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The Earth's inner core started forming when molten iron cooled
below the melting point. However, the nucleation mechanism,
which is a necessary step of crystallization, has not been well
understood. Recent studies have found that it requires an unrealis-
tic degree of undercooling to nucleate the stable, hexagonal,
close-packed (hcp) phase of iron that is unlikely to be reached
under core conditions and age. This contradiction is referred to as
the inner core nucleation paradox. Using a persistent embryo
method and molecular dynamics simulations, we demonstrate
that the metastable, body-centered, cubic (bcc) phase of iron has a
much higher nucleation rate than does the hcp phase under inner
core conditions. Thus, the bcc nucleation is likely to be the first
step of inner core formation, instead of direct nucleation of the
hcp phase. This mechanism reduces the required undercooling of
iron nucleation, which provides a key factor in solving the inner
core nucleation paradox. The two-step nucleation scenario of the
inner core also opens an avenue for understanding the structure
and anisotropy of the present inner core.

Earth’s inner core j solidification j supercooling j two-step nucleation j
atomic-scale simulation

The core plays a key role in the Earth’s evolution. The pre-
sent core contains two major parts, a solid inner core and a

liquid outer core. Iron dominates both parts with a small
amount of light elements (1). The solid core is generally
believed to be hexagonal, close-packed (hcp) iron, while the
possible existence of body-centered, cubic (bcc) iron has also
been suggested (2–5). The growth of the solid inner core is
believed to be the major driving force of the present geody-
namo, providing the main power source for convection in the
liquid core (6, 7). Despite its importance, the initial formation
of the solid core, which directly relates to its thermal evolution
and Earth’s history, is far from being completely understood
(8–12). Most of Earth’s thermal history models assume that the
inner core started to crystallize when molten iron cooled right
below its melting temperature at the Earth’s center (7). How-
ever, in practice, nucleation does not happen at the melting
point but requires some undercooling because of the formation
of a solid–liquid interface (SLI) that accompanies it. While the
bulk solid phase is thermodynamically favored, the SLI costs
energy. These two factors lead to a nucleation barrier ΔG,
which is described in classical nucleation theory (CNT) (13) as

ΔG¼NΔμþAγ, [1]

where N is the nucleus size, Δμ ð< 0Þ is the free energy differ-
ence between the bulk solid and liquid, γ ð> 0Þ is SLI free
energy, and A is the SLI area. The liquid must be cooled suffi-
ciently below the melting temperature to overcome the free-
energy barrier during thermal fluctuations. After considering
this mechanism, it was found that a very large undercooling of
%1,000 K is required for the nucleation of hcp iron in the
Earth’s core (14). However, considering the slow cooling rate
of %100 K/Gyr throughout the core history (15), it is impossible
to reach such a large degree of undercooling inside the Earth
within the inner core’s age. This “inner core nucleation

paradox,” recently described by Huguet et al. (14), strongly
challenges the current understanding of the inner core forma-
tion process. While Huguet et al.’s argument relies on a few
estimations of thermodynamic quantities, Davies et al. also con-
firmed the paradox with atomic-scale simulations (16). Even
considering the effect of light elements on the nucleation pro-
cess, it still requires 675 K undercooling to nucleate hcp iron,
nearly impossible to reach in the Earth core (16).

CNT was proposed more than a century ago, and its formal-
ism is the most widely used to describe nucleation phenomena
nowadays. The simplest scenario in CNT assumes a single-
nucleation pathway where only the nucleus of the thermody-
namically stable phase forms and grows toward the bulk phase.
This was the situation considered in refs. 14 and 15), in which
the authors assumed that the melt in the Earth’s core crystal-
lized directly into the hcp phase. Recent studies have shown
that nucleation can be a multistep process that includes multi-
ple intermediate stages and phases (17–19). While the CNT
concept of nucleus formation is still valid under these situa-
tions, phase competition must be considered (18, 19). There-
fore, instead of the single-pathway scenario, we can consider a
complex process in which nucleation is facilitated by forming
an intermediate phase with a high-nucleation rate. For exam-
ple, it has been observed that the bcc phase can nucleate before
the face-centered, cubic (fcc) or hcp phases in a few alloys in
which the fcc/hcp phase is the most stable one (20–24). Could
the bcc phase also facilitate hcp iron nucleation and relate to
the inner core nucleation paradox? Making a quantitative
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prediction on such complex nucleation processes is a challeng-
ing problem. In addition to the extreme conditions in the core,
nucleation involves microscopic-length scales that are extremely
hard to probe in real time, even with state-of-the-art measure-
ments (25). Hence, it requires computer simulations, particu-
larly large-scale molecular dynamics (MD), to reproduce the
temporal evolution of the liquid into the crystal (26). Unfortu-
nately, nucleation under Earth’s core conditions is a rare event
that occurs on the geological time scale, far beyond the reach
of conventional MD simulations. Besides, large-scale MD simu-
lations require semiempirical potentials to describe atomic
interactions, and the outcome may depend heavily on the
potential’s quality (27). In this work, we assess the inner core
nucleation process with the account of competition between
bcc and hcp phases during the nucleation process using the per-
sistent embryo method (PEM) (28) to overcome the significant
time limitation in conventional MD simulation of nucleation.

Results
Melting Curve of hcp and bcc Phases. The nucleation rate of hcp
iron was previously estimated (14) based on the driving force
and the SLI free energy obtained in ref. 29, with the semiem-
pirical potential developed by Ackland et al. (30). However,
this potential was developed to simulate iron at ambient condi-
tions such that no high-pressure data were used in the potential
development (30). In the present study, we developed a poten-
tial, explicitly considering its application at Earth’s core condi-
tions. SI Appendix contains details of the present potential
development. One of the vital target properties in the potential
development is the latent heat ΔHL&S, because along with the
melting temperature it defines the driving force for solidifica-
tion. Fig. 1A shows excellent agreement between the latent heat
calculated using the developed potential and ab initio MD
(AIMD) for both the hcp and bcc phases. Besides, elastic prop-
erties and liquid structure predicted with the developed

potential also agree well with those calculated with AIMD (SI
Appendix), making this potential suitable for simulations of the
iron crystallization process under inner core conditions.

In Fig. 1B, we compare the current melting curve of the hcp
phase with previous measurements and simulation results (16,
31–38). This is especially important because melting curves
from previous classical MD (CMD) simulations deviate consid-
erably from each other (31, 32), which points out the impor-
tance of employing a thoroughly developed, semiempirical
potential. The melting temperatures in the present study were
determined at several pressures using the solid–liquid coexis-
tence approach (39). The current melting curve agrees well
with the experimental curve obtained using fast X-ray diffrac-
tion in the laser-heated diamond anvil cell in the pressure range
between 130 and 200 GPa (37). It also reasonably agrees with
the recent estimation of melting boundary from shock compres-
sion measurements in the higher-pressure range from 250 to
360 GPa (38). Compared to previous simulations, our current
melting curve provides the closest agreement to the recent,
high-pressure experiments for the hcp phases. It also validates
the calculations of latent heat, which is directly related to the
slope of the melting curve according to the Clausius–Clapeyron
equation.

The melting curves of hcp and bcc phases are compared in
Fig. 1C. The hcp phase has higher melting temperatures in the
pressure range from 130 to 330 GPa. Thus, the hcp phase is
thermodynamically stable, while the bcc phase is metastable in
the range from the core–mantle boundary to the inner core
boundary. Interestingly, the melting points of hcp and bcc
phases are predicted to cross at 350 GPa, which suggests a simi-
lar free energy of bcc and hcp phases at pressures near the
inner core center.

In the present study, we chose to conduct nucleation simula-
tions at 323 GPa, the pressure at the inner core boundary. We
used the Gibbs–Helmholtz equation and MD simulations to
calculate the free-energy difference Δμ between the bulk solid

Fig. 1. Melting curves and thermodynamic properties of hcp and bcc iron. (A) The latent heats of hcp and bcc iron at 323 GPa from AIMD and CMD with
the developed semiempirical potential. (B) Comparison between the current melting curve of hcp iron and several others obtained by previous simula-
tions and experiments (16, 31–38). (C) Melting curves of hcp and bcc iron from CMD with the developed semiempirical potential. The inset shows a pro-
jected snapshot of the bcc solid–liquid coexistence simulation with 22,500 atoms in the simulation cell. (D) Change in bulk free energy upon solidification
(nucleation-driving force) at 323 GPa.
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and liquid phases, as described in ref. 40. Fig. 1D shows Δμ as a
function of undercooling with respect to the hcp melting tem-
perature, ΔT ¼ T &Thcp

m , for both the hcp and bcc phases. The
absolute value of Δμ for the hcp phase is always larger than
that for the bcc phase.

Nucleation of hcp and bcc Phases. According to the CNT (13),
the nucleation barrier, ΔG', is the key quantity to determine
the nucleation rate. ΔG' can be computed (28) as

ΔG' ¼ 1

2
j Δμ jN', [2]

where N' is the critical nucleus size. To obtain N', we employ
the PEM (28), which invokes the central CNT concept that
homogeneous nucleation happens via the formation of a critical
nucleus in the undercooled liquid. Fig. 2A shows a typical result
of the PEM-MD simulation. The plateau on the N(t) curve
indicates the appearance of the critical nucleus (see technical
details in Materials and Methods). The critical nucleus sizes of
both the hcp and bcc phases at several moderate undercooling
temperatures are shown in Fig. 2B. The hcp phase shows a sys-
tematically larger critical nucleus size than the bcc phase. Fig.
3A shows the free-energy barriers ΔG' of both bcc and hcp
phases computed using Eq. 2. The hcp phase has a larger
nucleation barrier than the bcc phase at all undercooling tem-
peratures considered here, although the hcp phase has a larger
bulk-driving force, j Δμ j (Fig. 1D). To explain this, we compare
the SLI free energies of these phases obtained from the PEM
simulation. Fig. 3B shows that this quantity is much larger for

the hcp phase. This is consistent with a previous study which
suggests that bcc metals show lower interface free energy than
hcp metals at ambient conditions (41). Because the ΔG' scales
with γ3 (see Materials and Methods), the difference in γ can sig-
nificantly change the ratio of the nucleation barriers. The tem-
perature dependences of γ obtained for both hcp and bcc
phases are almost linear as shown in Fig. 3B, which is similar to
the ones found for Ni and Al in ref. 42. Therefore, the SLI free
energy can be linearly extrapolated to smaller undercooling
(higher temperatures), in which the critical nucleus size is too
large to be simulated directly. In Fig. 3B, we further compare γ
values for the hcp phase with previous results. Davies et al. esti-
mated γ based on a different, semiempirical potential and
freezing simulations (16). While the temperature dependence
was not considered in that work, the value of γ is very similar to
our results. In contrast, the γ determined in ref. 29 highly devi-
ates from our results and those in ref. 16. This can be attributed
to the fact that the empirical potential used in ref. 29 was not
designed to simulate iron under Earth’s core conditions.

The nucleation rate, J, can be calculated as J ¼
κexpð&ΔG'=kBTÞ, where kB is the Boltzmann constant, and κ is
a kinetic prefactor. The kinetic prefactor can be determined
from MD simulations, based on the fluctuations of the nucleus
size around the critical value (SI Appendix). Thus, we obtained
all essential parameters to compare the bcc and hcp nucleation
rates using the PEM in MD simulations. Fig. 4A shows that the
bcc phase has a much higher nucleation rate than the hcp phase
in a broad undercooling regime. For example, at an undercool-
ing of 660 K, the nucleation rate of the bcc phase is 31 orders

Fig. 2. PEM-MD simulation and critical nucleus size. (A) The nucleus size versus time from a PEM-MD trajectory at ΔT ¼&958 K (i.e., T ¼ 4900 K). The
blue dashed line shows the size of the persistent embryo, N0, and the green dashed line indicates the threshold for spring removal, Nsc (see Materials and
Methods). The inset enlarges the plateaus at the critical size. The red line shows the plateaus to determine the critical nucleus size, N*. (B) The critical
nucleus size as a function of undercooling temperature for hcp and bcc phases.

Fig. 3. Temperature dependence of the free-energy barrier and SLI free energy. (A) Free energy barrier ΔG' as a function of undercooling temperature
for hcp and bcc at 323 GPa. (B) SLI free energy of hcp and bcc phases at 323 GPa. The dashed dot line is from ref. 14. The dashed line with the CI (green
band) is from ref. 16.
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of magnitudes higher than that of the hcp phase. With such a
vast difference, the bcc phase should nucleate much quicker
than the hcp phase under the Earth’s core conditions.

Using the obtained nucleation rate, we are now able to esti-
mate the nucleation waiting time. Because the critical nucleus
only has half a chance to grow at the top of the nucleation
barrier, the waiting time in a fixed volume can be expressed as
sv ¼ 1

2J (16). As shown in Fig. 4B, the present waiting time for
hcp nucleation is smaller than the previous estimation by
Davies et al. (16). This is mainly because the semiempirical
potential used in ref. 16 shows a different melting point and bulk
free-energy difference than the present values (SI Appendix).
The reachable sv in the Earth’s core can be estimated as follows.
The nucleation incubation time is approximated as 1 billion y,
probably the upper limit of plausible inner core age (16).
The volumes of the inner core and the entire core are
%7:6( 1018 m3 to %1:8( 1020 m3, respectively. Therefore, sv of
the Earth’s core should be in the range between 2( 1035 m3 ) s
to 6( 1036 m3 ) s, which is indicated by the solid black line in
Fig. 4B. The intersections of this line with the hcp and bcc’s sv in
Fig. 4B provide the required undercoolings of 470 K for bcc
nucleation and 610 K for hcp nucleation. Therefore, the bcc
phase significantly reduces the required undercooling of inner
core nucleation by 140 K, which corresponds to %1.4 billion y of
cooling based on a cooling rate of 100 K/Gyr (8).

Discussion
As illustrated in Fig. 5, we have shown that the bcc nucleation
is likely to be the first step of iron crystallization under core
conditions, which effectively decreases the large nucleation bar-
rier of the hcp phase. We note that this two-step nucleation
process can also be observed from the brute force MD simula-
tion by cooling the iron melts with ultrahigh cooling rates (SI
Appendix). While this cooling simulation is far from the core
condition, it provides a qualitative validation of the PEM
results. As the two-step nucleation process reduces the required
undercooling of inner core nucleation, it can be a key to solving
the core nucleation paradox. While the necessary undercooling
of the bcc phase (470 K) is still more significant than the inner
core’s maxima undercooling of %200 K (14), a few factors
remain to be accounted for. First, the core contains %10 weight
percent light elements. Davies et al. (16) have shown that oxy-
gen can reduce the required undercooling by %55 K for the hcp
nucleation. It was also found that the light elements can further
stabilize the bcc phase with respect to the hcp phase (4, 43, 44).
Therefore, their presence in the melt should cause a similar,
if not larger, reduction of the required undercooling for the

bcc nucleation. Moreover, stresses associated with pressure
variations can also reduce the undercooling by %100 K (16).
Considering all these effects, it should be possible to solve the
nucleation paradox with the future development of semiempiri-
cal or machine-learning potentials for iron and light elements
and more sophisticated PEM nucleation simulations of a multi-
component melt. Our simulations consider homogenous nucle-
ation only. While heterogeneous nucleation might decrease
further the required undercooling, it is challenging to propose
plausible scenarios to explain a preexisting stable substrate in
the early deep core. This issue has been thoroughly discussed
along with the nucleation paradox proposal in Huguet et al.
(14). Besides, for any proposal of a preexisting substrate in the
melt, the competition between bcc and hcp phases should still be
considered to address the heterogeneous nucleation of the solid
core. Then, our free-energy results for bcc and hcp phases will
also be relevant because the free-energy barrier for heteroge-
neous nucleation, ΔGHet, includes the term f (ΔGHom, where
ΔGHom is the homogenous nucleation barrier, and f is the cata-
lytic factor that depends on the contact angle, size, and substrate
shape (13). Recent high-pressure and high-temperature experi-
ments have reported the formation of bcc iron on the MgO
surface (45), which indicates that the bcc should be the first
nucleated phase in a heterogeneous nucleation process.

Fig. 4. Nucleation rate and waiting time at 323 GPa. (A) Nucleation rate as a function of undercooling for the hcp and bcc phases. (B) Waiting time as a
function of undercooling. The dotted lines are the extrapolation with CNT from current PEM results. The dashed line is from ref. 16. The thick black line
indicates the range of nucleation waiting time sv in the Earth’s core.

Fig. 5. Schematics of the two-step nucleation process. The insert shows a
bcc nucleus spontaneously formed during the brute force MD simulations
described in SI Appendix, Note S6.
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The two-step nucleation with the intermediate bcc phase can
impact the present inner core structure. While the metastable bcc
phase should eventually transform into the stable hcp phase at
323 GPa, the melting curves in Fig. 1C suggest that the bcc phase
could stabilize over the hcp phase with increasing pressure when
approaching the core center. Therefore, the initially formed bcc
phase in this region may remain at the core center nowadays.
This coincides with hypothesis of a different innermost core
structure proposed to explain the anomalous anisotropy of the
inner core (46–48). Therefore, the two-step nucleation scenario
for inner core formation opens a path to understanding Earth’s
deepest interior.

Materials and Methods
AIMD Simulations. AIMD simulations were performed to obtain the input
data for the semiempirical potential development. The Vienna ab initio simu-
lation package (49) was employed for the density functional theory (DFT) cal-
culations. The projected augmented wave method was used to describe the
electron–ion interaction and the generalized gradient approximation in the
Perdew–Burke-Ernzerhof form was employed for the exchange–correlation
energy functional. The Mernin functional was used to equilibrate electrons
and ions at the same temperature in AIMD simulations (50). This functional
includes electronic entropic effects on the DFT energy. The Γ point was used
to sample the Brillouin zone. The AIMD simulations were performed for the
constant number of atoms, volume, and temperature ensemble. The
Nos!e–Hoover thermostat was employed to control the temperature. A time
step of 2.0 fs was used to integrate Newton’s equations of motion. Supercells
with 288, 250, and 256 atoms were used to simulate hcp, bcc, and liquid mod-
els, respectively. To fit the potential for a sizeable pressure-temperature (P-T)
range, three P-T conditions near the melting curves were investigated: 140
GPa at 4,000 K, 250 GPa at 5,500 K, and 350 GPa at 6,000 K. No phase transi-
tions were observed during the simulation of either hcp, bcc, or liquid model
under these conditions during the AIMD simulations. To save the equilibration
time, the AIMD simulations were run iteratively with the potential develop-
ment, such that configurations equilibrated with the semiempirical potential
were used as initial configurations for AIMD. We monitored the energy and
pressure as a function of time to determine when the models were equili-
brated enough to start collecting data. Data collection took place in the last
10 ps of each AIMD run. The potential was fitted to reproduce AIMD results
using theMermin functional, which includes electronic entropic effects.

CNT Formulae. Based on the CNT (13), the competition between the bulk and
interface energies leads to the nucleation barrier. From Eq. 1, one can derive
the nucleation barrier as

ΔG' ¼ 4s3γ3

27j Δμ j2q2c
, [3]

where qc is the crystal density, and S is a shape factor so that the interface
area in Eq. 1 can be written asA¼ s N=qcð Þ2=3. This equation can be reduced to
Eq. 2 by introducing the critical nucleus size

N' ¼ 8s3γ3

27j Δμ j3q2c
: [4]

The SLI free energy, γ ¼ 3
2s j Δμ j q

2=3
c N'1

3, is obtained from Eq. 4. All quantities
to determine γ can be obtained from PEM-MD simulations.

Persistent Embryo Method. The PEM (28) is employed to measure the critical
nucleus size N' with the CMD simulations. It utilizes the main CNT concept
that homogeneous nucleation happens via the formation of the critical
nucleus in the undercooled liquid. During the simulation, a small crystal
embryo containing N0 atoms (should be much smaller than the critical
nucleus) is constrained by spring forces to prevent melting (28). These forces
are only applied to the original N0 embryo atoms. The spring constant of the
harmonic potential decreases with increasing nucleus size as kðNÞ ¼ k0 Nsc&N

Nsc
if

N< Nsc and k Nð Þ ¼ 0 otherwise. Here, Nsc is a subcritical threshold. No spring
forces are applied to the embryo if N> Nsc. This strategy ensures that the sys-
tem is unbiased at the critical point, such that a reliable critical nucleus can be
obtained. If the nucleus melts below Nsc, the harmonic potential is gradually
enforced, preventing the complete melting of the embryo. When the nucleus
reaches the critical size, it has an equal chance to melt or to further grow,
causing fluctuations around N'. As a result, the NðtÞ curve tends to display a
plateau during the critical fluctuations, giving a unique signal to detect the
appearance of the critical nucleus, as shown in Fig. 2A. The critical nucleus size
is directly measured by averaging the nucleus size at the plateau (28). We
repeated the PEM-MD simulation to collect at least four plateaus to obtain
sufficient statistics and the CI of the critical nucleus size N'. During the nucle-
ation process, the bcc and hcp nuclei are stable, and no transformations to
other solid phases were observed. The classical PEM-MD simulations were per-
formed with the graphic processing unit–accelerated large-scale atomic/
molecular massively parallel Simulator code (51). The interatomic interaction
was modeled using the semiempirical potential developed in this work based
on the embedded atom method (52). The Nos!e–Hoover thermostat/barostat
was used in our NPT (constant number of atoms, pressure, and temperature)
simulations. The damping time in the Nos!e–Hoover thermostat was set as s¼
0:1 ps, which is frequent enough for heat dissipation during the crystalliza-
tion (42). The time step in the simulation was 1.0 fs. In some cases, in which
the nucleation was very fast, the time step was reduced to 0.8 fs. The simula-
tion cell contained 31,250 atoms, which are at least 15 times larger than the
critical nucleus size. The simulation cell is sufficiently large to avoid the finite
size effect (see SI Appendix). The semiempirical potential of iron developed in
this work is publicly accessible at National Institute of Standards and Technol-
ogy (NIST) potentials repository (https://www.ctcms.nist.gov/potentials/).

Data Availability. All study data are included in the article and/or SI Appendix.
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Supplementary Text 
This supplementary information contains details of semi-empirical potential development in Note 

S1, the calculation of the kinetic prefactor in Note S2, the effect of input parameters on the hcp 

waiting time in Note S3, classification of hcp, bcc, and liquid with order parameters in Note S4, 
examination of nucleus’s stability in Note S5, brute-force simulations in Note S6 and tests on the 

finite-size effect in Note S7 

 
Note S1. Development of semi-empirical potential 
Several groups of target properties were used in the development of the embedded atom method 

(EAM) potential for iron. The first group consisted of basic bcc Fe properties at T=0 and p=0 listed 

in Table S1. This is a standard set routinely used in development procedures for semi-empirical 

potentials. Since the condition of T=0 and p=0 is very far from the conditions we were interested 
in, these properties were fitted with low weights. The examination of Table S1 shows that the 

developed potential reproduces these properties reasonably well (obviously, the semi-empirical 

potentials explicitly fitted to these conditions provide much better reproduction of these properties).  

Next, we approximately extracted from the ab initio molecular dynamics (AIMD) simulation 

the hcp lattice parameters at two endpoints of the temperature-pressure range we were interested 

in (T=4000 K/p=140 GPa and T=6000 K/p=350 GPa). This was done by manually adjusting the 

hcp lattice parameters at these conditions. The accuracy of such a procedure was not very high 

such that the difference between sxx and szz could be as significant as 14 GPa. Fortunately, that 

was not the problem with our fitting procedure. In reality, the potential was fitted not to the lattice 

parameters but to the stresses corresponding to the given lattice parameters. These stresses were 

determined from the AIMD simulation with sufficient accuracy. We will come back to this point 

below. After a few iterations of the potential development procedure, we used the current potential 

to determine the lattice parameters at T=5500 K/p=212 GPa. We ran AIMD to determine the 

stresses corresponding to these lattice parameters. In this case, the difference between sxx and szz 

were less than 1 GPa. The new data were added to the list of target properties in the potential 

development procedure. We also included the same type of AIMD data for the bcc phase at T=6000 

K/p=350 GPa (in this case, there is just one lattice parameter to fit).  

Three types of deformation were applied to each of the hcp models to get non-zero ɛxx, ɛzz, 
and ɛyz (the absolute values of ɛαβ were 0.01). The stress tensor components were determined from 

the AIMD simulation for each case. The differences between these stress tensor components and 

the components of the stress tensors of the corresponding initial models divided by the deformation 

value were defined as the elastic responses, Rij. Rij would be the same as the corresponding elastic 

constants if all components of the stress tensor of the initial model were zero. Rij constants reflect 

the crystal response to the applied deformation. A good fitting to these constants should warrant 

the reproduction of the correct elastic properties of the considered phases. The obtained AIMD 
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values are presented in Table S2. It is important to emphasize that the bcc phase did not transform 

to any other lattice under applied deformation during the AIMD simulation, demonstrating that this 

phase is at least metastable (not unstable) at these conditions. The examination of Table S2 shows 

that the developed potential reasonably well reproduces the elastic responses obtained from the 
AIMD simulation.  

 Since we were interested in simulating nucleation from the liquid phase, it is essential to 

include the liquid density and structure data obtained from the AIMD simulation in the potential 

development procedure. The method to achieve this was described in (1). Figure S1 shows the 

pair correlation functions of liquid Fe obtained from the AIMD simulation and classical MD (CMD) 

simulation at Earth's core conditions utilizing the developed EAM potential. Examination of this 

figure indicates that the developed potential provides a pretty reasonable agreement with the AIMD 

data. 
To test the ability of the developed potential on the predictions of the solidification under 

the Earth's core conditions, we performed the following test. First, we chose two temperatures for 

testing: T=4800 K and T=5800 K. Using the developed EAM potential, we created hcp, bcc, and 

liquid models at these temperatures and p=323 GPa. Then we performed the AIMD NVT 

simulations using these models, which led to different stresses and pressures, as shown in Table 

S3. The largest deviations were obtained for the hcp phase at T=4800 K. Such deviations in 

pressure correspond to about 0.7% for the deviation in the atomic density. 

 Next, two types of deformation were applied to hcp models to get non-zero ɛxx and ɛzz. Only 
one type of deformation was applied to the bcc models for a non-zero value of ɛxx. The absolute 

values of ɛαβ were 0.01. Entire stress tensors were determined from the AIMD simulation for each 

case. These data allowed us to determine the lattice parameters at the same pressure as was 

obtained from AIMD simulations for liquid models. New AIMD simulations were performed with 

these lattice parameters to confirm that all diagonal components of the stress tensors are the same 

as the liquid pressure and to get the phase energies, allowing us to obtain the latent heats provided 

in Table S3. The examination of the data presented in Table S3 shows that the developed potential 
slightly overestimates the c/a ratio for the hcp phase. However, the key property for the simulation 

of the crystallization is the latent heat and the examination of the data presented in Table S3 shows 

that the developed potential provides an excellent agreement with the AIMD data. 

Finally, we determined the melting temperatures for the hcp and bcc phases at several 

pressures using the coexistence approach proposed in Ref. (2). The results are shown in Fig. 1 of 

the main text. Overall, our current melting curve provides the closest agreement to the recent high-

pressure experiments for the hcp phases compared to other previous calculated results. Moreover, 

the developed EAM potential provides the hcp phase as the ground state under the Earth's inner 
core. It also predicts that the bcc melting temperature is close to the hcp melting temperature at 

360 GPa.  
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Since this potential provides a good melting curve of the hcp phase compared to literature 

data, a good agreement of elastic constants compared to the AIMD data, and especially excellent 

agreement for the latent heats, it is suitable for crystallization simulation under the Earth's core 

conditions. 
 

Note S2. Kinetic prefactor ! in nucleation rate 
From Classical nucleation theory, the nucleation rate, " , can be calculated as  " =

$exp(−∆+∗ ,"-⁄ ), where ∆+∗ is the nucleation barrier, ," is the Boltzmann constant, and $ is a 

kinetic prefactor.  The kinetic prefactor $ can be derived from the steady-state model (3) as  

$ = 0#1$2
|∆'|

()*!+,∗
,     (S1) 

where 1$ is the attachment rate of a single atom to the critical nucleus and 0# is the liquid density, 

∆3 is the chemical potential difference between bulk solid and liquid, 4∗ is the critical nucleus size. 

As demonstrated by Auer and Frenkel (4), the attachment rate can be computed as the effective 

diffusion constant for the size change of the critical nucleus as 1$ = 〈|∆,∗(/)|#〉
2/ . Therefore, we 

employed the iso-configurational ensemble (5) simulation to measure 1$ using the critical nucleus 

obtained from the PEM-MD simulations. In Fig. S2A, 60 independent MD runs starting from the 

same atomic configuration but with atomic momenta randomly assigned using the Maxwell 

distribution are shown. The critical nucleus melted in half of the MD runs and grew in the other half 

runs, which validates the determination of the critical nucleus size. The measured 1$ of both hcp 

and bcc are shown in Fig. S2B. The temperature dependence of obtained 1$ can be well fit to the 

classical kinetic model of atom attachment (3) as  

1$ = 54∗2/4 (5
6# ,      (S2) 

where 6  is the liquid diffusivity measured from MD simulation. The hcp nucleus shows a 

systematically higher attachment rate than that of the bcc nucleus. It should be noted that the effect 

of 1$ on the nucleation rate is much smaller than the ∆+∗ as " depends exponentially on ∆+∗ in Eq. 

(S1). 

 

Note S3. Effect of input parameters on the waiting time 
To elucidate the effect of the input parameters on the nucleation waiting time of the hcp phase, we 

substituted the input parameters obtained from the present study with those from Ref. (6). Figure 

S3a shows the comparison of the waiting time. It indicates that the different ∆3 is the major factor 

that causes the difference between the current data and the one in (6). Figure S3B shows the 

comparison of ∆3 obtained in these two works. Using the melting temperature from (6) leads to a 

decreased ∆3. The original ∆3 from (6) is even smaller. Because ∆3 is essentially correlated with 

the latent heat based on the Gibbs-Helmholtz equations, these comparisons elucidate the strong 

effect of the latent heat on the final results. Note that the latent heat provided by the potential 
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developed in the present study is in excellent agreement with the AIMD data as shown in Fig. 1 in 

the main text. 

Note S4. Order parameters 
To identify the nucleus type and size in this study, we employ two structural order parameters, 
bond-orientational order (BOO) parameter (7) and cluster alignment (CA) method (8). The BOO 

parameter is based on the correlation between the structures of any two neighbor atoms i and j as 

778 = ∑ 9(9(:) ∙ 9(9∗ (<)(
9:;(  , where 9(9(:) =

<
,$(7)

∑ ==9>?⃗78A
,$(7)
8:<  is the Steinhardt parameter, 

==9>?⃗78A are the spherical harmonics, 4>(:) is the number of nearest neighbors of atom : and ?⃗78 is 

the vector connecting it with its neighbor j. Two neighboring atoms i and j are considered to be 

connected when 778  exceeds a threshold 7? . To choose a reasonable value of 7? , an "equal 

mislabeling" method (9) was used so that the probability of mislabeling atoms in the bulk liquid as 

solid-like atoms is the same as the probability of mislabeling atoms in bulk solid as liquid-like atoms. 

This approach works well when one needs to detect bulk solid atoms within a bulk liquid. However, 
it tends to mislabel solid atoms at the solid-liquid interface. Therefore it requires another threshold 

B to account for the number of solid-like neighbors. Here the threshold value, B?, is chosen to be 6 

for the hcp-liquid interfaces and 7 for the bcc-liquid interface. BOO parameter is computed on the 
fly of PEM-MD to identify the solid-like atoms during the simulation efficiently. 

As being demonstrated in (10, 11), the nucleus size can be somewhat sensitive to the 

choice of order parameters. Therefore, in addition to the BOO, CA method (8) was employed to 

validate the nucleus size by post-processing the simulation trajectory of PEM. The CA method 

differentiates complex crystal structures by computing the minimal root-mean-square deviation 

(RMSD) between the atomic cluster and the perfect crystal motifs (12, 13). In Fig. S4, we show the 

RMSD distributions of atoms in liquid, hcp, and bcc phases under the core conditions. It indicates 
good performance of CA on distinguishing the hcp, bcc, and liquid for the present system.  

 
Note S5 The stability of the nucleus 
The stability of the bcc nucleus can be confirmed in the iso-configurational ensemble 

simulation. We performed 60 independent MD runs with atomic momenta randomly assigned 
using the Maxwell distribution from the same MD configuration containing a bcc critical 

nucleus. Here, we provide an example at ΔT=-960 K in Fig. S5. From the initial nucleus size 
change in Fig. S5A and the enthalpy change in Fig. S5B, one can see the nucleus melted in 

half of the MD runs and grew in the other half runs. All the grown phases show an enthalpy 
closer to the perfect bcc phase. These studies confirm that the bcc nucleus is stable during 

the nucleation process and grows to the bulk bcc phase. Similar situations were observed in 
hcp nucleation. 
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Note S6 Brute-force simulation  
We provide additional brute-force MD simulations without any constrain on atoms to study the 
first nucleated phase in the solidification of iron melts. We performed the simulation with 

108,000 atoms. This large cell ensures the observation of the nucleation in the limited 
simulation time. The melt is cooled from ΔT=-900 K to -2900 K within 20 ns, corresponding to 

a cooling rate of 1011 K/s. Due to the stochastic nature of nucleation, we performed five 
independent MD runs of the cooling. We observed strong competition of bcc and hcp phases. 

As shown in Fig. S6, the melts undergo a clear two-step nucleation process in one of the 
simulations. A bcc nucleus is spontaneously formed in the melts (Fig. S6A). Then the entire 

melts transform to a bulk bcc, with a very small hcp region (Fig. S6B). The coexistence of the 
hcp and bcc phases is rather stable. With decreasing the temperature, the small hcp region 
slowly grows (Fig. R6C). At sufficiently low temperature, the entire system transforms to the 

bulk hcp phase (Fig. R6D). The liquid→bcc and bcc→hcp transformations are both first-order 
phase transitions, as evidenced by the sudden drop of the enthalpy. The final hcp phase 

contains two grains with different crystalline orientations. Moreover, we repeated the brute-
force MD simulations with another semi-empirical Fe potential described in (14). We also 

observe the bcc phase nucleates as the first phase during the cooling simulations. We note 
the cooling rate in these brute-force MD simulations are many orders of magnitude faster than 

the ones in the Earth core. So, the liquid is cooled to very deep undercooling and phase 
transformation happens at very low temperatures. Nevertheless, these simulations 

qualitatively validate the scenario of two-step nucleation in the iron melts under core conditions 
revealed from PEM simulations. 

 
Note S7 Finite-size effect 
The finite-size effect is important in the nucleation study. It was found that for sizes larger than 
a threshold nc a cluster can interact with its own images and crystallize much earlier than it 

would otherwise in an infinite system (15). A rough estimate of nc with a spherical assumption 

of nucleus shape is !! =
%
&"#

'
#$
&

%& #& = 0.524#& , where )  is the box edge and #&  is the total 

number of atoms. In our 31,250-atom system, !! is 16,375. The largest critical nucleus we 

obtained in PEM is within 2,500 atoms, which it is much smaller than the threshold. Moreover, 

we perform a finite size test at ∆+ = −860/. As shown in Table. S4, the difference of critical 

nucleus size from 31250-atom and 16000-atom simulations are small and within the 

confidence interval of the data. Therefore, the finite-size effect is avoided in our work.  
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Fig. S1. Pair correlation functions of liquid Fe under the Earth's core conditions between AIMD and 

CMD with the present potential. A, T=6000K and p=352GPa. B, T=5500K and p=212 GPa. C, 

T=4000K and p=143 GPa. 
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Fig. S2. Measurement of the attachment rate for the hcp and bcc phases. A. Iso-configurational 

ensemble of the hcp critical nucleus obtained at 323 GPa and ΔT=-958K. 60 MD runs are 

performed starting from the same configuration but with different initial atomic velocities. The 

bottom panel shows the ensemble average of the nucleus change 〈|∆4∗(E)|2〉 = 〈(4(E) − 4∗)2〉. 

The red line indicates the linear fitting to the first 4 ps used to obtain the attachment rate. B. The 

attachment rate as a function of undercooling temperature for the hcp and bcc phases. The symbols 

are obtained from the iso-configurational ensemble averaging. The solid line is fitted to Eqn. (S2). 
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Fig. S3. A. The waiting time and B. the chemical potential difference for the hcp phase nucleation 

calculated in the present study and substitution of the current input parameters by those from Ref. 

(6). 
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Fig. S4. Cluster alignment to differentiate the HCP and BCC phases from the liquid. A and B 

show the hcp and bcc lattices and the clusters (colored polyhedral) used as hcp and bcc templates, 

respectively. C and D show the different distribution of root-mean-square deviation (RMSD) of hcp, 

bcc and liquid. 
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Fig. S5 The iso-configurational ensemble simulation of a bcc critical nucleus at 
ΔT=−0123, P=323GPa. A. The nucleus size as a function of time in 60 independent MD runs 

starting from the same configuration but with different initial atomic velocities. B. The enthalpy 

as a function of time in 60 MD runs. The dashed lines are the enthalpy of perfect bcc and hcp 
bulk phases under this P-T condition. 
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Figure S6. The enthalpy as a function of undercooling temperature from the continues 
cooling of iron melts at P=323GPa. A-D show atomic configurations in the MD trajectory. 

The green is bcc atom and red is hcp atom. The red region in B and C is the same hcp grain, 
separated by the periodic boundary conditions. The atoms with disordered local structures are 

not shown for clarity. 
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Table S1. Fe bcc properties at T=0 and p=0. 

Property Target value EAM potential 

Lattice parameter (Å) 2.855 2.844 

Cohesive energy (eV/atom) -4.316 -4.022 

Unrelaxed vacancy formation energy (eV/atom) 1.84 1.53 

C11 (GPa) 243 246 

C12 (GPa) 145 141 

C44 (GPa) 116 103 
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Table S2. The elastic response tensors between AIMD and MD with EAM potential.  
Conditions Tensor components (GPa) AIMD EAM 

hcp at 

T=4000 K 

p=140 GPa 

G<<  820 758 

G<2  589 614 

G<4  389 467 

G44  832 810 

G@@  122 105 

hcp at 

T=5500 K 
p=212 GPa 

G<<  1064 1015 

G<2  784 860 

G<4  671 740 

G44  1185 1229 

G@@  122 131 

hcp at 
T=6000 K 

p=350 GPa 

G<<  1646 1548 

G<2  1235 1286 

G<4  1009 1142 

G44   1758 1834 

G@@  216 203 

bcc at 

T=6000 K 

p=350 GPa 

G<<  1318 1291 

G<2  1236 1229 

G@@  287 307 
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Table S3. Comparison between developed EAM potential and AIMD. 

Property AIMD EAM 

P (liquid at ρ=0.1437 atom/Å3 and T=4800 K) (GPa) 322.6 323.0 

P (liquid at ρ=0.1429 atom/Å3 and T=5800 K) (GPa) 326.9 323.0 

σxx (hcp at ρ=0.1450 atom/Å3 and T=4800 K) (GPa) 315.8 323.0 

σzz (hcp at ρ=0.1450 atom/Å3 and T=4800 K) (GPa)§ 311.8 323.0 

σxx (hcp at ρ=0.1443 atom/Å3 and T=5800 K) (GPa) 321.8 323.0 

σzz (hcp at ρ=0.1443 atom/Å3 and T=5800 K) (GPa)§ 319.8 323.0 

p (bcc at ρ=0.1451 atom/Å3 and T=4800 K) (GPa) 323.9 323.0 

p (bcc at ρ=0.1443 atom/Å3 and T=5800 K) (GPa) 328.7 323.0 

c/a (hcp at T=4800 K and p»323 GPa) 1.622 1.629 

c/a (hcp at T=5800 K and p»323 GPa) 1.624 1.628 

ΔHm (eV/atom) (hcp at T=4800 K and p=323 GPa) 0.529 0.521 

ΔHm (eV/atom) (hcp at T=5800 K and p=323 GPa) 0.540 0.524 

ΔHm (eV/atom) (bcc at T=4800 K and p=323 GPa) 0.365 0.367 

ΔHm (eV/atom) (bcc at T=5800 K and p=323 GPa) 0.394 0.394 

 
  

 
§ In the case of the hcp phase the lattice parameters were chosen using the EAM potential which provided 
σxx=σzz; since the AIMD leads to a different c/a ratio, σxx≠σzz for the same lattice parameters.  
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Table S4. Critical nucleus size N*of hcp phase at ∆- = −860K obtained with difference simulation 

cells. 

Simulation cell N* 
31250 atoms 1008 ± 32 

16000 atoms 993 ± 40 
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