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Quasiparticles with fractional charge and fractional statistics are key features of the fractional
quantum Hall effect. We discuss in detail the definitions of fractional charge and statistics and
the ways in which these properties may be observed. In addition to theoretical foundations, we
review the present status of the experiments in the area. We also discuss the notions of non-Abelian
statistics and attempts to find experimental evidence for the existence of non-Abelian quasiparticles

in certain quantum Hall systems.
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I. INTRODUCTION
The experimental discovery in 1982, in a two-

dimensional electron system, of quantized Hall plateaus
with Hall conductivity o,, = ve*/h showing fractional
values v = 1/3 and v = 2/3, marked the beginning of one
of the most surprising and far-reaching developments in
condensed matter physics in the second half of the twen-
tieth century. These fractional quantized Hall (FQH)
plateaus, together with plateaus at other rational frac-
tional values of v, were understood to be manifestations
of a new type of correlated electron state, with a num-
ber of peculiar properties. Continuing experimental and
theoretical efforts have revealed a wide variety of FQH
states, as well as other unusual phenomena that can oc-
cur in two-dimensional electron systems in a magnetic
field at low temperatures, in different materials and un-
der different conditions. Indeed, experiments on these
systems continue to produce surprises, and the field of
quantum Hall effects remains a vital area of condensed
matter research today.! Moreover, insights gained from



the exploration of FQH states have also inspired predic-
tions of a variety of other unusual states in other systems.

One peculiar feature of the FQH states, which was un-
derstood quite early, is that they must necessarily have
well-defined charged excitations (quasiparticles) with a
charge that is a fraction of the electronic charge. It
was also predicted that collections of these quasiparticles
should obey fractional statistics, such that the effective
wave function for the quasiparticles would be multiplied
by a complex phase factor when two quasiparticles are
interchanged, in contrast with the factor of +1 obtained
on interchange of the familiar bosons or fermions.

As we shall describe below, the existence of quasiparti-
cles with fractional charge and statistics is essentially an
inescapable logical consequence of the existence of frac-
tional quantized Hall states. Thus, in one sense, the ob-
servation of an FQH plateau might be considered as a di-
rect demonstration of the existence in principle of quasi-
particles with fractional charge and statistics. However,
it is not necessarily true that isolated quasiparticles will
form the lowest energy configurations when electrons are
added to or subtracted from a quantized Hall state, and
it is not clear how easy it might be to prepare isolated
quasiparticles or to measure directly their charges.

In a similar vein, we may ask whether it is possible to
see a direct effect of fractional statistics in an experiment,
such as one where there is interference between two pos-
sible paths, in which a pair of quasiparticles encircle each
other a different number of times. We shall see that there
are numerous obstacles that need to be overcome to carry
out such an interference experiment in practice. Further-
more, there are many complications, due particularly to
subtle effects of Coulomb interactions and to the possible
participation of different species of quasiparticles, which
may complicate the interpretation of these experiments.
Nevertheless, major progress has been made.

In addition to quasiparticles with fractional statistics,
certain FQH states have been predicted to have quasi-
particles with non-Abelian statistics. In this case, the
interchange of two or more quasiparticles can give rise
to a unitary transformation between orthogonal quan-
tum states in a Hilbert space containing many degenerate
ground states. In principle, the existence of such quasi-
particles should give rise to some striking experimental
manifestations, with possible consequences for technol-
ogy. However, direct demonstration of the predicted phe-
nomena has, again, proved challenging.

In the following section, we shall introduce precise def-
initions of fractional charge and fractional statistics, and
explain why quasiparticles with these properties are pre-
dicted to occur in fractional quantized Hall states. In
Sections III and IV, we discuss in greater detail the the-
ory behind experiments designed to demonstrate most di-
rectly the effects of fractional charge and fractional statis-
tics, and we review the current status of these experi-
ments. In Section V, we discuss in greater detail the con-
cept and implications of non-Abelian statistics, and we
discuss some examples of FQH states where non-Abelian

statistics have been proposed to occur. The search for
a clear manifestation of non-Abelian statistics by means
of Fabry-Perot interferometry is discussed in Section VI.
In Section VII, we discuss the alternate geometry of a
Mach-Zehnder interferometer, which has been realized in
an integer quantized Hall state but not yet in an FQH
state, and we review how the combination of fractional
statistics and fractional charge leads to a flux period con-
sistent with the Byers-Yang theorem. In Section VIII, we
discuss several other experimental techniques, which re-
veal aspects of FQH effect related to fractional charge
and statistics, but which would not be considered to be
direct observations of these properties. We present con-
cluding remarks in Section IX.

II. THE MEANING OF FRACTIONAL
CHARGE AND FRACTIONAL STATISTICS

A. Fractional charge

Fractional charge is relatively easy to define in a
model where the Hamiltonian H contains only short-
range forces.? For any state |¥) that is an eigenstate of
H, we can define a charge density pg(r), which is the
time-independent expectation value of the charge density
operator p(r). If there is an energy gap AF separating
|T) from all other states of the Hamiltonian, then the
density py may be obtained with arbitrary precision, in
principle, by using an apparatus that measures the den-
sity averaged over a time scale large compared to i/ AE.
If properly carried out, such a measurement will not af-
fect the quantum state |¥'), and the measurement may be
repeated many times with the same results. In practice,
the requirement for an energy gap of size AE given above
may be weakened, in that one may exclude eigenstates of
H of lower energy if they result from excitations, relative
to |¥) that are localized in space far from the measuring
point r.

In this paper, we shall consider typically a large system
with a Hamiltonian of the form

where Hy is at least approximately translationally in-
variant in regions far from the system boundaries, and
V is a sum of local perturbations, centered around a set
of points {r;}, which will be assumed to be far from
the boundaries. Let po(r) be the charge density in the
ground state of Hy, let ¥ be a low-lying eigenstate of
the full Hamiltonian H, and and let dpy = py — pg. We
shall say that the state |¥) contains one or more localized
quasiparticles if dpy (r) differs substantially from zero in
the vicinity of at least one of the points r;, but is expo-
nentially close to zero at points r that are far from all r;
and far from the boundaries. If the point r; is well sep-
arated from other regions where V' is non-zero, we may
integrate dpy (r) over the region containing r; where it is



non-zero and thereby obtain the excess charge g; associ-
ated with the quasiparticle or quasiparticles near point
I‘j.

For an ordinary insulator, if one ignores the possible
effects of long-range Coulomb interactions, one finds that
the quasiparticle charge q; will necessarily be an integer
multiple of the electron charge —e. For a fractional quan-
tized Hall state, as we shall show below, the quasiparticle
charge can have values which are specified rational frac-
tions of e.

More generally, we can see that the quasiparticle
charge will be a protected quantity, at least for a sys-
tem with short range interactions. Its value must remain
constant if the microscopic Hamiltonian is continuously
varied, as long as the bulk material retains an energy gap
at the Fermi energy and the magnetic field is fixed. Be-
cause the bulk material remains effectively an insulator,
it cannot carry an electric current over long distances to-
wards or away from the quasiparticle. Consequently, the
localized charge, as well as the background charge density
in the bulk, must remain constant.

By an extension of this reasoning, a localized quasi-
particle can be moved around if we allow the localizing
perturbation V to be time dependent. In particular, if we
allow the center r; of an isolated localizing well to move
sufficiently slowly as a function of time ¢, a state that is
initially in eigenstate of the Hamiltonian H at time tq will
be in the corresponding eigenstate of the time-dependent
Hamiltonian H(t) at any later time. If the initial state
had a quasiparticle localized at point r;(to), the state at
time ¢ will have a quasiparticle at point r;(t). Clearly,
the quasiparticle charge ¢; cannot change in this process
if the quasiparticle remains isolated from all other quasi-
particles throughout.

It should be emphasized that the requirements that
V' varies only slowly and that the measurement of the
charge density takes place over a time that is slow on
the scale of the ground-state energy gap is essential for
these arguments. An instantaneous measurement of the
electronic charge in any spatial region will always yield
an integer multiple of e.

In the presence of long-range Coulomb interactions,
the definition of quasiparticle charge is complicated by
the induced polarization of the dielectric medium. As
a familiar example, for a localized electron embedded in
a three-dimensional insulator with dielectric constant &,
the total excess charge in the vicinity of the electron will
actually be equal to —e/k, with the remaining charge
distributed around the boundary of the sample. By con-
vention, we divide the local charge into free charge and
bound charge, so that the free charge associated with the
electron is said to be —e. Similarly, for a quasiparticle
in a fractional quantized Hall state with Coulomb forces
embedded in a dielectric medium, we define the quasi-
particle charge g; as the free charge associated with the
quasiparticle, which will be equal to the local charge mul-
tiplied by « in this case. It is this free charge which will
be quantized in rational multiples of e.

We remark that if an electron is injected at one place
on the surface of a three-dimensional insulator and is
moved through the bulk of the sample to another place
on the surface, the total charge transferred between the
two points will be —e, not —e/k. This is because the
image charge on the surface of the insulator moves along
with the electron so the total charge is transferred. Thus
we may say that the total electric current associated with
an electron moving at a velocity v is given by —ev, even
though the local charge is —e/k. In the case of a quan-
tized Hall system, the current associated with a quasi-
particle moving through the bulk is more difficult to de-
fine, as the system will necessarily have conducting states
along its edges.

What happens if we turn off the localizing perturbation
V? As Hj is supposed to be translationally invariant, a
localized quasiparticle will not, in general, be an eigen-
state of the Hamiltonian. In an ordinary insulator, in
the absence of a magnetic field, the energy eigenstates
will be plane-wave-like superpositions of localized states
centered at positions throughout the sample. For quan-
tized Hall states, however, it is possible to create localized
states for a charged quasiparticle that are eigenstates of
the Hamiltonian. Of course, these states will be highly
degenerate, due to the many possibilities for choosing
the center r;, and the localized states can be mixed by
an arbitrarily small perturbation.

As one example, in the presence of a strong magnetic
field and a weak electrostatic potential V' (r) that varies
slowly in space, energy eigenstates will generally extend
all the way along contour of constant potential, while
being localized in the perpendicular direction. One finds,
in this case, that a quasiparticle wave packet, which is
initially localized at some point in space, will move along
the potential contour line, with a velocity vp, given by
the classical formula, vp = E x B/B? | where E is the
local in-plane electric field and B is the perpendicular
magnetic field.

B. Fractional statistics

1. Definition in terms of effective wave functions and
effective Hamiltonian

Whereas fractional charge can be easily defined for a
single isolated quasiparticle or for a collection of localized
quasiparticles, the concept of fractional statistics requires
the consideration of two or more quasiparticles that are
able to move around each other or to interchange posi-
tions. If one is confined to a suitable low-energy subspace,
one may hope to describe the quantum mechanical state
of such a system by an effective wave function g that
depends only on the coordinates of the quasiparticles,
rather than of all the electrons in the system. The ef-
fective wave function should evolve in time according to
a Schrodinger equation with some effective Hamiltonian
H.g. Fractional statistics will be a characteristic of the



combination t.g and Hg.

As was first noted by Leinaas and Myrrheim, in 1977,
in two dimensions it is possible to extend the formulation
of quantum mechanics to a situation where the wave func-
tion of a set of identical particles is multiplied by a com-
plex phase factor different from +1, provided we may ex-
clude from consideration points where two quasiparticles
coincide precisely in space.? Specifically, one may require
that if one interchanges the positions of two identical par-
ticles by moving their coordinates in a counterclockwise
direction along a closed contour C that encloses N¢ other
quasiparticles of the same type, the wave function should
be multiplied by a phase factor e=*, where

0 = (1+2Ng)0n, 2)

where the angle 6,,,, defined modulo 2w, is a character-
istic of of the type of quasiparticle in question. (We use
the index m to distinguish between different species of
quasiparticles.) If the position of a single quasiparticle is
moved along a closed loop enclosing N¢ other identical
quasiparticles, the wave function must be multiplied by
e~2NcOm  For cases other than 6, = 0 or 7, this requires
that the wave function be multivalued, or equivalently
that it is defined on a multi-sheeted Riemann surface.
Nevertheless, quantum mechanics can be generalized in
a straightforward way to deal with this situation. In a
case where 60, # 0 mod =, if the effective Hamiltonian
H.g can be written as a local function of the positions
r; and the momenta p; = —ihV;, with the possible
addition of long-range Coulomb forces that depend on
position variables only, one says that the quasiparticles
obey fractional statistics, with statistical angle 6,,. Such
quasiparticles are often referred to as anyons.*

To describe quasiparticles with fractional statistics,
however, it is not actually necessary to employ multival-
ued wave functions. The multiple phase factors can be
eliminated by implementation of a unitary transforma-
tion, essentially a singular gauge transformation.? Specif-
ically, if veg is a multivalued wave function as described
above, let us define a transformed wave function ¥ by

g} = v (e T (222 )Wﬂ, 3)

k<l e

where z; = x;+14y; is the position of particle j in complex
coordinates. The transformed wave function ¢/ will be
single valued and will be invariant under interchange of
two particles, as would be expected for particles obeying
Bose-Einstein statistics. The price one has to pay how-
ever, is that the transformed Hamiltonian H; will not
longer be local in space. To obtain H!g; from Heg, one
must replace the operators p; by [p; —a;(r;)], where a;,
known as a Chern-Simons vector potential, depends on
the positions of all the other quasiparticles in the sys-
tem. Specifically, one has

a;(r;) = % 2 (W) : (4)

where 2 is the unit vector normal to the plane. Thus, an
alternate definition of fractional statistics is that if quasi-
particles are described by a single-valued wave function

!¢ that is invariant or changes sign under interchange
of quasiparticle positions, the effective Hamiltonian must
be non-local, containing a Chern-Simons vector potential
of the form (4).

The definitions of fractional statistics must be ex-
tended in the case where there may be several kinds of
quasiparticles present. Now we must introduce a new set
of quantities 6,,,,, which will be equal to one-half the
phase acquired when a quasiparticle of type m is moved
around a quasiparticle of type m/, in a representation
with multivalued wave functions and no Chern-Simons
vector potential. When m # m/, the quantity 0,,,, is
only defined mod 7, but for identical particles, we re-
quire #,,,,, = 6,, mod 2.

Again, as an alternative to the above definition, one
can make a singular gauge transformation to a represen-
tation with single-valued wave functions, at the cost of
introducing Chern-Simons vector potentials, analogous
to (4), which may couple to the different species in dif-
ferent ways. In particular, to obtain the value of a; seen
by a particle of type m, we must include a sum of terms
of the form (4), where the coefficient 6, is replaced by
O, if particle k is of type m':

NS () ©
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It follows from the above definitions that in all cases,
Omrm = Omm:. Also, if we combine two quasiparticles of
type m and m’ to form a new quasiparticle, of type M,
the angle 6., describing the mutual statistics between
the hybrid quasiparticle and a third quasiparticle of type

m/ will be equal to 0, + . As a corollary, if
we group together n identical quasiparticles of type m,
the resulting clusters will have a self statistical angle of
QM = n29m

2. lllustrative example

As an example to illustrate a physical consequence of
fractional statistics, let us consider a system containing
either one or two identical anyons with charge ¢,, in an
external magnetic field B. We shall assume that there
is at most a short-range interaction between the anyons.
We also assume a weak circularly symmetric parabolic
electrostatic potential of the form

O(r) = E7“2, (6)

2
with ¢, K > 0, in addition to a stronger short-range at-
tractive potential that can trap a localized quasiparticle
near the origin. The case of a single charged particle in
a uniform magnetic field and a weak parabolic potential
is exactly solvable. For a particle in the lowest Landau



level, the energy eigenstates will consist of a series of cir-
cular orbits with

(r*y =2(n+1)h/|gmB|, n=0,1,2,.., (7)
and energy given by

gmK
=), (®)

where Ej is a constant. The addition of a localized po-
tential well near the origin will have negligible effect on
the energies or eigenstates for large values of n.

Let us now consider a system with one quasiparticle,
say quasiparticle 1, localized in the well near the origin,
and the second quasiparticle sitting in a circular orbit of
large radius. According to the Bohr-Sommerfeld rules,
we should calculate the allowed radii by requiring that
the action for the circular orbit should be equal to to
an integer multiple of 27. Because of the Chern-Simons
term due to the presence of particle 1, the action for
quasiparticle 2 will be shifted by an amount

E=E;+

0S8 = %82(1‘2) . dI‘2 = 29m. (9)

The result is that (7) will be replaced by
(r®y =2(n+1—06,,/7)h/|qmB|, (10)

where o = sign (¢, B.). If 0, # 0 mod 7, the set of al-
lowed values for 2, and hence for the energies for quasi-
particle 2, will be different depending on whether quasi-
particle 1 is present or not.

The above arguments can be generalized to the case
where one has two indistinguishable quasiparticles in or-
bits that are not localized near the origin. In this case,
one finds that the set of allowed energy levels will be
sensitive to 0,, mod 2.

8. Relation to the microscopic Hamiltonian

To make these ideas more concrete, let us return to the
microscopic states for a system containing a given num-
ber N of identical quasiparticles. Let |¥({r;})) be the
many-electron state with quasiparticles localized at spec-
ified positions (ry,..,ryx). The set of such states, which
we here assume to be unique except for a phase, will form
an (over-complete) basis for the set of states we are in-
terested in. The set of allowed positions r; may include
restrictions, such as a minimum separation between two
quasiparticles. We shall assume that any state in the
Hilbert space of interest can be written as a superposi-
tion of basis states, in the form

v) = / drr.drn o (0 DR(()). (1)

Once we have made a specific phase choice for the basis
states |¥({r;})), we can define a Berry connection,

ap({r;}) = iU{r;HIVi[¥({r;})), (12)

where Vj, is the gradient with respect to the position ry.
We may now consider a situation in which the positions
of two quasiparticles, labeled k£ and [, are interchanged
by moving them around a specified contour C' in a coun-
terclockwise fashion, until their final positions are inter-
changed from their initial positions, while the positions
of all other quasiparticles are held fixed. The Berry phase
for the process is given by

Ocr = /dI‘}.C s+ /dI‘l - Qy, (13)

where the integral is taken along the contour. Whereas
the Berry connections «; depend on the particular
choices made for the phases of the basis states, the
Berry phase ¢y may be seen to be independent of those
choices, up to an additive multiple of 2. Thus the quan-
tity e?cxt is independent of the phase choice and is there-
fore gauge invariant. For a system of identical anyons of
charge ¢,, in an external magnetic field, the value of 6cy;
should be given by

Ocrr ~ (1 + 2N(;)9m + QWQmBZAC/h, (14)

where A¢ is the area enclosed by the contour C, 6,, is a
constant characteristic of the type of quasiparticle under
consideration, and N¢, as before, is the number of addi-
tional quasiparticles enclosed. Equation (14) is supposed
to be exact when the contour C is large and quasipar-
ticles k and [ stay far from all other quasiparticles, but
there can be corrections if these conditions are violated.
Nevertheless, the implication of (14) is that with a suit-
able choice of gauge, a; may be written in the form

Qay = QmA(rj) + a; (rj)v (15)

where A is the vector potential due to the applied mag-
netic field B, and a; is just the Chern-Simons vector
potential given by (4). The discussion may be readily
extended to the case where there are several types of
quasiparticle present, in which case the first term in (14)
should be replaced by (6, +2 3" N& Oppms), where N
is the number of quasiparticles of type m’ enclosed by
the contour, and the definition of a; must be extended,
as described in Eq. (5).

Next, we must examine the time evolution of a state
|¥) of the form (11). It is convenient for this purpose to
use path integral approach. Then the state at time ¢ can
be related to the state at time 0 by a unitary transfor-
mation of the form

Yert ({r;},1) =/d{PZ}K({ra‘},{PZ})weﬁ({ré}ao)» (16)
where the kernel K is given by the sum of e=** over all
paths connecting the initial and final configurations of
positions, with S being the action associated with the
path. To a good approximation, we may evaluate S as

5=/dt”U({r;'})+Z/drg-aj(rg), (17)



where U ({r//}) is the expectation value of the microscopic
Hamiltonian H in the basis state [ {r7}), and the inte-
gral is taken along the path from the initial to the final
configuration. This expression coincides with the formula
for the action of a collection of particles with charge ¢y,
subject to an applied magnetic field and a Chern-Simons
vector potential, in the presence of a position-dependent
potential energy U, in the limit where the effective mass
of the particle is taken to zero, i.e., in the limit where
the particles are all in the lowest Landau level.

More generally, U should be replaced by an operator
that may include terms that are slightly off-diagonal in
the position variables, which would lead to additional
momentum-dependent terms in the Hamiltonian, includ-
ing, perhaps, short-range momentum-dependent inter-
actions between the quasiparticles. Matrix elements of
the microscopic Hamiltonian that mix states in the low-
energy subspace we are considering with states outside
that subspace may be taken into account via perturba-
tion theory as corrections to the matrix elements of U.
In a similar fashion, the effects of mixing between Lan-
dau levels due to interactions in a system of particles
with nonzero mass may be included in a model that is
projected onto a single Landau level by including suit-
able corrections to the interactions within the Landau
level. As long as corrections to the interaction terms re-
main short-ranged in space, they can be distinguished
from the Chern-Simons interaction, and will not affect
the behavior of well-separated quasiparticles. Thus, the
values of the statistical angles 6,,,,” remain well-defined
and unchanged.

The interplay of Landau-level mixing with long-range
forces can change the apparent values of 6,,,,, as dis-
cussed in Refs. 5,6. However, the deviations decay as a
power of the distance between quasiparticles.

4. Non-Abelian statistics

In our previous discussions, we have assumed that if
the locations and types of all quasiparticle are specified,
there will be a unique low-energy state of the Hamil-
tonian corresponding to this specification. However, a
very different situation is believed to occur in some spe-
cial quantized Hall states. For these states, in a situation
with N localized quasiparticles, there should be a number
of nearly-degenerate low-energy eigenstates which grows
exponentially with N. The energy differences between
these states should fall off exponentially with the sep-
aration between quasiparticles, and they are frequently
treated as negligible in theoretical discussions.

Now, if a set of quasiparticles are slowly moved around
each other or interchanged, in such a way that the set of
final positions for each quasiparticle type is identical to
the initial set, the final state of the system will be re-
lated to the initial state by a unitary transformation in
the Hilbert space of low-energy eigenstates. Furthermore,
if the braiding process is fast compared to the “exponen-

tially small" energy splittings of the Hilbert space, the
unitary transformation will depend on the topology of
the braiding, but will be independent of all other details
of the paths that are taken. For processes that involve
multiple interchanges of quasiparticles, the resulting uni-
tary transformation will generally depend on the order in
which the interchanges have been performed. Hence, the
quasiparticles are said to obey ‘non-Abelian statistics".

Because a full discussion of various types of non-
Abelian statistics and the ways in which they may be
manifest in quantum Hall systems is complicated, we
shall defer that discussion until later sections of this pa-
per, and shall first concentrate on states with Abelian
fractional statistics.

C. Application to quantized Hall states

1. Fractional charge

In Laughlin’s landmark 1983 paper, which described
his trial wave function for the fractional Hall ground state
at v = 1/3 and related fractions, he also proposed wave
functions for the elementary quasiparticles, often de-
noted as quasielectrons and quasiholes.” The added elec-
tric charges associated with these proposed wave func-
tions were, indeed, fractions of an electron charge, wviz.,
¢. = £e/3. Since the trial wave functions are not exact
eigenstates of the Hamiltonian for a realistic model with
Coulomb interactions, one might be tempted to question
the exactness of the charge quantization based on them.
However, Laughlin presented a more general argument
that quasiparticles with fractional charge must be a fea-
ture of any fractional quantized Hall state.

Consider a two-dimensional electron system in a frac-
tional quantized Hall state with filling factor v on a large
disk of radius R. Let us puncture the disk with a hole
of diameter a at the center of the disk, and let us thread
an infinite solenoid with radius less than a through the
hole. In two dimensions, the scattering cross section of a
barrier of radius a will vanish® in the limit @ — 0, propor-
tional to 1/In?|a. Thus, in the limit a — 0, the solenoid
will have no effect on electrons in the system when there
is no flux through the solenoid.

Now, start with a situation where the system is initially
in its ground state and there is no flux in the solenoid,
and gradually increase the flux until the solenoid contains
precisely one flux quantum, pointing in the same direc-
tion as the uniform magnetic field. [Note: In our discus-
sions of quantum Hall systems, throughout this paper,
we shall assume that the applied magnetic field B points
along the negative z axis, unless otherwise specified, and
B = |B| > 0.] The time-dependent flux will generate
an azimuthal electric field, which will drive electrons in
towards the origin, due to the non-vanishing Hall conduc-
tance. A simple calculation shows that the total charge
accumulated near the origin will be equal to —ve. This
extra charge will have come from the edge of the sys-



tem, where there is necessarily a reservoir of low-energy
conducting states.” Since there is a finite energy gap in
the bulk of the system, we expect, according to the adia-
batic theorem, that the final state will again be an energy
eigenstate of the system. (Although, in principle, the adi-
abatic theorem could break down at an instant where the
added energy of the system due to the charge at the ori-
gin crosses the energy for adding the charge back to a
state at the edge of the system, the matrix element for
such a transfer will be exponentially small, if the radius
R is very large compared to the magnetic length. In ad-
dition, for a system with circular symmetry, the matrix
element will be identically zero by angular momentum
conservation.)

Although the Hamiltonian with the added flux quan-
tum is mathematically different from the original Hamil-
tonian, we can make a gauge transformation that elim-
inates the vector potential due to the solenoid, multi-
plying the wave functions by a position-dependent phase
factor and restoring the Hamiltonian to its original form.
Thus, the original Hamiltonian must have an eigenstate
with the same energy and charge distribution as the one
we have found for the state with an added flux quantum.

Of course, we can generate a quasiparticle with charge
+ve by repeating the above procedure with solenoid flux
in the opposite direction. There is no guarantee, however,
that quasiparticles with charge f+re have the lowest en-
ergy or the smallest charge of any possible quasiparticle
in the system. In particular if v = p/q, where p and
q are integers with no common divisor, one can always
construct a quasiparticle with charge ¢, = +e/q. Since
p and ¢ have no common divisor, there will necessarily
exist integers n and n’ such that ng — n’p = 1. Then
a combination of n’ quasiparticles of charge ve and n
electrons will have total charge —e/q.

These arguments do not require that e/q is necessarily
the smallest charge for a quasiparticle in the system. For
example, the various competing models'® proposed to ex-
plain the even-denominator quantized Hall state observed
at v = 5/2 have quasiparticles with charge +e/4. Levin
and Stern have argued'!, in fact, that for any fractional
quantized Hall state with even denominator ¢, there must
exist quasiparticles with charge ¢,, = te/2q.

2. Fractional statistics

The prediction that quasiparticles in fractional quan-
tized Hall states should obey fractional statistics was
made in 1984, by Halperin,'? and slightly later, by
Arovas, Schreiffer and Wilczek.!> The analysis of
Halperin was based on the behavior of effective wave
functions for collections of quasiparticles, similar to the
discussion in Subsection (IIB1), above. By contrast the
analysis of Arovas, et al., made use of the definition pre-
sented in Subsection (IIB3), specifically, by calculating
the Berry phase acquired on interchanging the positions
of two quasiholes in the v = 1/3 state, using Laughlin’s

trial wave function for the quasiholes.

The analysis of Ref. 12 was motivated by the fol-
lowing set of observations. Laughlin’s wave functions
for the FQH states at ¥ = 1/m involve a factor of
[I;<x(2; — 2k)™, in addition to a Gaussian factor which
assures that the electrons have the correct density. These
trial wave functions minimize the kinetic energy, as all
particles lie in the lowest Landau level, and they are ef-
ficient at minimizing the potential energy, at least in the
case of short-range repulsive interactions, as the wave
functions vanish rapidly when two electrons come close
together. Moreover, if m is an odd integer, the wave
function is antisymmetric under the interchange of two
particles, as required by Fermi statistics. If one were to
replace the exponent m in this product by a non-integer
exponent <y, and if one multiplied the exponent in the
Gaussian factor by a constant s~!, one would have a
wave function that describes a collection of anyons in the
lowest Landau level for particles of charge +e/s. The
exponent v would be related to the statistical angle 6,,
of the anyons by

v=2n+0,/m, (18)

where the sign in (18) depends on the sign of the anyon
charge and the direction of the applied magnetic field.
With our choice of B, < 0, if one assumes 6,,, = 7/3 for
quasielectrons in the v = 1/3 state, and one choses n = 1,
one finds that with the negative sign in (18) the density
of e/3 quasielectrons is just such as to increase the filling
factor to v = 2/5. If one assumes again 6,, = 1/3 for the
quasiholes, uses the positive sign in (18), and chooses
n = 1, the density of quasiholes is such as to decrease
the filling factor to v = 2/7. FQH states were, indeed,
observed experimentally at both these filling factors.

Other fractions could be generated using larger val-
ues of n. As noted in Ref. 12, this procedure could be
repeated, so that starting from a given FQH state with
v = p/q, by adding quasiparticles of charge +e/q and ap-
propriate statistical angle, one could generate daughter
states corresponding to fractions with larger values of p
and ¢. An iterative formula was developed for predicting
the statistical angle 6,,, at each new fraction, and it was
shown that in this manner one could generate a unique
FQH state for any fraction p/q with odd denominator.
(Of course, there would be no guarantee that the result-
ing FQH state would actually be the lowest energy state
for a system with any particular form of the electron-
electron interaction.)

The form of the effective wave function and the choice
of statistical angle were further justified in Ref. 12 by
comparison with microscopic trial wave functions that
had been introduced earlier to describe a collection of
quasielectrons at ¥ = 1/3 and the ground state at
v = 2/5.14 Of course, these trial wave functions are only
approximate descriptions of the true energy eigenstates
for a realistic Hamiltonian, as is also the case for the trial
wave function used in Ref. 13 for a pair of quasiholes.
However, the statistical angle should be a topologically



protected quantity, meaning that its value cannot change
under any deformation of the Hamiltonian that does not
cause the energy gap to collapse and does not provoke a
first-order phase transition.

In 1989, Jainendra Jain proposed the ‘“composite
fermion” approach of generating trial wave functions for
FQH states, which has proved to give energies and wave-
functions that are generally much more accurate than
those obtained by previous methods, particularly for
states with large denominator.'® However, the statisti-
cal angles calculated for quasiparticles at a given odd-
denominator fraction v turn out to be the same as the
ones predicted for the same fraction in Ref. 12. A gen-
eral description of all possible FQH states with Abelian
statistics, including but not limited to the Jain states,
has been given by Wen.'® The description includes pre-
dictions for the charges and statistical angles of quasi-
particles, as well as other topological quantum numbers,
such as the “shift parameter”, for these states.

As was seen in the case of fractional charge, the neces-
sity that quasiparticles in an FQH state obey fractional
statistics can actually be demonstrated by an argument
that does not make any specific assumptions about the
form of the ground state at a given fraction v. Consider
a gedanken experiment similar to that described in Sub-
section (IIB2), where an FQH system with v = 1/3 is
subject to a weak parabolic potential of form (6). If we
add a single quasihole to the system, with positive charge
gm = €/3, it will have a series of equally spaced energy
levels, with energies given by (7) and (8). If the quasihole
is placed in orbit with radius r,, there will be an electric
current around the orbit of magnitude I,, = g, vq/277r,
where vy = Kr, /B is the classical drift velocity in the
perpendicular electric and magnetic fields.

Now let us place a thin solenoid at the origin and
slowly change the flux through the solenoid from zero to
one flux quantum antiparallel to the applied magnetic
field. This will produce an additional quasihole at
the origin and will modify the orbit of the circulating
quasihole. The electromotive force generated by the
time-dependent flux will do work given by 271 /|e|, which
will increase the energy of the circulating quasihole by
expanding its orbit in the parabolic confining potential.
By equating the work done with the change in radius, we
see that the new orbit radius will be related to the old
one by replacing (7) with (10) and choosing 6,, = /3.
Thus the set of allowed orbits for the circulating quasi-
particle is different from the set before the flux was
turned on. Since the solenoid flux can be removed
from the Hamiltonian by a gauge transformation, the
change in the set of allowed radii is entirely due to the
presence of a new quasihole at the origin, and not to
any change in the Hamiltonian itself. Thus we see that
the quasihole must have a statistical angle equal to
m/3 mod 7 in this case. More complicated arguments
can be used to demonstrate the necessary occurrence
of fractional statistics for other FQH states. We shall
address one such argument, employing a Mach-Zehnder

interferometer, in Section VII.

The appearance of fractional statistics in FQH states
is closely related to the fact that the ground states of
these systems are degenerate when studied on a torus
or another compact manifold with genus > 1. It was
noted early on that for a translationally invariant system
containing NN, interacting electrons in the lowest Landau
level in a finite rectangle with periodic boundary condi-
tions containing N¢ quanta of magnetic flux, every eigen-
state of the Hamiltonian must be at least g-fold degen-
erate, where ¢ is the denominator of the fraction N./Ng
reduced to lowest terms.'”'® This degeneracy will gener-
ally be split in the presence of disorder, but in the case
of an FQH state, where the ground states are separated
from all other eigenstates by a finite energy gap, the split-
tings between the ground states will fall off exponentially
with the size of the system, and will therefore be negli-
gible for a sufficiently large system.!® More generally, it
can be shown that any system that supports excitations
with fractional statistics must be degenerate on a large
torus.2® Predictions for the ground state degeneracies of
Abelian and non-Abelian FQH states on a torus and on
manifolds of higher genus may be found in various places
in the literature.?’ 2% Although these questions are sig-
nificant theoretically, we shall not discuss them further
in the present review, as we are focused on phenomena
that can be studied experimentally.

8. Edge modes

In our previous discussions, we have focused on the
properties of localized quasiparticles, or collections of
quasiparticles, that are far from any edges of the sample.
However, fractionally charged quasiparticles can also ex-
ist in delocalized states along the edges of a sample, or at
a boundary between two quantized Hall states with dif-
ferent Hall conductivity. As was originally noted in Ref.
9, there must be gapless modes at a boundary between a
gapped quantum Hall liquid and a vacuum. In the case
of integer quantized Hall states, these edge modes may
be understood as orbits for electrons at the Fermi level,
which propagate along the edge in a particular direction.
For FQH states, the edge modes may be similarly inter-
preted as orbits for quasiparticles of various types.

Though the charge on an edge will be conserved if there
are no contacts to the edge and the edge is far from all
other edges of the sample, charges can tunnel between
two opposite edges of a sample if there is a narrow con-
striction which brings them close together. When the
tunneling strength is small, transfer of charge from one
edge to another can occur in discrete units which may be
interpreted as the charge of a tunneling quasiparticle. In
a geometry with two or more constrictions, there can be
interference features that one can attribute to the differ-
ence in phase accumulated by a quasiparticle in tunneling
from one edge to the opposite edge via the possible paths



involving tunneling at different constrictions. For quasi-
particles with fractional statistics, the accumulated phase
will be sensitive to the number of other quasiparticles en-
closed by the difference in paths. Therefore, interference
experiments can provide a means for observing effects of
the fractional statistics.

Although fractional statistics as well as fractional
charge may be measured, in principle, with experiments
on quasiparticles far from any sample edges, as illustrated
by the gedanken experiments described above, in prac-
tice studies of fractional statistics have always employed
interferometers with tunneling between edges. As de-
scribed below, a few experiments have succeeded in mea-
suring fractional charge accumulation in localized regions
far from any edge of the sample, but even here, the ma-
jority of experiments have involved edge modes and have
measured the charges of quasiparticles tunneling from
one edge to another across a constriction.

Since quantum Hall edges are interacting gapless sys-
tems, it is not possible to define quasiparticle charge
in the same way as in the bulk. In particular, charges
propagating in a one-dimensional metal may break up
into multiple pieces, giving rise to such phenomena as
spin-charge separation and charge fractionalization2>27.
These phenomena would be sensitive to details of the
edge. However, charges tunneling from one edge to an-
other through a gapped quantum Hall state should be
quantized, and can be measured, at least in the dilute
limit, by noise experiments. A more detailed discussion
of edge modes in FQH states will be given below in the
section on non-Abelian statistics.

III. EXPERIMENTAL PROBES OF
FRACTIONAL CHARGE

Fractional charge was one of the earliest predictions
of the FQH theory, but it took more than a decade
to directly observe it. Three experimental techniques
have been implemented: noise?® 3% Aharonov-Bohm
interferometry37’40, and charging spectroscopy 4147,
The bulk of our knowledge comes from shot noise exper-
iments, and we start with their review. This includes a
discussion of a recent experiment on photo-assisted shot
noise3®. We then discuss two approaches to charging
spectroscopy. Because the interferometry technique uses
the same setup to probe fractional statistics and frac-
tional charge, we shall defer discussion of both applica-
tions until the following section.

A. Shot noise

Suppose that particles of charge ¢, tunnel through
a high barrier between two conductors. The tunneling
rate from the higher to lower electrochemical potential is
T, so that the average current (I(t)) = ¢»Ty. The shot
noise technique focuses on the low-frequency fluctuations

of the current. The noise is defined as

S = / " dtexp(iwt) (IOI0) + O)IE),  (19)

—0o0

where we are interested in the w — 0 limit. The in-
tegral reduces to the mean square fluctuation of the
total transmitted charge over a long time ¢, S =
limy 00 2([AQ(¢)]?) /t. In the low-transmission limit, this
simplifies to

S = anLITa (20)

where I is the average tunneling current. The quasipar-
ticle charge can be extracted, if both noise and current
are known. The derivation does not depend on any de-
tails of the Hamiltonian and applies as long as 7 is small
and no charges tunnel uphill from the lower to higher
electrochemical potential. The latter is true as long as
the temperature is low compared to the voltage energy
scale ¢, V. Measurements of the current noise at a finite
frequency w can be used to determine the quasiparticle
charge provided that w is less than a value that is neces-
sarily smaller than microscopic frequencies such as i ™"
times the energy gap and I/e but in practice is likely
to be limited by details such as capacitive lags on the
sample or characteristics of the measuring apparatus.

D1

D2

FIG. 1: Shot noise setup with chiral edges. The incoming
current from source S splits into the transmitted current [
into drain D1 and the tunneling current Ir into drain D2.
Current fluctuations can be measured at D1 or D2.

Shot noise was used with success to measure the elec-
tron charge?® as early as in 1918, but almost a century
elapsed before it was extended to FQH quasiparticles in
Refs. 28 and 29. The schematics** 52 of the experimental
setup are shown in Fig. 1. In the quantum Hall effect, the
bulk is gapped, and charges travel along edges, which are
maintained at different voltages in the setting of Fig. 1.
A narrow constriction allows charge tunneling between
the edges. Since tunneling charges cross the bulk of the
sample, they are restricted to the allowed quasiparticle
charges in the bulk. Usually, but not always, the lowest
quasiparticle charge dominates the limit of weak tunnel-
ing and can be extracted from shot noise. The noise is



detected in the drain at the end of one of the edges. In
the absence of the Nyquist noise, at zero temperature,
the drain noise is the same as the noise of the tunneling
current Ir.

In real experiments, the temperature and the frequency
w remain finite. A finite frequency does not affect the
interpretation of the data as long is 1/w exceeds all other
time scales in the problem, such as the thermal scale
h/T and the Josephson scale h/q,,V. Experiments are
typically performed at w ~ 1 MHz.

The effect of a finite temperature is more complex. Ac-
cess to fragile FQH states requires simultaneous low tem-
peratures and voltages, and the limit of T' < ¢,V might
not be available. Fortunately, a universal relation®? exists
among the tunneling current I, the voltage, the temper-
ature, and the noise:

qu 8IT
= 2q,, I h—— —4kgT—— + 4kgT 21
S gmIrcot kpT kp % +4kpTG, (21)

where G' = ve?/h is the quantized Hall conductance. Eq.
Al

(21) contains the non-linear tunneling conductance %%
and is a consequence of detailed balance®® and fluctuation
relations®®. It applies irrespectively of microscopic de-
tails as long as tunneling is weak and the edges are chiral,
that is, all edge modes propagate in the same direction,
as is the case at the filling factors v = 1/(2n + 1).

The interpretation of experiments on FQH states with
non-chiral edges is complicated by hot spot formation®3.
A non-chiral edge contains a downstream charge mode
that carries charge and energy and one or more neutral
modes that carry energy in the opposite upstream direc-
tion. When a biased charged mode arrives to a grounded
terminal, Joule heat is dissipated. Some of it is carried
back by neutral modes. This heat arrives to the source
and affects the thermal noise of the outgoing current.
This, in turn, affects the measured noise in the drain so
that Eq. (21) no longer applies. The problem can be
alleviated®® with floating contacts along the edge. (See
Fig. 2.) The contacts absorb the excess heat carried by
the neutral modes.

The first experiments revealed charges e/3 at the
filling factor v = 1/3. Subsequent work3"33:36 reported
quasiparticle charges e/3 at v = 2/3, 4/3, 5/3 and 8/3,
e/5 at v = 2/5, and e/7 at v = 3/7 in agreement with
the lowest quasiparticle charges predicted at those filling
factors. Charge values, consistent with the lowest theo-
retical values, g, ~ 0.25¢ at v = 5/2 and ¢, ~ 0.3 —0.4e
at v = 7/3 were also observed*34, but only at inter-
mediate tunneling rates. The observed tunneling charge
grows in the weak-tunneling limit.

A challenge for Eq. (21) is the growth of the observed
¢m as the temperature goes down at several filling fac-
tors. This does not happen at v = 1/3, where ¢,, stays
at e/3 (see, however, Ref. 34). On the other hand?!,
gm reaches 2e/5 at the lowest temperatures at v = 2/5,
the low-temperature g, reaches 2¢/3 at v = 2/3, and g,
reaches 2.4e/7 at the lowest available temperatures at

28,29
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FIG. 2: Shot noise setup useful for edges with upstream neu-
tral modes. Drain D sends the current in a narrow range
of frequencies to the amplifier that measures the voltage
noise.The rest of the current arrives to the ground, where
a hot spot h forms. Floating contacts F absorb excess heat
carried by the upstream modes emitted from the hot spot and
the tunneling contact.

v = 3/7. A possible explanation consists in the compe-
tition of the tunneling of quasiparticles with the charge
e/q and composite quasiparticles of the charge pe/q at
v = p/q. The bulk energy cost of a quasiparticle grows
with its charge. Hence, the bare tunneling amplitude of
a quasiparticle through a constriction between two edges
is higher for a lower charge. This is not necessarily the
case for the renormalized tunneling amplitude that con-
trols low-temperature transport. It was indeed observed
in Refs. 57 and 58 that the tunneling of the charges pe/q
is more relevant in the renormalization group sense than
the tunneling of the charges e/q at low energies at the
filling factors p/q = p/(2p + 1). Thus, high-temperature
and low-temperature tunneling may be dominated by dif-
ferent charges, and both charges compete at intermedi-
ate temperatures. Similar physics was also proposed at
v = 5/2 in the presence of 1/f noise®®. Recent data
raise a question about this interpretation. The tunneling
charge is usually extracted from the autocorrelation of
the drain current. It is also possible to extract it from the
cross-correlation of the currents in two drains (Fig. 1).
It was observed® that the autocorrelation gives the effec-
tive charge that grows at low T', yet the charge extracted
from the cross-correlation in the same sample remains at
its high-temperature value.

The above discussion focuses on weak tunneling since
Eq. (20) holds only in that limit. Much interesting
physics is observed at intermediate transmissions (see,
e.g., Ref. 53), but the Fano factor of the noise cannot
be interpreted in terms of the tunneling charge in that
case, which is thus beyond the scope of the review. The-
ory predicts a rather boring picture at strong quasipar-
ticle tunneling. This case is best understood in terms of
the dual geometry (Fig. 3), where electrons tunnel be-
tween two separate FQH liquids. The Schottky noise
follows Eq. (20) with the electron charge in place of ¢y,.



However, a surprise was found when a dilute beam of
fractionally charged quasiparticles impinged on a weak
link between two FQH liquids. The observed tunneling
charge equaled a fractional quasiparticle charge®'. The
standard theoretical toolbox sheds no light on this puz-

zling phenomenon®?.

FQH - FQH

FIG. 3: The geometry with two FQH regions is dual to the
geometry from Fig. 1.

It should be noted that charge density in an electrostat-
ically defined constriction is lower than than in the FQH
bulk. This may affect the filling factor in the constriction
and the nature of the quasiparticles whose tunneling is
allowed. In particular, fractional tunneling charges were
observed in the integer quantum Hall effect®. Charge
fractionalization on integer edges is also possible®® due
to purely edge physics that is beyond the scope of this
review.

1.  Photo-assisted shot noise

This technique combines a dc bias V' with an ac bias
Vac ~ cos(wt) in the geometry of Fig. 1. A charge
q, emitted from the source, acquires a time-dependent
phase ¢(t) = ¢ [ dtVac(t)/h. This can be interpreted as a
shift in the energy of tunneling quasiparticles. Without
an ac bias, the available energy is ¢, V. The absorption
of n quanta of the ac field shifts the energy to ¢,V +nhw.
The observed shot noise®® 67 is then a weighted sum of
the noises at dc voltages V + nhw/qpm,

S = i WnSae (V + W) : (22)

n=-—00 Im

where the weight w,, reflects the probability to absorb n
quanta. The low-temperature noise is singular at V' =
hw/qm. This was used3 to verify ¢, = ¢/3 at v = 1/3
and ¢, = e/5 at v = 2/5.

In a related experiment3®, high frequency noise mea-
surements at f ~ 7 GHz with dc bias show ¢ = 0.34e
at v =4/3 and ¢ = 0.38¢ at v = 2/3. See Ref. 68 and
references therein for related theoretical ideas.
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B. Charging spectroscopy

In principle, the most direct way of measuring the
charge of a quasiparticle is to form a weak potential well,
using a local external gate, which is just strong enough
to bind a single quasiparticle, and to measure the change
in the electric charge in the region about the well when a
quasiparticle is induced to enter or leave the trap. This
could be done by varying the depth of the potential well,
by applying voltage to a contact which varies the electro-
chemical potential of the two-dimensional electron sys-
tem, or by changing the magnetic field to vary the chem-
ical potential of the surrounding FQH state. Alterna-
tively, one could employ a potential well big enough to
accommodate many quasiparticles, and one could mea-
sure the jump in charge each time a new quasiparticle
enters the well.

In practice, however, an absolute measurement of the
local electric charge is difficult. It is much easier to mea-
sure values of the varying gate voltage or other parame-
ters where the quasiparticle enters, and to calculate the
quasiparticle charge based on the spacing between succes-
sive charge jumps. Even if discontinuities in the accumu-
lated charge are largely smoothed out due to finite tem-
perature effects or external noise, weakened sinusoidal
oscillations in the accumulated charge may persist, and
one could measure their period. Under proper conditions,
the dominant factor determining the number of quasipar-
ticles in a well will be a charging energy, which would be
minimized when the accumulated charge @ is as close as
possible to a value Q* that varies continuously with pa-
rameters such as the gate voltage. If charges can only
enter in units of the quasiparticle charge, ¢,,, then the
spacing AQ* between charge jumps will be equal to g,,.
Furthermore, if one can carry out the same experiment in
the FQH state and an integer quantized Hall state, and
one can be confident that the geometry of the well is the
same in both cases, then the value of g,,/e is given by
the ratio between the periods of oscillation as a function
of gate voltage in the FQH and integer cases.

1.  Measurements of tunneling through an antidot

The earliest version'*? of charging spectroscopy in-

volved tunneling through an antidot inside a constric-
tion between two FQH edges (Fig. 4). This setting is
related to that of interferometry, addressed in the next
section. The electron gas is depleted inside the antidot
and hence an FQH edge forms around it. Quasiparti-
cles travel through the constriction by tunneling in and
out of that edge. The size of the antidot is controlled
by the depleting gate voltage. The technique probes how
the conductance through the antidot depends on the gate
voltage and the magnetic field.

The dependence can be understood from the pic-
ture of quasiparticle orbits, introduced in Section 11.B.2.
Changes of the magnetic field or the gate voltage result



FIG. 4: Antidot geometry. Charge tunnels between the up-
per and lower edges through the edges of an antidot (grey
disk) where the charge is depleted. Purple area is occupied
by electrons in an FQH state.

in an orbit periodically crossing the chemical potential.
When this happens, a resonance is seen in the transmis-
sion through the constriction. The period in voltage cor-
responds to adding or subtracting a quasiparticle from
the antidot. The quasiparticle charge can be found from
the observed period in the voltage and the geometric ca-
pacitance. The latter can be approximately extracted
from the nominal area of the antidot, and can be checked
with the magnetic field periodicity of the conductance.
The calibration may be further checked by comparing
with measurements in an integer quantized state.

To understand the magnetic field periodicity, it is nec-
essary to take into account fractional statistics as well as
fractional charge. The allowed orbits are determined by
the Bohr-Sommerfeld quantization rule in terms of the
phase, accumulated by an anyon on a closed orbit. The
phase has two contributions, First, there is an Aharonov-
Bohm phase for a particle making a circle around the
antidot. For an e/3 particle in the Laughlin state at
v = 1/3, the Aharonov-Bohm phase is ¢pap = 27® /3P,
where ® is the magnetic flux through the antidot and
®y = he/e is the magnetic flux quantum. In addition,
each localized quasihole in the dot contributes the statis-
tical phase —27/3. Since a new quasihole is created or
destroyed every time the flux changes by ®g at a fixed
charge density, the total phase accumulated on an orbit
is periodic with the period of a flux quantum. Thus, in
relating the magnetic field period to the area of the anti-
dot, one must take into account the fractional statistics
as well as the fractional charge.

The experimental results*! are consistent with the the-
oretically predicted charge e¢/3 at v = 1/3. Yet, it was
argued that the fractional charge is not the only way to
understand the data®?. One could instead start with a
picture of single-electron orbits around the antidot and
assume that electron correlations ensure that only 1/3 of
them are populated. Resonant transmission would still
be observed when an orbit crosses the chemical potential.
This predicts the same periodicity as the quasiparticle
picture. Besides, electrostatic effects may not be cap-
tured by the above single-particle picture (see the next
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section).

An additional drawback of this technique is that in or-
der for tunneling to occur, the antidot must be physically
close to an edge of the sample. Thus one might question
whether the results are necessarily reflective of the prop-
erties of excitations in the bulk. One might also question
whether the gate period obtained from a transport mea-
surement necessarily reflects the period for charge occu-
pancy of the antidot.

It should be noted that a similar technique*® showed
excitations of charge 2e¢/3 at v = 2/3. Very re-
cently, charge e/3 was reported in an antidot tunneling

experiment®” in graphene at v = +1/3.

2. Single-electron transistor technique

Difficulties in the interpretation of the antidot data ne-
cessitated a different strategy. Thus, later experiments
used a different approach?*4°: A single electron transis-
tor (SET), which is sensitive to variations in the local
electrostatic potential, was placed on the surface of the
heterostructure that embeds the FQH liquid, or on a
scanning tip just above the surface. The SET was used to
detect potential jumps when a quasiparticle or quasihole
enters or leaves a local potential well created by fluctua-
tions in the doping density, which were found to have a
physical scale on the order of 200 nm, large compared to
the magnetic length.

The SET technique was first developed®® for 2D het-
erostructures outside the quantum Hall regime and al-
lowed the spatial resolution of 100 nm. It was extended to
studies of the integer quantum Hall effect in Refs. 70,71.

In a subsequent development, fractional charges in
FQH liquids were reported in Refs. 44,45. As was ex-
plained above, the entry of new quasiparticles into a well
can be controlled with the gate voltage, and the quasipar-
ticle charge, relative to that of an electron in an integer
quantized state, can be extracted from the spacing of
the jumps as a function of the voltage, The experimen-
tal results** are consistent with charge-e/3 excitations at
v =1/3 and v = 2/3. The absolute value of the quasipar-
ticle charge could also be extracted, with lesser accuracy,
from the SET measurements and were consistent with
the value e/3. In the second Landau level, comparison
between measurements at v = 5/2 and v = 7/3 obtained
the ratio® Gm,5/2/@m,7/3 = 3/4 in agreement with the
theoretical expectation that the charges should be e/4
and e/3 in the two cases. For a detailed theoretical dis-
cussion at v = 5/2, see Ref. 72.

IV. EXPERIMENTAL PROBES OF
FRACTIONAL STATISTICS

Fractional statistics were defined in terms of phases ac-
cumulated by anyons exchanging their positions or run-
ning around other anyons. This makes interferometry™



the most direct probe of statistics, since that technique
is directly sensitive to phase differences accumulated by
particles on different possible paths between the same
endpoints, which could depend on whether the difference
in paths encloses some other quasiparticles.

The simplest Fabry-Perot geometry” is illustrated in
Fig. 5. In the illustrated ideal case, the bulk of the sys-
tem is in an almost perfect quantum Hall state, where
the Fermi level falls inside an energy gap of the pure
system, but there are a small number of localized states
inside the gap, due to impurities, which may become oc-
cupied or empty as the Fermi level is varied inside the
gap. We have also assumed that there is only one chi-
ral mode at the sample boundaries, carrying quasipar-
ticles in the direction shown by the arrows, and that
tunneling between opposite edges can take place only
in the two constrictions. In the weak tunneling limit,
two paths connect the source in the lower left corner and
the drain in the upper left corner. Their phase differ-
ence combines an Aharonov-Bohm phase in the external
magnetic field with a statistical phase. Thus, the tech-
nique allows probing both fractional charge and statis-
tics. Several other geometries have been proposed, with
Mach-Zehnder interferometry’® attracting particular in-
terest. Experimental implementation proved difficult for
all geometries, but recent years have brought promising
results37:49:7%:76 i the Fabry-Perot approach, and we re-
strict ourselves to that geometry in the current Section.

Very recently, a somewhat less direct observation of
fractional statistics was accomplished with an anyon
collider””"®, which will be discussed in Section IV.B.,
below. Mach-Zehnder interferometry will be discussed in
Section VII. Several other techniques yield information
about statistics, which we briefly address in Section VIII,
with the emphasis on thermal transport and tunneling
experiments. Interferometer experiments designed to re-
veal effects of non-Abelian statistics near filling factors
v =>5/2 and 7/2 will be discussed in Section VI.

As we shall see below, there are several major chal-
lenges to the interpretation of interferometry data. Some
major complications arise due to effects of Coulomb in-
teraction. The situation also becomes more complicated
in states with more than one propagating edge mode.
Most significantly, in most experiments, the region inside
the interferometer is not in the ideal quantum Hall state
described above, which we refer to as an incompressible
state. Rather, the bulk is typically in a compressible
state, where the Fermi level does not fall inside an en-
ergy gap of the pure system.” 8% In this case, there will
be a large density of localized quasiparticles or quasi-
holes present in equilibrium, and it costs relatively little
energy to add or subtract one quasiparticle. The result,
after thermal fluctuations are taken into account, is that
interference patterns tend to fall into one of two cate-
gories, which are generally described as Aharonov-Bohm
(AB) and Coulomb-Dominated (CD), as, at least for inte-
ger quantum Hall states, the difference between the two
states is determined by the importance of Coulomb inter-
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actions between charges in the bulk and charges on the
interferometer edge, relative to an energy scale set by
characteristics of the edge.®182. For FQH states, these
labels may be somewhat of a misnomer, as one predicts
in some cases that behavior of the Coulomb-Dominated
type may be found in the compressible regime, even when
the interaction between bulk and edge is very weak. To
emphasize this point we will sometimes use “CD-like” in
place of “CD”. It should also be emphasized that the be-
havior of an FQH state in an incompressible regime is
different than either the Aharonov-Bohm or Coulomb-
Dominated behavior in the compressible regime, as will
be discussed below.

FIG. 5: Ideal Fabry-Perot interferometer. Current tunnels
between the lower and upper edges at two tunneling contacts.
Two crosses show localized quasiparticles inside the interfer-
ence loop.

A. Fabry-Perot Interferometry

1. The ideal case

We shall first consider the ideal case described above.
We assume that the electron density drops rather sharply
to zero at the boundary, and there is just a single edge
mode propagating along the boundary, as indicated in
Fig. 5. A quasiparticle propagating on the interferometer
boundary may then be described by a Hamiltonian of the
form

I:I = Hedge
+[T1 exp(ioy) Ty + g exp(in) Ty + h.c., (23)

where ﬁcdgc describes charge propagation on the upper
and lower edges, the operators Tl,g move a quasiparticle
of charge q,, from the lower edge to the upper edge at
the two constrictions, and I'y 2 exp(i¢h 2) are the associ-
ated tunneling amplitudes. We shall focus on the limit
of weak tunneling, where the current between the lower
and upper edges is much less than the incoming current
ve?V/h, where V is the voltage difference between the



lower and upper edges. The quasiparticle tunneling rate
can then be extracted from Fermi’s golden rule,

p=[L3+T3ro(V,T)+2T1 T cos(¢1 — p2)r1(V, T), (24)

where ry and r; depend on V and the temperature T.
Hence the tunneling current between the lower and upper
edges of the interferometer will be given by

Iy = qu[I} + T3]ro(V. 1)
+2qmF1F2 COS(¢1 — d)g)’l"l(‘/, T) (25)

To realize the experimental configuration illustrated in
Figure 5, one can connect a current source at voltage V
to the lower left corner, and attach grounded contacts to
the lower right and and upper left corners. The back-
scattered current I; will then be equal to the current
flowing into the upper left contact.

The phase difference 6 = ¢1 — ¢ = @ — Ppap — @5
combines two key pieces of information: the quasiparti-
cle charge ¢y, through the Aharonov-Bohm phase ¢p4p =
—27¢,;, ®/e® and the statistical phase ¢s accumulated
by a quasiparticle on the trajectory around the anyons,
trapped inside the interferometer. Here ® = BA is the
total magnetic flux through the area A enclosed by the
paths of the edge states between the constrictions. We
ignore any additional slow dependence of the matrix ele-
ments ro,; on the magnetic field. The constant o will be
set to zero without the loss of generality.

Although the above equations can be justified rela-
tively easily in the case of a single edge mode in an ideal
system with a sharp edge, there are subtleties involved in
applications to a real system, with a continuously varying
electron density and at least some disorder near the edge.
It has been argued that in this case there will still be a
discrete set of propagating modes at the boundary, which
will be embedded in a region of weakly localized states
but will still have a well-define phase rotation e?’ along
the edge®?. Since the edge state will have a finite width,
at least as large as the magnetic length, there will clearly
be some ambiguity as to the physical area A enclosed by
the state. However, it is assumed that this ambiguity can
be resolved in such a way that ¢ 4p is precisely given by
the expression above.

To get access to the information encoded in 6, an ex-
perimentalist needs to look for oscillations in the current
as one varies the magnetic field and/or the area of the
interferometer. The area may be varied by applying a
voltage V, to external gates along the sides of the de-
vice. We assume that the area does not depend on the
magnetic field. This assumption is not crucial for the in-
terpretation of the data in the incompressible regime. We
will lift it in the discussion of the non-ideal compressible
case.

If no quasiparticles enter or leave the interference re-
gion, contours of constant # should lie along lines in the
plane of |B| and V; with slope

dV A
B = B(0AJaV,) 20)

14

In the case of v = 1/3, the spacing AB between succes-
sive conductivity maxima at fixed V, should equal 3® /A,
while the spacing AV, at fixed B should correspond to
an area change that contains one electron. At certain
values of the parameters, however, it may be favorable
for a quasiparticle to enter or leave a localized impu-
rity state in the interferometer, at which point we would
expect a jump in phase by an amount equal to +26,,,
caused by a change in the value of ¢,. For a quasiparti-
cle in the Laughlin state at v = 1/3, it is predicted that
20,, = 2m/3.

40 _ 0.32
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FIG. 6: From Ref. 76. Conductance through the Fabry-Perot
interferometer oscillates when the magnetic field or the side-
gate voltage changes. The Aharonov-Bohm-type behavior is

combined with phase jumps 22 when anyons enter the in-

terferometer. Gray lines and ilgshed lines are guides to the
eye. Reprinted by permission from Springer Nature Customer
Service Centre GmbH: Springer Nature, Nature Physics, Di-
rect observation of anyonic braiding statistics at the v = 1/3

fractional quantum Hall state, J. Nakamura et al. (2020)

Behavior of this type was observed in recent
experiments’® by Nakamura, et al., as shown in Fig. 6. It
is possible, of course, to ask whether the reported phase
jumps could have been caused by some effect other than
fractional statistics, such as Coulomb interactions be-
tween localized quasiparticles and the conducting states
at the interferometer edges, which could cause a jump
in the area enclosed by the interfering trajectories. (See
discussion in Subsection IV A 2.) However, the sample
in these experiments had nearby conducting planes de-
signed to screen Coulomb interactions as much as possi-
ble. Moreover, it would be peculiar if phase jumps caused
by residual Coulomb interactions would all have the same
size for quasiparticle states localized at different impurity
positions in the sample, and that these phase jumps just
happened to be close to the value predicted by theory.
The alternate possibilities should be further checked and
hopefully ruled out by additional experiments, but as-
suming that the interpretation is correct, the results of
Ref. 76 provide as direct a demonstration as one could
imagine of fractional statistics and a measurement of the
statistical phase of quasiparticles in the v = 1/3 FQH



state.

In order to prepare a sample where one could enter
the ideal incompressible regime and still see Aharonov-
Bohm oscillations, the authors of Ref. 76 had to over-
come major difficulties. The challenge comes from con-
flicting demands on the interferometer size imposed by
weak Coulomb interaction and strong phase coherence.
The interaction can be suppressed in a large interfer-
ometer, but phase coherence is favored by a small de-
vice size. A key improvement, described in Refs. 40
and 76 came from introducing ancillary wells that screen
Coulomb forces in the heterostructure.

It is important to note that the simple results shown
in Fig. 6 were only observed over a limited range of mag-
netic field. This is to be expected because outside a cer-
tain range, the Fermi level will no longer be inside the
energy gap of the ideal FQH state. In that case, we can
expect that the sample would fall into the compressible
regime described above, where there will be a large num-
ber of quasiparticles or quasiholes inside the interferom-
eter, with only a small energy barrier to add or subtract
an additional quasiparticle®3.

2. Interferometer with a compressible bulk

We present here a brief summary of our current the-
oretical expectations for the behavior of a Fabry-Perot
quantum Hall interferometer in the compressible situa-
tion, which will apply to the integer quantum Hall regime
as well as to FQH systems. Although these theoretical
predictions have been confirmed in a variety of experi-
ments in the integer regime, the reader should be warned
that there has been little success so far in observing os-
cillations of the predicted type in FQH states.

Y

FIG. 7: From Ref. 82. Fabry-Perot interferometer in the
integer quantum Hall regime. The channel that separates
v = 0 from v = 1 is fully transmitted. The channel that
separates v = 2 from v = 3 is fully reflected. The channel
that separates v = 1 from v = 2 is partially reflected in the
constrictions, where the charge density is lower than in the
center of the device. Dotted lines show tunneling across the
constrictions, applicable to the case of weak backscattering.
Arrow heads, which indicate the directions of particle propa-
gation, are shown here for the case of a magnetic field pointing
towards the viewer.
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Consider the example from the integer quantized Hall
regime, illustrated in Fig. 7. The bulk of the system is in
a state with a quantized Hall conductance given by v = 3.
The LL filling factor f near the center of the sample could
be anywhere in the range 2.5 < f < 3.5; deviations from
the ideal value of f = 3 are accommodated by a finite
density of localized electrons in regions with f > 3 and
localized holes for f < 3. Near edges of the sample, the
electron density drops to zero, and f drops off accord-
ingly. In our somewhat simplified model, we assume that
there are quantized Hall strips with quantum numbers
v = 2,1 and 0 in the edge region, with a single propa-
gating edge mode separating each region. The locations
of the propagating modes should fall roughly where the
electron density is such that the local Landau-level fill-
ing factor is 2.5, 1.5, or 0.5. For situation illustrated in
the figure, the density in the constriction is supposed to
be slightly less than f = 2. The edge state separating
v =2 and v = 3 is totally reflected outside the constric-
tion, the edge state separating v = 0 and v = 1 is totally
transmitted, while the edge state separating v = 1 and
v = 2 is partially transmitted. It is this last mode that
is relevant in an interference experiment.

The situation in Fig. 7 can readily be extended to
FQH states. For example, if we interpret the labeled
filling factors as effective fillings for composite fermions,
with two flux quanta attached to each electron, the Hall
states become quantized states with v = 1/3,2/5 and
3/7. More generally, we shall assume that there is a
single partially-transmitted edge state, which separates
inner and outer regions with quantum numbers v;, and
Vout, With vin > vouww We shall assume that the tunnel-
ing processes occur at one well-defined point within each
constriction, and we shall define the interference area Aj
as the area enclosed by the interfering edge state between
these points. We also define ¢, and goyt as the charges of
the fundamental quasiparticles in quantized Hall states
with vy, and v4,. For the fractional case, we shall con-
fine our discussion to the situation where vy, corresponds
to a Jain state in the bottom half of the lowest LL, so we
may write

P e

:7, in:*, 27
2ps +1 ¢ 2ps +1 (27)

Vin
where p and s are positive integers. The values of vgu
and ¢yt are obtained by replacing p by p—1 in the above
formulas. The situation in Fig. 7 corresponds to p = 2.

Next we define N, as the net number of quasiparticles
of charge ¢, inside the area A;. The number Ny takes
into account the total excess charge in area, including
charges in regions with v > 14, as well as positive or neg-
ative quasiparticles localized at density inhomogeneities
within the v, region. Specifically, it is related to the
total electric charge @) inside the interference area Ay by

Q@ = Npgin—ArvineB/®o (28)

If we assume that the dominant tunneling processes at
the constrictions involve quasiparticles with charge ¢y,



then the interference phase seen by the tunneling parti-
cles will be given by

9 = —2NL01H+27TBA]qin/€‘1)O, (29)

where 60;, is the statistical phase associated with the
quasiparticles of charge gin, given by!6

25 } . (30)

_2p5+1

Oin =T |:1

We remind the reader that our sign conventions assume
that the field points along the —z direction, and B = |B|
is the magnitude of the field. The phase 6;, would have
had the opposite sign if the magnetic field had been cho-
sen to be in the positive z direction. Note that the statis-
tical phase is the same for a particle and its antiparticle.

A key assumption is that Ny, is restricted to take on
integer values (positive or negative), because the local-
ized states inside the interfering edge are isolated from
the states outside and from the edge itself.®? This does
not mean that N is frozen in time, only that it is con-
stant on the time scale for a quasiparticle in the edge
state to move along the length of the interferometer. We
assume that on the longer laboratory time scale, charges
can hop readily from one localized state to another and
that occupations will take on an equilibrium distribution
determined by the temperature, the magnetic field, and
any voltages applied to the gates and the current con-
tacts. From this point of view, the entire region inside
interfering edge state, as well as the region surrounding
the edge state, should be considered as compressible in
most cases.”80

In contrast, the charge on the edge state can vary
rapidly, because it is connected directly to the edge states
outside the interferometer, and we consider here a situ-
ation where the backscattering probabilities at the con-
strictions are small. Thus, the edge charge is not quan-
tized, and the area A, related to it by Eq. (31) below,
may be considered to be a continuous variable.

We now define an energy function E(Np, Ar), which
describes the free energy of the system after all other
variables have been integrated out.®?> We assume that
the time-average interference current measured in an ex-
periment is proportional to the thermodynamic average
of Re ('), weighted by the factor e~ F(NVe,A0/T,

It is convenient to introduce another variable dny, so
that we can write

5n1 = _<Vin — Vout) B(AI — /_1)/(1)0, (31)
; BA
6nLENqu7n—Vin7—Q, (32)
€ (I'O

where A and Q are quantities chosen such that dny and
ony would be zero if we were to minimize FE without the
constraint that Nz be an integer. The values of A and
@ should be smooth monotonic functions of any applied
gate voltages, with perhaps a weak smooth dependence
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on B. The variable dn; describes charge fluctuations on
the interfering edge, while dny, is determined by fluctua-
tions in the interior. Then for small fluctuations in the
variables, we can expand F in the form

K K
E= 7L5”2L + 715773 + Krronpong, (33)

where the constants K, K; and K;; depend on the ge-
ometry and are largely determined by the Coulomb in-
teractions between charges. Eq. (33) contains only the
effect of long-range Coulomb forces and no contribution
from the quasiparticle gap since the random potential
creates an essentially continuous spectrum for anyons.

At T = 0, there will be no thermal fluctuations, and
the phase factor e’ will exhibit jumps at discrete values
of the parameters, where Ny increases or decreases by
one. At finite temperatures, fluctuations become impor-
tant, and one rapidly enters a regime where one or two
Fourier components are dominant in a plot of the thermal
expectation value (e¢'’) as a function of the parameters
B and V. The allowed contributions have the form®2

D, exp {2m‘ [m (?) - Q(qm_mﬂ } . (34)

0 €lVin

where m are integers restricted to values of form

Vout€ Vin€
m=——" 4

7 35
Gout Gin ( )

where ¢ is an integer. The amplitudes D,, fall off expo-
nentially with temperature, |D,,| o« exp(—27*T/E,,), so
typically only the component with largest E,, is visible.
An explicit expression for E,, in terms of the parameters
of the model is given by Egs. (20) and (27) of Ref. 82.
According to those formulas, the largest value of E,, oc-
curs when ¢ is the closest integer to —Af# /27, where

2rqh,  Kio
62(Vin - Vout) KI

AO = —20;, +

(36)

25¢in Gin KIL)
—op (Z2m gy 9w Brp
< € Gout KI

is the jump in interferometer phase that would occur if
Ny, is increased by one at T' = 0. The favored value of g
corresponds to the Fourier component of the interference
oscillations that is least sensitive to thermal fluctuations
in Ny, and A; at higher temperatures.

The case g = 1 has been termed the Aharonov-Bohm
or AB regime, while the case g = 0 has been termed the
Coulomb-Dominated or CD regime. For integer quan-
tum Hall states, where s = 0, the AB regime occurs
when K7, /Ky < 1/2, so that the coupling between edge
and bulk is relatively weak, while the CD regime occurs
for 1/2 < Kr/K; < 3/2, where the coupling is rela-
tively strong. For a fractional state of the form (27),
there will again be a CD-like regime with ¢ = 0, and



at least in principle, an AB regime with ¢ = 1. How-
ever, the value of Kj; /K| separating the two regimes
will be < 1/2, and the AB regime may be difficult to
access. In fact, for the Laughlin states, with p = 1 and
s > 1, one is in the CD-like regime, with g = 0, even
for Kj;, = 0, so the traditional CD designation is actu-
ally a misnomer in this case. [To reach the AB regime at
vin = 1/3, one would actually need an attractive interac-
tion between the edge mode and localized charges, with
—7/2 < (K11/Kr) < —1/2.] For integer states and for
Jain states of the form (27), the dominant term in the
AB region has m = 1, while in the g = 0 CD-like region,
it hasm =1— (Vine/qin) =1 — p,

According to (34), if the gate voltage is held fixed,
and if one can assume that A and @ are insensitive to
the magnetic field, then the oscillations in conductance
should have a period in the magnetic field given by AB =
®y/|m|A. In the AB regime, where m = 1, the flux
period is ®q for all the states under consideration. By
contrast, in the CD regime, the period depends on the
state, and it will be a submultiple of ®q for states where
there are two or more fully transmitted edge states, such
as vi, = 3 or vy, = 3/7,

If one fixes B and varies V;, one will generally see an
oscillating conductance with a period that will depend
on dA/dV, and dQ/dV,. A color plot of the conductance
oscillations as a function of B and V will lead to a series
of parallel stripes, similar to those seen in Fig. 6. It was
argued in Ref. 82 that at least for integer quantized Hall
states, lines of equal phase should have a negative slope,
similar to the stripes in Fig. 6, in the AB regime, but they
should have a positive slope in the CD regime, provided
there is at least one fully transmitted edge mode. Fabry-
Perot experiments in the integer quantized regime have
seen both types of behavior, depending on the details of
the sample.3®34 Also, in certain samples, the two types
of stripes were seen to coexist, leading to a checkerboard
pattern of diamond shapes in the color plot. However,
the situation is more complicated in the FQH case. If we
define the measured phase 6 as arg({e*?)), then following
Eq. (34), 99/0B will again have the same sign as m.
However, for FQH states, the sign of 0 /OVy can depend
on microscopic details.

For the case of 14, = 1/3 and vyt = 0, where there are
no fully-transmitted edge modes, one has m = 0 in the
CD-like regime, as noted above. Then the conductance
will not show oscillations as the magnetic field is varied,
and stripes of equal phase will be horizontal in the color
plot. Behavior of this type was indeed observed in the
experiments reported in Ref. [76] for magnetic fields on
outside of the range shown in Fig. 6. We remark that
this result differs from the original prediction of Ref. 83
that there should be a flux period of ®( in this region, as
one would expect in the AB compressible regime; how-
ever, that prediction has now been corrected.

Note that in the compressible domain, FQH states in a
higher Landau level will have different flux periods than
the corresponding states in the spin-polarized lowest Lan-
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dau level. For example®?, for a state at v = 7/3, which we
assume to consist of a Laughlin liquid at ¥ = 1/3 on top
of an integer quantized Hall state with v = 2, we would
have vy, = 7/3 and vout = 2, so the allowed values of m in
(34) will be equal to —2+7g. As at 14, = 1/3, we expect
that the dominant term should have g = 0. Experimental
results at v = 7/3 by Willett and collaborators®> showed
a flux period ®(/2, consistent with predictions for the
compressible regime with m = —2. However, the depen-
dence on gate voltage was not reported in this reference.

In another experiment at v = 7/3, An and
collaborators® reported a gate period with phase jumps,
appearing in the form of telegraph noise, which was con-
sistent, at least qualitatively, with what one might expect
for a state in the incompressible regime. However, the
flux period was not reported at this filling fraction, nor
was there a reported calibration of the amount of charge
entering the interferometer in one gate period.

Motivated by the experiments of Ref. 46, Schreier et
al.87 have analyzed interference effects to be expected in
a geometry where there is tunneling through an antidot
inside a constriction. In particular, they considered a
situation where there are two edge states around the an-
tidot, and they found that the system was likely to be
in an AB regime for an FQH state for the same geome-
try where one would observe CD behavior in the integer
case. They advanced this as an explanation for the dif-
ferent behaviors observed in Ref. 46 between bulk filling
factors v = 2/3 and v = 2.

It should be cautioned that our discussion of the Fabry-
Perot interferometer ignored the possible effects of tun-
neling between different edge modes along the perime-
ter of the interferometer. While this has been justified
by experiments in the integer regime in many cases, it
may be more questionable for FQH states, particularly
when there are edge modes propagating in two directions.
Inter-mode scattering may contribute to decoherence ef-
fects, which may be a reason why interference oscilla-
tions have proved much more difficult to observe for FQH
states than for integer states.

The analyses which led to the results described above,
for both the AB and CD regimes in the FQH case with a
compressible bulk, certainly made use of the property of
fractional statistics. More generally, if one accepts that
the interfering particles have fractional charge, then one
needs to invoke fractional statistics to avoid flux periods
which are integer multiples of ®3. However, the flux pe-
riods predicted above for the Jain states are identical to
the ones predicted for integer states in both the AB and
CD regimes, where the tunneling particles are electrons.
Consequently, it might be hard to rule out the possibil-
ity that the interfering particles in an experiment®® are
electrons rather than fractionally charged quasiparticles.
For this reason, observations of the predicted flux period
in either regime might not be accepted as a convincing
direct observation of fractional statistics.



8. Quasiparticle charges from Fabry-Perot experiments

Measurements using the Fabry-Perot geometry can be
used to measure the charges of quasiparticles in various
quantized Hall states in either the CD or AB regime. Us-
ing expression (34), if the values of dA/dV, and dQ/dV,
are known, one can predict the oscillation period AV
when B is held fixed. In the CD regime, this period cor-
responds to the addition of a charge equal to gout to the
interior of the interferometer.

Importantly, although (34) was derived in the regime
of weak backscattering, the same result obtains, for a
given partially-transmitted edge state, in the regime of
strong backscattering, where the partially transmitted
edge state is almost totally reflected at the constrictions,
and there is only weak forward scattering. (See Fig. 8a.)
In this limit, the area enclosed by the interfering edge
forms an isolated droplet of material in a quantum Hall
state with quantum number v;,, embedded in a region
with quantum number v.,;. Charge can then enter or
leave the droplet only in units of gou¢, and the total charge
in the droplet must be an integral multiple of this unit.
If V, is varied, periodic oscillations will occur in the am-
plitude for forward tunneling through the constriction,
as the quantized charges enter or leave the droplet.

a) b)

FIG. 8: Schematic of a constriction with (a) weak forward
scattering and (b) no scattering. Dashed line shows electron
tunneling.

In typical experiments, the filling factor f. in the con-
strictions and the filling factor in the bulk are varied si-
multaneously by changing the magnetic field, while the
overall electron density and gate voltages are held con-
stant. A region of weak forward scattering should oc-
cur when f. is slightly above a rational value v, that
corresponds to a well-established quantized Hall state.
(This will obtain when the magnetic field is slightly lower
than the value at which f. = v..) In this case, we have
Vout = Ve, 50 the charges measured in the CD regime will
be that of the elementary quasiparticles in the region of
the constriction. Figure 8a shows a case where v, = 2
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and f. =~ 2.2. By contrast, the constrictions shown in
Fig. 7 are in a regime of weak backscattering, where f.
is slightly below v, meaning that the magnetic field is
slightly higher than the value where f. = v.. (In Fig. 7,
we have v, = 2 and f. < 2.) In such cases, we have
Ve = Vi, SO if v, is a fraction, the charge go,+ measured
in the experiment will differ from the elementary charge
in the constriction. Note that the partially reflected edge
states are not the same in Figs. 7 and 8a.

In a well-made constriction, as parameters are varied,
there will be intervals where f. is sufficiently close to
some quantized value v, that there is neither apprecia-
ble forward nor back scattering. (See Fig. 8b.) In this
regime, the measured Hall resistance of the device and
the two-terminal conductance will sit on a quantized Hall
plateau, where no interference oscillations will be seen.

Quasiparticle charge measurements in the CD regime
obtained in Ref. 38 were consistent with the expected
anyon charges e¢/3 and e¢/5 at v = 1/3 and v = 2/5
respectively. Charge ~ e/3 was reported for v =
1/3, 2/3, 4/3, and 5/3 in Ref. 39. A recent Coulomb
blockade experiment®® reveals charges e/3 at v = 1/3
and 2/3.

As mentioned above, the color plots of conductance as
a function of B and V presented in Ref. 76 showed a
series of horizontal stripes, for fields outside the range of
incompressible bulk, which is what one predicts for the
CD regime when the bulk is in a compressible state on
the v = 1/3 plateau and the filling in the constrictions is
less than that of the bulk. Moreover, the observed gate
period AV} is consistent with the predicted period in the
CD regime, since gout = €.

Quasiparticle charge can also be obtained from
Aharonov-Bohm oscillations in the incompressible bulk
regime shown in Fig. 6, as was done in Ref. 40. Assum-
ing the interference area A is known, if one can neglect
Coulomb coupling between the edge and the bulk, the
charge of the interfering particle can be extracted from
the magnetic-field period in an interval where no local-
ized quasiparticles enter or leave, by use of the equation
qmAAB = e®y. Alternatively, if the dependence of A
on gate voltage is known, the charge may be extracted
from the gate period using ¢, BAV, = e®,/(0A/0V,).
The authors of Ref. 40 used the second method to ex-
tract the value of ¢,, at v = 1/3, assuming that value of
(0A/0Vy) was unchanged from the value at v = 1, and
they obtained the value g, = 0.29¢, in good agreement
with the expected value e¢/3. On the other hand, mea-
surements of the same type at v = 2/3 obtained a result
of 0.93e, suggesting that the tunneling charges in that
case might be electrons rather than fractionally charged
quasiparticles.

Using the model defined by Eq. (33), we can address
the effects of the Coulomb interactions, omitted above
and in Section IV A, on interferometer experiments in
the incompressible region. If we continue to assume that
the background parameters A and Q are insensitive to the
magnetic field, then modifications of the interference area



Ay are controlled by the coupling constants Ky, and K.
In this case one finds that the jump in the interferometer
phase on entry of a quasiparticle will be given by Eq.
(36) while the magnetic field period, between jumps, will
be renormalized to

—1
Kir, Vin

6@0 1
A K; (Vin — Vout)

AB =
QinA

(37)

The slope of lines of equal phase on the plane of B and V
should not be affected by a non-zero K. The distinct
jumps predicted by (36) should be visible in the incom-
pressible regime at temperatures much higher than in the
compressible regime, in so far as the energy to create a
quasiparticle is typically much higher than the scales of
charging energies, K; and K7y .

The claim in Refs. 40 and 76 that Coulomb coupling
may be neglected in their sample is supported by the fact
that the interference stripes they observe at the integer
filling v = 1 are consistent with what one would expect
in the incompressible regime on neglecting the correction
proportional to K /Ky in (37), or in the Aharonov-
Bohm regime if the bulk is compressible.

Note that in the incompressible region, one finds only
a gradual transition between the regimes of weak and
strong Coulomb interaction, as the predictions for Af
and AB vary continuously as a function of K;/Kj.
This is in contrast to the compressible region, where the
transition between AB and CD-like regimes is marked by
simultaneous manifestation of two distinct periodicities,
rather than a single intermediate period.

We conclude this section by mentioning puzzling
behavior?®9! observed in a geometry with a v = 1/3
channel going around a v = 2/5 island, where the trans-
port data were interpreted as showing a magnetic-field
period of 5®( and a period of in the interferometer charge
of 2e. The explanation advanced by the experimenters
supposed that the enclosed v = 2/5 region was in a com-
pressible state, where e/5 quasiparticles could readily en-
ter or leave, so as to keep the electron-density and area
fixed as the magnetic field was varied. However, accord-
ing to the analysis presented above, in a compressible
region, regardless of whether one was in the AB regime
or the CD regime, any observed flux periods should be
®y or a submultiple of it, not a period larger than ®.
(See Refs. 82,92-94 for further discussions.)

A possible resolution of the puzzle might be obtained
if the quantum dots in these experiments were actually
measured in a magnetic field interval where the interior
state was essentially incompressible, as in the central
magnetic-field region of Refs. 76 and 40. In that case, if
the interfering qusaiparticles have charge e/5, one would
naturally expect to find a flux period of 5®y and a gate
period corresponding to the addition of two electrons.
It should be noted, however, that the varying gate em-
ployed in these experiments was not a side gate but rather
a back gate, separated from the sample by the thickness
of a sapphire substrate, which may complicate the anal-
ysis. In any case, a more detailed analysis, and perhaps
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further experiments, are needed to resolve these issues.

B. Anyon collider

It is known that the scattering of identical fermions dif-
fers from the scattering of identical bosons with the same
interaction potential. This suggests the use of anyon col-
lisions to probe fractional statistics.

An anyon collider at ¥ = 1/3 was implemented in Ref.
78 following the proposal from Ref. 77. The setup is il-
lustrated in Fig. 9. Charge from two sources arrives along
the edges to two point contacts QPC1 and QPC2, where
tunneling gives rise to two dilute beams of anyons prop-
agating along the edges towards cQPC. Anyons, arriving
from the two sides to that contact, collide. This affects
the currents, collected in the two drains, D1 and D2. If
the anyons were fermions, the Pauli principle would pro-
hibit the two arriving anyons from ending up on the same
side of cQPC. In other words, the two fermions would
block each other from tunneling through cQPC. Mathe-
matically, this would result in an absence of correlations
between the two drain currents. Bosons are known to
bunch, and this would result in non-zero correlations.
Laughlin anyons are intermediate in their properties be-
tween bosons and fermions. Thus one might expect some
intermediate form of current correlations for a Laughlin
liquid.

s1 G

U QPC1

\\ -
Y

F) D1
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G ‘j\
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FIG. 9: Anyon Collider. The currents from sources S1 and
S2 give rise to dilute beams of quasiparticles from QPC1 and
QPC2 to cQPC, where anyons collide. The correlations of the
currents in drains D1 and D2 are determined experimentally.

Reference 77 made specific predictions for various
Laughlin liquids, and the experimental results, obtained
at v = 1/3, were found to be in excellent agreement with
the theory. However, there were other ingredients in the
theory in addition to the assumption of fractional statis-
tics. The theory employed a specific model of the edge
Hamiltonian Hegge, given by Eq. (23). The Hamilto-
nian is important because a quasiparticle tunneling be-
tween two edge states will leave behind trace in exci-
tations along the edges, which can affect the amplitude



for tunneling of a second quasiparticle. Indeed, it is ex-
pected that the form of the current correlations may be
altered if there is reconstruction at the edges of the sam-
ple. The results of the anyon collider experiment, while
very interesting, would therefore seem to be a less direct
measurement of fractional statistics than those obtained
from the Fabry-Perot experiments.

Ref. 95 discusses what information can be extracted
from finite-frequency noise in an anyon collider. Sev-
eral other setups have been proposed theoretically to ob-
tain signatures of fractional statistics from other current
correlations®® 192, but these have not yet been realized
experimentally.

Another type of correlation experiment, which requires
the simultaneous presence of two identical particles and
which depends on their mutual statistics is the Hanbury-
Brown Twiss interferometer. A beautiful experiment of
this type, demonstrating the interference between two
electrons from independent sources injected into a quan-
tum Hall edge state at integer filling, was reported in
Ref. 103. Results that might be expected for a simi-
lar experiment with FQH edge states have been explored
theoretically in Refs. 97,104,105.

V. NON-ABELIAN STATISTICS

In our previous discussion of Abelian anyons, we fo-
cused on the statistical angle acquired during anyon
braiding, that is, in a process in which anyons exchange
their positions or run full circles around other anyons.
By measuring braiding phases, accumulated by various
anyon types on a circle around a localized anyon, the
localized anyon could be identified. This was the idea
behind the interferometry technique in Section IV.A.

Two other important processes which characterize the
topological behavior of anyons are fusion and splitting.
In fusion, two anyons combine into a single excitation.
Splitting is the reverse process. These processes will be
of particular importance in our discussion of non-Abelian
anyons.

In the Laughlin states” at v = 1/m, fusion is triv-
ial. Anyon types are fully determined by anyon charges.
Combining two anyons of charges ¢; and ¢ produces an
anyon of charge ¢; + ¢2. As an example, consider the
v = 1/2 liquid of charge e bosons!?6:197. The elemen-
tary quasiparticles have charge e/2 and are semions, that
is they have statistical angle 6,, = /2, half that of a
fermion. A semion is a non-local or topologically non-
trivial object. This means that there is no way to cre-
ate an isolated semion. Semions can only be created in
pairs. Two semions fuse into a boson, which is a topologi-
cally trivial object that can be created locally and cannot
be detected with interferometry. We say that it belongs
to the vacuum topological sector. Similarly, adding any
number of bosons to a semion does not affect the outcome
of an interferometry experiment and does not change the
topological sector of the excitation. If we label the vac-
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uum sector with 1 and the semion sector with s, we get
the following fusion rules for the particles from the two
sectors:

1x1=1,1xs=s, sxs=1. (38)

This is an example of Abelian statistics. More compli-
cated states with Abelian statistics, such as Halperin’s
nnm liquids', allow neutral anyonic excitations. Thus,
anyons of the same electric charge may belong to differ-
ent sectors a;. Still, the sectors form an Abelian group
with the fusion rules a; x a; = ay; j), where k is uniquely
determined by ¢ and j.

In systems with non-Abelian statistics, we encounter
situations where two given anyons can fuse into excita-
tions from more than one topological sector. We shall
be particularly interested in systems with the simplest
type of non-Abelian statistics, known as Ising statistics,
which emerges in the exactly solvable Kitaev model'®® of
a magnet on a hexagonal lattice and is relevant for vor-
tices in p-wave superconductors'%? as well as FQH states
at half-integer fillings'1%. Systems with Ising topological
order have three topological sectors: vacuum 1, fermion
1, and Ising anyons ¢. Fusion with the vacuum has no
effect on the topological sector. The remaining three fu-
sion rules are

YxYp=1 ocxp=0, cdxoc=1+1. (39)

The last rule means that the fusion of two Ising anyons
may yield a boson or a fermion. If the two o particles are
far apart, the two fusion channels cannot be distinguished
by local measurements and are present at the same local
quantum numbers of the two anyons. The information
about the fusion channel is stored globally. This serves
as the foundation for the idea of topological quantum
computing''?.

As an example, consider two vortices in a spinless
two-dimensional superconductor with pairing of the form
pa + ipy'%?. Each vortex binds a Majorana zero mode

described by a real fermion W;, = \1112. The two
real fermions combine into a single complex fermion
U = U, 4+ iU, that can populate a single energy level.
The states with the filled and empty level differ by their
fermionic parity but cannot be distinguished locally by
looking at a single vortex. Thus, we can think of the
vortices as og-anyons and the filled and empty level as the
two fusion channels from Eq. (39).

A system with conserved fermionic parity cannot move
between the two fusion channels, but the same physics
is present in a parity conserving system with four Ising
anyons. The trivial total parity can be obtained in two
locally indistinguishable ways: anyons 1 and 2 fuse to
vacuum and anyons 3 and 4 fuse to vacuum, or alterna-
tively, anyons 1 and 2 fuse to fermion and anyons 3 and
4 fuse to fermion. A system of 2n Ising anyons has 27!
locally indistinguishable states.



A. Basic principles

The theory of fusion and braiding was dubbed the al-
gebraic theory of anyons in Ref. 108, which is the ap-
proach we follow. In pure mathematics, fractional statis-
tics correspond to modular tensor categories''?. The
same mathematical structures emerge in topological field
theory!!? and in conformal field theory!!* (CFT). This
reflects the physics of the problem: topological field the-
ories capture some of the bulk physics in topological lig-
uids; we will see below that CFT captures universal as-
pects of the edge physics. The complete topological clas-
sification of a system with non-Abelian statistics goes be-
yond the rules stating which sectors can fuse into which
others, but will depend also on various amplitudes as-
sociated with fusions and braidings. For example, one
finds'®® that that there are eight distinct topological or-
ders for systems obeying the fusion rules (39)

The two-dimensional nature of the problem does not
make any difference for fusion. We will follow the conven-
tion of placing all anyons on a line. Braiding exchanges
anyon positions on that line while fusing and splitting
changes the number of the occupied sites. We also ig-
nore all local quantum numbers of the anyons and focus
solely on topologically distinct states. Thus, we consider
just one anyon state in each topological sector. In other
words, we introduce a one-dimensional Hilbert space for
each anyon type.

We will use diagrammatic language to speak of fusion
and braiding. The key objects are the splitting operators
[4;]2° and their Hermitian conjugate fusion operators,
illustrated below:

a b c

[ [l
c a b

We use the convention that the time axis runs up. The
right diagram suggests moving two anyons a and b into
the same point, where they fuse into ¢, but a different way
of thinking is often useful. We can assume that particles
do not move and the fusion and splitting operators are
just linear maps between the Hilbert space of the com-
bined system of the two anyons and a one-dimensional
space.

The most general fusion rule is

axb=Y Nie, (40)

where the fusion multiplicities NS, show the number of
independent ways to fuse anyons a and b into anyon c;
in other words, N¢, is the dimension of the Hilbert space
Vb of the states of the two anyons with the total topo-
logical charge c. All fusion multiplicities equal 1 for the
Ising statistics and for any Abelian statistics. Assuming
the normalization
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where j,k=1,...,N¢,, we decompose the identity oper-
ator as

(42)

b
One of the anyon sectors is vacuum 1, and the fusion
multiplicity with vacuum is always N§; = N{, = 1. Also,
N1, can only be 0 or 1. It is always possible to add a

vacuum line to any diagram.
Calculations with diagrams often involve F-moves

a b c a b c
h = [obe Y ; (43)
U u

where F2%¢ are matrices with the indices z and y and
additional numerical indices, if the fusion multiplicity ex-
ceeds one in any node of the diagram. The diagrams on
the right and on the left represent two compositions of
splitting operators. A gauge freedom exists in the choice
of the F-symbols and other topological data of an order.
See Ref. 115 for numerous examples of such data. For
Abelian statistics the F-matrices are 1 X 1, 7. e., just
numbers. For example, for semions, F37°° = —1 and all
the other F-symbols are 1 in the gauge''® we use. For the
Ising statistics with the braiding rules (47), the following
F-symbols are non-trivial:

coo 1/\/5 1/\/5
Fl = (0% ). @

Lesed

where 7, s = 1,1 with r = s = 1 in the upper left corner
of the matrix.

Thinking of fusion operators as linear maps naturally
leads to an infinite number of associativity relations such
as the pentagon equation (Fig. 10), which tells that the
two upper F-moves in the diagram are equivalent to the
three lower ones. It can be proven that any other ‘obvi-
ous’ relation follows from the pentagon equation and the
hexagon equation (Fig. 11).

= [Fyov] =1, (45)

oo
oo



Braiding is described by the unitary operators called
R-symbols:

b a a b
Ray = % R(:bl = X (46)
a b b a

Y
NN

FIG. 10: Pentagon equation

. P LA
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FIG. 11: Hexagon equation.
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The statistical phase, accumulated at the exchange of
a and b, is unaffected by local operators acting on each of
the anyons. As a consequence, lines can be moved over
crossing points of other lines. For example, splitting b
into two anyons below or above the crossing point in Eq.
(46) produces equivalent diagrams. For the semion topo-
logical order, the only nontrivial R-symbol describes the
exchange of two semions: Ry, = ¢. For Ising anyons with
the fusion rules (39), eight topological orders are known
with different braiding rules'“®. In this subsection we
consider one example, where the non-trivial R-symbols
depend on the fusion channel of the excitations in the
following way:

oo __ ,—im/8 __ ,3im/8
R = ei/8 Ri"—e”/,

RY =RY" =e~"/2, RYV =-1. (47)

A combination of F-moves and R-moves generates the
hexagon equation (Fig. 11): the composition of the the
two R-moves and one F-move in the upper part of the
diagram is equivalent to the composition of the two F-
moves and one R-move in the lower part of the diagram.
A similar equation holds for R~!'-moves. The R- and
F-symbols satisfy the equations in Figs. 10 and 11 and
form a key part of the data that defines a topological
order. Each particle a has a unique antiparticle a for
which the vacuum 1 is a possible outcome of the product
a X a. The antiparticle of a Laughlin anyon of charge
gm carries the opposite electric charge —¢,,. In the Ising
and semion orders, each particle is its own antiparticle.
Since the fusion multiplicity with an antiparticle to the
vacuum has to be 1, the following diagram is defined up
to an arbitrary phase factor k,:

a
a — Ea
da
a

where the quantum dimension d, describes the scaling
of the number of states ~ d,~ of N > 1 anyons
a. All quantum dimensions are 1 for Abelian statistics.
For the Ising order, one quantum dimension is nontrivial:
dy = V/2 in agreement with 27! states for 2n anyons.
The quantum dimensions are the same for a particle and
its antiparticle. A useful identity relates quantum dimen-
sions with fusion multiplicities:

a (48)

> N&yde = dady,. (49)
c

If a = a, the phase factor x, in Eq. (48) is no longer
arbitrary and is known as the Frobenius-Schur indicator.
This invariant equals +1 and indicates the breaking of
the spin-statistics correspondence at k, = —1. [See Eq.
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(53) below.|. The indicator is 1 for all excitations of the
Ising liquid with the braiding rules (47), while ks = —1
in the semion order.

It proves profitable to redefine the normalization of the
splitting and fusion operators (41) in terms of quantum
dimensions:

The resulting diagrammatic technique has a nice feature
that topologically equivalent diagrams are equal. For ex-
ample, for k, =1,

a . (51)

Negative Frobenius-Schur indicators are accounted for by
decorating lines with arrows. We will ignore this com-
plication since the Ising order with the R-symbols (47),
which is of primary interest for this review, has triv-
ial k.. With the new normalization, a closed non-self-
intersecting loop from a particle line and an antiparticle
line equals the quantum dimension of the particle.
Braiding properties can largely be deduced from a sin-
gle number called the topological spin for each anyon

type:
du 7 1 % . (52)
a

The topological spin is a root of unity''®. For vacuum,
#, = 1. For semions, §; = i. For the anyons in Ising
liquids, 6, = —1 and 6, = exp(in/8).

Naively, the topological spin defines the statistical
phase at the exchange of a particle with its antiparti-
cle, but this only holds in some cases. First of all, the
statistical phase of non-Abelian anyons depends on their
fusion channel. Second, even in the vacuum fusion chan-
nel, the standard spin-statistics relation may not hold.
In particular, for a = a,

R} = 07 k,. (53)

On the other hand, interferometry involves the phase ¢
accumulated by an anyon a on a full circle around b as-
suming that a and b fuse to c¢. This phase depends only
on the topological spins:



0
- rab c
= . 54
exp(ios”) = 5 (54)
The proof of this expression illustrates the power of the
diagrammatic approach and immediately follows from

the diagrammatic identity in Fig. 12.

N
0 = N

FIG. 12: The two lines of each diagram represent anyons a
and b. The left diagram can be interpreted as a double line,
representing anyon c.

B. Edge modes

As previously mentioned, a boundary between a
gapped FQH liquid and the vacuum necessarily carries
gapless modes.? The simplest example is the filling fac-
tor v = 1 for non-interacting spinless electrons. Far from
the boundary, all electrons occupy degenerate states of
the lowest Landau level at the energy fiwc /2, where we
is the cyclotron frequency. Assume that the confining
potential near the edge changes slowly on the scale of
the magnetic length \/fic/eB. Then the energy of a
state localized at the distance z from the boundary is
E(z) = hwe/2 + V(x), where V(z) is the confining po-
tential. The boundary x( of the occupied electron states
corresponds to E(x = z¢) = Er, where EF is the Fermi
energy. Gapless excitations are localized at « ~ xy. The
excitations are chiral, that is, they propagate only clock-
wise or counterclockwise, depending on the direction of
the magnetic field. That direction is called downstream.

In the simplest free-fermion model, the Lagrangian
density of the low-energy mode is

Ly = ih (04 + 00, )0, (55)

where v is the mode velocity, and 1 is a fermionic Grass-
mann field. It is often convenient to bosonize?® the above
Lagrangian density, substituting 1 ~ exp(i¢), where
—edy¢/27 is the linear charge density:

Lp— —% L 6(01 + v0,). (56)
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A closely related chiral Luttinger liquid model*'7 is often
used to describe Laughlin states at v = 1/(2n + 1):

Lonit = ———0,6(3, + v0.), (57)

dvm

where the electron operator ¢ ~ exp(i¢/v). Generaliza-
tions of this model are broadly applied to describe edges
of Abelian FQH liquids. Besides a downstream charge
mode, additional modes are generally present, whose di-
rections can be both downstream and upstream''”. The
additional modes are typically charge-neutral, due to ef-
fects of impurity scattering and/or long-range Coulomb
interactions.

The chiral Luttinger liquid model (57) misses com-
plicated physics due to the long-range Coulomb inter-
action and often fails to quantitatively describe the
data®® 1187120 One effect overlooked by the model is edge
reconstruction'?!. It was shown theoretically”™ and con-
firmed experimentally'?? that a realistic FQH edge in
GaAs heterostructures is formed by a sequence of com-
pressible and incompressible stripes. Their widths de-
pend on the depletion length, where the electron density
drops to zero near the sample boundary”®. The latter
is set by the gate voltage for gate-defined edges and is
determined by the physics of the localized surface states
for the edges defined by chemical etching'23.

Narrow incompressible stripes are fixed-density regions
with the filing factor between 0 and the bulk filling factor.
They carry current proportional to the voltage difference
between their edges. Incompressible stripes are sepa-
rated by compressible stripes of fixed electrostatic poten-
tial and coordinate-dependent charge density. Naively,
this picture suggests several co-propagating modes on the
edge. Yet, general arguments based on thermal conduc-
tance (Section VIIT) show that each downstream mode
missed by the chiral Luttinger liquid model must be
accompanied by an upstream mode. Inevitable disor-
der localizes pairs of contra-propagating modes on large
lengths. On the longest length scales, the only surviv-
ing topologically-protected neutral modes are the ones
present even on a sharp edge without reconstruction.

Despite their limitations, chiral Luttinger liquid mod-
els produce deep insights about the FQH effect. One
such insight is bulk-edge correspondence'?4. It turns out
that the bulk wave-function of a Laughlin FQH liquid at
v = 1/(2n+1) can be extracted from the correlation func-
tion of the electron operators ¥ (x,t) in the chiral CFT
(57), where the imaginary time plays the role of the sec-
ond spatial coordinate y. Moore and Read conjectured!?*
that this represents a more general relation between con-
formal field theories of the edges and the ground-state
wave functions in topological matter. This led them to
a proposal for a non-Abelian state at half-integer filling
factors dubbed the Pfaffian state. The Pfaffian edge the-
ory contains two modes:

sz—%&@@+mm%+w@+%@w,@&



where the Bose-mode ¢, defines the charge density
—e0,¢./27, and 1 = 9T is a neutral Majorana fermion.
The electron operator ¥ = 1 exp(2i¢.). Each Bose mode
has the central charge of 1 but the central charge''* of
the Majorana fermion is 1/2 (roughly speaking, the cen-
tral charge counts the degrees of freedom, and a Majo-
rana fermion can be seen as a half of a complex fermion).
This is an example of a general rule: the chiral central
charge of the edge theory in non-Abelian liquids is usu-
ally non-integer. The topological order in the Pfaffian
state is closely related to the Ising order from the previ-
ous subsection and will be reviewed below.

Exceptions to bulk-edge correspondence are known'2°.

Nevertheless, it remains a useful heuristic principle. For
example, consider particle-hole conjugation of topological
orders'?® and its effect on the edge structure. Imagine
some topological order at v = n+ f in a fractionally filled
Landau level of filling f on top of n filled spin-resolved
Landau levels. The same order can be interpreted as a
particle-hole conjugate order of holes at the filling factor
1 — f on top of n + 1 filled Landau levels. One can also
define a particle-hole conjugate order for electrons at the
filling factor n+1— f. The classification of the excitations
and the fusion rules are the same as in the original order.
All braiding phases change their sign. The effect of the
particle-hole transformation on the edge structure is the
following. A boundary between v =nandv=n+1-—f,
with f < 1/2, should be understood as a composition
of an outer boundary between v = n and v = n+ 1
and an inner boundary between v =n+ 1 and v = n +
1 — f. The original state at v = n + f would have had
one or more edge modes between v = n and v = n +
f. The particle-hole conjugate order corresponds to the
opposite propagation direction of each of those modes
plus an additional downstream integer mode describing
the boundary of v =n and v =n + 1.

Electron tunneling between edge channels can modify
the description of the modes and sometimes reduces their
number. For example, the Laughlin liquid at » = 1/3 has
a single downstream mode. According to the above pre-
scription, the 2/3 edge contains two charge modes'?”: an
integer downstream mode and an upstream mode. Elec-
tron tunneling due to inevitable disorder is known to re-
organize the edge into a single downstream charge mode
and an upstream neutral mode'?3.

We finish the discussion of edge modes by observing
that the central charge in a CFT description is propor-
tional to the heat conductance of a mode??12%:130 Tt
was proven that a chiral mode of the central charge ¢ has
the thermal conductance ckgT', where ko1 = T7r2k%3 /3h
is known as a thermal conductance quantum. The cen-
tral charge is integer for every edge mode in any Abelian
state. Hence, fractional quantization of the thermal con-
ductance is a sign of non-Abelian statistics.
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C. Examples of non-Abelian statistics

It was long suspected that the filling factor3! 5/2 hosts
a non-Abelian FQH liquid'?*. Experiment has brought
strong evidence in favor of that view!32. Predictions were
made for non-Abelian orders at other filling factors!33-143
of the second Landau level in GaAs. Experiment is con-
sistent with Abelian orders on the relatively more robust
v = 7/3 and 8/3 plateaus (for a review, see Ref. 144). At
the same time, the analysis of the gap dependence on the
filling factor'*® supports different nature for FQH states
at v =7/3, 8/3 on the one hand and at 7/3 < v < 8/3 on
the other hand. It might be that all states in the latter
interval are non-Abelian. Very little is known about the
plateaus#5714® that presumably exist at v = 19/8, 22/9
and 32/13. We will not address them and will not dwell
on possible non-Abelian states in the first Landau level.
Our focus will be on the filling factors!3%!46 5/2 and
12/5. A fragile state!®? at v = 7/2 is expected to be the
same or closely related to the state at v = 5/2.

The existing theoretical pictures at v = 5/2 and 12/5
were influenced by CFT ideas!?41%0, Thus, we start with
a brief summary of the CFT approach to the fractional
statistics. A reader who is not familiar with CFT will be
able to follow the bulk of the discussion in this section.
The starting point is an edge theory, which is a combina-
tion of chiral CFTs of perhaps opposite chiralities (down-
stream and upstream). Anyons correspond to the prod-
ucts of primary fields from each chiral CFT. One such
product is postulated to describe electrons. All other al-
lowed anyons must have single-valued operator product
expansions with the electron operator. The rationale for
this requirement comes from two considerations. First,
electrons are in the vacuum topological sector and hence
braid trivially with all excitations. Second, wave func-
tions of systems of anyons are identified with conformal
blocks of the CFT. Trivial braiding implies single-valued
conformal blocks. The topological spin of each anyon a
is determined!® by its conformal weights (hq, hs) in the
CFT:

0., = exp(27milhy — ha)), (59)

where h, comes from the counterclockwise holomorphic
part of the edge theory, and h, from the clockwise anti-
holomorphic modes. Below we identify the holomorphic
direction with the downstream direction of the charge
mode.

1. Possible states at v =15/2

In our discussion of the proposed v = 5/2 and v = 12/5
orders we will ignore the two filled spin-resolved Landau
levels. We will think of electrons in the partially-filled
level in terms of composite fermions that combine an elec-
tron and two flux quanta'®!. Composite fermions move



in zero effective magnetic field. Thus, one might expect
that they form a gapless Fermi-liquid-like state. Gapless
states are indeed observed!®! at v = 1/2 and v = 3/2 in
GaAs. The gap at v = 5/2 can be explained by Cooper
pairing?? of composite fermions. However, multiple ways
exist to build a Cooper pair. In an isotropic system,
one can have pairing in various angular momentum chan-
nels [. In an anisotropic system, where [ is not a good
quantum number, we can instead talk about the wind-
ing number of the phase of the order parameter as the
fermion momentum moves around the Fermi surface. In
general, for a spinless single-component Fermi surface,
only odd values of | are allowed. However, in the pres-
ence of electron-electron interaction it is possible for a
Fermi system to spontaneously divide itself into several
components with independent Fermi surfaces, and in that
case pairing with even values of [ is allowed. For exam-
ple, it has been proposed that for a wide quantum well at
total filling v = 1/2, electrons might organize themselves
into two parallel sheets with 1/4 filling in each.!>? The
bulk-edge correspondence gives a convenient principle for
classifying the various states.

For a half-filled Landau level, the charge mode is de-
scribed by the Lagrangian density (57) with v = 1/2.
Operators that create and annihilate an electron charge
are proportional to @1 = exp(£2i¢). One can check that
operators @ are bosonic and must be multiplied by a
neutral fermion to produce a legitimate electron opera-
tor. This means that the edge theory should contain one
or more gapless Fermi modes. Since a complex fermion is
a combination of two Majorana fermions, we can assume
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jorana. We can also assume that all Majorana modes are
co-propagating since contra-propagating modes can be
gapped out by electron tunneling between edge modes.
The net number C' of the Majorana modes is often re-
ferred to as a Chern number, because it has the form
of a Chern index in the analysis presented in Ref. 108.
The Chern number is positive for downstream modes and
negative for upstream modes. The Lagrangian density is

IC|
2 . .
Lpy = =7 0ae(0r+00:) 6o+ it(D-vnsignCoy ).

k=1
(60)
There is no a priori reason for the velocities of the Ma-
jorana fermions to be the same, but edge disorder makes
them equal in the long-scale limit!5371%%,

No Majorana modes are present at C' = 0. In that
special case!®196:157 known as the K = 8 state, electrons
are gapped on the edge. For subtleties in the 113 state at
C = —2, see Ref. 158. Subtleties that emerge at C = —4
are addressed in Ref. 155.

The states with even Chern numbers are Abelian and
the states with odd Chern numbers are non-Abelian. The
topological order depends only on C' mod 16. Thus, there
are 8 Abelian and 8 non-Abelian possibilities known to-
gether as the 16-fold way'%198. Orders with a large Chern
number are seen as unlikely, and the bulk of research
has focused on the orders listed in Table I. The states
with the Chern numbers C' and —(C + 2) are related by
the particle-hole conjugation. The PH-Pfaffian order at

without loss of generality that all fermion modes are Ma- C = —1 is unique in being its own conjugate!®9:169,
|
C -3 -2 -1 0 1 2 3
name |anti-Pfaffian| 113 PH-Pfaffian K =8 |Pfaffian| 331 | SU(2)2
Ref. 153,154 158 | 154,159,160 (see 161,162 for related surface states) | 14,156,157 124 14 | 163,164

TABLE I: Proposed topological orders at half-integer filling factors. The Chern number C' is the difference between the number
of forward- and backward-propagating Majorana modes on a sample edge.

It appears that multiple orders of the 16-fold way are
realized in nature. Numerical work has brought a pre-
ponderance of evidence in favor of the non-Abelian Pfaf-
fian and anti-Pfaffian liquids at v = 5/2 in GaAs with-
out impurities'%>7167; see, e.g., Refs. 168-171. Exper-
iment appears consistent with a different non-Abelian
PH-Pfaffian liquid'3%16°, Some data were interpreted in
terms of the Abelian 113 and 331 states!”> 17, Recent
theoretical work suggests a complicated phase diagram
in realistic disordered systems in which all topological or-
ders with —3 < C < 1 are present! "> 177 (see also Refs.
178-181 for the role of Landau level mixing). On the
other hand, some theoretical proposals question!82 184
the existence of an energy gap at v = 5/2.

(

Half-integer FQH plateaus have also been found in sev-
eral systems beyond single-layer GaAs. The SU(2)s or-
der was predicted in graphene!®>186. The 331 order'*
is believed!®7 189 to be present in GaAs bilayer'52199 at
the filling factor 1/2. Recent experiments on single-layer
graphene have demonstrated the existence of gapped QH
states in the N = 3 Landau level, corresponding to v =
21/2, 23/2, 25/2 and 27/2, which have been attributed
to a state with C' = 3 or to its particle-hole conjugate
with C' = —5.'86 Besides GaAs and graphene!86:191-195
half-integer plateaus have been observed'619% in ZnO
and WSes.

We finish the discussion of the 16-fold way by describ-
ing the quasiparticle types, fusion rules, and topological



spins for each order'®. (See Table I.) All non-Abelian
orders possess excitations with three topological charges:
1, ¢, and 0. 1 and ¥ carry half-integer electrical charges
ne/2. o carriers charge e/4 4+ ne/2. The fusion rules for
the topological charges are given by Eq. (39). Electrical
charges of the excitations, of course, add up in fusion.
The topological spins of the excitations are determined
by their topological charge ¢ and their electrical charge
ne/4 as

Ot.m) = Ot exp(imn?/8), (61)

where 6, =1, 6 = —1, and 0, = exp(inC/8).

The K = 8 state is effectively a Laughlin-like liquid
of charge 2e¢ bosons at Landau-level filling 1/8, which
gives rise to Abelian anyons labeled by their electrical
charges ne/4, with the topological spins exp(imn?/8). In
the remaining Abelian states, there are four topological
charges 1, v, o and u. The electrical charges of 1- and
1-excitations are me/2, while ¢ and p carry electrical
charges e/4+ne/2. The fusion rules depend on the parity
of C/2. Forodd C/2, 0 xo=puxp=1 and o X p = 1.
For even C/2, c x o = pXxpu=1and o x g = . In
all cases, ¥ x v =1, 0 X ¢ = p, and pu x ¥ = 0. The
topological spins are given by Eq. (61) with 6; = 1,
0y =—1, 0, =0, =exp(inC/8).

A key difference between Abelian and non-Abelian
states is the existence of one charge-e/4 particle o for
the non-Abelian orders and two charge-e/4 particles o
and p for the Abelian orders. This leads to subtleties in
the interpretation of experiment since two quasiparticle
types in Abelian states may have the same experimen-
tal consequences as two fusion channels for non-Abelian
anyons!%.

Evidence exists for a v = 1/4 plateau in wide GaAs
quantum wells?°292 The 16-fold way was extended to
that filling factor in Ref. 203.

2. Read-Rezayi states

The thermal conductance of a Majorana mode is de-
termined by its central charge ¢ = 1/2. A more general
class of CFTs is known with ¢ = (2k — 2)/(k 4 2), where
k is an arbitrary positive integer. The case k = 2 reduces
to the Ising CFT, while the CFTs with k& > 2 are known
as parafermion theories'!*. They were used by Read and
Rezayi to generate a family of FQH states'®® at the fill-
ing factors k/(k + 2). Anyon types?** are distinguished
by their electrical charge and their topological charge,
which comes from the list of the primary fields in the
parafermion CFT. There are k(k+1)/2 primary fields ®7,
with j =0,1/2,...,k/2, (j—m) € Z. Two identifications
are made: (j,m) = (j,m+k) and (j,m) = (5 —j,m+%).
This allows choosing j > 0 and —j < m < j. The topo-
logical spin of ®J, is

07 = exp <2m' [](k]j;) - ”:D . (62)
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The fusion channels are given by

min(j+j5'.k—j—3")

d x @7, = 3 o, (63)
3"=1i=3'l
Electrons carry the topological charge <I>]1€£ 2k /2 The topo-

logical spin of an anyon of electrical charge se is the
product of the neutral contribution (62) and exp(wi[k +
2]s?/k). The allowed combinations of the topological and
electrical charges make the braiding phase (54) with an
electron ¢o¢ . trivial. The lowest quasiparticle charge is
e/(k+2).

The state at k = 4 corresponds to the observed fill-
ing factor 8/3 = 2 4 2/3. There is some numerical ev-
idence for a Read-Rezayi state at that filling factor!33,
but experiment suggests that it hosts a Laughlin-like
state (see Ref. 144 for a review). No plateau has been
seen'®® at v = 13/5 = 2 + 3/5, which would correspond
to k = 3. A plateau is known!#® at the particle-hole
conjugate filling factor 12/5. Apparently, Landau level
mixing effects!4%-'4! are responsible for the difference be-
tween v = 12/5 and v = 13/5. Numerics suggests a non-
Abelian state!?> 137 at v = 12/5 that is the particle-hole
conjugate of the k = 3 Read-Rezayi state. Such state is
interesting from the point of view of quantum comput-
ing since it allows universal topological computation?*,
impossible with the topological orders of the 16-fold way.

Note that a generalization of the Read-Rezayi states
applies'® to the filling factors v = k/(Mk + 2) with
an odd M. A negative-flux version?? of the states was
proposed at v = k/(3k — 2), k > 2.

Another non-Abelian candidate at v = 12/5 is
a Bonderson-Slingerland state'38:139  whose fractional
statistics is closely related with that in the Ising topo-
logical order.

VI. FABRY-PEROT INTERFEROMETRY WITH
NON-ABELIAN QUASIPARTICLES

A. The even-odd effect

The theory of Fabry-Perot interferometry for non-
Abelian anyons has attracted much attention.?96-215,
Fabry-Perot interferometry exhibits particularly inter-
esting behavior for non-Abelian states, because the in-
terference picture can depend on the fusion channel of
the anyons traveling through the interferometer and the
anyons trapped inside the device. Let the trapped topo-
logical charge be b, the topological charge of the tunnel-
ing anyon be a, and assume that a and b fuse to ¢. Then
the tunneling current through the interferometer can be
computed from Eq. (25) with the statistical phase (54)
in the cosine. When multiple fusion channels ¢ exist for
given a and b, the contributions of each fusion channel
should be added with the weight?'6
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where N¢, and d, are fusion multiplicities and quantum
dimensions. The weights in Eq. (64) reflect the fact that
there is no correlation between the incoming quasiparti-
cle and the particles inside the interferometer, and we
may simply add probabilities, because different fusion
outcomes are always orthogonal. One can check using
Eq. (49) that the weights add up to one.

For Ising anyons, multiple fusion channels lead to an
even-odd effect?*®29%. Suppose that the leading contri-
bution to the current through the interferometer comes
from e/4 quasiparticles with the topological charge o
(39). Consider two possibilities for the trapped topo-
logical charge ¢t: (i) t = 1 or ¢; or (ii) ¢t = 0. Since the
traveling anyon has topological charge o, there will be a
unique fusion channel for it and the trapped topological
charge in case (i). The theory from Section IV applies
with the statistical phase determined by the topological
and electrical charges inside the interferometer. In case
(ii) two equally likely fusion channels exist according to
Eq. (39). They correspond to the statistical phases (54)
that differ by 7. Hence, the two fusion channels interfere
destructively with each other and no dependence of the
current through the interferometer on the magnetic field
can be seen?8:209,

After a sufficiently strong change in the magnetic field,
a new anyon of topological charge o is expected to enter
the bulk of the interferometer. This leads to the switch-
ing between regimes (i) and (ii). The name “even-odd
effect” reflects that (i) corresponds to an even number
of trapped quasiparticles and (ii) corresponds to an odd
number.

The even-odd effect is present in all non-Abelian states
of the 16-fold way!'® and its absence in an experiment
would prove Abelian statistics. The opposite is not nec-
essarily true'®. Indeed, the existence of two charge-
e/4 anyons in Abelian states of the 16-fold way may
mimic the two fusion channels of the e/4-particles in non-
Abelian topological orders!®?.

The above physical picture assumes that the trapped
topological charge does not fluctuate randomly on the
laboratory time scale. If there are a non-zero even num-
ber of e/4 particles inside the interferometer, one should
distinguish between the cases where they exist in the
topological sector 1 or ©. The interferometer will exhibit
the same field periodicity in either case, but the phase of
the signal will differ by 7 between the two cases. Over
the laboratory time scale necessary to accumulate data
in an experiment, it is possible that neutral fermions )
can tunnel between the edges of the device and one or
more localized states in the bulk, and thereby change
the topological sector of the interior. In this case, the
mean occupations during the measurement should be a
thermal equilibrium distribution, determined by the en-
ergy differences between states in the different sectors. If
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one or more of the trapped e/4 particles is far from the
others and far from the boundaries, then the energy dif-
ference between the 1 and ¢ sectors will be smaller than
kpT, and the two sectors will have equal probability in
equilibrium. In this case, the e/4 signal would be lost for
even occupation numbers as well as for odd. Effects of
frequent i-tunneling were investigated in Refs. 217-221.

The discussion above also ignores the tunneling of
anyouns of charge e/2 between the edges at the constric-
tions in the interferometer. Such anyons carry topological
charges 1 and 1 and do not exhibit an even-odd effect. A
contribution to the tunneling current from e/2 particles
should exhibit a periodicity with respect to the magnetic
field that is two times shorter than for charges e/4, and
it should be present regardless of the number of enclosed
e/4 particles. In addition, if there is a significant contri-
bution to the signal from e/4 particles that wind twice
around the interferometer, that contribution should be-
have similarly to that of e/2 particles.

B. Experimental investigations

In a series of papers dating back to 2007, Willett and
collaborators have reported observations of even-odd al-
ternation in carefully prepared GaAs samples at filling
factors 5/2 and 7/2, in a Fabry-Perot geometry. (See
Ref. 222 and references therein.) In the most recent of
these papers, they reported extensive measurements on
eleven different samples, including analyses of the oscil-
latory dependences on magnetic field and gate voltages.

The interpretation of these experiments assumes that
the interferometer is in a compressible Aharonov-Bohm
regime, where the periods are strongly affected by under-
lying filled Landau levels. It assumes, further, that when
there is an even number of e/4 particles enclosed by the
interferometer path, the system is consistently in one of
the two possible topological sectors, 1 or v, and that it
returns to the same sector when two more quasiparticles
are added. At v = 5/2, ten e/4 quasiparticles will leave
the interferometer as the flux ® = BA is increased by
dy, so that the parity will switch from even to odd and
back five times in this interval. As it turns out, if one
takes into account the Abelian phase acquired when an
e/4 particle encircles an even number of e/4 particles in a
fixed topological sector but ignores the even-odd switch-
ing that turns the interference on and off, one would pre-
dict an interference with a flux period of ®;. When this
signal is modulated by the rapid switching with period
®y/5, the power spectrum is predicted to have promi-
nent peaks at frequencies 1/®g, 4/Pg and 6/Py. A sim-
ilar analysis at v = 7/2 predicts that interference peaks
due to the circulation of e/4 quasiparticles should occur
there at frequencies 1.5/®¢, 5.5/®g and 8.5/Py.

In addition to the signal from e/4 particles, one should
expect contributions from other processes with different
flux periods, as well as aperiodic features due to disorder,
etc. These contributions tend to obscure the underlying
periodicities in the raw data and lead to complicating



features in the Fourier transform. Nevertheless, it ap-
pears that strong peaks were observed at the predicted
positions at ¥ = 5/2, and to a lesser extent at v = 7/2.
These results give support for the occurrence of even-odd
alternations, consistent with the existence of non-Abelian
Ising anyons. (The observations do not distinguish be-
tween the Pfaffian, Anti-Pfaffian, or PH-Pfaffian states.).

There are, however, some aspects of the experiments
which are not well understood. The interference areas
needed to fit the data were very small, typically of order
0.25 pm?, while the lithographic areas were squares rang-
ing from 2.5 to 5.7 um on a side. Moreover, since the in-
terference area should presumably connect the openings
in the defining gates on two ends of the interferometer,
the width in the perpendicular direction must be less
than 0.1 ym. It is not clear what are the physical mech-
anisms that give rise to this unusual geometry. There
may also be questions about the extent to which it is ap-
propriate to talk about the existence of a quantized Hall
state in a region of these dimensions.

Nevertheless, the small interferometer area appears to
be reproducible, as it is seen in many samples, and per-
sists at a variety of filling factors. The samples used in
these experiments include a number of special features,
including carefully designed screening layers, which may
be important for understanding the resulting geometry.
It should also be noted that in contrast to the procedures
most commonly employed in quantum Hall interference
measurements, the samples in these experiments were il-
luminated before measurement.

Experiments by An et al.®¢ have measured phase slips
and telegraph noise at v = 5/2 analogous to those they
found at v = 7/3, which were discussed in Section IV.A.2,
above. They find a distribution of phase-slip sizes with
several peaks, including a prominent broad peak centered
at Af =~ 57 /4, which they attribute to simultaneous en-
try of an e/4 quasiparticle into the interferometer re-
gion and tunneling of a Majorana fermion (i)-particle)
between the edge of the system and the location of an
e/4 particle in the interior. However, their data is less
extensive than that of Willett et al., and it seems difficult
to rule out alternative explanations for their results.

VII. MACH-ZEHNDER INTERFEROMETRY

A different type of interference geometry, which has
also been realized in quantum Hall states, is Mach-
Zehnder geometry??3224. Fig. 13. It is natural to ask
whether this geometry can lead to a demonstration of
fractional statistics. We shall see that the geometry
is also of theoretical interest since it appears in a gen-
eral explanation why fractional charge entails fractional
statistics?23.

At first sight, nothing changes compared to the Fabry-
Perot case, at least, in the incompressible limit with weak
bulk-edge interactions. The tunneling rate is still given
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FIG. 13: The current from source S splits between two drains
D1 and D2. Drain D2 is inside the interference loop. FQH
liquid is shaded.

by Eq. (24) and the current seems to be the same as
above. But, the magnetic-flux periodicity e®q/q, > ®o
of the so-computed current would conflict with the rigor-
ous Byers-Yang theorem??°. Indeed, the Mach-Zehnder
interferometer has a hole. A change of the flux through
the hole by one quantum should be invisible to the elec-
trons from which the system is made. Hence, the mag-
netic flux period cannot possibly exceed ®y.

The explanation of the paradox lies in that the drain
inside the interferometer absorbs a quasiparticle after
each tunneling event. The topology of the device implies
that the drain is inside the interference loop. Hence, the
statistical phase ¢5 contributing to § = ¢; — ¢ in Eq.
(24) changes after each tunneling event, and the tunnel-
ing rate changes accordingly. (The contradiction with
the Byers-Yang theorem would be unavoidable if frac-
tional charges could have Bose or Fermi statistics.

n2re

)
v
0 3ve
e —rveX ‘4— 2ve

FIG. 14 Transitions between the states of a Mach-Zehnder

interferometer in a Laughlin liquid at T' = 0.

The precise expression for the current depends on the
details of statistics!0:160,203,223,224,226-230 4 simplifies
greatly for the Laughlin states at zero temperature?23.



Fig. 14 illustrates possible transitions between topolog-
ical charges of the drain at the Laughlin filling factors
v = 1/m. At zero temperature, charge only goes from
the higher chemical potential to the lower chemical po-
tential and hence all transitions are only possible in the
direction of the arrows. The transition rate p,, along the
arrow connecting the trapped charges nre mod e and
(n+ 1)ve mod e is given by Eq. (24) with the statistical
phase that depends on n. The average time a transition
takes is t, = 1/p,. The total time for one full circle in the
diagram Fig. 14 is thus £ = Y._} 1/p,. Since a charge
me/m = e is transmitted in that sequence of tunneling
events, the total current I = e/t is the harmonic average
of the currents (25) at all possible values of the statistical
phase ¢;. If the flux through the hole is increased by ®,
this only has the effect of shifting the transition times %,
to t,41, so the net current is unchanged.

p(=7/2)

p(m/2)

FIG. 15: Transitions between the states of a Mach-Zehnder

interferometer in a PH-Pfaffian liquid at T' = 0.

Non-Abelian statistics results in more complicated be-
havior due to multiple fusion channels for non-Abelian
anyons. Fig. 15 illustrates possible transitions among
drain states for a PH-Pfaffian liquid, in which charge-
e/4 quasiparticles tunnel at the QPCs. Each vertex is
labeled by the trapped electric charge mod e and the
trapped topological charge in the drain. The transition
rates are defined in terms of

p(0) = [[34+T2]ro(V,T)+2T1 Ty cos(pap+0-+a)ri (V,T),
(65)
where the statistical phase 6 can be 0, 7, or +7/2, I’y
and T’y are the tunneling amplitudes at the two QPCs,
¢ap is the Aharonov-Bohm phase, and r; 5 and a have
the same origin as in Eq. (24). The transition rates equal
p(0)/2 whenever two fusion channels are available. It is
apparent from the figure that the system can return to
the initial state in multiple ways. One finds, as in the
Abelian case, that the current is unchanged if the flux
through the hole is increased by ®.
Shot noise in the weak tunneling limit yields the
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most striking signature of statistics in Mach-Zehnder
interferometry?®. According to Eq. (20) one would
naively think that the noise does not contain any new
information compared to the current. This is indeed the
case in the Fabry-Perot geometry. In Mach-Zehnder in-
terferometry, however, Eq. (20) does not hold since tun-
neling events are not independent, as their probability
is affected by the topological charge, accumulated in the
drain. The noise exhibits particularly interesting behav-
ior in non-Abelian states'®. For example, it can even
diverge at some values of the magnetic lux'®?. Indeed,
consider Fig. 15 and suppose that 'y =~ T's, 79 = 11
in Eq. (65). Changing the magnetic field allows tun-
ing ¢ap so that p(0) ~ 0. Consider an interferometer
in the initial state (—e/4,0). The rate p(7)/2 of the
process (—e/4,0) — (0,%) is much faster than the rate
p(0)/2 of the process (—e/4,0) — (0,1). Hence, before
the interferometer enters the (0,1) state, it will evolve
through multiple loops (—6/4,0’) — (0,¢) — (e/4,0) —

(e/2,t) — (—e/4,0), where t = 1 or ¢. The aver-

()2, 1.‘5Lge charge ¢, transmitted during those loops, is large:

gt > e. Eventually, the drain reaches the (0,1) state.
The transition rate p(0) out of that state is small, and
the interferometer will be stuck in the (0, 1) state for a
long time ¢ ~ 1/p(0). At some point, a quasiparticle
will tunnel through the device, and it will rapidly reach
the (—e/4,0) state again. One observes the alternation
of periods of high current and periods of no transport,

(¢/2,%¥hen the drain is stuck in the (0,1) state. This implies

high noise.

On the other hand, possible tunneling between inter-
ferometer edges and localized states in the bulk does not
have much effect on the current and hence does not lead
to telegraph noise as long as the tunneling events are sep-
arated by longer time intervals than the tunneling events
at the QPCs.

Calculations tend to be rather involved in the the-
ory of Mach-Zehnder interferometers even in the low-
est order perturbation theory. Yet, curiously, in some
cases, the Bethe ansatz allows an exact solution for
the current and noise in a model of a Mach-Zehnder
interferometer26,228:231,232

It is instructive to reconsider Fabry-Perot interferom-
etry in light of the Byers-Yang theorem in a geometry
with a hole in the center of the interferometer?33. If the
flux through the hole is increased by ®q on a sufficiently
short time scale, the charge in the hole will increase by
ve. For FQH states, this will alter the statistical phase,
which, in addition to possible effects of the Coulomb in-
teraction, will generally change the transmission of the
interferometer. This does not contradict the Byers-Yang
theorem, however, because the theorem only applies in
equilibrium. Equilibrium is established on a long time
scale by relatively rare tunneling events between the edge
of the interferometer and the inner edge around the hole.
Such tunneling also leads to telegraphic noise?3t. A re-
lated phenomenon of switching noise in a Fabry-Perot in-
terferometer with a fluctuating number of trapped anyons



was proposed?3® as a probe of statistics.

Mach-Zehnder interferometry has not yet been imple-
mented for FQH states, despite its success in the integer
quantum Hall regime. A recent reference?*® sheds light
on that challenge by measuring the dependence of the
interference visibility on the filling factor. The visibil-
ity of the interference in the outer v = 1 channel di-
minishes as the bulk filling factor decreases towards 1.
This is accompanied by signatures of edge reconstruction,
i.e., the emergence of topologically unprotected pairs of
contra-propagating edge modes. It has long been recog-
nized that quantum Hall edges exhibit complicated spa-
cial structure. Progress in interferometry will likely de-
pend on a deeper understanding of edge states.

Various other geometries have been considered in the
literature. Ref. 237 considers a “wormhole” geometry in
which a tunneling contact creates a shortcut along a chi-
ral FQH edge. Long tunneling contacts were proposed as
probes of neutral modes in Ref. 238. Ref. 239 introduces
a modification of the Fabry-Perot setup that reveals an
effect of topological vacuum bubbles. Ref. 240 addresses
setups with a large number of edges. Ref. 241 reports an
experimental realization of a version of a Mach-Zehnder
interferometer in which a single edge is split into two
conducting channels that provide two interfering paths.

VIII. OTHER TECHNIQUES

Several other approaches can give information about
topological order. While that evidence may be indirect, it
has importance because of the challenges faced by inter-
ferometry. In this section we focus on four methods: ther-
mal conductance experiments'?2242:243  detecting up-
stream neutral modes?**, thermoelectric transport?45:246
and tunneling into the edge!'®247. Thermal conductance
is particularly useful as a probe of non-Abelian statistics.
Tunneling seems an enticingly straightforward probe of
topological order. The actual information it gives turns
out rather limited due to the complex physics of real
edges. The complications, uncovered in tunneling ex-
periments, are likely relevant for other probes, including
interferometry.

A. Thermal transport

The quantization of thermal conductance has long
been recognized in non-interacting 1D systems?*®.
Quantum Hall liquids are unique in that their ther-
mal conductance remains quantized even for strong
interactions?%12%:130  Consider first an Abelian FQH sys-
tem with chiral edges such that all edge modes propagate
in the same downstream direction, clockwise or counter-
clockwise, depending on the direction of the magnetic
field. Since the bulk is gapped, heat is only carried by
the edge at the lowest temperatures. A chiral edge, em-
anating from a source at the temperature 7', remains in
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thermal equilibrium at that temperature. The local ther-
mal current along the edge in any point x depends on the
temperature and the details of the Hamiltonian of a local
subsystem around point x. At the same time, the heat
current must be the same in all points of the edge since
energy cannot accumulate on any portion of the edge in
a steady state. This implies that the heat current J,(T)
depends only on the temperature and is not sensitive to
microscopic details such as the mode velocities and inter-
mode interactions. As a consequence, the thermal cur-
rent on an edge with n chiral modes reduces to the sum
of n thermal currents in the simplest chiral systems with
harmonic Lagrangians of the form, equivalent to (56):

L=p / 420,606, — v(956)?] (66)

with an arbitrary edge velocity v. An easy calculation
yields the quantized thermal conductance for an FQH
bar with two edges emanating from two terminals at the
temperatures T and T + AT:

k= lim Jh(T + AT) — Jh(T)
T ATS0 AT

= nkoT, (67)

where ko = m2k% /3h.

Many quantum Hall states possess topologically pro-
tected upstream neutral modes that travel in the direc-
tion, opposite to that of the charge mode. In particular,
Jain’s states at v = [p+1]/[2p+ 1] have one downstream
mode and p upstream modes''”. The effect of the up-
stream modes on the thermal conductance depends on
the edge length L in comparison with the equilibration
length £ on which the energy exchange between the up-
stream and downstream modes is significant!44242:249,
If L <« &, the thermal conductances of the n, up-
stream modes and the ng downstream modes add up:
k = (ny +ng)koeT. This can be understood by observing
that (n, + ng) noninteracting modes emanate from each
of the two terminals, maintained at different tempera-
tures (Fig. 16). A long edge reaches thermal equilibrium
so that k = |n, — ng|keT. The absolute value sign arises
because heat can only flow from the hotter terminal to
the colder terminal. For n, # ng, thermal equilibrium
at the temperature of the majority modes is established
on the length scale ~ £. At n, = ng the approach to
the equilibrium is slow?*? and the thermal conductance
k ~&/L. At low T, the equilibration length is predicted
to diverge as a power of the temperature?*?.

Thermal transport in non-Abelian liquids is qualita-
tively similar to the Abelian case. The integer num-
bers n, and ng should be substituted with the com-
bined central charges of the upstream and downstream
modes??130, Those central charges are not integer in gen-
eral. In particular, a Majorana edge mode contributes
k0T /2 to the thermal conductance. This can be under-
stood by interpreting a real Majorana fermion mode as
half of a complex Dirac fermion mode that can be present
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FIG. 16: One downstream and two upstream modes are shown
on each edge. The modes, emanating from the left terminal,
have the temperature 7. The modes, emanating from the
right terminal, have the temperature T+ AT.

on Abelian edges and carries the central charge cp = 1.
Indeed, a complex fermion W can be represented as the
combination ¥p = ¥y + ¥y of two real fermions with
¥y = Ul and ¥, = U,

Since the FQH effect is observed at low tempera-
tures, the relevant heat currents are low and challenging
to measure. An ingenious approach was introduced in
Ref. 250 in an experiment in the integer quantum Hall

effect. The current I = GV enters the central float-
ing contact (Fig. 17) from a biased source. The cur-
rents I/N leave the contact along N arms. The dis-

sipated Joule heat Q@ = [GV? — NG(V/N)?]/2 raises
the temperature T,,, of the central floating contact and
is carried away along the edges of the n arms, so that
Q = N[T,,x(T)) — Tok(To)] /2, where Ty is the temper-
ature of the cold contacts. s can be found after T, is
determined from the current noise. A possible phonon
contribution to the heat escaping the central floating ter-
minal can be eliminated with a subtraction trick?>°. The
success of the experiment depends on how fast charge
leaves the central floating contact. For a short dwell
time, full equilibration cannot be achieved and the ther-
mal conductance cannot be measured correctly44:251,2562,

Our discussion so far has ignored heat losses from the
edge to the bulk by phonons or other possible processes,
which can contribute at finite temperatures. Such pro-
cesses do not appear to be a major issue in current ex-
periments. For a theoretical discussion of bulk losses, see
Ref. 253.

Using an adaption of the above geometry, Banerjee et
al. measured the thermal conductance at several frac-
tionally quantized states in GaAs, finding the results?*2
k= koT at v =1/3 and 3/5, and k = 2koT at v = 4/7,
consistent with theory. The thermal conductance at
v = 2/3 remained relatively far from the equilibrated
value as expected, since there is one upstream mode and
one downstream mode a that filling factor. A recent ex-
periment on graphene?*3 measured s ~ 2koT at v = 4/3,
in agreement with theory.
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FIG. 17: The current from source S partitions in the central
floating contact into N = 4 currents along the N = 4 arms of
the device.

The second Landau-level filling factors 7/3, 5/2, and
8/3 in GaAs were explored in a different sample from the
one used for the states of the first Landau level'2. The
observed x = 2.96k0T" at v = 7/3 is consistent with the
Laughlin topological order: two units of thermal conduc-
tance come from two integer edge modes and one more
unit comes from one fractional edge channel. The ob-
served thermal conductance was 2.19x07 at v = 8/3.
The topological order at v = 8/3 is expected to be the
same as at the filling factor 2/3. The predicted equilib-
rium thermal conductance is Kineor = 2k07 for an infinite
edge. Indeed, the edge contains two downstream integer
edge channels, and one downstream and one upstream
fractional channels. The difference between the theoreti-
cal and experimental thermal conductances is similar to
the case of v = 2/3. This can be understood by observ-
ing that two of the downstream channels interact only
weakly with the remaining downstream and upstream
channels'#*,  We first observe that the overall charge
mode is much faster than the rest of the modes in the
second Landau level'*4. Thus, its excitations leave the
system before they can exchange energy with the rest
of the edge channels on a realistic finite edge. Besides,
the integer spin mode is only weakly coupled with the
other modes'*. Thus, the thermal conductance contains
three independent contributions: one quantum from the
charge mode, one quantum from the spin mode, and the
contribution of the remaining downstream and upstream
modes. The latter contribution is subject to strong finite-
size corrections just like at v = 2/3.

The observed thermal conductance at v = 5/2
is (2.53 £ 0.04)koT at higher temperatures and
grows rapidly at low temperatures.  Both proper-
ties are consistent with the non-Abelian PH-Pfaffian

order'*2%  but the interpretation of the data is still
debated44:184,254-257

To finish this section, we note that Ref. 258 proposes
an experiment with shot noise induced by a temperature
gradient in a quantum point contact.



B. Upstream modes

Thermal conductance experiments cannot distinguish
a state with n downstream modes and no upstream
modes from a state with n+m downstream modes and m
upstream modes, under conditions where energy is equi-
librated between different modes on an edge. Thus, it
is helpful to supplement thermal transport experiments
with a tool for detecting upstream modes. Several setups
have been used for that purpose. Fig. 18 illustrates an
early theoretical proposal?>?. Upstream neutral modes
carry no current but they can carry energy. Charge tun-
neling from source S at QPC1 induces Joule heat that
is carried upstream to QPC2. A thermoelectric effect
generates excess current noise in drain D and reveals the
presence of upstream neutral modes. The role of QPC1
can also be played by a hot spot?6® at an ohmic contact.
Much of the early theoretical work?®® was focused on the
states of the 16-fold way at v = 5/2. See Ref. 261 for the
application of a version of the setup?®® to Read-Rezayi
states.

FIG. 18: Charge tunnels into the edge from source S at QPC1.
The upstream neutral mode (dashed line) carriers energy to
QPC2. Non-equilibrium noise is generated in drain D at
QPC2.

Experimental probes of upstream neutral modes are
well established now. Topologically protected upstream
modes were observed at the filling factors 2/3 and 3/5
in the first Landau level?*4262 in agreement with theory.
No evidence of an upstream mode was seen?%3 at v = 7/3
in agreement with a Laughlin order at that filling factor.
An upstream mode was found at v = 8/3, as it should
be for a particle-hole conjugate state of the 7/3 liquid.
An upstream mode has also been detected?*4203 at v =
5/2 in agreement with the anti-Pfaffian and PH-Pfaffian
models.

The above experiments deal with relatively long edges
of several tens of microns. At the scale of microns, evi-
dence of upstream modes was seen?04:26% at v = 1/3 and
v = 4/3 even though no topologically protected upstream
mode is expected at those filling factors. This can be un-
derstood as an example of edge reconstruction'?'. The
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reconstructed upstream modes do not survive on longer
edges since inter-channel tunneling localizes them. Topo-
logically protected modes are always delocalized. The de-
pendence of the upstream noise on the length of the edge
is addressed theoretically in Refs. 266,267 and experi-
mentally in Ref. 268. Ref. 269 demonstrates the lack of
thermal equilibration between contra-propagating modes
in a small sample.

A very recent experimental development consists in
probing upstream modes on interfaces of different filling
factors?™. Several other approaches have been proposed
theoretically for the detection of neutral modes. Much at-
tention has focused on Coulomb blockade physics?”* 273,
which is closely related to the interferometry ideas ad-
dressed above. Other proposals include the use of mi-
crowave absorption?’* and a proposed experiment to
use a quantum dot transport to distinguish FQH states
from their particle-hole conjugates®”™®. Neutral modes
could be detected with momentum resolved tunnel-
ing into the edges?"® 278, but this technique requires
very weak disorder. The same limitation applies to a
proposal?™ to probe topological order by measuring the
Hall viscosity?®°.

C. Thermoelectric transport

In the Seebeck effect, a gradient of the electric po-
tential builds in response to a thermal gradient. The
strength of the effect is measured by the Seebeck coeffi-
cient Q@ = —VQ/VT. In a uniform FQH system, under
conditions where energy is equilibrated more rapidly than
momentum is transferred to impurities, the Seebeck co-
efficient should reflect?*® the entropy per charge carrier:

Q= _S/(6N6>7 (68)

where S and N, are the entropy density and the electron
density. For a non-Abelian FQH state with a small num-
ber of well-separated localized quasiparticles, the entropy
at low temperatures should be determined?*® by the num-
ber K of states at the fixed positions of quasiparticles.
The latter number depends on the number of the quasi-
particles N, and their quantum dimension d, K ~ dNa.
The number Ny is controlled by the magnetic field. Thus,
a measurement of the Seebeck coefficient @ ~ N,logd
reveals the quantum dimension of non-Abelian anyons.

The existing experimental data?4%28! are limited.
Qualitative agreement with the theory for non-Abelian
states of the 16-fold way was reported®® at v = 5/2, but
more work is needed before the data are understood.

Related theoretical ideas are explored in the papers
282-284. See Ref. 285 for a proposal of a thermoelectric
probe of neutral edge modes.

The thermoelectric technique differs profoundly from
all the approaches addressed in the previous sections ex-
cept the single-electron-transistor probe of anyon charges
(Section III.B). Indeed, all those proposed and imple-
mented probes of fractional charge and statistics involve



edge physics. On the other hand, thermoelectric trans-
port occurs in the bulk. Thus, this technique should be
insensitive to the complications of edge physics (see the
next subsection). We note that it has also been suggested
to use a scanning tunneling microscope for a bulk probe
of anyon statistics?®®. Another proposed bulk probe in-
volves Raman scattering?®”:288. See Refs. 289,290 for a
discussion of a probe with mobile impurities.

D. Tunneling

It was predicted long ago that the tunneling conduc-
tance through a weak link of two FQH liquids follows
a universal power dependence G; ~ T29~2 where g,
depends only on the topological order''”. A similar be-
havior, G; ~ T?94~2 with a universal q,, was predicted
for weak quasiparticle tunneling between two edges of an
FQH system!!'7. These predictions were based on the
chiral Luttinger liquid model.

Early results?”! on electron tunneling at v = 1/3
were consistent with the theoretical expectations for
ge- Yet, at other filling factors a puzzling dependence
ge ~ 1/v was observed?2. This does not agree with the
theory2?3:294. Note that edge reconstruction was pre-
dicted to occur in experimental samples??5:296, See Ref.
247 for a review.

Later experiments focused on quasiparticle tunnel-
ing. The observed g, is typically greater than the
predictions''®. Three mechanisms beyond the chiral Lut-
tinger liquid model were introduced to explain the dis-
crepancy: edge reconstruction'!®, long-range Coulomb
forces between segments of the edge!?, and 1/f noise
and dissipation®®. It is possible that a combination of
mechanisms is at play. Thus, tunneling experiments only
yield an upper bound on g, and provide limited infor-
mation about topological order'®®. This probably ex-
plains the difficulties in the interpretation!”? 174297 of
the quasiparticle tunneling experiments at v = 5/2. Dif-
ferent ideal theoretical g, are predicted for different states
of the 16-fold way. The observed g, has also differed
in different experiments!”2 174297, Data from differ-
ent samples and even from the same sample at different
gate voltages were interpreted in terms of several differ-
ent states of the 16-fold way. However, the tunneling
exponent g, was found to change continuously with the
gate voltage at the gates that form the tunneling con-
tact. The observed values were consistent with an upper
bound on the ideal theoretical value for the Pfaffian and
PH-Pfaffian orders'6°.

Tunneling data were used to extract both the tunneling
exponent g, and the quasiparticle charge!™ 174297 at 1 =
5/2 from a fit to a theoretical I —V curve. The confidence
intervals are elongated ovals in the g,-charge plane and
hence the uncertainty in both quantities is high. At the
same time, the quantized quasiparticle charge is known
independently. Fitting for g, at a fixed charge reduces
error bars.

34

Note, finally, that tunneling noise was proposed as an-
other probe of non-Abelian statistics?8.

IX. CONCLUDING REMARKS

Quantum mechanics textbooks usually state that only
two types of quantum statistics are possible: Fermi and
Bose. The argument goes as follows. For two indis-
tinguishable particles, there is no way to tell the con-
figuration with particle 1 in point r; and particle 2 in
point ro from the configuration with particle 1 in point
ro and particle 2 in point r;. Thus, the probabilities
of the two configurations P(ri,rs) = [i(r1,r2)? and
P(ry,r1) = |{(ra,11)|? must equal. Hence, the particle
exchange generates a phase change in the wave-function:
P(r1,ra) = 0i(ra,r1), where |§| = 1. After two particle
exchanges, one finds

P(ry,ra) = 0*9(ry,12) (69)

so one must have § = £1. The plus sign describes bosons
and the minus sign describes fermions.

The argument might look convincing but it contains
multiple loopholes. First, it may not be necessary for
the wave-function to be single-valued, as is implicitly as-
sumed in Eq. (69). Alternatively, the wave function does
not have to depend just on the positions of the particles
but may depend on how the system reached a particu-
lar configuration. In other words, a single-valued wave
function may be defined not on the configuration space
but on the Riemann surface whose points are equiva-
lency classes of trajectories in the configuration space.
Besides, 6 does not have to be a number but may be a
unitary operator, if the Hilbert space associated with a
fixed set of particle positions is multidimensional. This
last loophole opens the particularly interesting possibility
of non-Abelian statistics.

The loopholes have some surprising
consequences???3% in 3D, but it is in 2D where
things become truly exciting, as systems with anyons,
particles with fractional statistics or mnon-Abelian
statistics, are mathematically possible.

But, physics is an experimental science, and the the-
ory of anyons is only relevant, if anyons exist in nature.
Fortunately, observation of the fractional quantized Hall
effect makes their existence an almost mathematical cer-
tainty. Indeed, fractional quantization of the Hall con-
ductance in appropriate systems is well established ex-
perimentally. As explained in Section II, such fractional
quantization of the Hall conductance in an insulator nec-
essarily entails the existence of fractional charges, and
fractional charges entail fractional statistics.

Yet, general arguments do not tell us everything we
might want to know about the particular anyons that
might occur in a given quantum Hall system. The quan-
tum number v obtained from a measurement of the Hall
conductance sets constraints on the possible charges and



statistics of the elementary quasiparticles hosted by the
FQH state, but it does not completely determine them.
Moreover, general arguments do not tell us whether indi-
vidual anyons, or small collections of them, will be man-
ifest in any practical experiment.

For a long time, our knowledge about fractional charge
and statistics was derived in a rather unsatisfactory way.
First, theoretical predictions were made based on as-
sumptions about the nature of the ground state in an
observed FQH state. Second, numerics on small idealized
systems would verify some of the theoretical predictions,
most importantly, the form of the ground-state wave
function. Third, some experimental data would show
agreement with some aspects of numerics, such as the
spin polarization. This would be interpreted as a proof
of the theoretical picture. Such evidence is inevitably
indirect and not always reliable. For example, there re-
main persistent discrepancies between calculated energy
gaps and the activation gaps measured in experiments.
Although these discrepancies have been attributed to ef-
fects of disorder, theoretical attempts to understand the
precise manner in which impurities affect the measure-
ments have only been partially successful.30!

The last decade of the twentieth century saw a break-
through in the detection of fractional charges. The
shot noise technique proved particularly fruitful (Sec-
tion III.A). A clear direct evidence of fractional statis-
tics had to wait until very recently. While promising
interferometric results for fractional statistics in FQH
states at v = 1/3 and v = 2/5 were published more
than a decade ago,’®°!, interpretation of those data has
proved challenging. Similarly, though promising interfer-
ometry results™ concerning non-Abelian statistics were
published some ten years ago at v = 5/2, there have been
questions about the interpretation of those data, partic-
ularly because of the very small interferometer area in-
ferred from the experiments.

In 2020, a clear direct observation of the anyonic sta-
tistical phase in interferometry at ¥ = 1/3 has finally
arrived”®. Another achievement of 2020 is the implemen-
tation of an anyon collider’™ at v = 1/3. Although the
relation of these experiments to fractional statistics may
not be direct, the experiments do probe effects of colli-
sions between pairs of diluted anyons, where fractional
statistics is an essential ingredient. Results presented in
2019 of improved interferometer experiments at v = 5/2
and 7/2, using a large number of samples, have confirmed
the previous measurements on this system, and give ad-
ditional support to the existence of particles with Ising-
type non-Abelian statistics in these states. Our under-
standing of interferometer experiments has increased as
we have seen that one should distinguish measurements
where the central region is in an incompressible state,
with at most a few localized quasiparticles, and the more
usual situation, where there are many quasiparticles in
the system, which can enter and leave on a laboratory
time scale as parameters such as the magnetic field and
gate voltages are varied.
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Probing potentially non-Abelian states on fragile
plateaus of the second Landau level is certainly chal-
lenging. Yet, the distinction between non-Abelian and
Abelian statistics is more dramatic than the distinc-
tion of Abelian fractional statistics from the Fermi and
Bose statistics. This opens a way for probes that would
demonstrate the existence of non-Abelian statistics even
though they would not allow distinguishing Abelian
anyons from fermions. One such probe is thermal con-
ductance (Section VIII.A). Remarkable evidence of non-
Abelian statistics at v = 5/2 came from a thermal con-
ductance experiment'3? in 2018

The main focus of the experimental work on anyonic
statistics has been on the simplest Abelian and non-
Abelian filling factors 1/3 and 5/2. We eagerly await
extension of the recent experimental breakthroughs to
other filling factors. As this review shows, there is no
lack of theoretical proposals to detect fractional statis-
tics, and the ball is in the experimentalists’ court. Yet,
there is much work for theory too, since the interpretation
of the data is often challenging. Major puzzles surround
key probes, such as Fabry-Perot interferometry. For ex-
ample, it has been found that Fabry-Perot interferometry
exhibits an enigmatic pairing effect at certain integer fill-
ing factors392:303, Until that effect is understood, it is
hard to be confident in the interpretation of FQH data.

Almost all probes that have been proposed or imple-
mented are based on edge physics. This is not surprising,
since edges dominate transport and it is easier to access
and manipulate the edges than the bulk. Yet, fractional
charge and statistics are defined in the bulk. The success
of edge probes hinges on the bulk-edge correspondence
hypothesis (see Section V.B). It is noteworthy that mea-
surements of fractional charge in puddles far from the
edge of a sample have been successfully carried out us-
ing single electron transistors as charge sensors.*4%, Tt
would be highly desirable to also implement bulk probes
of fractional statistics that would not rely on bulk-edge
correspondence. Such probes must be robust to the ex-
istence of compressible islands in the bulk.

The focus of this review has been on the FQH effect
in solids. At the same time, similar physics involving
fractional statistics is possible in other settings, including
cold atoms!304,

Recent experiments, particularly at v = 1/3, produce
direct support for a theoretical picture, developed almost
four decades ago. Yet, other recent experiments on quan-
tum Hall systems have produced major surprises. Based
on the history of the field, we may expect to see many
new surprises, whose influence will likely extend well be-
yond the FQH effect.
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