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Data-Driven Decomposition
Control to Output Tracking With
Nonperiodic Tracking–Transition
Switching Under Input Constraint
This paper is concerned with solving, from the learning-based decomposition control
viewpoint, the problem of output tracking with nonperiodic tracking–transition switching.
Such a nontraditional tracking problem occurs in applications where sessions for track-
ing a given desired trajectory are alternated with those for transiting the output with
given boundary conditions. It is challenging to achieve precision tracking while main-
taining smooth tracking–transition switching, as postswitching oscillations can be
induced due to the mismatch of the boundary states at the switching instants, and the
tracking performance can be limited by the nonminimum-phase (NMP) zeros of the sys-
tem and effected by factors such as input constraints and external disturbances. Although
recently an approach by combining the system-inversion with optimization techniques
has been proposed to tackle these challenges, modeling of the system dynamics and com-
plicated online computation are needed, and the controller obtained can be sensitive to
model uncertainties. In this work, a learning-based decomposition control technique is
developed to overcome these limitations. A dictionary of input–output bases is con-
structed offline a priori via data-driven iterative learning first. The input–output bases
are used online to decompose the desired output in the tracking sessions and design an
optimal desired transition trajectory with minimal transition time under input-amplitude
constraint. Finally, the control input is synthesized based on the superpositioning princi-
ple and further optimized online to account for system variations and external disturb-
ance. The proposed approach is illustrated through a nanopositioning control experiment
on a piezoelectric actuator. [DOI: 10.1115/1.4053763]

1 Introduction

Output tracking with nonperiodic tracking–transition switching
appears in various applications, ranging from manufacturing (e.g.,
wielding operation) [1], robotic operation (e.g., noncontact-to-
contact transition) [2], nanoscale measurement and manipulation
to telesurgery [3]. In these applications, precision tracking of an
operation-specified desired trajectory (e.g., follow the given part
contour as in robotic wielding operation) is immediately followed
and alternated by transition of the output between different posi-
tions in a nonperiodic manner (e.g., transit the welding head from
one location to another as in robotic welding operation). Chal-
lenges arise as postswitching oscillations of the output can be
induced by the tracking–transition switching, the tracking preci-
sion can be limited by the nonminimum-phase (NMP) dynamics
of the system, and the operation efficiency in minimizing the total
operation time can be confined by constraints such as the input
amplitude. These challenges, however, have not yet been
addressed efficiently and robustly and thereby motivate this work.

Limitations exist in current techniques developed for transition-
involved output tracking. For example, the problem might be
approached by treating and solving the output transition involved
as an optimal state transition problem (e.g., Ref. [4]). The solution
obtained, however, might be nonoptimal for output tracking and
does not lend itself to track the desired trajectory after the transi-
tion [5]. Although output tracking after the transition might be
addressed by using the input shaping technique [6] or the optimal
output transition (OOT) technique [5], only can some simple and

special cases be accommodated—either the after transition output
needs to be maintained at a constant value [6] or the
tracking–transition switching needs to be periodic [7]. Particu-
larly, although the input energy is minimized in the OOT
approach, the optimal transition trajectory obtained can be highly
oscillatory when the system dynamics is lightly damped [7].
These issues have been tackled through the developments a multi-
objective two-norm optimization scheme [8] or an inversion-
based OOT technique [9]. In these techniques, however,
constraints such as the input amplitude and optimization such as
the minimization of the transition time have not been considered.
Such a constrained optimization problem has recently been
addressed in the stable-inversion framework through a multi-
objective optimization approach and solved using an improved
conjugate gradient technique [10]. It is shown that an optimal
smooth output trajectory along with the corresponding control
input can be obtained. Not only is smooth tracking–transition
switching without postswitching oscillation ensured, but also the
total transition time is minimized under the input (amplitude and
energy) constraints [10]. Practical implementation of this tech-
nique, however, faces issues arising from the online computation
being demanding and the control input obtained being sensitive to
system dynamics variations. These critical issues related to effi-
ciency and robustness require further investigation of this
problem.

In this work, we propose a data-driven decomposition-based
approach to achieve both time-minimal, input-constrained optimal
design of the output transition trajectory and precision output
tracking across tracking–transition switching. The basic idea is to
decompose the desired output trajectory in both the tracking and
the transition sessions into linear combination of output bases
while taking into account the boundary conditions at the switching
instants, then minimize the transition time under input constraint
through a one-dimensional search algorithm. Then, the control
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input needed is synthesized using the corresponding input bases
based on the superpositioning principle. The input–output bases
are selected from a dictionary constructed a priori via a data-
driven iterative learning control (ILC) technique [11]. Specifi-
cally, by utilizing the modeling-free ILC technique [11,12] along
with B-spline as the output bases [13] in the dictionary construc-
tion, the proposed data-driven approach not only avoids the
dynamics modeling process, but also is efficient in both the offline
learning and the online output decomposition and input synthesis.
Moreover, by using the input–output data to update both the dic-
tionary offline (right before the operation) [12] and the control
input online [14], both the robustness and the performance of the
control are enhanced. This work extends the notion of the decom-
position control [15–18] to input-constrained optimal tracking
with nonperiodic tracking–transition switching. The proposed
approach is illustrated through implementation in output tracking
of a piezoelectric actuator in experiment. In this paper, the
preliminary results reported in a recent conference [19] have been
substantially enriched and strengthened with online adaptive opti-
mization, extension to multiple-input multiple-output (MIMO)
systems, and more complete experimental results.

2 Input-Constrained Optimal Nonperiodic

Tracking–Transition Switching: Problem Formulation

We consider the input-constrained optimal (transition time min-
imal) nonperiodic tracking–transition switching (IC-ONTTS)
problem for a square linear time invariant (LTI) system given by
its state-space model as

_x¼Axþ Bu; y¼Cx (1)

where xð�Þ 2 <n is the state, and uð�Þ 2 <q; yð�Þ 2 <q are the
input and the output, respectively. We assume that

ASSUMPTION 1. System (1) is stable, controllable, observable,
and hyperbolic with a well-defined relative degree r¼
½r1; r2;…; rq� ([20]).

The above hyperbolic assumption (i.e., system (1) has no zeros
on the imaginary axis) is to guarantee the existence and unique-
ness of the control input, i.e., for any given sufficiently smooth
desired trajectory, there exists a unique control input to track the
desired trajectory [21] This requirement can be alleviated by the
right invertibility condition [22].

The NTTS occurs in preview-based output tracking involving
nonperiodic tracking–transition switching, where the future
desired output in a finite amount of preview time Tp<1 is par-
tially specified in the tracking sessions, such that (see Fig. 1):

The number of tracking–transition switching, Ntr , within the
preview time Tp is known, i.e., there are Ntr�1 transition
sessions.

The desired output trajectory in each tracking session Ik;tr is
specified, i.e., ydðtÞ for t 2 Ik;tr¼ðtk;i; tk;f Þ is known for
8k¼1; 2;…;Ntr , and sufficiently smooth, i.e., it is differentiable
up to the relative degree of system (1).

The output boundary condition at each tracking–transition
switching is specified: For any given kth transition session
Ik;tn¼½tk;i; tk;f � (k¼1; 2;…Ntk � 1),

y
ðjÞ
k;dtnðtk;iÞ¼y

ðjÞ
k;dtrðtk�1;f Þ

y
ðjÞ
k;dtnðtk;f Þ¼y

ðjÞ
k;dtrðtk;iÞ

(2)

for j¼1; 2;…; r � 1, where yk;dtrð�Þ and yk;dtnð�Þ are the desired
output in the kth tracking session and the to-be-designed output in
the kth transition session, respectively.

The desired output being smooth in the tracking sessions is
needed to ensure the existence of the control input for exact track-
ing of the desired output—by the stable-inversion theory [21].
Moreover, as the exact-tracking control input is completely deter-
mined by the desired output along with the system dynamics [21],

it is natural to assume that the desired output in each tracking ses-
sion is trackable under the given input-amplitude constraint:

ASSUMPTION 2. For a given Mu<1 and any given kth tracking
session (k¼1; 2;…;Ntr), the desired output yk;dtrðtÞ for 8t 2 Ik;tr

satisfies the condition that the control input uk;dtrð�Þ to exactly
tracking yk;dtrð�Þ has jjuk;dtrð�Þjj1 �Mu.

In practice, the desired trajectories in tracking sessions can be
designed to satisfy the above Assumption 2 without knowing the
system dynamics model (1) explicitly—based on the a priori
knowledge of the system dynamics from, for example, past opera-
tion experience of the system.

For NMP systems, a large-enough preview time is necessary to
ensure the tracking precision—by the stable-inversion theory [21].
We define the lower bound of such a preview time as the effective
preview time Tep (see Fig. 1):

Definition: Effective preview time Tep: For any given e > 0 and
any given desired output trajectory ydð�Þ, the effective preview
time Tep is the amount of preview time such that with uð�Þ¼upð�Þ,
we have jjyð�Þ � ydð�Þjj2 � e, where upð�Þ is the preview-based
inverse control input obtained with Tep [9].

Remark 3. For a given tracking precision (i.e., e in the above
definition), the amount of preview time Tp needed is determined
by the zero dynamics of the system [21] and can be quantified by
the smallest real part of the NMP zeros of the system. In practices,
such a preview time can be estimated experimentally without
knowing the dynamics model (1) explicitly. For example, the
modeling-free inversion-based iterative control (MIIC) technique
[11], a data-driven ILC technique, can be employed to track a
given desired trajectory of a finite support (i.e., finite duration),
and the preview time Tp can be chosen for different tracking preci-
sion by truncating the pre-actuation time of the converged control
input [9].

Thus, we assume that enough preview time exists throughout
the tracking course:

ASSUMPTION 4. At any given time instant tc (see Fig. 1), the
available preview time Tp is at least twice of the effective preview
time Tep, i.e., Tp � 2Tep.

The above assumption holds in practice as the amount of pre-
view time can be adjusted, for example, by extending the transi-
tion time. Moreover, a long enough preview time also ensures that
the input-constrained minimization of the transition time is well-
defined as the inputs for the tracking sessions and the transition
sessions, due to the pre-actuation and postactuation time, are
coupled together.

In the presence of tracking–transition switching, the entire pre-
viewed desired trajectory can be partitioned into

ydð�Þ¼ [
Ntr

n¼1
yn;dtrð�Þ

� �
[ [

Ntr�1

m¼1
ym;dtnð�Þ

� �
;m; n 2N

¢ydtrð�Þ [ ydtnð�Þ
(3)

Fig. 1 Schematic representation of output tracking with non-
periodic tracking–transition switching
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where [ denotes union of two sets. Correspondingly, the control
input can be given as

uTotð�Þ¼ [
Ntr

n¼1
un;trð�Þ

� �
[ [

Ntr�1

m¼1
um;tnð�Þ

� �
¢utrð�Þ [ utnð�Þ

(4)

where un;trð�Þ and um;tnð�Þ are the control input for the nth tracking
and the mth transition sessions, respectively.

Data-driven decomposition control (DD-DC) of IC-ONTTS: Let
Assumptions 1, 2, and 4 hold for the LTI system (1), then the DD-
DC of the IC-ONTTS problem is to use only the input–output data
acquired a priori or in real-time without identifying and knowing
the parameters of the dynamics model (1) to

O1: Design the desired output trajectory in each of the transi-
tion sessions, ym;dtnð�Þ for m¼1; 2;…;Ntr�1, such that the
designed transition trajectory ym;dtnð�Þ satisfies the required
boundary condition in Eq. (2) for m¼1;…;Ntr�1.

O2: Synthesize the control input uTotð�Þ as a linear combination
of the input bases ukð�Þ

uTotðtÞ¼
XNp

k¼1

gkukðtÞ (5)

such that the required tracking precision is reached, i.e.,
with uðtÞ¼uTotðtÞ, we have

jjEyð�Þjj2¢jjyð�Þ � ydð�Þjj2 � e; for 8e > 0 (6)

for any given e > 0 under Assumption 4.
O3: With objectives O1 and O2 satisfied, minimize the total

transition time

min
XNtr�1

m¼1

Im;tn; subject to jjuTotð�Þjj1 �Mu (7)

where jjuTotð�Þjj1¢ supt2< judðtÞj, with Mu the given
threshold of the input amplitude, respectively.

As the value of Mu is user-specified in practice, all the desired
output transitions are reachable. Thus, the above minimization
problem (7) is well-defined—the challenge is how to solve it.
Unlike previous work [10] where the IC-ONTTS problem is
approached in the stable-inversion framework, we seek to obtain,
in this work, a decomposition control approach based on the
superpositioning principle to achieve objectives O1 to O3 above.
Such a superpositioning-based approach aims to not only avoid
heavy online computation but also enhance the robustness against
system dynamics variations.

3 Data-Driven Decomposition Control

We propose to extend the learning-based decomposition
approach [16] to the IC-ONTTS problem. To ease the notation
and simplify the presentation, we present the proposed approach
below for single input single output (SISO) systems—extension to
MIMO systems will be discussed later in Sec. 3.6.

3.1 Data-Driven Construction of Dictionary of Input–
Output Bases. The dictionary is utilized online to both design the
transition trajectory and synthesize the control input. Specifically,
a dictionary consisting of pairs of input–output bases, DB, is con-
structed a priori

DB¼fðuð�; skÞ; bð�; skÞÞ : sk 2 <þ; k¼1; 2; …; NDg (8)

where uð�; skÞ and bð�; skÞ denote a pair of input–output basis at
speed sk, respectively, i.e., the output basis bðt; skÞ is obtained

from an output basis at a prechosen speed b̂ðtÞs (called the base-
speed output basis) via time scale

bðt; skÞ¼ b̂ðt=skÞ; ðsk 2 ð0; 1� : speed factorÞ (9)

and uð�; skÞ is the control input to track bð�; skÞ, i.e., application of
uð�; skÞ to system (1) results in the output tracking error, ybð�; skÞ,
smaller than the given threshold value eB > 0

jjybð�; skÞ � bð�; skÞjj2 � eB (10)

We assume that
ASSUMPTION 5. The base-speed output basis b̂ð�Þ is positive, con-

tinuously differential up to the relative degree of system (1), com-
pacted supported in ½�s1; s2� with s1; s2 > 0 much smaller than
the domain of the trajectory to be tracked, and is maximum at
t¼ 0, i.e., maxt b̂ðtÞ¼ b̂ð0Þ.

This assumption is general and can be satisfied by many types
of bases employed in function approximation (e.g., uniform B-
splines) [23]. Inclusion of output bases at different speeds sks in
the dictionary DB is to optimize the decomposition—select basis
of speed that matches that of the trajectory to be decomposed will
not only reduce the number of bases used but also improve the
tracking precision.

Once the output bases satisfying Assumption 5 are chosen, con-
struction of the dictionary DB is equivalent to obtaining the corre-
sponding input bases uð�; skÞ to attain Eq. (10). We propose to
utilize data-driven iterative learning control techniques [12,24]
such as the MIIC technique [11] to obtain, offline a priori, the
input basis uð�; skÞ for tracking bð�; skÞ accurately (see Eq. (29) in
Sec. 4.2 later). Moreover, it can be shown [25] that only one type
of output (input) bases—one output basis b̂ð�Þ and its time-shifted
copies—is needed in the decomposition (synthesis) process (see
Ref. [25] for the details). Therefore, the offline learning process
can be highly efficient to encompass bases at different speeds, i.e.,
at each speed we only need to learn the tracking of one output
basis, and do so at different speeds sks to construct the dictionary
DB.

The efficacy of the above offline data-driven dictionary con-
struction stems from the tracking precision of the ILCs used. It
can be shown [11] that in the presence of random output disturb-
ance and noise, precision tracking of the output bases can be
achieved by using the data-driven ILCs like the MIIC technique
without having a parameterized system dynamics model (1). The
efficacy of the data-driven ILCs has been experimentally demon-
strated [11]—tracking error around noise level has been achieved
in experiments for complicated trajectories such as a band-limited
white noise [11].

3.2 O1: Transition Trajectory Design Via Decomposition.
To design the transition trajectory in any given kth transition ses-
sion (k¼1; 2;…;Ntr) in the previewed window, we first decom-
pose the desired trajectory in the preceding kth and the following
ðk þ 1Þth tracking session by using the output bases bðt; skÞ
selected from the dictionary DB (see Eq. (8)). This decomposition
is needed such that the boundary conditions (Eq. (2)) are satisfied
in the transition trajectory design, and the input synthesis (see
Eq. (5)) can be obtained via the superpositioning principle.

The desired trajectory in the adjacent tracking sessions can be
decomposed as

yi;dtrðtÞ �
XMiþq

j¼Ni�p

gjbðt� jWsk
; skÞ¢�yi;dtrðtÞ (11)

for i¼k; k þ 1, where, respectively, bðt; skÞ 2Db;Wsk
is the cor-

responding speed s-dependent knot period

Wsk
¼skW0 (12)
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W0 is the base knot period of b̂ðtÞ, and p; q 2N are integer con-
stants determined by the support of the bases bð�; skÞ; ½�s1;k; s2;k�

p¼s2;k=Wsk
¼s2=W0

q¼s1;k=Wsk
¼s1=W0

(13)

In Eq. (13), si;k¼sksi (i¼ 1, 2), and bxc is the floor function (i.e.,
bxc is the largest integer not larger than x 2 <), respectively. As
the desired trajectory in each kth tracking session, in general, has
nonzero boundary values, the decomposed trajectory �yk;dtrðtÞ in
Eq. (11) extrudes to the preceding ðk � 1Þth and the next kth tran-
sition session, called the head- and the tail-extrusion (see Fig. 2),
respectively. Thus, to match the boundary condition (2) in the
transition trajectory design, these head- and tail-extrusions must
be accounted for, and to further avoid the interference to the pre-
ceding and the next tracking session, we assume that

ASSUMPTION 6. The transition session period Ik;tn is no less than
ðpþ q� 1ÞWsk

, i.e.,

min
k

Ik;tn � ðpþ q� 1ÞWsk
; k¼1; 2;…;Ntr � 1 (14)

where p, q, and Wsk
are as given in Eqs. (13) and (12),

respectively.
In practice, this minimal transition time requirement is reasona-

ble as both the knot period, Wsk
, and the normalized support of the

output basis, ½�p; q�, are much smaller than the length of the
tracking sessions Ik;trs.

Then, the transition trajectory in any given kth transition ses-
sion Ik;tn (k¼1; 2;…;Ntr�1) will be designed by incorporating
the head- and tail-extrusions as

yk;dtnðtÞ¼�yk;dtrðtÞ þ �yfp
k;dtnðtÞ þ �ykþ1;dtrðtÞ; t 2 Ik;tn (15)

where �yk;dtrðtÞ for t 2 ½Mk þ ðqk � pk � 1Þ; Mk þ qk� and

�ykþ1;dtrðtÞ for t 2 ½Nkþ1 � pk; Nkþ1 � ðpk � qk � 1Þ� are the

tail- and head-extrusion from the preceding kth and the following
ðk þ 1Þth tracking session, respectively, as specified in Eq. (11),

and �yfp
k;dtnð�Þ is the “free-portion” of the transition trajectory

obtained via decomposition as

�yfp
k;dtnðtÞ¼

XNkþ1�qk�1

j¼Mkþpkþ1

gjbðt� jWs; skÞ; t 2 Ik;tn (16)

where the coefficients gjs can be “freely” designed to meet other
control purposes, for example, to meet objective O3 in this work.
Smoothness of the trajectory designed in Eq. (15) is guaranteed as
all the output bases are smooth, so is their summation [26]. More-
over, by including the bases across the tracking–transition switch-
ing in the transition trajectory design, truncation of the output

bases to match the switching boundary condition [9] is avoided,
and the boundary conditions are satisfied automatically. More-
over, the decomposition coefficients gks in Eq. (16) can be
adjusted and even optimized to reduce and minimize the oscilla-
tion of the designed trajectory in the transition sessions.

3.3 O2: Input Synthesis Via Superpositioning. The decom-
position representation of the desired trajectory in both the track-
ing and the transition sessions implies that the corresponding
input can be obtained via the superpositioning principle of LTI
systems [9]. Thus, to track the desired trajectory in any kth transi-
tion trajectory, yk;dtnð�Þ in Eq. (16), the corresponding control
input uk;dtnð�Þ can be synthesized as

uk;dtnðtÞ ¼uk;dtrðtÞ þ ufp
k;dtnðtÞ þ ukþ1;dtrðtÞ (17)

where uk;dtrð�Þ; ufp
k;dtnð�Þ, and ukþ1;dtrð�Þ are the control input to

track �yk;dtrðtÞ; �yfp
k;dtnðtÞ, and �ykþ1;dtrðtÞ in Eq. (15), respectively,

with the corresponding coefficients gjs given by those used in decom-
posing �yk;dtrðtÞ; �ym

k;dtnðtÞ, and �ykþ1;dtrðtÞ, respectively, and uðt; skÞs
are the input bases corresponding to the output bases bðt; skÞs.

Similarly, the control input for each kth tracking session can be
synthesized as

uk;dtrðtÞ¼
XMkþqk

j¼Nk�pk

gjuðt� kWsk
; skÞ (18)

where the coefficients gi 2 <s are as given in Eq. (11), respec-
tively. Thus, the corresponding control input can be directly
obtained via the superpositioning principle as

uTotðtÞ¼ [
Ntr

k¼1
uk;dtrðtÞ

� �
[ [

Ntr�1

k¼1
uk;dtnðtÞ

� �

¼
XNDþqk

k¼�pk

gkukðt� kWsk
; skÞ

(19)

where, respectively, gks are as those given in Eqs. (17) and (18),
and ND is the total number of knot periods over the entire pre-
viewed trajectory, respectively.

The performance of the above synthesized control uTotð�Þ is
guaranteed by the tracking precision of the output bases and that
at any given time instant t, only few number of output bases are
employed in the decomposition, i.e., at any time instant t, there
are only a handful bases added together—a new output basis is
added only at time instant t¼nWs for n 2 Z. For example, only
three output bases are added at any time instant t when the third-
order uniform B-splines are chosen as the output bases [16]. Thus,
precision tracking can be largely inherited from that of the bases
tracking. Readers are referred to Ref. [16] for the quantification of
the tracking performance of the decomposition control approach.

In the proposed DD-DC approach above, the decomposition-
synthesis operation only occurs at the so-called decomposition
instants [16]—at each decomposition instant tdec, the desired out-
put and the corresponding input are decomposed and synthesized
for time t 2 ½tdec; tdec þ Tp � 2Tpa�, where Tpa is the pre-actuation
time (see Fig. 2). Readers are referred to Ref. [16] for the detail.

Moreover, the tracking performance of the proposed DD-DC of
OIC-NTTC is not limited by the NMP zeros of the system. For
NMP systems, pre-actuation is needed for precision output track-
ing [21]—the tracking error can be rendered arbitrarily small by
having the pre-actuation time (i.e., by applying the control input
ahead of the start of the output early enough) no less than the
effective preview time Tep (see Remark 3). Thus, the transition
trajectory design and the control input synthesis should be con-
ducted ahead with a pre-actuation time of Tep, and the control
input applied becomes

Fig. 2 Decomposition of the desired trajectory in the tracking
sessions, resulting in tail- and head-extrusion into the transi-
tion session, where “D” denotes the decomposition instant (at
which the trajectory decomposition occurs

061001-4 / Vol. 144, JUNE 2022 Transactions of the ASME



�uTotðtÞ¼uTotðtÞ þ uTot;ntðtÞ; t 2 ½tk;dec; tkþ1;dec � TepÞ (20)

where tk;dec denotes any kth decomposition instant, uTotðtÞ is as in
Eq. (19) (called below the current decomposition input), and
uTot;ntðtÞ is the pre-actuation control input (i.e., the synthesized
input obtained from the design and decomposition at the next
decomposition instant).

3.4 O3: Input-Constrained Transition Time Minimization.
The linear combination representation of the desired transition tra-
jectory (11) implies that the transition time is determined by the
support of each output basis bð�; skÞs and the total number of bases
used in the transition trajectory design. Thus, we convert the
input-constrained time-minimization in Eq. (7) to the minimiza-
tion of the knot period Wsk

and the total number of knot periods
involved—under the input-amplitude constraint. More concretely,
the optimal knot period W�sk

and the optimal number of knot peri-
ods F� are sought to minimize the total transition time

min
Wsk

;F�
k

XNtr

k¼1

FkWsk
; such that

jjuTotð�Þjj1 < Mu; with uTotðtÞ¼
XNDþq

k¼�p

gkuðt� kWsk
Þ

(21)

where Fk¼Nkþ1 �Mk þ 1 is the number of knot periods in each
kth transition session, with F¼

PNtr�1
k¼1 Fk. We propose to solve

the above optimization problem sequentially: First, an optimal
knot periods W� is sought offline a priori. Then second, during
online tracking, the optimal knot period W� is selected and used to
minimize the total number of knot periods F via searching.

As the length of the support for the combined output bases, in
general, is proportional to that of each basis, and the tracking pre-
cision achieved in practice, is inverse proportional to the number
of input bases combined at each time instant, the optimal knot
period W� is sought to minimize, under the input saturation con-
straint, the length of the support of the output basis and thereby
the length of both the head- and tail-extrusions and the transition
session Ik;tn. As the length of the output basis support is governed
by the speed factor sk, and the number of input bases added at
each time instant is governed by its settling time (when the type
of basis function has been chosen), we propose to select the opti-
mal knot period W� by minimizing the following “speed
indicator” SW:

min
Wsk

SW¼min
Wsk

k1sk þ k2

Tr

qskU0

� �

¼min
Wsk

k1

Wsk

W0

þ k2

Tr

qWsk

� � (22)

where k1; k2 2 <þ, with k1 2 ð0; 1Þ; k1 þ k2¼1 are the weights,
respectively, and Tr is the rising time of the input basis measured as
the first time instant when the input basis reaches 2% of its maxi-
mal value, respectively. As qWs quantifies the decaying time of the
input to asymptotically approach to zero, qWsk

=Tr provides a mea-
sure of the oscillation and thereby the settling time of the input
basis Wsk

. The weights k1 and k2 can be adjusted to account for the
a priori knowledge of the tracking task (e.g., the estimated fre-
quency spectrum of the desired trajectory in the tracking sessions,
and the tracking precision required) in the above search of optimal
knot period W�. For example, for tracking a relatively high speed
trajectory with high-speed tracking–transition switching, a larger k1

over k2 can be chosen. Whereas a larger k2 over k1 shall be selected
when a smooth input with shorting settling time is preferred.

After the optimal knot period W�, and thereby, the optimal
input–output basis is determined, we propose to minimize the
transition time session by session through a one-dimensional

search. First, as the desired trajectory in each kth transition session
consists of three portions, where the tail extrusion and the head
extrusion are completely determined by the decomposition in the
preceding and the following tracking session, respectively (see
Eq. (11)), each of the kth transition time can be adjusted/reduced
through the design of the free-portion, �yfp

k;dtnð�Þ. Particularly, under
Assumption 2, the input portion for the tail extrusion and head extru-
sion, uk;dtrðtÞ and ukþ1;dtrðtÞ in Eq. (17), respectively, are both below
the saturation threshold. Thus, as the free-portion �yfp

k;dtnð�Þ does not
depend on the boundary condition, �yfp

k;dtnð�Þ can be designed without
altering the boundary conditions—to minimize the transition time,
set �yfp

k;dtnð�Þ¼0 and the corresponding time interval Tk;m¼0. Thus
next, the minimization of each kth transition time amounts to mini-
mizing the total number of knot periods of the preceding tail extru-
sion and the following head extrusion, by overlapping these two
portions in time (see Fig. 2) under Assumption 6.

We propose an online one-dimension search algorithm such as
the bisection search (see Algorithm 1 below) to reduce the total
number of knot periods until the constraints are reached. Other
search algorithm such as the Fibonacci search algorithm [23] can
also be employed. As a modeling-free approach, this search algo-
rithm also does not require identifying the model (1). The pro-
posed approach can be easily extended to consider other
constraint such as limited input energy (i.e., jjuTotð�Þjj2 < Mu) or
limited input-energy and amplitude combination (i.e.,
kujjuTotð�Þjj2 þ ð1� kuÞjjuTotð�Þjj1 < Mu with ku 2 ð0; 1Þ a con-
stant), by using the corresponding bound in the above one-
dimension search. Moreover, the proposed approach can also be
extended to optimize the input (e.g., minimal input energy) for a
given transition time, through the design of the free-portion of the
transition input ufp

k;dtnð�Þ in Eq. (17).

Algorithm 1 Input-constrained time-minimal transition trajec-
tory design via bisection search

1: Initialization: k 1,
2: for k¼1 : Ntr � 1 do

3: Decompose the kth and kþ 1th tracking sessions by using the
selected output element bðt; s�kÞ corresponding to the optimal
knot period W�; Obtain the decomposition coefficients gks for
k¼Nk; Nk þ 1;…; Mkþ1;

Set the initial search index as the prechosen transition session period:
a 0; b bTk;tr=W

�c;
4: while a< b do

5: Obtain the total number of independent decomposition knot
periods: Sk  bðaþ bÞ=2c;

6: Obtain the starting index of the kþ 1th transition:
Nkþ1  Mk þ Sk þ pþ qþ 1; � Probably no need to
mention

7: Obtain the corresponding input uk;dtn via Eq. (17) with coeffi-
cients gks for k¼Nk; Nk þ 1;…; Mkþ1;

8: if supðuk;dtnÞ > Mu then

9: a bðaþ bÞ=2c
10: else if N is odd then

11: b bðaþ bÞ=2c
12: end if

13: end while

14: end for

3.5 Online Adaptation and Optimization. Finally, to further
improve the robustness of the synthesized input against random
disturbances (e.g., measurement noise, external disturbances, and
rapid and/or nonlinear variations of the system dynamics), we pro-
pose an online moving-horizon input optimization. Similar to the
idea explored in Ref. [16], we introduce a tuning factor ci into the
synthesis of the control input, i.e., the decomposition coefficients
gis in Eq. (19) are now replaced as gi þ ci instead—We consider
the current decomposition input uTotðtÞ as in Eqs. (19) and (20) at
any given time instant t between any two given decomposition
instants, t 2 ðtk;dec; tkþ1;decÞ
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uTotðtÞ¼
XNW

j¼1

ðgj þ cjÞujðt� jWsk
; skÞ (23)

where the total number of input bases NW depends on the output
bases employed (e.g., when the third-order uniform B-splines are
used as the output bases, NW¼4), and the following cost
function:

LC¼
ðt

tk;dec

ðyðsÞ �
XNW

j¼1

ðgj þ cjÞbjðs� jWsk
; skÞÞ2ds (24)

where y(t) is the measured output, and

C¼½c1 c2;…; cNW
�T

Then, the optimal C� that minimizes LC can be readily obtained
via the least-mean square minimization method.

3.6 Extension to MIMO Systems. Finally, we briefly discuss
the extension of the above DD-DC approach to IC-ONTTS to
MIMO systems. Mainly the extension requires minor modification
in the offline dictionary construction—the online decomposition
and synthesis can be conducted separately for each output channel
and thereby reduced to the SISO case.

For MIMO systems, the dictionary DB now becomes

DB¼fðuið�; skÞ; bð�; skÞÞ : i¼ 1; …; q; k¼ 1; …; NDg
with

bið�; skÞ¼ ½0 � � � bð�; skÞ � � � 0�T; for i¼ 1; 2; …; q

(25)

where in each output basis bið�; skÞ, only one output basis bð�; skÞ
appears in the ith output channel, and uið�; skÞ is the corresponding
input basis—in general uið�; skÞ 2 <q	1 contains nonzero input in
multiple input channels due to cross-axis coupling.

The above dictionary DB Eq. (25) can also be constructed by
using the data-driven ILCs like the MIIC technique above by tak-
ing the cross-coupling between input–output channels into
account. For example, the cross-coupling effect can be accounted
for by using the MIIC technique to learn the input–output pair
iteratively: (I) Learn the input of the ith channel for each ith out-
put base bið�; skÞ in Eq. (25), and record the coupling-caused out-
put in other channels, yc

b;jð�; skÞ for j¼1;…; q and j 6¼ i. (II) Learn
the input for tracking the opposite coupling-caused output in other
channels �yc

b;jð�; skÞ for j¼1;…; q and j 6¼ i by using the MIIC
technique, and record the combined coupling-caused output in the
ith channel, yc

tot;ið�; skÞ. (III) Learn the ith-channel input for the
updated output bases bið�; skÞ � yc

tot;ið�; skÞ. Steps (II) and (III) can
be iterated if needed to improve the accuracy (in practice, only
few iterations are needed).

Online implementation of the proposed approach for MIMO
systems is almost the same as that for SISO systems. The
decomposition-based transition trajectory design, the desired tra-
jectory decomposition, and the input synthesis are conducted sep-
arately for each input–output channel, and the synthesized inputs
(of each channel) are then applied simultaneously in parallel (i.e.,
by following the same time order). Compensation for the cross-
coupling effect is ensured by the superpositioning principle: The
cross-coupling-caused outputs are eliminated when applying the
input bases uið�; skÞ 2 <q	1 (to each input channel simultane-
ously) to precisely track the corresponding output bases bið�; skÞ in
Eq. (25) and thereby are also eliminated when the synthesized
input is applied—by the superpositioning principle. Also, this
decoupled decomposition and synthesis scheme to MIMO systems
also implies that each subsystem can have different input-
amplitude constraint and the same approach can be applied.

Therefore, with minor changes, the proposed DD-DC approach is
extended to MIMO systems.

4 Experiment Implementation

4.1 Experiment Setup. We demonstrated the proposed
approach for output transition/tracking by implementing it to a
piezoelectrical actuator for lateral scanning (x–y axes direction)
on an atomic force microscope (FastScan, Bruker Nano, Inc.,
Santa Barbara, CA). The output tracking with nonperiodic
tracking–transition switching studied in this experiment mimicked
that appearing in applications such as nanomanipulation and nanoma-
nufacturing. All the control algorithms were coded and implemented
through MATLAB (Mathworks Inc.) software environment along with a
data acquisition system (PCI6259, National Instruments Inc.), at a
sampling frequency of 20 kHz.

4.2 Implementation of the Proposed Data-Driven Decom-
position Control Approach. Implementation of the proposed
approach consisted of offline dictionary construction and optimal
bases selection, and online desired tracking trajectory decomposi-
tion, transition trajectory design, and input synthesis.

Offline B-spline-based dictionary construction: Uniform
B-splines were chosen as the output bases in the dictionary DB,
where the output basis b̂ð�Þ was given by the third-degree B-
spline obtained recursively via

Bk;j tð Þ¼ t� tk

tkþj � tk
Bk;j�1 tð Þ þ tkþjþ1 � t

tkþjþ1 � tkþ1

Bkþ1;j�1 tð Þ; j¼1; 2; 3ð Þ
(26)

where tk¼kW0; and initially (27)

Bk;0¼
1; tk � t < tkþ1

0; otherwise

(

where the base-speed output bases are given as

B̂ðtÞ¢B0;3ðtÞ; t 2 ½�2W0; 2W0� (28)

Knot period of W0¼5:0 ms for the base output bases B̂ð�Þ was
chosen based on the desired output in the tracking sessions. Then,
by setting s¼2; 2:5; 5; and 10 in Eq. (9), output bases at four dif-
ferent speeds were also obtained via Eq. (9) and used to construct
the dictionary DB. These five speeds of input–output pairs were
chosen as they covered the dynamic range of the desired output
considered in this experiment and provided a good balance
between the optimization of the decomposition (i.e., reducing the
number of bases used) and the time and efforts needed in diction-
ary construction via ILCs. The corresponding input bases Ûð�; skÞ
(k¼1; 2; 3; and 4) were obtained by using the following MIIC
technique [11] offline a priori:

Û1 jx; skð Þ¼kdcB jx; skð Þ

Ûnþ1 jx; skð Þ¼ Ûn jx; skð Þ
yn jx; skð Þ B jx; skð Þ

(29)

where Bðjx; skÞ is the Fourier transform of the output basis
Bð�; skÞ; Ûnðjx; skÞ and ynðjx; skÞ are the control input and the
corresponding output obtained in the kth iteration, and kdc is a pre-
chosen constant (e.g., the inverse of the DC-gain of the piezo actu-
ator, respectively). The convergence was reached in three to five
iterations when tracking each of the output bases. The five pairs of
input–output bases obtained are shown in Fig. 3.

Offline optimal bases selection: To minimize the total transition
time while accounting for the input threshold limit, the optimal
input–output pair to be used was identified first, as described in
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Sec. 3.4. k1¼k2¼0:5 were selected in Eq. (22) to equally weight
the “speed” of the bases and the corresponding input amplitude in
the optimization. Then, the speed indicator SW was computed via
Eq. (22). As shown in Table 1, among the five knot periods
employed, the speed indicator SW was smallest at Ws¼2:5 ms.
Thus, the optimal knot period of W�¼2:5 ms was selected.

4.3 Transition Design and Trajectory Tracking Results.
Next, the selected optimal input–output element (corresponding to
the optimal knot period W�) was used in the online trajectory
design and tracking with nonperiodic tracking–transition switch-
ing. The desired trajectory consisted of four tracking and three
transition sessions in between to be designed, as shown in
Fig. 4(a). With the support of the entire trajectory at 
200 ms, the
preview time was set at 100 ms.

Two different speeds of tracking were tested and examined in
the experiment, where two different speed factors at sk¼0:25 and
sk¼0:5 were selected for the relatively slower and faster tracking
(corresponding to the total tracking time of 300 ms and 200 ms),
respectively. The decomposition of the tracking sessions and the
design of the transition sessions at the speed factor sk¼0:5 are
shown in Fig. 4, where the desired tracking sessions and the
designed transition sessions are shown in Fig. 4(a), respectively,

and the decomposition error is shown in Fig. 4(b). Then, the
obtained desired trajectory was tracked by using the synthesized
input. To compare the tracking performance, we also applied a
conventional PI feedback controller to track the same designed
trajectory, where the control parameters were well tuned experi-
mentally at Kp¼0:42 and KI¼35, respectively, resulting in a
closed-loop bandwidth at 
120 Hz. The tracking results obtained
are compared in Figs. 5(a) and 5(b) for sk¼0:5 and sk¼0:25,
respectively.

The experimental results showed that the decomposition-caused
error was extremely small (nearly 4 orders of magnitude smaller
than the trajectory) and can be ignored (see Fig. 4(b)). The track-
ing results showed that by using the proposed approach, smooth
transition trajectory design and tracking was achieved. The
designed desired trajectory in the transition sessions was smooth,
particularly cross the tracking–transition switching instants
(Fig. 4(a)). The tracking results, as presented in Fig. 5, clearly
showed that by using the proposed technique, precision tracking
was maintained over the entire course. Whereas the tracking error
was pronounced when using the well-tuned PI controller. At the
relatively slow tracking at sk¼0:5, the relative RMS tracking
error and the relative maximum error were at 0.90% and 3.5%,
respectively, over 3.5 times and 2.5 times smaller than those
obtained by the PI controller, respectively. Such a precision track-
ing was maintained as the speed increased (at sk¼0:25), with the
relative RMS tracking error and the relative maximum error were
at 1.60% and 5.9%, over 3.6 times and 2.6 times smaller
than those obtained by the PI controller, respectively. Particularly,
spikes-like transient tracking error was pronounced at the
tracking–transition switching instants when using the PI control-
ler, but became much subdued with the use of the proposed tech-
nique (see Fig. 6). As the same desired trajectory in the transition
sessions was tracked when the PI controller was applied, the
transient-caused spikes at the switching instants could have been
larger otherwise.

Moreover, the experiment also demonstrated the efficiency and
ease of use of the proposed technique in practical implementation:
As a data-driven approach, the proposed technique removed the
modeling process and instead exploited the high performance and

Fig. 3 Pairs of (left column) output elements and (right col-
umn) input elements at five different speeds used in the experi-
ment, where the input elements were obtained experimentally
via the MIIC technique [11] a priori

Table 1 The indicators of each element in the dictionary

Ws (ms) Ws=W0 Tset=ðqWsÞ SW

5.0 1.0 1.74 1.37
2.5 0.5 1.09 0.80
2.0 0.25 1.48 0.87
1.0 0.2 2.83 1.52
0.5 0.1 7.6 3.9

Fig. 4 (a) The decomposition of the tracking sessions and the
design of the transition sessions and (b) the decomposition
error in the tracking sessions
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robustness against system dynamics changes of the data-driven
ILC techniques for tracking. Through the proposed decomposition
approach, these virtues of ILCs were extended to general nonrepe-
titive tracking and exploited for nonperiodic tracking–transition
switching. The trajectory decomposition, transition trajectory
design, and control input synthesis were only needed at a small
number of instants—in this experiment, the decomposition
instants (see Fig. 2) only accounted for less than 4% of the total
sampling instants. Therefore, the experimental results clearly

demonstrated the performance of the proposed method in output
tracking with nonperiodic tracking–transition switching.

5 Conclusion

A data-driven decomposition control was proposed to optimal
input-constrained output tracking with nonperiodic tracking–
transition switching for linear systems. A dictionary of paired
input–output bases was constructed a priori offline through data-
driven iterative learning control technique. Then, the desired
transition trajectory was designed as a linear combination of the
output bases by taking the boundary condition into account, and
the total transition time was minimized under the input-amplitude
constraint through a one-dimensional searching algorithm.
Finally, the corresponding control input was obtained as the linear
combination of the corresponding input bases via the superposi-
tioning principle, where the combination coefficients were online
adjusted to compensate for the dynamics variations and external
disturbance. The proposed method was implemented in experi-
ment on a piezoelectric actuator to illustrate the proposed
technique.
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