic cells at one pole and undifferentiated hPSCs at the opposite pole (Fig. 1). 81 

The percentage of each type of cyst was shown to depend heavily on the initial cell plating 82 

density. While BMP-SMAD signaling was found to be important for amnion differentiation, the 83 

mechanism(s) that led to the initiation of amnion differentiation in the 3D structure has remained 84 

elusive.  85 

The ability of hPSCs to self-organize and differentiate into in vivo-like structures in in 86 

vitro settings posits the existence of endogenous developmental programs. Consequently, a 87 

crucial characteristic of in vivo-relevant, stem cell-based embryo models is their ability to 88 

leverage these programs in order to capture the progressive nature of human development. 89 

Triggering these developmental programs, however, is not a trivial endeavor; it requires cell 90 

culture environments engineered with correct dimensionality as well as correct mechanical and 91 

biochemical properties. Having taken the necessary first step of creating a hPSC model that 92 

recapitulates a developmental period of interest, the next step becomes the elucidation of the 93 

mechanisms at work in the system. In vivo, progressive development entails branching of distinct 94 

lineages and progressive differentiation into cell types with increasingly restricted potential16. 95 

Studying these processes in hPSC models in a tractable manner requires the use of computational 96 
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tools that minimize manual curation and bias. Machine learning tools have come to the forefront 97 

and are increasingly used to parse the mechanisms at work in these systems. To date, however, 98 

many of these efforts have been directed towards the application of single-cell RNA-sequencing 99 

(scRNA-seq) data analysis tools17–21 or examining global features of the observed structures at 100 

discrete time points22,23. While these approaches are useful, their discrete nature limits their use 101 

for understanding how factors in the local cell microenvironment trigger and guide cell state 102 

changes that lead to the emergence of relevant structures. Understanding this requires the ability 103 

to continuously monitor individual cells in the system and record division events for later lineage 104 

tracing.   105 

There have been several efforts towards the creation of classifiers for the identification of 106 

dividing cells. While the methods are varied, the models can be divided into two categories: (1) 107 

models that use spatial features24–26 and (2) models that use both spatial and temporal features27–108 

33. Many of the models that rely only on spatial features for classification utilize morphological 109 

feature extraction that leverages the clear differences in visual characteristics between dividing 110 

and non-dividing cells24–26. Models that lack temporal information, however, face the additional 111 

challenge of having to consider how the timing at which the event is captured will affect the 112 

features of interest. This is not an issue for spatiotemporal models in which many stages of the 113 

division process can be captured and used for the classification. However, rather than focusing 114 

on the nucleus, which shows the most obvious visual changes during division, many of the 115 

existing models rely on phase contrast microscopy images27–30,32,33 that complicate classification 116 

because of the confounding factor of varying cell shape. In this work, we present a 117 

computational tool for the comprehensive analysis of live cell imaging data of hPSC cyst 118 

formation using a unique nuclear GFP H9 hESC reporter line. Using Python, we created a 119 
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pipeline that is able to process the images and identify all individual cells in a developing hPSC 120 

cyst. The pipeline captures information on both the cell properties and cell neighborhood at each 121 

time point. Further, we trained a machine learning model for event recognition that is able to 122 

identify changes in cell state such as division and death by looking at spatiotemporal properties 123 

of the nuclei. With this tool, we hope to parse the relationship between the properties of the local 124 

environment and cell-level decisions that lead to emergent behaviors like hPSC cyst formation 125 

and growth.  126 

 127 

Materials and Methods 128 

Cell culture substrate preparation  129 

An array of 100 μm-diameter circular adhesive islands was created using a two-step 130 

micropatterning method as described previously34. Briefly, a poly-dimethylsiloxane (PDMS) 131 

elastomeric stamp with an array of circular posts was generated using replica molding from a 132 

silicon mold fabricated by standard photolithography and deep reactive ion etching (DRIE)35,36. 133 

The center-to-center spacing between adjacent posts on the PDMS stamp was 150 μm, and the 134 

post height and diameter were 30 μm and 100 μm, respectively. The PDMS stamp was coated in 135 

1% Geltrex (Thermo Fisher Scientific; derived from Engelbreth- HolmSwarm tumors similarly 136 

as Matrigel®) solution for 24 h at 4 °C and subsequently rinsed with distilled water and blown 137 

dry with nitrogen. Before stamping, the cell culture substrate was prepared by coating a glass 138 

coverslip with PDMS and treating it with ultraviolet (UV) ozone (UV-ozone cleaner; Jelight, 139 

Irvine, CA) for 7 min to oxidize the PDMS surface. The PDMS stamp was then placed in 140 

conformal contact with the PDMS-coated coverslip for 5 s to transfer Geltrex from the stamp to 141 

the coverslip. To restrict cell attachment to the circular adhesive islands, the coverslip was 142 
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treated with Pluronic F127 NF dissolved in PBS (0.2%, w / v; BASF, Ludwigshafen, Germany) 143 

for 1 h at room temperature and rinsed with distilled water. The coverslip was then immersed in 144 

mTeSR (STEMCELL Technologies) for a minimum of 2 h to further block the non-145 

functionalized surface of the coverslip. Finally, the coverslip was submerged in mTeSR medium 146 

containing 1% Geltrex for 1 h. The coverslip was washed with PBS before cell seeding. 147 

 148 

Cell culture  149 

H9 hESCs (WA09, WiCell; NIH registration number: 0062) were used in this study. All culture 150 

protocols have been pre-approved by the Human Pluripotent Stem Cell Research Oversight 151 

Committee at the University of Michigan. The H9 hESC line is authenticated by the original 152 

source, and further authenticated in house by immunostaining for pluripotency markers and 153 

differentiation into the three germ layers. Karyotype analysis was performed by Cell Line 154 

Genetics. The H9 hESC line was tested negative for mycoplasma contamination (LookOut 155 

Mycoplasma PCR Detection Kit, Sigma-Aldrich). H9 cells were cultured in a feeder-free culture 156 

system using mTeSR medium and lactate dehydrogenase-elevating virus (LDEV)-free, hESC- 157 

qualified reduced growth factor basement membrane matrix Geltrex, per manufacturer's 158 

instructions. During each passage, cell culture was visually examined to remove spontaneously 159 

differentiated, mesenchymal-like cells. All hESCs used in this work had passage numbers less 160 

than P70. 161 

 162 

Generation of mTnG cells  163 

For live cell imaging of hESC cyst formation, a membrane tdTomato, nucleus-EGFP (mTnG) H9 164 

hESC line was generated. H2B-EGFP was PCR amplified from a gift plasmid Tcf/Lef:H2B-GFP 165 
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(Addgene plasmid #32610). The PCR product was then ligated into the ePiggyBac vector with a 166 

constitutively active puromycin selection cassette37. membrane-tdTomato was PCR amplified 167 

from a gift plasmid pQC membrane TdTomato IX (Addgene plasmid #37351). The PCR product 168 

was then ligated into the ePiggyBac vector with a constitutively active neomycin selection 169 

cassette37. These two plasmids (1.5 μg each) were co-transfected with 1 μg pCAG-PBase 170 

(ePiggyBac transposase helper plasmid obtained from Dr Ali H. Brivanlou37) using GeneJammer 171 

(Agilent Technologies) into H9 hESCs that were plated at 50,000 cells cm−2 24 h prior to 172 

transfection. Puromycin selection (2 µg mL-1) and G418 selection (250 µg mL-1) started at 4 days 173 

after transfection. The cells were selected for 7 days. After selection, the cells were dissociated to 174 

single cells and replated at low density (400 cells cm-2) for clone picking. 12 clones were hand-175 

picked and evaluated for brightness and pluripotency. 3 clones were expanded at the end (mTnG 176 

#1, 2, 3). mTnG #1 hESC line has the brightest fluorescent signal and is used in the current 177 

study.  178 

 179 

Cyst formation assay 180 

Cultured hESC colonies were dissociated into single cells with Accutase (Sigma-Aldrich) at 37 181 

°C for 10 min before the cells were centrifuged and re-suspended in mTeSR1 medium containing 182 

10 μM ROCK inhibitor, Y27632 (Tocris), to avoid dissociation-induced apoptosis38. Cells were 183 

then plated onto coverslips pre-coated with circular adhesive islands at a density of 300,000 cells 184 

cm-2. To establish 3D ECM overlay, culture medium was changed to fresh mTeSR1 medium 185 

containing 10 μM Y27632 and 4% (v / v) Geltrex 2 h after initial cell seeding. Y27632 was 186 

removed 24 h after initial cell seeding, at which time the coverslip was transferred to 187 

fluorescence microcopy for live cell imaging. 188 
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 189 

Live cell video acquisition  190 

mTnG hESCs on the coverslip were imaged using the Zeiss Axio Observer Z1 inverted 191 

epifluorescence microscope enclosed in the XL S1 incubator (Carl Zeiss MicroImaging) to 192 

maintain cell culture at 37 °C and 5% CO2. Fluorescence images were recorded with a 20× 193 

objective for a period of 24 h, with an exposure time of 3 s and a time frame of 10 min to 194 

minimize phototoxic effects on cells. A GFP filter set was used for fluorescent imaging of the 195 

nuclei of mTnG hESCs.      196 

 197 

Image pre-processing 198 

A customized Python program was used to process raw images collected from live cell imaging 199 

using fluorescence microscopy. First, contrast was enhanced using adaptive image enhancement 200 

developed by Peng et al39. Specifically, each pixel in the image is normalized using the mean and 201 

variance of a local region surrounding the pixel. This local region is determined adaptively. For a 202 

given pixel, the program starts from a given initial size and expands until the standard deviation 203 

of the region is equal to or more than a given threshold. For computational tractability, maximum 204 

radius was set at 5 pixels. The threshold is in the range of 0.2 to 0.8 and is meant to ensure that 205 

the local region has enough relevant structures to classify a pixel as being part of the background 206 

or part of an object. After obtaining the region size, the pixel is normalized by subtracting the 207 

local mean and dividing by the local standard deviation. This will account for varying 208 

background intensity and varying contrast, respectively. A background mask is then obtained by 209 

binarizing the resulting image with a binary threshold (cv2.THRESH_BINARY). This 210 

background mask is further refined with a dilation (cv2.dilate, kernel size = (3,3), iterations = 2) 211 
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followed by an erosion (cv2.erode, kernel size = (5,5), iterations = 2). Multiplying this resulting 212 

background mask by the original image eliminates background noise. Second, contours of cells 213 

were identified with the use of adaptive gaussian threshold (cv2.adaptiveThreshold with 214 

blockSize = 23, C = 1) (Fig. 3b). For each pre-processed image, contours were extracted with the 215 

use of cv2.findContours with cv2.RETR_TREE and cv2.CHAIN_APPROX_NONE. The third 216 

step is to carry out segmentation to find individual cell contours (Fig. 3d). The pipeline measures 217 

the area and circularity of each contour. Contours identified as individual cells are stored. The 218 

contours identified as cell clusters undergo concavity point-pair segmentation, a method 219 

developed by Farhan et al. based on finding concavity point-pairs using a variable-size 220 

rectangular window40. In brief, using an established interval, a list of contour coordinates is first 221 

extracted from the binary image of the cell cluster. For each coordinate in the list, lines are 222 

drawn to the next two points in the list. Once a line passes through the image background (i.e., a 223 

pixel with value 0), the algorithm finds the contour coordinate at which the line no longer passes 224 

through the background and establishes this coordinate as a concavity point. After filtering the 225 

resulting point list to account for contour irregularities, the program finds the directionality 226 

vector of each concave area. Using this vector, each concavity point establishes a rectangular 227 

window in which to search for other concavity points. Once all concavity points have paired up, 228 

a line is drawn between them and the cluster is segmented. Farah et al. validated the method with 229 

the use of three data sets, two of which contained bright field microscopy images of yeast cells, 230 

and one which contained fluorescent microscopy images of yeast cells40. They showed that the 231 

concavity point-pairing segmentation method was highly effective, with precision averaging at 232 

0.9840. 233 

 234 
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Image selection for CNN-LSTM  235 

The machine learning classifier used was a deep learning model consisting of a convolutional 236 

neural network (CNN) connected to a long short-term memory (LSTM) network. The data set for 237 

supervised training contained sequences of three time points showing three different classes of 238 

cells: dividing, dying, and non-dividing. These sequences of dividing, dying and non-dividing 239 

nuclei were manually cropped from live cell videos (Figure 3a). The sample set contained 450 240 

samples, with an equal amount of every class.  241 

 242 

Parameters for CNN-LSTM  243 

The CNN-LSTM model was constructed using keras.Sequential, which yields a linear stack of 244 

layers. The CNN layers consisted of a repeating pattern of convolution, max pooling, and batch 245 

normalization followed by one dropout and one global max pooling layer. The CNN model 246 

output for each sequence of images was passed on to an LSTM layer via a TimeDistributed 247 

layer. This layer extracts features from each image in the sequence and passes it to the LSTM. 248 

The final layers in the model create a fully connected network with the use of dense layers. 249 

Rectified linear units (ReLU) were used as the activation function in all of the convolutional 250 

layers and dense layers, except for the last one. The last dense layer used softmax activation in 251 

order to carry out multiclass classification. The model was compiled using Adam as the 252 

optimizer, categorical crossentropy for the loss calculation, and accuracy as the metric evaluated 253 

by the model. The number of epochs was 100. During training, callback with ModelCheckpoint 254 

was used to store the best model based on validation accuracy. A 70-20-10 split was used to 255 

create the training, testing, and validation data sets. Because the data set is small, data 256 

augmentation was carried out using a data generator class. Using this generator, the data set was 257 
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randomly shuffled and images were transformed using rotation (range of 5), shifts in height 258 

(range of 0.1) and shifts in width (range of 0.1). Transformations in this data generator class 259 

were carried out using the Keras ImageDataGenerator class. One-hot encoding was applied to the 260 

labels before training. 261 

 262 

Video analysis pipeline  263 

Live cell videos were analyzed with a Python pipeline. Images were pre-processed and all 264 

individual nuclei were identified. A cell tracker python class was used to give each cell a unique 265 

identification (ID) number and track cells from one time point to another using Euclidean 266 

distance. The nuclei were cropped from the image and stored in a Python dictionary. For event 267 

recognition, the cropped nuclei of the current time point and the cropped nuclei from the 268 

previous two time points were passed as input to the CNN-LSTM classifier. Whenever a new 269 

cell would appear in the environment, the parent cell would be identified using a parent score 270 

(ps) parameter. Newly divided cells tend to be small, bright, and similar in size. For this reason, 271 

the ps takes into account both the classification of the cells in the previous time point and the 272 

similarity in area and brightness of the nuclei between the new cell and the possible sister cell. 273 

The cell with the highest ps in the local neighborhood of the newly appeared cell would be 274 

assigned as the parent. At this point, the daughter cell with the parent ID receives a new ID, and 275 

the parent ID of the daughter cells is stored. The number of neighboring cells and the average 276 

distance to neighbors are stored for each cell at every time point. The output of the video cell 277 

analysis is a Python DataFrame with the cell IDs, cell positions, number of neighbors, average 278 

distance to neighbors and parent IDs for each time point.  279 

 280 
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Results 281 

Cyst formation analysis pipeline 282 

     Analysis of the morphogenesis of a multicellular structure at discrete time points can give 283 

insight into the system-level dynamics governing its growth and development. However, 284 

important cell-level dynamics and the degree of stochasticity and heterogeneity in a multicellular 285 

system remain difficult to elucidate. To better study the dynamic process of hPSC cyst 286 

formation, we developed an experimental platform to provide a biomimetic niche for the 287 

formation of hESC cysts in a controllable and robust manner. Specifically, an array of 100 μm-288 

diameter circular adhesive islands was created on a coverslip, before hESCs expressing 289 

membrane tdTomato and nucleus-EGFP (mTnG) were seeded onto the coverslip. Two hours 290 

after cell seeding, culture medium was changed to fresh mTeSR1 medium containing 10 μM 291 

Y27632 and 4% (v / v) Geltrex, to establish a 3D ECM overlay. The coverslip was transferred to 292 

a Zeiss Axio Observer Z1 inverted epifluorescence microscope 24 h after cell seeding. To track 293 

the dynamics of hESC cyst formation, live cell imaging was conducted for 24 h with a depth of 294 

focus that captured all the cells in the system. Given their self-organizing property, hESCs 295 

confined on adhesive islands on the coverslip formed small clusters and underwent epithelization 296 

and lumenogenesis. Throughout cyst formation, cells showed limited movement ability in the z-297 

direction. Live cell imaging data were then processed with the use of a Python pipeline capable 298 

of image processing, cell tracking, and event recognition. With these extracted data, a 299 

comprehensive characterization of cell states and actions during hESC cyst formation could be 300 

conducted, using a workflow that includes image processing with machine learning, and the 301 

characterization of cell state and cyst growth (Fig. 2).  302 

 303 
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Event recognition and image processing 304 

Parsing the relationship between cell actions and their local microenvironment is a necessary 305 

step for elucidating the mechanisms that drive hESC cyst formation and development. As a first 306 

step to carrying out this analysis, we sought to develop a machine learning model capable of 307 

detecting two important changes in cell state: division and death. While CNNs are often used for 308 

image classification, we sought to add robustness to the model by also leveraging temporal 309 

information with the use of an LSTM network. CNN-LSTM has been utilized for imaging 310 

analysis to detect mitotic cells recorded using time-lapse phase-contrast microscopy30. Following 311 

this logic and utilizing mTnG hESCs that show significant changes in nuclear shape and area for 312 

both dividing and dying cells, we trained a CNN-LSTM classifier (Fig. 3b). The classifier 313 

identifies three cell states: dividing, dying, and non-dividing (Fig. 3a). While the use of a single 314 

image could lead to correct classification, the CNN-LSTM model is able to leverage information 315 

on the temporal changes in nuclear shape using live cell imaging data. By using a set of 450 316 

manually labeled images with an equal amount of each class, with a 70-20-10 test-train-317 

validation split and data augmentation, a 96.3% overall accuracy in event recognition was 318 

achieved using the CNN-LSTM classifier (Fig. 3c). 319 

 Having successfully trained a machine learning model for event recognition, we next 320 

sought to create an image processing pipeline capable of identifying individual cell nuclei. While 321 

there are a number of computational tools available for identification and tracking of cells in a 322 

multicellular system41–43, identifying and tracking cells within a forming cyst presents unique 323 

challenges that require the use of more catered approaches. For example, in our test of the 324 

commonly used watershed method for segmentation, it is difficult to carry out correct 325 

segmentation of cell clusters, likely because of the compact arrangement of cells in hESC cysts. 326 
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Additionally, global thresholding methods were unsatisfactory for finding hESC clusters, likely 327 

because of variations in nuclear GFP intensity. To address these challenges, we devised an 328 

imaging processing pipeline uniquely suited to carry out thresholding and segmentation in tightly 329 

packed hESC cysts. The image processing steps consist of thresholding, denoising, 330 

segmentation, and identification of individual cells in hESC cysts (Fig. 4). For the segmentation 331 

step, we utilized adaptive local enhancement39 to enhance the contrast between nuclei and 332 

background. For binarization, we utilized adaptive gaussian thresholding to ensure that cells that 333 

are slightly out of focus can still be identified. After binarization and denoising, hESC clusters 334 

were segmented with the use of concavity point pairing analysis40. Cells are given a unique 335 

identification (ID) number and tracked from one time point to another with the use of Euclidean 336 

distance.  337 

  338 

Live cell data processing and system characterization 339 

As mentioned earlier, the experimental platform for the formation of hESC cysts consisted of an 340 

array of micropatterned Geltrex islands with a diameter of 100 μm generated with a two-step 341 

micropatterning process34 (Fig. 5a). After a period of 24 h in which mTnG hESCs were allowed 342 

to attach and cluster onto the adhesive islands, the experimental platform was transferred to a 343 

fluorescent microscope for live cell imaging for a period of 24 h (Fig. 5b&c). To avoid cytotoxic 344 

effects, images were recorded at intervals of 10 min.  345 

 Having obtained live cell data from various hESC cysts, we processed the images using 346 

the Python pipeline. Figure 6 shows the growth profiles of four different hESC cysts. The growth 347 

profiles vary greatly between the cysts. While there are periods of a sustained increase in cell 348 

number like the one seen in Figure 6a between 500 min and 750 min, we can also find periods of 349 
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a sustained decrease in the number of cells as seen in Figure 6c between 0 min and 250 min. 350 

Regardless of the growth profile, however, the number of cells seem to plateau for all the cysts.  351 

While the final cell numbers might be similar among the four hESC cysts, there are a number of 352 

different growth trajectories that could not have been inferred from looking at the final cyst 353 

configuration. In the context of modeling human development, this information facilitates the 354 

study of how these changes in growth dynamics correspond to relevant cell specification events. 355 

Further, as cells progressively differentiate and more populations appear in a system, we can start 356 

to study the growth dynamics of specific populations and how they relate to correct form and 357 

function in the structure. 358 

 Lineage tracing is a powerful tool for parsing the mechanisms guiding morphogenetic 359 

events in a multicellular system. It has many uses including providing insight into the timing of 360 

differentiation of cell types of interest and helping identify lineage-specific precursor cells. 361 

Combined with the ability to record properties of the local cell microenvironment, it can help 362 

parse when and why different cell types arise. Figure 7a shows a network representation of the 363 

cyst shown in Fig. 6a at different time points. Edges between cells of a given cyst are connected 364 

to each other based on an established threshold distance. The solid line going from one time 365 

point to another indicates a chosen cell lineage, with an additional dotted line indicating cell 366 

divisions. Having tracked a cell and established its lineage, we can characterize the local cell 367 

density experienced by the cells in the lineage throughout time. As can be seen in Figure 7b, the 368 

number of cells in the neighborhood and the average distance from neighbors of the selected cell 369 

continue to vary even after cell number in the cyst has plateaued (Figure 6a). We can also see 370 

from Figure 7d that the cyst radius continues to increase after cell number has plateaued, 371 

suggesting that structure growth does not necessarily correlate with increased cell number. From 372 
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the MSD plot in Figure 7d we can see that the average MSD in the system remains low 373 

throughout the 24 hours. This is likely a result of the confinement provided by the adhesive 374 

islands in which the cells exist. As different cell types start to arise, this pipeline output can be 375 

used to assess differences in movement dynamics between different cell populations and their 376 

spatial segregations. For example, mesoderm cells, which are studied in our post-implantation 377 

amniotic sac embryoid (PASE) model13, are known to be more migratory as compared to other 378 

populations like epithelial ectoderm and endoderm cells. While the model presented here is 379 

limited to the first 24 h of cyst formation, future efforts can be devoted to extending this 380 

timeframe to include important events such as symmetry breaking caused by the appearance of 381 

amnion-like cells (AMLCs) in the PASE. In our PASE model, we found that the initial cell 382 

seeding density has a significant effect on morphogenesis and differentiation of hESCs13,34. With 383 

the information that can be obtained from this pipeline, we can begin to understand the role of 384 

initial conditions like cell seeding density, and we can begin the work of relating changes in the 385 

local environment with cell-level decisions that lead to the cyst-level growth and patterning.   386 

 387 

Conclusions 388 

The successful generation of human embryo-like structures is a crucial step in advancing 389 

fundamental understanding of human development, without using intact, natural human 390 

embryos. However, limitations on the insights gained through analysis of human embryo-like 391 

structures at discrete time points drove us to create a live cell video processing pipeline catered 392 

for the unique challenges of our system. With the use of both spatial and temporal information, 393 

we were able to create a machine learning model for event recognition. Furthermore, this model 394 

was integrated into an image processing pipeline that leveraged specialized image processing 395 
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tools for the identification and tracking of individual cells in our system. With this integrative 396 

pipeline we were able to characterize the cell states and actions during the dynamic growth and 397 

morphogenesis of lumenal hESC cysts. Combining this tool with reporter lines for cell types of 398 

interest, we hope to advance in our goal to elucidate the mechanisms driving lumenogenesis, cyst 399 

growth, and cell fate specification in our in vitro hESC models of human development.   400 
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FIGURES AND FIGURE LEGENDS 416 

Figure 1 417 

 418 

Figure 1. Development of hPSC clusters into three distinct types of lumenal structures: amniotic 419 

cyst, pluripotent cyst, and asymmetric cyst. Amniotic cysts are composed of amniotic cells, 420 

whereas pluripotent cysts are composed of undifferentiated hPSCs. Asymmetric cysts contain 421 

amniotic cells at one pole and undifferentiated hPSCs at the opposite pole.  422 
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Figure 2 423 

 424 

Figure 2. Workflow for live cell imaging data analysis of cyst formation, including in vitro 425 

experimentation, video analysis, and system characterization. 426 

 427 

  428 
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Figure 3 429 

 430 

Figure 3. (a) Input image sequences to CNN-LSTM classifier. Images show the GFP channel of 431 

imaged mTnG H9 hESCs. The top, middle and bottom rows correspond to a dividing, dying, and 432 

non-dividing cell, respectively.  Scale bar, 10μm. (b) CNN-LSTM framework followed by a 433 
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multilayer perceptron (MLP) for multiclass classification. (c) Confusion matrix for CNN-LSTM 434 

classifier.  435 

Figure 4 436 

 437 

Figure 4. Image processing pipeline. Cell cluster is first isolated from original images obtained 438 

from live cell imaging of mTnG H9 hESCs (GFP channel is shown here) (a), before going 439 

through adaptive local enhancement and adaptive Gaussian thresholding (b). The image is then 440 

denoised with the use of open, erode, and filtering by connectivity (c). Cell clusters are 441 

segmented with concavity point analysis and individual cell contours are established (d). 442 

Bounding rectangle is then inputted into cell tracker (e), and cells are given a unique ID (f). 443 

Scale bar, 50 μm.   444 

 445 

 446 

  447 
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Figure 5 448 

 449 

Figure 5. hPSC cyst formation experiment. (a) Cartoon of experimental platform consisting of 450 

micropatterned adhesive islands and a 3D Geltrex overlay. (b) Experimental protocol timeline. 451 

(c) Live imaging of a hPSC cluster at different time points. In this assay, the mTnG H9 hESC 452 

line was used. Scale bar, 50 μm.   453 

 454 

 455 

  456 
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Figure 6 457 

 458 

Figure 6. Growth dynamics of four different hPSC cysts. Left and right columns show the cysts 459 

after 24 hours of growth and the number of cells in the cyst through the period of 24 hours, 460 

respectively. In this assay, the mTnG H9 hESC line was used. Images show merged nuclear 461 

EGFP (green) and membrane tdTomato (red). Scale bar, 50 μm.   462 

 463 

 464 
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Figure 7 466 

 467 

Figure 7. Characterization of hPSC cyst formation dynamics. (a) Network representation of a 468 

cyst at different time points. The color of the nodes in each plane indicates the time point. Each 469 

node represents a single cell in the cell cluster. Connections between cells are established based 470 

on a threshold distance. Cell lineage of the gold-colored cell is shown with the black line 471 

connecting the cell at different time points. Dotted lines indicate instances of cell division. (b) 472 
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Average distance to neighbors and number of neighbors corresponding to the gold-colored cell in 473 

a as a function of time. (c) Average mean squared displacement (MSD) of all the cells in the cyst 474 

as a function of time. Dark blue points and bars represent the average MSD and the range of 475 

MSDs, respectively. (d) Radius of the cyst as a function of time. 476 

 477 

 478 
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