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Abstract

We study the Stokes problem over convex polyhedral domains on
weighted Sobolev spaces. The weight is assumed to belong to
the Muckenhoupt class Aq for q ∈ (1,∞). We show that
the Stokes problem is well-posed for all q. In addition, we show
that the finite element Stokes projection is stable on weighted
spaces. With the aid of these tools, we provide well-posedness
and approximation results to some classes of non-Newtonian fluids.
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1 Introduction

The purpose of this work is to study well-posedness and approximation results,
on weighted spaces, for some models of non-Newtonian fluids on convex
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polyhedral domains. To be specific, we will study the following problem⎧⎪⎨⎪⎩
− div S(x, ε(u)) +∇p = − div f , in Ω,

div u = g, in Ω,

u = 0, on ∂Ω.

(1)

Throughout our work, we assume the domain Ω ⊂ R3 to be a convex polyhe-
dron. For a vector field v, we denote by ε(v) = 1

2 (∇v +∇v⊺) its symmetric
gradient. Specific assumptions for the stress tensor S and for the data f and g
will be made explicit as we study particular models.

We must make an immediate comment regarding the space dimension.
While the three dimensional case is the most significant from the physical
point of view, our restriction to this case is of purely technical nature. This is
because many of our results heavily rely on Hölder estimates for the derivatives
of the Green matrix; see section 2.4. As far as we are aware, some of these
estimates are not available in the literature in either dimension two or higher
than three. As soon as these become available, our results will readily extend
to these dimensions as well.

The main source of difficulty and originality in this work can be summarized
as follows. First, most of the well-posedness results for non-Newtonian fluids of
the form (1) are presented for domains that are at least C1; see, for instance,
[1, 2, 3, 4, 5]. However, this assumption is not amenable to finite element
discretization. For this reason, we focus on convex polyhedra. We are able to
provide approximation results, over quasiuniform meshes, for each one of the
models that we consider. Second, we allow the data to be singular. Even in the
linear case, i.e., S(x, ε) = 2µε, for a constant µ > 0, the study of well-posedness
results on convex polyhedra is far from being trivial. Here, by singular, we mean
that f ∈ Lq(ω,Ω) and g ∈ L̊

q
(ω,Ω), where ω ∈ Aq for q ∈ (1,∞); see section 2

for notation. This allows to have even measure valued forcings. Finally, we may
allow the constitutive relation S(x, ε) to be degenerate, as naturally appears
when considering the Smagorinsky model of turbulence described in section
6. In such a setting, problem (1), once again, must be understood in suitably
weighted Sobolev spaces.

The history of the analysis and approximation of classes of non-Newtonian
fluids is too vast and deep to even attempt to provide a complete description
here. It can be, for instance, traced back to the work of Ladyženskaja [6, 7, 8],
and the famous model that now bears her name; see also [9]. Other classes
of non-Newtonian fluids that are similar to those we consider here have been
studied in [10, 11]. Regarding approximation, to our knowledge, some of the
first works that deal with finite element discretizations of non-Newtonian fluids
are [12, 13, 14]. The estimates of these works were later refined and improved
in [15, 16]. This last reference introduced the concept of quasi–norm error
bounds, and led to further developments using Orlicz spaces and shifted N –
functions that were proposed, for instance, in [17]. Similar estimates, but via
different arguments, were obtained in [18].
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We organize our presentation as follows. In section 2 we present notation
and gather some well-known facts that shall be useful for our purposes. In
particular, we present regularity results for the classical Stokes problem in
convex polyhedra and suitable Hölder estimates on the associated fundamen-
tal solution. We also recall some facts about the approximation properties
of finite elements in standard and weighted Sobolev spaces. Section 3 is our
first original contribution. Via a duality argument we obtain an L2-error esti-
mate for the discretization of the Stokes problem when the forcing is a general
Radon measure. This estimate improves our previous work [19]. The fun-
damental solution estimates are used in section 4 to show that, for every
q ∈ (1,∞) and every ω ∈ Aq, the Stokes problem is well-posed on weighted

spaces W1,q
0 (ω,Ω)× L̊

q
(ω,Ω). The study of non-Newtonian models begins in

section 5, where we extend the well-posedness results of [2] to the case of con-
vex polyhedra and provide approximation results over quasiuniform meshes.
Finally, in section 6, we study a variant of the well-known Smagorinsky model
of turbulence, which was originally developed in [20], and aims at reducing
the well-known overdissipation effects that this model presents near walls [21].
Existence of solution and approximation results over quasiuniform meshes are
obtained.

2 Preliminaries

We begin by fixing notation and the setting in which we will operate. Through-
out our work Ω ⊂ R3 is a convex polyhedron. For w ∈ L1(Ω) and D ⊂ Ω, we
set  

D

w dx =
1

|D|

ˆ
D

w dx, |D| =
ˆ
D

dx.

We shall use standard notation for Lebesgue and Sobolev spaces. Spaces of
vector valued functions and its elements will be indicated with boldface. Since
we will mostly deal with incompressible fluids, we must indicate a way to make
the pressure unique. To do so, for q ∈ [1,∞) we denote by L̊

q
(Ω) the space of

functions in Lq(Ω) that have zero averages.
For a set E ⊂ R3 we denote its interior by E̊. For a cube Q with sides

parallel to the coordinate axes we denote by ℓ(Q) the length of its sides. If Q
is a cube, and a > 0, we denote by aQ the cube with same center but with
sidelength aℓ(Q).

We denote by N0 = N ∪ {0} and by δi,j the Kronecker delta. The relation
A ≲ B indicates that there is a nonessential constant c such that A ≤ cB.
By A ≈ B we mean A ≲ B ≲ A. Whenever q ∈ (1,∞), we indicate by q′ its
Hölder conjugate.

2.1 Weights

One of the tools that will allow us to deal with singular sources, and nonstan-
dard rheologies, is the use of weighted spaces and weighted norm inequalities.
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A weight is an almost everywhere positive function in L1
loc(R3). Let q ∈ [1,∞),

we say that a weight ω is in the Muckenhoupt class Aq if [22, 23, 24]

[ω]Aq
:= sup

B

(︃ 
B

ω dx

)︃(︃ 
B

ω1/(1−q) dx

)︃q−1

<∞, q ∈ (1,∞),

[ω]A1
:= sup

B

(︃ 
B

ω dx

)︃
sup
x∈B

1

ω(x)
<∞, q = 1,

(2)

where the supremum is taken over all balls B in R3. We call [ω]Aq
, for q ∈

[1,∞), the Muckenhoupt characteristic of the weight ω. We observe that, for
q ∈ (1,∞), there is a certain conjugacy in the Aq classes: ω ∈ Aq if and only

if ω′ = ω1/(1−q) = ω1−q′ ∈ Aq′ [22, Proposition 7.2 (2)]. Finally, we note that
Ap ⊂ Aq for 1 ≤ p < q [22, Proposition 7.2 (1)]. In particular, we have that
A1 ⊂ Aq for all q > 1.

Let q ∈ (1,∞) and ω ∈ Aq. We define the space L̊
q
(ω,Ω) = Lq(ω,Ω) ∩

L̊
1
(Ω), where Lq(ω,Ω) denotes the Lebesgue space of q-integrable functions

with respect to the measure ω dx. Weighted Sobolev spaces are defined accord-
ingly. On weighted spaces the following inf-sup condition holds [19, Lemma
6.1]

∥p∥Lq(ω,Ω) ≲ sup
0̸=v∈W1,q′

0 (ω′,Ω)

´
Ω
p div v dx

∥∇v∥Lq′ (ω′,Ω)

∀p ∈ L̊
q
(ω,Ω). (3)

This estimate will become useful in the sequel. On the other hand, the following
weighted version of Korn’s inequality holds [25, Theorem 5.15]

∥∇v∥Lq(ω,Ω) ≲ ∥ε(v)∥Lq(ω,Ω), ∀v ∈ W1,q
0 (ω,Ω). (4)

Let z ∈ Ω be an interior point of Ω and α ∈ R. Define

dαz (x) = |x− z|α. (5)

The weight dαz ∈ A2 provided that α ∈ (−3, 3). Notice that there is a neigh-
borhood of ∂Ω where dαz has no degeneracies or singularities. This observation
motivates us to define a restricted class of Muckenhoupt weights [26, Definition
2.5].

Definition 1 (class Aq(Ω)) Let Ω ⊂ R3 be a Lipschitz domain and q ∈ [1,∞).
We say that ω ∈ Aq belongs to Aq(Ω) if there is an open set G ⊂ Ω and
ε, ωl > 0 such that:

{x ∈ Ω : dist(x, ∂Ω) < ε} ⊂ G, ω|Ḡ ∈ C(Ḡ), ωl ≤ ω(x) ∀x ∈ Ḡ.

In [27] it was shown that, provided the weight belongs to this class, the
Stokes problem is well-posed on weighted spaces and Lipschitz domains. One
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of the highlights of this work is that we, in a sense, remove this restriction on
the weight at the expense of assuming the convexity of the domain.

2.2 Maximal operators

For w ∈ L1
loc(R3), the Hardy–Littlewood maximal operator is defined by [22,

Chapter 7, Section 1]

Mw(x) = sup
Q∋x

 
Q

|w(y)|dy, (6)

where the supremum is taken over all cubes Q containing x. One of the main
properties of the Muckenhoupt classes Aq previously introduced is that, for
q ∈ (1,∞), the maximal operator M is continuous on Lq(ω,Ω) [22, Theorem
7.3].

We will also make use of the sharp maximal operator, which is defined, for
w ∈ L1

loc(Ω), by [22, Chapter 6, Section 2]

M♯
Ωw(x) = sup

Q∋x

 
Q

⃓⃓⃓⃓
w(y)−

 
Q

w(z) dz

⃓⃓⃓⃓
dy. (7)

The supremum is taken over all cubes Q ⊂ Ω containing x. It is important to
notice that, when bounding the sharp maximal operator it suffices to bound
the difference between w and any constant c [22, Proposition 6.5]. In fact,

ˆ
Q

⃓⃓⃓⃓
w(y)−

 
Q

w(z) dz

⃓⃓⃓⃓
dy ≤

ˆ
Q

|w(y)− c| dy +
ˆ
Q

⃓⃓⃓⃓
c−

 
Q

w(z) dz

⃓⃓⃓⃓
dy

≤ 2

ˆ
Q

|w(y)− c| dy.
(8)

2.3 The Stokes problem

In this section, we collect some facts on the Stokes problem that are well-known
and will be used repeatedly. Let us set the constitutive relation S(x, ε) = 2µε,
where µ > 0. Problem (1) thus becomes⎧⎪⎨⎪⎩

− div (2µε(u)) +∇p = F, in Ω,

div u = g, in Ω,

u = 0, on ∂Ω.

(9)

Problem (9) has a unique solution provided F ∈ W−1,2(Ω) and g ∈ L̊
2
(Ω),

with a corresponding estimate. We also have the following regularity result.
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Proposition 2 (regularity) Let Ω ⊂ R3 be a convex polyhedron. If F ∈ L2(Ω)
and g = 0, then the solution to (9) is such that

∥u∥W2,2(Ω) + ∥p∥W 1,2(Ω) ≲ ∥F∥L2(Ω).

Proof See [28, Theorem 2], [29], and [30]; see also [31, Corollary 1.8]. □

Problem (9) is also well-posed in Lq spaces.

Theorem 3 (well-posedness in Lq) Let q ∈ (1,∞) and Ω ⊂ R3 be a convex

polyhedron. If F ∈ W−1,q(Ω) and g ∈ L̊
q
(Ω), then problem (9) has a unique

solution (u, p) ∈ W1,q
0 (Ω)× L̊

q
(Ω) that satisfies the estimate

∥ε(u)∥Lq(Ω) + ∥p∥Lq(Ω) ≲ ∥F∥W−1,q(Ω) + ∥g∥Lq(Ω).

In particular, if F = − div f with f ∈ Lq(Ω), we have

∥ε(u)∥Lq(Ω) + ∥p∥Lq(Ω) ≲ ∥f∥Lq(Ω) + ∥g∥Lq(Ω). (10)

In both estimates, the hidden constants are independent of F, g, u and p.

Proof Evidently, we only need to comment on the case q ̸= 2. For a proof of
the result when q > 2, we refer the reader to the first item in Section 5.5 of [32].
Using the equivalent characterization of well-posedness via inf-sup conditions,
one can deduce well-posedness for q ∈ (1, 2). Finally, the inequality

∥ div f∥W−1,q(Ω) ≤ ∥f∥Lq(Ω),

immediately yields the second estimate. □

Remark 4 (equivalence) In the literature, the Stokes problem is usually pre-
sented with the term div (2µε(u)) replaced by µ∆u. Using the elementary
identity

div (2ε(v)) = ∆v +∇ div v,

it is not difficult to see that this only amounts to a redefinition of the pressure.
This redefinition, however, does not affect the conclusions of Proposition 2 or
Theorem 3.

2.4 The Green matrix

We introduce the Green matrix G : Ω̄× Ω → R4×4 for problem (9) as follows
[33, Section 11.5], [34]. Let ϕ ∈ C∞

0 (Ω) be such that

ˆ
Ω

ϕ dx = 1.
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We represent the entries of G as

G =

(︃
G1 G2 G3 G4

λ1 λ2 λ3 λ4

)︃
, Gj = (G1,j ,G2,j ,G3,j)

⊺, j ∈ {1, 2, 3, 4},

where the pairs (Gj , λj)
4
j=1 are distributional solutions of⎧⎪⎨⎪⎩

−2 divx (εx(Gj(x, ξ))) +∇xλj(x, ξ) = δ(x− ξ)ej , x, ξ ∈ Ω,

divx Gj(x, ξ) = 0, x, ξ ∈ Ω,

Gj(x, ξ) = 0, x ∈ ∂Ω, ξ ∈ Ω

for j = 1, 2, 3 and⎧⎪⎨⎪⎩
−2 divx (εx(G4(x, ξ))) +∇xλ4(x, ξ) = 0, x, ξ ∈ Ω,

− divx G4(x, ξ) = δ(x− ξ)− ϕ(x), x, ξ ∈ Ω,

G4(x, ξ) = 0, x ∈ ∂Ω, ξ ∈ Ω.

Here, {ej}3j=1 denotes the canonical basis of R3 and δ the Dirac distribution.
For uniqueness, we also require that

ˆ
Ω

λj(x, ξ)ϕ(x) dx = 0, ξ ∈ Ω, j = 1, . . . , 4.

The existence and uniqueness of the Green matrix G follows from [33, Theorem
11.4.1]. Note that Gi,j(x, ξ) = Gj,i(ξ, x) for x, ξ ∈ Ω and i, j ∈ {1, . . . , 4} [33,
Theorem 11.4.1]. The importance of this matrix lies in the fact that it provides
a representation formula for the solution of (9). In particular, we have that

uj(ξ) =
1

µ
⟨F,Gj(·, ξ)⟩ −

ˆ
Ω

λj(x, ξ)g(x) dx, j ∈ {1, 2, 3}, (11)

where ⟨·, ·⟩ denotes a suitable duality pairing. This representation shall become
useful in the sequel.

The following estimates for the Green matrix will be essential in what
follows.

Theorem 5 (Hölder estimates) Let Ω ⊂ R3 be a convex polyhedron. There
exists σ ∈ (0, 1), that depends only on the domain, such that for any
multiindices α, β ∈ N3

0, the Green matrix G satisfies⃓⃓⃓
∂αx ∂

β
ξ Gi,j(x, ξ)− ∂αy ∂

β
ξ Gi,j(y, ξ)

⃓⃓⃓
≲ |x− y|σ

(︁
|x− ξ|−a + |y − ξ|−a

)︁
,

for x, y, ξ ∈ Ω with x ̸= y and⃓⃓⃓
∂αx ∂

β
ξ Gi,j(x, ξ)− ∂αx ∂

β
ηGi,j(x, η)

⃓⃓⃓
≲ |ξ − η|σ

(︁
|x− ξ|−a + |x− η|−a

)︁
,
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for x, ξ, η ∈ Ω with ξ ̸= η, whenever |α| ≤ 1 − δi,4 and |β| ≤ 1 − δj,4. Here,
i, j ∈ {1, 2, 3, 4} and

a = 1 + σ + δi,4 + δj,4 + |α|+ |β|.

Proof References [33, 34] provide the claimed estimates for the Green’s matrix
for the case where the operator acting on the G–components of the matrix is
the Laplacian. It suffices to proceed with the change of variables described in
Remark 4 and observe that the λ–components of the Green’s matrix have the
same differentiability properties as derivatives of the G–components. □

2.5 Finite elements

Many of the results we wish to discuss involve error estimates for finite
element schemes. Since our domain Ω is a convex polyhedron, it can be
triangulated exactly. We thus assume that, for every h > 0, we have at
hand a quasiuniform, in the sense of [35, 36, 37], triangulation Th of the
domain Ω. We construct, over these triangulations, finite dimensional spaces

Xh ×Mh ⊂ W1,∞
0 (Ω) × (L∞(Ω) ∩ L̊

2
(Ω)) that satisfy, for every q ∈ (1,∞)

and ω ∈ Aq, the compatibility condition

∥ph∥Lq′ (ω′,Ω) ≲ sup
0̸=vh∈Xh

´
Ω
div vhph dx

∥∇vh∥Lq(ω,Ω)
∀ph ∈Mh. (12)

Moreover, we require that these spaces have the usual approximation proper-
ties over quasiuniform meshes of size h. In particular, we require the existence
of a stable operator Ih : L1(Ω) → Xh that preserves the space Xh and satisfies
the error estimates

∥v − Ihv∥L∞(Ω) ≲ h1/2∥v∥W2,2(Ω) ∀v ∈ W1,2
0 (Ω) ∩W2,2(Ω), (13)

and, for q ∈ (1,∞) and ω ∈ Aq,

∥∇(v − Ihv)∥Lq(ω,Ω) ≲ inf
vh∈Xh

∥∇(v − vh)∥Lq(ω,Ω) ∀v ∈ W1,q
0 (ω,Ω). (14)

We finally comment that, since the continuous inf-sup condition (3) holds,
(12) is equivalent to the existence of a so–called Fortin operator [37, Lemma
4.19], that is an operator Fh : W1,q

0 (ω,Ω) → Xh that preserves the divergence,
i.e., ˆ

Ω

rh div (v −Fhv) dx = 0 ∀v ∈ W1,q
0 (ω,Ω), ∀rh ∈Mh,

preserves the space Xh and is stable [38]. This immediately implies that Fh

possesses quasi-optimal approximation properties, i.e., for all v ∈ W1,q
0 (ω,Ω),

∥∇(v −Fhv)∥Lq(ω,Ω) ≲ inf
vh∈Xh

∥∇(v − vh)∥Lq(ω,Ω).
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Within the unweighted setting, examples of such pairs are well-known in
the literature [35, 37]. For extensions to the weighted case, we refer the reader
to [19, Section 6]. An operator satisfying (13) and (14) has been constructed
in [39]. We mention that, usually, Xh andMh consist of piecewise polynomials
subject to Th.

Given (u, p) ∈ W 1,1
0 (Ω) × L̊

1
(Ω), with div u = 0, we define its Stokes

projection as the pair (uh, ph) ∈ Xh ×Mh that satisfies⎧⎪⎪⎨⎪⎪⎩
2µ

ˆ
Ω

ε(u− uh) : ε(vh) dx−
ˆ
Ω

(p− ph) div vh dx = 0 ∀vh ∈ Xh,

ˆ
Ω

div (u− uh)rh dx = 0 ∀rh ∈Mh.

(15)

We recall that, under the given assumptions on the finite element spaces,
the Stokes projection is stable on weighted spaces.

Theorem 6 (weighted stability estimate) Let Ω ⊂ R3 be a convex polyhedron.
If ω ∈ A1 then, the finite element Stokes projection, defined in (15), is stable

in W1,2
0 (ω,Ω)× L̊

2
(ω,Ω), in the sense that

∥ε(uh)∥L2(ω,Ω) + ∥ph∥L2(ω,Ω) ≲ ∥ε(u)∥L2(ω,Ω) + ∥p∥L2(ω,Ω),

where the hidden constant is independent of h, u and p.

Proof The proof follows after small modifications to [19, Theorem 4.1]; see
Appendix A for details. □

3 An error estimate in L2

In this section, we discuss error estimates for discretizations of (9) in the case
g = 0 and F = µ ∈ Mb(Ω), the space of vector valued Radon measures. In
doing so, we shall extend the results of [40] to the Stokes problem, and slightly
improve the error estimate of [19, Corollary 5.4].

Let q ∈ (1, 3/2). Since q′ > 3, we have that W 1,q′

0 (Ω) ↪→ C(Ω̄). Therefore,

Mb(Ω) = (C0(Ω̄))
′ ↪→ (W 1,q′

0 (Ω))′ =W−1,q(Ω).

Invoking Theorem 3, we have that problem (9) is well-posed for such data. If,
in addition, we assume that q ≥ 6/5, then we also have thatW 1,q(Ω) ↪→ L2(Ω).
As a consequence, it makes sense to provide an error estimate in L2(Ω). Our
main result in this direction is the following.

Theorem 7 (error estimate) Let Ω ⊂ R3 be a convex polyhedron, q ∈
[6/5, 3/2), F = µ ∈ Mb(Ω), and g = 0. Let (u, p) ∈ W1,q

0 (Ω) × L̊
q
(Ω) be
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the solution to (9) and (uh, ph) ∈ Xh ×Mh its Stokes projection as defined in
(15). Then, we have

∥u− uh∥L2(Ω) ≲ h1/2∥µ∥Mb(Ω),

with a hidden constant independent of h, (u, p), (uh, ph), and µ.

Proof For w ∈ L2(Ω), we let (φ, ψ) ∈ W1,2
0 (Ω)× L̊

2
(Ω) be the solution of

2µ

ˆ
Ω

ε(φ) : ε(v) dx−
ˆ
Ω

ψ div v dx =

ˆ
Ω

w · v dx,

ˆ
Ω

r div φdx = 0 (16)

for all v ∈ W1,2
0 (Ω) and r ∈ L̊

2
(Ω). Since Ω is convex and w ∈ L2(Ω), owing to

Proposition 2 we have that (φ, ψ) ∈ W2,2(Ω) ×W 1,2(Ω). This, in particular,
implies that if (φh, ψh) ∈ Xh ×Mh denotes its Stokes projection, we have

∥φ−φh∥L∞(Ω) ≤ ∥φ− Ihφ∥L∞(Ω) + ∥Ihφ−φh∥L∞(Ω)

≲ h1/2∥φ∥W2,2(Ω) + h−3/2∥Ihφ−φh∥L2(Ω)

≲ h1/2∥φ∥W2,2(Ω) ≲ h1/2∥w∥L2(Ω),

(17)

where we used the interpolation error estimate (13), a basic inverse inequal-
ity, an interpolation estimate for Ih in L2(Ω), and the regularity results of
Proposition 2.

Consider now problem (16) withw = u−uh and set v = u−uh ∈ W1,2
0 (Ω).

This immediately yields

∥u− uh∥2L2(Ω) = 2µ

ˆ
Ω

ε(φ) : ε(u− uh) dx−
ˆ
Ω

ψ div (u− uh) dx. (18)

Observe that, since (φh, ψh) ∈ Xh × Mh corresponds to the Stokes
projection of (φ, ψ) and the pair (uh, ph) belongs to Xh ×Mh, we have

2µ

ˆ
Ω

ε(φ−φh) : ε(uh) dx−
ˆ
Ω

(ψ − ψh) div uh dx = 0.

Similarly,

2µ

ˆ
Ω

ε(u− uh) : ε(φh) dx−
ˆ
Ω

(p− ph) div φh dx = 0.

On the other hand, since φ ∈ W2,2(Ω) and φh ∈ W1,∞(Ω), then we have
that φ − φh ∈ W1,s(Ω) for every s ≤ 6. We can thus consider φ − φh as a
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test function in the weak version of (9) with F = µ to arrive at

2µ

ˆ
Ω

ε(u) : ε(φ−φh) dx−
ˆ
Ω

p div (φ−φh) dx =

ˆ
Ω

(φ−φh) · dµ(x).

We can then rewrite the right hand side of (18) and invoke the previous
three relations to conclude, on the basis of (17), that

∥u− uh∥2L2(Ω) =

ˆ
Ω

(φ−φh) · dµ(x) ≤ ∥φ−φh∥L∞(Ω)∥µ∥Mb(Ω)

≲ h1/2∥u− uh∥L2(Ω)∥µ∥Mb(Ω),

which is the announced result. This concludes the proof. □

4 Well-posedness of the Stokes problem on
weighted spaces

Let us now consider the Stokes problem (9) with F = − div f , f ∈ Lq(ω,Ω),
and ω ∈ Aq. We begin by recalling that, for general Lipschitz domains, there
is ϵ = ϵ(Ω) > 0 such that, if |q − 2| < ϵ, and ω belongs to the restricted
class Aq(Ω), then this problem is well-posed; see [27, Theorem 17] and [19,
Proposition 2.4 and Remark 2.5]. On the other hand, if Ω is C1, then [2,
Lemma 3.2] shows well-posedness for all q ∈ (1,∞) and all ω ∈ Aq. Here
we will show a result that, in a sense, is intermediate between these two. We
remove the restriction on the integrability index q and the boundary behavior
of the weight, thus showing well-posedness for all q ∈ (1,∞) and all ω ∈ Aq,
but at the expense of requiring that Ω is a convex polyhedron.

The main tool that we shall use is the representation of the velocity given
in (11) and the Hölder estimates of the Green matrix described in Theorem 5.
We will follow the ideas of [41], and extend the results therein to the Stokes
problem.

We begin by noting that, by density, it suffices to assume that f ∈ C∞
0 (Ω),

so that from (11) we can write

uj(x) =
1

µ

ˆ
Ω

∇yGj(y, x) : f(y) dy −
ˆ
Ω

λj(y, x)g(y) dy. (19)

We begin with a simplified version of the Bogovskĭı decomposition of a function
with integral zero [42]; see also [43]. Since, in our setting, the proof of this
result is so simple, we include it for completeness.

Lemma 8 (decomposition) Let q ∈ (1,∞), ω ∈ Aq, g ∈ L̊
q
(ω,Ω), and Q ⊂ Ω

be a cube with sides parallel to the coordinate axes and such that 3
2Q ⊂ Ω.
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Then, there are gi ∈ L̊
q
(ω,Ω), with i ∈ {1, 2}, such that

g = g1 + g2, supp g1 ⊂ 3

2
Q, supp g2 ⊂ Qc,

and
∥g1∥Lq(ω, 32Q) ≲ ∥g∥Lq(ω, 32Q), ∥g2∥Lq(ω,Ω) ≲ ∥g∥Lq(ω,Ω),

where the hidden constants are independent of g and Q.

Proof To simplify notation let us set D = 3
2Q and A = D \Q. Notice also that

|D| =
(︃
3

2

)︃3

|Q|, |A| = |D| − |Q| =

[︄(︃
3

2

)︃3

− 1

]︄
|Q|,

so that |D| ≈ |A| ≈ |Q|.
Let now ϕ ∈ C∞

0 (R3) be such that 0 ≤ ϕ ≤ 1, ϕ ≡ 1 on Q and ϕ ≡ 0 on
Dc. Set

g = ϕg + (1− ϕ)g =: g̃1 + g̃2.

Note that the functions g̃i, for i = 1, 2, have the requisite support property. In
addition,

∥g̃1∥Lq(ω,D) ≤ ∥ϕ∥L∞(R3)∥g∥Lq(ω,D), ∥g̃2∥Lq(ω,Ω) ≤ ∥1−ϕ∥L∞(R3)∥g∥Lq(ω,Ω).

The functions g̃1, g̃2, however, do not integrate to zero. Thus, we correct them
as follows. Define

g1 = g̃1 −
χA

|A|

ˆ
D

g̃1 dx.

Then, we have that supp g1 ⊆ supp g̃1 ∪A ⊂ D and, moreover,

ˆ
Ω

g1 dx =

ˆ
Ω

g̃1 dx−
ˆ
D

g̃1 dx = 0.

Using that ⃓⃓⃓⃓ˆ
D

g̃1 dx

⃓⃓⃓⃓
≤
(︃ˆ

D

ω− q′
q dx

)︃ 1
q′

∥g̃1∥Lq(ω,D)

≤
(︃ˆ

D

ω− q′
q dx

)︃ 1
q′

∥g∥Lq(ω,D),

(20)

we are able to obtain the estimates

∥g1∥Lq(ω,D) ≤ ∥g̃1∥Lq(ω,D) +
1

|A|

(︃ˆ
A

ω dx

)︃1/q ⃓⃓⃓⃓ˆ
D

g̃1 dx

⃓⃓⃓⃓

≤

⎡⎣1 + 1

|A|

[︄(︃ˆ
A

ω dx

)︃(︃ˆ
D

ω− q′
q dx

)︃q−1
]︄1/q⎤⎦ ∥g∥Lq(ω,D).
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Now, since

1

|A|

[︄(︃ˆ
A

ω dx

)︃(︃ˆ
D

ω− q′
q dx

)︃q−1
]︄ 1

q

≤ |D|
|A|

[︄(︃ 
D

ω dx

)︃(︃ 
D

ω− q′
q dx

)︃q−1
]︄ 1

q

≲ [ω]
1
q

Aq
,

we obtain the local estimate ∥g1∥Lq(ω,D) ≲ ∥g∥Lq(ω,D), with a constant that
only depends on [ω]Aq

.
Note now that the function

g2 = g̃2 +
χA

|A|

ˆ
D

g̃1 dx

satisfies supp g2 ⊆ supp g̃2 ∪ A ⊂ Qc, g1 + g2 = g̃1 + g̃2 = g, and, since

g ∈ L̊
q
(ω,Ω), ˆ

Ω

g2 dx =

ˆ
Ω

(g − g1) dx = 0.

Finally, using (20), we have

∥g2∥Lq(ω,Ω) ≤ ∥g̃2∥Lq(ω,Ω) +

⃓⃓⃓⃓ˆ
D

g̃1 dx

⃓⃓⃓⃓
1

|A|

(︃ˆ
A

ω dx

)︃1/q

≲ ∥g∥Lq(ω,Ω),

where the hidden constant only depends on [ω]Aq .
This concludes the proof. □

With this decomposition at hand, we can obtain an a priori estimate on the
oscillation of the gradient of u, much as in [41, Lemma 2.4] and [22, Lemma
7.9].

Lemma 9 (oscillation estimate) Let Ω ⊂ R3 be a convex polyhedron, q ∈
(1,∞), ω ∈ Aq, f ∈ Lq(ω,Ω), and g ∈ L̊

q
(ω,Ω). Let u be the velocity compo-

nent of the solution of (9) with F = − div f . Then, for any s > 1 and z ∈ Ω,
we have that

M♯
Ω [|∇u|] (z) ≲ M [|f |s] (z)1/s +M [|g|s] (z)1/s, (21)

where the hidden constant is independent of f , g, and z.

Proof Let Q be a cube with sides parallel to the coordinate axes and center in
z such that 3

2Q
⋆ ⊂ Ω, where Q⋆ = 2Q. Extend f and g to zero outside Ω and

decompose f = f1 + f2, with f1 = fχQ⋆ , and g = g1 + g2 with gi, i = 1, 2, as in
Lemma 8 but with Q replaced by Q⋆. Let now ui be the velocity component
of the solution to (9) with data (− div fi, gi). To obtain (21), it thus suffices
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to bound the oscillation of ∂xk
uj for all k, j ∈ {1, 2, 3}. Fix j, k ∈ {1, 2, 3} and

set v = uj . With this notation, for i ∈ {1, 2}, we have ∂xk
vi = ∂xk

ui
j .

To estimateM♯
Ω[∂xk

v] we follow (8) and bound the average of the difference
between ∂xk

v and any constant. Thus, we have

 
Q

|∂xk
v(x)− ∂xk

v2(z)|dx ≤
 
Q

|∂xk
v1(x)|dx+

 
Q

|∂xk
v2(x)− ∂xk

v2(z)|dx

=: I + II.

We bound each of the terms separately.
First, by Hölder’s inequality, for any s > 1, we have

I ≤
(︃ 

Q

⃓⃓
∂xk

v1(x)
⃓⃓s

dx

)︃ 1
s

≤ 1

|Q|1/s
∥∂xk

v1∥Ls(Ω) ≲
1

|Q|1/s
∥ε(u1)∥Ls(Ω),

where, in the last step, we used Korn’s inequality (4) with q = s and ω ≡ 1.
We now apply the unweighted estimate given in Theorem 3 to obtain

I ≲
1

|Q|1/s
(︂
∥f1∥Ls(Q⋆) + ∥g1∥Ls( 3

2Q
⋆)

)︂
.

To obtain the previous estimate, we have also used that supp g1 ⊂ 3
2Q

⋆ and
that f1 vanishes outside Q⋆. Now, in view of the fact that |Q| ≈ |Q⋆| ≈ |32Q

⋆|,
f1 = fχQ⋆ , and that the norm estimate on g1 is local, we finally arrive at

I ≲

(︃ 
Q⋆

|f(x)|s dx
)︃ 1

s

+

(︄ 
3
2Q

⋆

|g(x)|s dx

)︄ 1
s

≤ M [|f |s] (z) 1
s +M [|g|s] (z) 1

s .

To bound II we observe that, since x, z /∈ supp f2 ∪ supp g2, it is legitimate
to differentiate the pointwise representation of v2 given in (19). Consequently,
we get

II ≤ 1

µ

 
Q

ˆ
Ω∩(Q⋆)c

|∂xk
∇yGj(y, x)− ∂xk

∇yGj(y, z)| |f2(y)|dy dx

+

 
Q

ˆ
Ω∩(Q⋆)c

|∂xk
λj(y, x)− ∂xk

λj(y, z)| |g2(y)|dy dx =: II1 + II2.

Now, since f2 = f in Ω ∩ (Q⋆)c, we can use Theorem 5 with |α| = |β| = 1 and
i, j ∈ {1, 2, 3} to conclude that

II1 ≲
 
Q

ˆ
(Q⋆)c

|x− z|σ
(︁
|x− y|−3−σ + |z − y|−3−σ

)︁
|f(y)|dy dx

≲
ℓ(Q)σ

|Q|

ˆ
Q

ˆ
(Q⋆)c

|f(y)|
|z − y|3+σ

dy dx ≲ M [|f |] (z),
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where, in the last two steps, we argued as in the proof of [41, Lemma 2.4].
Similarly, we can use Theorem 5 with |α| = 0, |β| = 1, i = 4, and j ∈

{1, 2, 3} to assert that

II2 ≲
 
Q

ˆ
(Q⋆)c

|x−z|σ
(︁
|x− y|−3−σ + |z − y|−3−σ

)︁
|g2(y)|dy dx ≲ M [|g2|] (z),

where the argument, once again, follows the proof of [41, Lemma 2.4]. Let R
be a cube with center in z and let x ∈ R. We follow the notation of Lemma 8
and observe that we have the pointwise estimate

|g2(x)| ≤ |g(x)|+ χA⋆(x)

|A⋆|

ˆ
D⋆

|g(ξ)|dξ ≲ |g(x)|+
(︃ 

D⋆

|g(ξ)|dξ
)︃
χA⋆(x),

where we used that |A⋆| ≈ |D⋆|. The sublinearity of the maximal function
then implies that

II2 ≲ M [|g|] (z) +
(︃ 

D⋆

|g(ξ)|dξ
)︃
M [χA⋆ ] (z) ≤ M [|g|] (z) (1 +M [χA⋆ ] (z))

≲ M [|g|] (z),

where in the last step we used that the maximal function is nonexpansive in
L∞(R3) i.e., ∥Mf∥L∞(R3) ≤ ∥f∥L∞(R3) for every f ∈ L1

loc(R3) [44, Section
2.1, page 86].

Conclude by noticing that for every s > 1, by Hölder’s inequality, we have
that M[|w|](z) ≤ M[|w|s](z)1/s. □

The weighted a priori estimate of the velocity component of the solution
to (9) is the content of the following result.

Theorem 10 (velocity estimate) Let Ω ⊂ R3 be a convex polyhedron, q ∈
(1,∞), ω ∈ Aq, f ∈ Lq(ω,Ω), and g ∈ L̊

q
(ω,Ω). Let u be the velocity

component of the solution of (9) with F = − div f . Then, we have that

∥∇u∥Lq(ω,Ω) ≲ ∥f∥Lq(ω,Ω) + ∥g∥Lq(ω,Ω),

where the hidden constant is independent of f and g and depends on ω only
through [ω]Aq

.

Proof We argue as in [41, Theorem 2.5]. Let (∇u)Ω =
ffl
Ω
∇u dx. Then,

∥∇u∥Lq(ω,Ω) ≤ ∥∇u− (∇u)Ω∥Lq(ω,Ω) + ∥(∇u)Ω∥Lq(ω,Ω) =: I + II.
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To bound the term I, we first utilize the estimate in [25, Theorem 5.23]
and then the bound from Lemma 9 to obtain

I ≲
⃦⃦⃦
M♯

Ω [|∇u|]
⃦⃦⃦
Lq(ω,Ω)

≲ ∥M[|f |s]1/s∥Lq(ω,Ω) + ∥M[|g|s]1/s∥Lq(ω,Ω).

Now, using the so-called open ended property of Muckenhoupt weights [24,
Corollary 1.2.17], we have that there is s > 1 such that ω ∈ Aq implies ω ∈
Aq/s. Thus, using the boundedness of M over Muckenhoupt weighted spaces
we obtain

∥M[|g|s]1/s∥Lq(ω,Ω) = ∥M[|g|s]∥1/s
Lq/s(ω,Ω)

≲ ∥|g|s∥1/s
Lq/s(ω,Ω)

= ∥g∥Lq(ω,Ω);

a similar estimate holds for ∥M[|f |s]1/s∥Lq(ω,Ω). In conclusion

I ≲ ∥f∥Lq(ω,Ω) + ∥g∥Lq(ω,Ω).

To bound II we use the unweighted estimate of Theorem 3 to obtain

|(∇u)Ω| ≤
(︃ 

Ω

|∇u|s dx
)︃1/s

≲

(︃ 
Ω

|f |s dx
)︃1/s

+

(︃ 
Ω

|g|s dx
)︃1/s

.

Now, by Hölder’s inequality,(︃ 
Ω

|g|s dx
)︃1/s

≤
(︃ 

Ω

|g|qω dx

)︃1/q (︃ 
Ω

ωs/(s−q) dx

)︃1/s−1/q

,

with a similar estimate for
(︁ffl

Ω
|f |s dx

)︁1/s
. We can thus obtain the estimate

ˆ
Ω

ω|(∇u)Ω|q dx ≲

(︃ 
Ω

ωs/(s−q) dx

)︃q/s−1(︃ 
Ω

ω dx

)︃
·
(︂
∥f∥qLq(ω,Ω) + ∥g∥qLq(ω,Ω)

)︂
≲ [ω]Aq/s

(︂
∥f∥qLq(ω,Ω) + ∥g∥qLq(ω,Ω)

)︂
.

The theorem is thus proved. □

We now obtain an a priori estimate on the pressure.

Corollary 11 (pressure estimate) In the setting of Theorem 10, if p is the
pressure component of the solution to (9), then we have

∥p∥Lq(ω,Ω) ≲ ∥f∥Lq(ω,Ω) + ∥g∥Lq(ω,Ω),

where the hidden constant is independent of f and g and depends on ω only
through [ω]Aq .
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Proof The proof is a simple application of the the inf-sup condition (3). Indeed,
using that (u, p) solves (9) and the conclusion of Theorem 10 we obtain

∥p∥Lq(ω,Ω) ≲ sup
0̸=v∈W1,q′ (ω′,Ω)

1

∥∇v∥Lq′ (ω′,Ω)

ˆ
Ω

(f : ∇v − 2µε(u) : ε(v)) dx

≲ ∥f∥Lq(ω,Ω) + ∥g∥Lq(ω,Ω),

as we intended to show. □

We conclude with a corollary regarding the stability of the Stokes projection
on weighted spaces. In doing so, we will remove some of the assumptions
used in [19, Theorem 4.1]. Namely, we no longer have a lower bound on the
integrability index and we do not require good behavior of the weight near the
boundary.

Corollary 12 (stability) Let Ω ⊂ R3 be a convex polyhedron. Assume that
either:
• q ∈ [2,∞) and ω ∈ Aq/2,
• q ∈ (1, 2] and ω′ ∈ Aq′/2.

Then, the Stokes projection defined in (15) is stable on W1,q
0 (ω,Ω)× L̊

q
(ω,Ω).

Proof The assertion for q = 2 is Theorem 6. Now, according to [22, page 142],
the following variant of the extrapolation theorem [22, Theorem 7.8] can be
derived: given s ≥ 1, if T is a bounded operator on Lr(ρ,Ω) for all ρ ∈ Ar/s,
then for q > s it is bounded on Lq(ϖ,Ω) for all ϖ ∈ Aq/s. Use this result with
r = s = 2 to conclude the stability for q > 2.

For the second case, repeat the duality argument given in the proof of
[19, Theorem 4.1]. But, since we are in a convex polyhedron, we use the well-
posedness of Theorem 10, so that there is no restriction on q′ > 2, nor it is
required that the weight behaves nicely close to the boundary. Conclude using
the just obtained stability of the Stokes projection for q′ > 2 and ω′ ∈ Aq′/2.

□

5 A class of non-Newtonian fluids under
singular forcing

Recently, a class of non-Newtonian fluids was studied in reference [2]. Such a
class fits (1) with the following data and assumptions.

5.1 Assumptions

Let q ∈ (1,∞) and ω ∈ Aq. Assume that g ∈ L̊
q
(ω,Ω), f ∈ Lq(ω,Ω), and that

the nonlinear stress tensor S satisfies the following assumptions:
• Measurability and continuity : The mapping S : Ω × R3×3 → R3×3 is
Carathéodory.
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• Coercivity and growth: For all Q ∈ R3×3 and every x ∈ Ω we have

|Qs|2 − 1 ≲ S(x,Qs) : Q, |S(x,Qs)| ≲ |Q|+ 1,

where Qs = 1
2 (Q+Q⊺).

• Linearity at infinity : There is a positive number µ such that for allQ ∈ R3×3

and uniformly in x we have

lim
|Qs|→∞

|S(x,Qs)− 2µQs|
|Qs|

= 0.

• Strict monotonicity and strong asymptotic Uhlenbeck condition: For all
Q,P ∈ R3×3, with Qs ̸= Ps, and uniformly in x

(S(x,Qs)− S(x,Ps)) : (Q−P) > 0

and

lim
|Qs|→∞

⃓⃓⃓⃓
∂S(x,Qs)

∂Qs
− 2µI

⃓⃓⃓⃓
= 0.

An instance of a nonlinear stress tensor S satisfying all the previous
assumptions can be found in [2].

5.2 Well-posedness

Under the assumption that Ω has a C1 boundary, the authors of [2] show
existence, uniqueness, and a stability estimate for the solution to (1) with the
hypotheses given above; see [2, Theorem 1.5]. Let us, with the help of the
results of Section 4, extend this theory to convex polyhedra.

Theorem 13 (well-posedness) Let Ω ⊂ R3 be a convex polyhedron. Assume

that q ∈ (1,∞) and ω ∈ Aq. If f ∈ Lq(ω,Ω), g ∈ L̊
q
(ω,Ω), and the stress

tensor satisfies all the aforementioned conditions, then there is a unique pair
(u, p) ∈ W1,q

0 (ω,Ω)× L̊
q
(ω,Ω) that solves (1) and satisfies the estimate

∥∇u∥Lq(ω,Ω) + ∥p∥Lq(ω,Ω) ≲ 1 + ∥f∥Lq(ω,Ω) + ∥g∥Lq(ω,Ω),

where the hidden constant only depends on q, [ω]Aq , and the constants involved
in the properties that S satisfies.

Proof The proof follows after minor modifications of the proof of [2, Theorem
1.5]. We will only indicate the main steps that need to be changed.

First, we consider (9) with q ∈ (1,∞), ω ∈ Aq, (f , g) ∈ Lq(ω,Ω)×L̊
q
(ω,Ω),

F = − div f , and µ as in the assumptions for S. Thus, owing to the results of
Theorem 10 and Corollary 11, this problem is well-posed provided Ω ⊂ R3 is
a convex polyhedron.
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Next, as in [2, Section 3.2], we find, for q = 2, suitable a priori estimates
for solutions of (1). The first idea behind the argument is to assume that
∇u ∈ Ls(Ω) and p ∈ Ls(Ω), with s ∈ (1, 2], and approximate the weight

ω ∈ A2 by ωj in such a way that ∇u ∈ L2(ωj ,Ω) and p ∈ L̊
2
(ωj ,Ω). This is

accomplished by defining

ω̃1 = M[|∇u|]s−2, ω̃2 = M[|p|]s−2, ω̃3 = min{ω̃1, ω̃2}. (22)

Since s ∈ (1, 2], we have that ω̃1, ω̃2 ∈ A2 [2, Lemma 2.4], which implies that
ω̃3 ∈ A2 [2, estimate (2.4)]. Since, by assumption, ∇u ∈ Ls(Ω) and p ∈ Ls(Ω),
for s ∈ (1, 2], [2, estimate (2.6)] yields ∇u ∈ L2(ω̃1,Ω) and p ∈ L2(ω̃2,Ω). Let
us define, for j ∈ N, the weight ωj := min{jω̃3, ω}. Notice that ωj ∈ A2 and
that

∇u ∈ L2(ωj ,Ω), p ∈ L2(ωj ,Ω).

We now rewrite (1) as: Find (u, p) ∈ W1,2
0 (ωj ,Ω)× L̊

2
(ωj ,Ω) such that

ˆ
Ω

(2µε(u) : ε(v)− p div v) dx =

ˆ
Ω

(f + 2µε(u)− S(x, ε(u))) : ∇v dx

ˆ
Ω

div ur dx =

ˆ
Ω

gr dx,

for every (v, r) ∈ W1,2
0 (ω−1

j ,Ω) × L̊
2
(ω−1

j ,Ω). The previous arguments, in
conjunction with the estimates of Theorem 10 and Corollary 11, then imply
that

∥∇u∥2L2(ωj ,Ω) + ∥p∥2L2(ωj ,Ω) ≲ 1 + ∥f∥2L2(ωj ,Ω) + ∥g∥2L2(ωj ,Ω)

+

ˆ
{|ε(u)|≥m}

ωj
|S(x, ε(u))− 2µε(u)|2

|ε(u)|2
|ε(u)|2 dx, (23)

where the hidden constant depends on ω, m, and the properties of S. By
properly choosingm and using that S has linear growth at infinity, we conclude
that

∥∇u∥2L2(ωj ,Ω) + ∥p∥2L2(ωj ,Ω) ≲ 1 + ∥f∥2L2(ωj ,Ω) + ∥g∥2L2(ωj ,Ω),

which is uniform in j. Passing to the limit and cleaning up the proof, the
desired a priori estimate is obtained for the case q = 2; see [2, Section 3.2] for
details. For q ̸= 2 it suffices to invoke the extrapolation theorem provided in
[22, Theorem 7.8].

The rest of the proof, i.e., existence and uniqueness follows verbatim the
results of [2]. It is only worth noticing that here, once again it is necessary to
use, via Theorem 3, the fact that we are in a convex polyhedron. □

Remark 14 (novelty) Since the proof of Theorem 13 follows [2] one must won-
der what is the novelty here. The main difference lies in the fact that estimate
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(23), over convex polyhedra, can only be obtained by invoking Theorem 10 and
Corollary 11. Indeed, the results of [2] require a localization argument for the
linear problem that would not work in general over polyhedra. On the other
hand, the well-posedness results of [27] require that the weights ωj ∈ A2(Ω)
which seems impossible to guarantee, since they depend on the solution itself;
see the involved definitions in (22).

5.3 Discretization

Let us investigate the convergence properties of finite element approximations.
We will operate under the setting described in Corollary 12 and seek for a pair
(uh, ph) ∈ Xh ×Mh that satisfies⎧⎪⎪⎨⎪⎪⎩

ˆ
Ω

S(x, ε(uh)) : ∇vh dx−
ˆ
Ω

ph div vh dx =

ˆ
Ω

f : ∇vh dx,

ˆ
Ω

div uhrh dx = 0,

(24)

for all (vh, rh) ∈ Xh × Mh, where S is assumed to satisfy the condi-
tions described in section 5.1. Our main result regarding the convergence of
discretizations is the following.

Theorem 15 (convergence) Assume that either q ∈ [2,∞) and ω ∈ Aq/2 or
q ∈ (1, 2] and ω′ ∈ Aq′/2. Let f ∈ Lq(ω,Ω). For every h > 0, problem (24)
admits a unique solution which satisfies the estimate

∥∇uh∥Lq(ω,Ω) + ∥ph∥Lq(ω,Ω) ≲ 1 + ∥f∥Lq(ω,Ω),

where the hidden constant does not depend on h. Moreover, as h → 0, there
is a subsequence of {uh}h>0 that converges weakly, in W1,q

0 (ω,Ω) to u, the
solution of problem (1) with g = 0.

Proof Existence and uniqueness of solutions follows from standard monotone
operator theory [45, Chapter 2]. Let us now provide the claimed a priori bound
with an argument similar to that of Theorem 13. We see that the pair (uh, ph)
is such that

ˆ
Ω

(2µε(uh) : ε(vh)− ph div vh) dx

=

ˆ
Ω

(f + 2µε(uh)− S(x, ε(uh))) : ∇vh dx,

ˆ
Ω

div uhrh dx = 0,

for every (vh, rh) ∈ Xh × Mh. The stability of the Stokes projection on
weighted spaces, proved in Corollary 12, implies that the pair (uh, ph) satisfies
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an estimate similar to (23). Namely,

∥∇uh∥Lq(ω,Ω) + ∥ph∥Lq(ω,Ω) ≲ 1 + ∥f∥Lq(ω,Ω)

+

(︄ˆ
{|ε(uh)|≥m}

ω
|S(x, ε(uh))− 2µε(uh)|q

|ε(uh)|q
|ε(uh)|q dx

)︄ 1
q

. (25)

Once again, by properly choosing m and utilizing the growth properties of S,
we conclude the desired estimate; the hidden constant being independent of h.

The a priori estimate allows us to extract a (not relabeled) subsequence
{uh}h>0 such that uh ⇀ ũ inW1,q

0 (ω,Ω). It remains then to show that ũ solves
(1). To see this, notice, first of all, that ũ must be solenoidal. Let v ∈ C∞

0 (Ω)
be solenoidal. Set vh = Fhv, where Fh is the Fortin operator, as a test function
on (24) to obtain

ˆ
Ω

S(x, ε(uh)) : ∇Fhv dx =

ˆ
Ω

f : ∇Fhv dx.

Notice that Fhv → v in W1,q′

0 (ω′,Ω). On the other hand, the properties of S
imply that there is D ∈ Lq(ω,Ω) for which S(x, ε(uh)) ⇀ D, so that, passing
to the limit h→ 0, the previous identity implies that

ˆ
Ω

D : ∇v dx =

ˆ
Ω

f : ∇v dx ∀v ∈ W1,q′

0 (ω′,Ω), div v = 0.

We would like to conclude with a variant of Minty’s trick [45, Lemma 2.13].
However, as described in [2, section 5.3], this is not possible as ũ is not an
admissible test function. However, the same reference has shown how to deal
with this. The important point to note here is that the necessary technical
steps developed there, [2, Theorems 1.9 and 1.10], do not assume smoothness
on the domain Ω. In conclusion, D = S(x, ε(ũ)) and, by uniqueness, ũ = u.

□

6 The Smagorinsky model of turbulence

In the subgrid modeling of turbulence, one of the first proposed models was
the so-called Smagorinsky model [46], which is nothing but a special case of
the Ladyženskaja model of non-Newtonian fluid flow. Some history on this
model is described in [5, 47]. One of the main issues regarding this model is
that, as it has been observed in [21, 48], it tends to overdissipate the flow
near the boundaries. Several refinements of this model have been proposed,
[49, 50, 51, 52], and here we wish to provide some analysis to one of them.

In [20, 53], an analysis of a simplified version of the so-called Smagorinsky
model of turbulence was studied. This problem takes the form of (1) but the
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stress tensor, in this case, is

S(x,Qs) = 2 (µ+ µNL dist(x, ∂Ω)α|Qs|)Qs, α ∈ [0, 2), (26)

where µ > 0 corresponds to a laminar viscosity and µNL denotes a positive
constant. The idea here is that the additional, nonlinear viscosity, vanishes
near the walls. The authors of [20, 53] show the existence and uniqueness of a
velocity field u and the existence of a pressure field p in

W1,2
0 (Ω) ∩W1,3(dist(·, ∂Ω)α,Ω), L̊

2
(Ω) + L̊

3/2
(dist(·, ∂Ω)−α/2,Ω),

respectively; the pressure being, in general, not unique [53, Theorem 1].
Uniqueness can be guaranteed under further restrictions on α: there exists
α0 ≤ 1/2 such that for every α < α0 problem (1) admits a unique solution

(u, p) ∈ W1,3(dist(·, ∂Ω)α,Ω)× L̊
3/2

(dist(·, ∂Ω)−α/2,Ω) [53, Theorem 2]. It is
important to note that, even for α = 0, (26) does not fit in the framework
developed in Section 5. In particular, such a stress tensor is not linear at infin-
ity. This may serve as an explanation for the difference in the functional setting
that needs to be adopted to analyze (1) with the stress tensor S in the form
(26).

6.1 Analysis

Let us, in the framework that we have developed so far, study a generalization
of this problem and, in addition, provide an error estimate for finite element
approximations. The specialization to the Smagorinsky model (26) will be
immediate. We will be interested in the following problem: given q ∈ (1,∞),
a weight ω ∈ Aq, a forcing f , and g = 0, find (u, p) that solves (1), where the
stress tensor is given by

S(x,Qs) = 2
(︁
µ+ ω(x)|Qs|q−2

)︁
Qs. (27)

We now proceed with an analysis to this problem. To accomplish this task,
we first introduce some notation. For q ∈ (1,∞) and ω ∈ Aq, we set

Xq(ω) = W1,2
0 (Ω) ∩W1,q

0 (ω,Ω), Mq(ω) = L̊
2
(Ω) + L̊

q′

(ω′,Ω).

Slight modifications of the arguments in [20, 53] will give existence of solutions.

Theorem 16 (existence) Let Ω ⊂ R3 be a convex polyhedron, q ∈ (1,∞),
ω ∈ Aq, and f ∈ L2(Ω) + Lq′(ω′,Ω). Then, there is (u, p) ∈ Xq(ω) ×Mq(ω)
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such that⎧⎪⎪⎨⎪⎪⎩
ˆ
Ω

S(x, ε(u)) : ε(v) dx−
ˆ
Ω

p div v dx =

ˆ
Ω

f : ∇v dx ∀v ∈ Xq(ω),

ˆ
Ω

div ur dx = 0 ∀r ∈Mq(ω),

where S is given by (27). The velocity component of this pair is unique.

Proof We essentially follow [53, Sections 2.2 and 2.3]. Define the functional

J (v) =

ˆ
Ω

A(x, ε(v)) dx−
ˆ
Ω

f : ∇v dx,

with

A(x,Qs) = µ|Qs|2 + 2

q
ω(x)|Qs|q.

We wish to minimize J over Xq,div(ω) := {w ∈ Xq(ω) : div w = 0}. Observe
that J is Gateaux differentiable and

J ′(u)v =

ˆ
Ω

S(x, ε(u)) : ε(v) dx−
ˆ
Ω

f : ∇v dx ∀v ∈ Xq,div(ω).

In addition, trivial extensions of [53, Lemma 7] and [53, Lemma 6], respectively,
show that J is strictly convex and continuous on Xq,div(ω). Moreover, owing
to Korn’s inequality (4) and its unweighted version, i.e., (4) with q = 2 and
ω ≡ 1, we have

J (v)

∥v∥Xq,div(ω)
=
µ∥ε(v)∥2L2(Ω) +

2
q∥ε(v)∥

q
Lq(ω,Ω)

∥∇v∥L2(Ω) + ∥∇v∥Lq(ω,Ω)
≳

∥∇v∥2L2(Ω) + ∥∇v∥qLq(ω,Ω)

∥∇v∥L2(Ω) + ∥∇v∥Lq(ω,Ω)
.

We can thus obtain that

∥v∥Xq,div(ω) → ∞ =⇒ J (v)

∥v∥Xq,div(ω)
→ ∞.

In other words, J is coercive on Xq,div(ω). Consequently, direct methods pro-
vide the existence and uniqueness of a minimizer u ∈ Xq,div(ω) which, in
addition, satisfies

ˆ
Ω

S(x, ε(u)) : ε(v) dx =

ˆ
Ω

f : ∇v dx ∀v ∈ Xq,div(ω).

To find the pressure we apply the inf-sup condition (3) twice. First with

q = 2 and ω ≡ 1, to find that there is p1 ∈ L̊
2
(Ω) and another time with
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q ∈ (1,∞) and ω ∈ Aq, to find p2 ∈ L̊
q′

(ω′,Ω), so that p = p1 + p2 ∈ Mq(ω)
is such that

ˆ
Ω

p div v dx =

ˆ
Ω

f : ∇v dx−
ˆ
Ω

S(x, ε(u)) : ε(v) dx ∀v ∈ Xq(ω).

As announced, nothing can be said about the uniqueness of p; see the discussion
in [53, Remark 2]. This concludes the proof. □

6.2 Discretization

We now proceed with a finite element approximation of problem (1), where the
stress tensor S is given by (27). We will seek for (uh, ph) ∈ Xh×Mh such that⎧⎪⎪⎨⎪⎪⎩

ˆ
Ω

S(x, ε(uh)) : ε(vh) dx−
ˆ
Ω

ph div vh dx =

ˆ
Ω

f : ∇vh dx,

ˆ
Ω

div uhrh dx = 0,

(28)

for all (vh, rh) ∈ Xh ×Mh. Existence of a solution follows along the lines of
Theorem 16. Let us now provide an a priori error estimate.

Theorem 17 (error estimate) Let q ∈ [2,∞) and let (u, p) ∈ Xq(ω)×Mq(ω)
be a solution to the generalized Smagorinsky problem described by (1) with
the stress tensor (27). Let (uh, ph) ∈ Xh ×Mh denote a solution to (28). If
ω ∈ Aq/2, then we have the following a priori error estimate:

∥ε(u− uh)∥2L2(Ω) + ∥ε(u− uh)∥qLq(ω,Ω)

≲ ∥ε(u−Uh)∥2L2(Ω) + ∥ε(u−Uh)∥q/(q−1)
Lq(ω,Ω),

where the hidden constant is independent of u, p, h, and (Uh, Ph) ∈ Xh×Mh;
the latter being the Stokes projection of (u, p).

Proof We will follow, for instance, the derivation of the estimates of [54, Section
4]. Namely, by conformity, we have that, for all vh ∈ Xh

2

ˆ
Ω

(︁
|ε(u)|q−2ε(u)− |ε(uh)|q−2ε(uh)

)︁
: ε(vh)ω dx

+ 2µ

ˆ
Ω

ε(u− uh) : ε(vh) dx =

ˆ
Ω

(p− ph) div vh dx.

Denote now by (Uh, Ph) ∈ Xh×Mh the Stokes projection of (u, p), as defined
in (15). Setting vh = Uh − uh, the previous identity reduces to
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2µ

ˆ
Ω

ε(u− uh) : ε(Uh − uh) dx

+ 2

ˆ
Ω

(︁
|ε(u)|q−2ε(u)− |ε(uh)|q−2ε(uh)

)︁
: ε(Uh − uh)ω dx

= 2µ

ˆ
Ω

ε(u−Uh) : ε(Uh − uh) dx,

where we used the fact that Uh−uh is discretely solenoidal and that (Uh, Ph)
is the Stokes projection of (u, p). This identity can be used to derive

2µ∥ε(u− uh)∥2L2(Ω)

+ 2

ˆ
Ω

(︁
|ε(u)|q−2ε(u)− |ε(uh)|q−2ε(uh)

)︁
: ε(u− uh)ω dx

= −2µ∥ε(u−Uh)∥2L2(Ω) + 4µ

ˆ
Ω

ε(u− uh) : ε(u−Uh) dx

+ 2

ˆ
Ω

(︁
|ε(u)|q−2ε(u)− |ε(uh)|q−2ε(uh)

)︁
: ε(u−Uh)ω dx. (29)

We thus invoke Young’s inequality to obtain the bound

µ∥ε(u−uh)∥2L2(Ω)+2

ˆ
Ω

(︁
|ε(u)|q−2ε(u)− |ε(uh)|q−2ε(uh)

)︁
: ε(u−uh)ω dx

≤ 2µ∥ε(u−Uh)∥2L2(Ω)

+ 2

ˆ
Ω

(︁
|ε(u)|q−2ε(u)− |ε(uh)|q−2ε(uh)

)︁
: ε(u−Uh)ω dx. (30)

Now, since q ≥ 2, we can use [55, Lemma 4.4, Chapter I] (see also [36,
Theorem 5.3.3]) to deduce

∥ε(u− uh)∥qLq(ω,Ω)

≲
ˆ
Ω

(︁
|ε(u)|q−2ε(u)− |ε(uh)|q−2ε(uh)

)︁
: ε(u− uh)ω dx. (31)

In addition, [56, Lemma 2.1, estimate (2.1a)] with δ = 0 allows us to write

ˆ
Ω

(︁
|ε(u)|q−2ε(u)− |ε(uh)|q−2ε(uh)

)︁
: ε(u−Uh)ω dx

≲
ˆ
Ω

|ε(u− uh)| (|ε(u)|+ |ε(uh)|)q−2 |ε(u−Uh)|ω dx.

These estimates can be combined to infer

∥ε(u− uh)∥2L2(Ω) + ∥ε(u− uh)∥qLq(ω,Ω) ≲ ∥ε(u−Uh)∥2L2(Ω)
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+

ˆ
Ω

|ε(u− uh)| (|ε(u)|+ |ε(uh)|)q−2 |ε(u−Uh)|ω dx

=: ∥ε(u−Uh)∥2L2(Ω) + P. (32)

Let us examine P in more detail. Using that u and uh minimize J over Xq(ω)
and Xh, respectively, we obtain that their W1,q(ω,Ω) norms are uniformly
bounded with bounds that only depend on the problem data. Thus, Hölder’s
inequality implies that

P ≤ ∥|ε(u)|+ |ε(uh)|∥q−2
Lq(ω,Ω)∥ε(u− uh)∥Lq(ω,Ω)∥ε(u−Uh)∥Lq(ω,Ω)

≤ γ∥ε(u− uh)∥qLq(ω,Ω) + C(f , γ, q)∥ε(u−Uh)∥q/(q−1)
Lq(ω,Ω).

Choosing γ sufficiently small we can absorb the first term of this estimate for
P on the left hand side of (32). This concludes the proof. □

Remark 18 (approximation) Notice that, since q ≥ 2 and ω ∈ Aq/2, we
can use the stability of the Stokes projection that we proved in Corollary 12
to invoke [19, Corollary 4.2] and conclude that Theorem 17 implies best
approximation properties.

As a corollary, we provide an error estimate for the Smagorinsky model
(26).

Corollary 19 (error estimate) Assume that α ∈ (−1, 12 ). Let the pair (u, p) ∈
X3(dist(·, ∂Ω)α) ×M3(dist(·, ∂Ω)α) solve (1) with the stress tensor given by
(26), and (uh, ph) ∈ Xh ×Mh be its finite element approximation. We thus
have the following error estimate

∥ε(u− uh)∥2L2(Ω) + ∥ε(u− uh)∥3L3(dist(·,∂Ω)α,Ω)

≲ ∥ε(u−Uh)∥2L2(Ω) + ∥ε(u−Uh)∥3/2L3(dist(·,∂Ω)α,Ω),

where the hidden constant is independent of u, p, h, and (Uh, Ph) ∈ Xh×Mh;
the latter being the Stokes projection of (u, p).

Proof According to [57] and [26, Lemma 2.3(vi)], in d dimensions, if P denotes
a k–dimensional compact Lipschitzian manifold, with k ∈ {0, 1, . . . d−1}, then
dist(·,P)α ∈ At provided

α ∈ (−(d− k), (d− k)(t− 1)).

In our setting d = 3, P = ∂Ω, so that k = 2, and t = 3/2. Thus, requiring α ∈
(−1, 12 ) guarantees that dist(·, ∂Ω)α ∈ A3/2. We can then apply Theorem 17
to conclude. □
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Remark 20 (novelty) Notice that, since dist(·, ∂Ω)α /∈ At(Ω) for any t, our
new results, namely Theorem 10 and Corollaries 11 and 12 are, once again,
essential in deducing Corollary 19.

Remark 21 (q < 2) The error estimate of Theorem 17 can be extended to
the case q ∈ (1, 2) provided ω ∈ Aq′/2 upon repeating the same arguments
that lead to (30). In this case, however,

ˆ
Ω

(︁
|ε(u)|q−2ε(u)− |ε(uh)|q−2ε(uh)

)︁
: ε(u− uh)ω dx

is dropped because it is nonnegative. To see this, observe that, for any N ∈ N
and q > 1, the function RN ∋ M ↦→ |M|q ∈ R is convex and thus (|M|q−2M−
|N|q−2N) · (M−N) ≥ 0 for every M,N ∈ RN . To deal with the last term on
the right hand side of (30), we apply [56, Lemma 2.1, estimate (2.1a)] with
δ = 1 and obtain that

ˆ
Ω

(︁
|ε(u)|q−2ε(u)− |ε(uh)|q−2ε(uh)

)︁
: ε(u−Uh)ω dx

≲
ˆ
Ω

(|ε(u)|+ |ε(uh)|)q−1 |ε(u−Uh)|ω dx

≤
(︁
∥ε(u)∥Lq(ω,Ω) + ∥ε(uh)∥Lq(ω,Ω)

)︁q−1 ∥ε(u−Uh)∥Lq(ω,Ω),

and argue, again, that the W1,q
0 (ω,Ω) norms of u and uh must be bounded

by data. In conclusion, we have proved the estimate

∥ε(u− uh)∥2L2(Ω) ≲ ∥ε(u−Uh)∥2L2(Ω) + ∥ε(u−Uh)∥Lq(ω,Ω).

6.3 Convection

Let us, as a final extension, consider a generalization of (1) with stress (27)
that takes into account convection. This extends the analysis performed in
[20, 53]. To be precise, we consider the problem⎧⎪⎨⎪⎩

− div S(x, ε(u)) + (u · ∇)u+∇p = − div f , in Ω,

div u = 0, in Ω,

u = 0, on ∂Ω.

(33)

The following is our main existence result.

Theorem 22 (existence) Let Ω ⊂ R3 be a convex polyhedron, q ∈ (2,∞),
ω ∈ Aq, and f ∈ L2(Ω) + Lq′(ω′,Ω). Then, there is (u, p) ∈ Xq(ω) ×Mq(ω)
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such that⎧⎪⎪⎨⎪⎪⎩
ˆ
Ω

S(x, ε(u)) : ε(v) dx+

ˆ
Ω

(u · ∇)u · v dx−
ˆ
Ω

p div v dx =

ˆ
Ω

f : ∇v dx,

ˆ
Ω

div ur dx = 0,

for all (v, q) ∈ Xq(ω) ×Mq(ω), where S is given by (27). In addition, if µ is
sufficiently large, or f sufficiently small, we obtain that u is unique.

Proof Recall the definition of Xq,div(ω). Define the operator

NL : Xq,div(ω)×Xq,div(ω) → Xq,div(ω)
′

by

⟨NL(u,v),w⟩ =
ˆ
Ω

(u · ∇)v ·w dx.

The fact that

∥w∥Xq,div(ω) = ∥∇w∥L2(Ω) + ∥∇w∥Lq(ω,Ω)

shows that this is a compact operator in Xq,div(ω). A standard fixed point
argument then yields existence of solutions.

Existence of the pressure follows the argument of Theorem 16. Notice also
that testing with v = u yields, for any decomposition f = f1 + f2, with f1 ∈
L2(Ω) and f2 ∈ Lq′(ω′,Ω), the following estimate

µ∥ε(u)∥2L2(Ω) +

(︃
1 +

1

q′

)︃
∥ε(u)∥qLq(ω,Ω)

≤ K(2, 1)2

4µ
∥f1∥2L2(Ω) +

K(q, ω)q
′

q′
∥f2∥q

′

Lq′ (ω′,Ω)
, (34)

where we denoted by K(q, ω) the hidden constant in Korn’s inequality (4).
To obtain uniqueness with small data, we follow the classical uniqueness

ideas for the Navier Stokes equations [58, Theorem 2.1.3]. Assuming that there
are two solutions u1,u2, and denoting the difference u = u1 − u2 yields

ˆ
Ω

(S(x, ε(u1))− S(x, ε(u2))) : ε(u) dx = −
ˆ
Ω

(u · ∇)u1 · u dx

≲ ∥∇u∥2L2(Ω)∥∇u1∥L2(Ω),

where, per usual, we employed the skew symmetry of convection when the first
argument is solenoidal ˆ

Ω

(u2 · ∇)u · udx = 0.
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Since q > 2 a similar argument to the one that led to (31) implies that

ˆ
Ω

(S(x, ε(u1))− S(x, ε(u2))) : ε(u) dx ≳ µ∥ε(u)∥2L2(Ω) + ∥ε(u)∥qLq(ω,Ω).

This, combined with Korn’s inequality (4) for q = 2 and ω = 1, and (34),
implies

µ∥ε(u)∥2L2(Ω) ≲
K(2, 1)3

√
µ

∥ε(u)∥2L2(Ω)

·

[︄
K(2, 1)2

4µ
∥f1∥2L2(Ω) +

K(q, ω)q
′

q′
∥f2∥q

′

Lq′ (ω′,Ω)

]︄ 1
2

.

The assumption that f is sufficiently small or µ sufficiently large, allows us to
absorb this term on the left hand side and conclude uniqueness. □
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A Proof of Theorem 6

The purpose of this, supplementary, section is to detail what changes, if any,
are necessary to translate the results of [19, Theorem 4.1] to the case that we
are interested in here. We comment that the main difference here is that, in the
first equation of the definition of the Stokes projection, reference [19] employs
gradients (see [19, formula (1.1)]), while we employ symmetric gradients. While
in the continuous case this only amounted to a redefinition of the pressure, it
rarely happens in practice that we have div Xh ⊂ Mh and so this change of
variables cannot be performed.

Let us begin then with some notation. We define

a(v,w) = 2µ

ˆ
Ω

ε(v) : ε(w) dx, b(v, q) = −
ˆ
Ω

q div v dx.

We now realize that the heart of the matter in the proof of [19, Theorem 4.1]
is the estimate provided in [19, formula (4.1)]. Thus, if we can prove

∥ε(uh)∥L2(ω,Ω) ≲ ∥ε(u)∥L2(ω,Ω) + ∥p∥L2(ω,Ω), (35)
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the rest of the proof follows verbatim. We thus focus on the proof of (35). This
is derived in several steps.

A.1 Approximate Green function

We begin the proof of (35) by defining suitable approximate Green functions.
Let z ∈ Ω be such that z ∈ T̊ z, for some Tz ∈ Th, and δ̃z be a regularized
Dirac delta function that satisfies the properties:
• δ̃z ∈ C∞

0 (Tz);
•
´
Ω
δ̃z dx = 1;

• ∥δ̃z∥Lt(Tz) ≲ h−3/t′ , for t ∈ [1,∞];

•
´
Ω
δ̃zvh dx = vh(z) for all vh ∈ Xh.

The construction of such a regularized Dirac delta is presented in [59, Section
1].

Let z ∈ Ω be such that z ∈ T̊ z, for some Tz ∈ Th, and i, j ∈ {1, 2, 3}. We
define the approximate (derivative of the) Green function as the pair (G, q) ∈
W1,2

0 (Ω)× L̊
2
(Ω) that solves⎧⎪⎨⎪⎩
a(G,v) + b(v, q) =

ˆ
Ω

δ̃zε(v)i,j dx ∀v ∈ W1,2
0 (Ω),

b(G, q) = 0 ∀q ∈ L̊
2
(Ω).

(36)

We also define the Stokes projection (Gh, qh) ∈ Xh ×Mh of (G, q) via⎧⎨⎩a(Gh,vh) + b(vh, qh) =

ˆ
Ω

δ̃zε(vh)i,j dx ∀vh ∈ Xh,

b(Gh, qh) = 0 ∀qh ∈Mh.

(37)

As one last ingredient, we introduce regularized distances. For y ∈ Ω, we
define

σy(x) =
(︁
|x− y|2 + κ2h2

)︁1/2
,

where κ ≥ 1 is independent of h but must satisfy that κh ≤ R where R =
diamΩ. The properties of this weight are given in [59, Section 1] and [60,
Section 1.7].

A.2 Reduction to weighted estimates

Having introduced the functions (G, q) and their approximations (Gh, qh) we
can proceed with the proof of (35). Upon realizing that the only property of
a that is used in step 2 of the proof of [19, Theorem 4.1] is symmetry, we can
follow the arguments without any change to arrive at

ˆ
Ω

ω|ε(uh)i,j |2 dz ≲
ˆ
Ω

ω

[︃ˆ
Ω

ε(u) : ε(E) dx

]︃2
dz +

ˆ
Ω

ω

[︃ˆ
Ω

p div Edx

]︃2
dz
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+

ˆ
Ω

ω

[︃ 
Tz

|ε(u)|dx
]︃2

dz,

where we denoted E = G−Gh. In conclusion, (35) holds provided we can show
that the estimate

sup
z∈Ω

∥σµ/2
z ε(G−Gh)∥L2(Ω) ≲ hλ/2 (38)

holds for all ν ∈ (0, 1/2), λ ∈ (0, ν/2) and µ = 3 + λ. Notice that here we are
following the notation of [60] so µ is not the viscosity.

The rest of this Appendix is dedicated to indicate what changes, if any, are
necessary to prove (38).

A.3 Proof of (38)

Notice, first of all, that (38) is the analogue of [60, formula (1.46)], so we follow
this reference to indicate what changes are necessary. By changing gradients
to symmetric gradients, where appropriate, we can reach the analogue of [60,
formula (2.3)]

ˆ
Ω

σµ
z |ε(E)|2 dx =

ˆ
Ω

ε(E) : ε(σµ
z (G− Ph(G))) dx

+

ˆ
Ω

ε(E) : ε(ψ − P̄h(ψ)) dx−
ˆ
Ω

∇σµ
z · (ε(E)E) dx

+

ˆ
Ω

R div P̄h(ψ) dx,

where we set R = q− qh, ψ = σµ
z (Ph(G)−Gh), and the interpolants Ph and

P̄h are described in [60, Section 1.8].
We must now derive suitable weighted bounds on the pair (G, q), as it is

done in [60, Section 2.4]. We just comment that:
• [60, Proposition 2], which is in [59, Propostion 3.1], follows without changes,
so that we obtain

∥σµ/2−1
z q∥L2(Ω) ≲ ∥σµ/2−1

z ε(G)∥L2(Ω) + κµ/2−1hλ/2−1.

• [60, Proposition 3], which is in [59, Proposition 3.2], follows with little
changes to obtain

∥σµ/2−1
z ε(G)∥2L2(Ω) ≤ ∥σµ/2−2

z G∥L2(Ω)

(︂
c1κ

µ/2hλ/2−1

+ c2∥σµ/2−1
z ε(G)∥L2(Ω)

)︂
.
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• [60, Theorem 5], follows without changes, so that we obtain the analogue of
[60, Corollary 1]:

∥σµ/2−1
z ε(G)∥L2(Ω) + ∥σµ/2−1

z q∥L2(Ω) ≲ κµ/4hλ/2−1.

• To obtain the regularity estimates of [60, Theorem 6], we follow the argu-
ments given in [59, Theorem 3.6] and realize that we must compute the effect

of the Stokes operator on (σ
µ/2
z G, σ

µ/2
z q). After elementary computations,

one realizes that

− div (ε(σµ/2
z G)) +∇(σµ/2

z q) = σµ/2
z [− div (ε(G)) +∇q] +F ,

where F depends on G, ∇G, ∇σµ/2
z , and q. The important point is that F ∈

L2(Ω). Using the regularity results for the Stokes operator of Proposition 2,
we conclude then that the right hand side of the expression above is an
element of L2(Ω). In addition, we have that

div (σµ/2
z G) = ∇σµ/2

z ·G ∈W 1,2
0 (Ω) ∩ L̊

2
(Ω).

In conclusion, upon invoking Proposition 2 once again, we have that

∥σµ/2
z D2G∥L2(Ω) + ∥σµ/2

z ∇q∥L2(Ω) ≲ κµ/2hλ/2−1

and [60, Theorem 7] follows without changes.
The discussion of [60, Section 3] is about finite element spaces, and so it

does not need any changes.
At this point we have set the stage to carry out the bootstrap procedure

of [60, Section 4]. To carry out the duality argument in the proof of Theorem

9, we must introduce the pair (φ, s) ∈ W1,2
0 (Ω)× L̊

2
(Ω) that solves

− div (ε(φ)) +∇s = σµ+ϵ−2
z (G−Gh), div φ = 0, in Ω, φ = 0, on ∂Ω.

The redefinition of the pressure indicated in Remark 4 allows us to conclude,
owing to [61], that there is α ∈ (0, 1) that depends on Ω and for which we have
(φ, s) ∈ C1,α(Ω̄) × C0,α(Ω̄) with an estimate similar to [60, estimate (4.4)].
Upon replacing gradients by symmetric gradients in [60, formulas (4.5), (4.6),
and (4.7)] we arrive at the analogue of [60, estimate (4.8)]:

⃦⃦⃦
σ

1
2 (µ+ϵ)−1
z (G−Gh)

⃦⃦⃦2
L2(Ω)

≤

∥σ−µ/2
z ε(φ− P̄h(φ))∥L2(Ω)∥σµ/2

z ε(G−Gh)∥L2(Ω)

+ ∥σ−µ/2
z div (φ− P̄h(φ))∥L2(Ω)∥σµ/2

z (q− rh(q))∥L2(Ω)

−
ˆ
Ω

(s− r̄h(s)) div (G−Gh) dx = I + II + III,
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where ϵ ∈ (0, 1) is as in [60, (4.8)], rh and r̄h are the interpolants described in
[60, Section 1.8]. Let us now show the slight departures from the argument in
[60] with some detail. As in [60], the regularity of (φ, s) implies that

∥σ−µ/2
z ε(φ− P̄h(φ))∥L2(Ω) + ∥σ−µ/2

z div (φ− P̄h(φ))∥L2(Ω)

+ ∥σ−µ/2
z (s− r̄h(s))∥L2(Ω) ≲ hα(κh)−λ/2

⃦⃦
σµ+ϵ−2
z (G−Gh)

⃦⃦
Lr(Ω)

,

where α = 1−3/r. The estimate on terms I and II then proceeds as in [60]. The
estimate of III is obtained by noticing that, for any matrix M , |trM | ≲ |M |.
In addition, for any vector field v, we have tr ε(v) =div v. These observations
allow us to write

III ≤ ∥σ−µ/2
z (s− r̄h(s))∥L2(Ω)∥σµ/2

z div (G−Gh)∥L2(Ω)

≲ ∥σ−µ/2
z (s− r̄h(s))∥L2(Ω)∥σµ/2

z ε(G−Gh)∥L2(Ω),

and the estimate on III now proceeds as in [60].
We have thus arrived at [60, (4.10)], where one can invoke Korn’s inequality

(4) with q = 2 and ω ≡ 1, to replace the gradient by a symmetric gradient. We
can keep replacing gradients by ε to arrive at the conclusion of [60, Theorem
9].

Once [60, Theorem 9] holds, [60, Corollaries 2 and 3] are a simple exercise
and thus we obtain

∥σµ/2−1
z (G−Gh)∥2L2(Ω) ≲

1

κα
∥σµ/2

z ε(G−Gh)∥2L2(Ω) + κµ−αhλ,

and⃦⃦⃦
σ

1
2 (µ+ϵ)−1
z (G−Gh)

⃦⃦⃦2
L2(Ω)

≤ (κh)ϵ

κα

(︂
Cκ∥σµ/2

z ε(G−Gh)∥2L2(Ω) + κµhλ
)︂
,

where Cκ := 1 + 1
κα .

The estimates on the pressure term [60, Section 5] hold with little or no
modification. In [60, Lemmas 7 and 8] one only needs to replace gradients
with symmetric gradients. The same is true for [60, Theorem 10], which is [59,
Theorem 4.2]. Then, [60, Proposition 10 and Theorem 11] need no changes.

This, finally, brings us to [60, Section 6], where [60, Theorem 12] proceeds
without changes, proves (38), and concludes our argument.

As a final remark, we comment that in this new setting [60, Theorem 13
and Corollary 4] also follow without changes. The pressure estimates of [60,
Section 6.2] only require to change [60, (6.6)] accordingly.
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[7] Ladyženskaja, O.A.: Modifications of the Navier-Stokes equations for
large gradients of the velocities. Zap. Naučn. Sem. Leningrad. Otdel. Mat.
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