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Abstract
We present LDA + Usc calculations of high-spin (HS) and low-spin (LS) states in ferropericlase
(fp) with an iron concentration of 18.75%. The Hubbard parameter U is determined
self-consistently with structures optimized at arbitrary pressures. We confirm a strong dependence
of U on the pressure and spin state. Static calculations confirm that the antiferromagnetic
configuration is more stable than the ferromagnetic one in the HS state, consistent with
low-temperature measurements. Phonon calculations guarantee the dynamical stability of HS and
LS states throughout the pressure range of the Earth mantle. Compression curves for HS and LS
states agree well with experiments. Using a non-ideal mixing model for the HS to LS states solid
solution, we obtain a crossover starting at ∼45 GPa at room temperature and considerably broader
than previous results. The spin-crossover phase diagram is calculated, including vibrational,
magnetic, electronic, and non-ideal HS–LS entropic contributions. Our results suggest the
mixed-spin state predominates in fp in most of the lower mantle.

1. Introduction

Ferropericlase (fp) is the second most abundant mineral in the Earth’s lower mantle. It may be responsible for
up to ∼20 vol% of this region [1]. It is a solid solution (Mg1-xFex)O of MgO and FeO in the rocksalt-type (B1)
crystal structure, with xFe = 0.15–0.20 in the lower mantle. Its high-pressure electronic properties, spin state,
and phase stability are critical to understanding the properties of and processes taking place in the mantle. In
particular, iron in fp undergoes a pressure-induced spin-crossover from a high spin (HS) state with S = 2 to
a low spin (LS) state with S = 0. This spin-crossover has attracted extensive research interest because it can
have critical geophysical consequences, e.g., a density increase [2], a bulk modulus softening [3], thermoelastic
anomalies [4, 5], etc.

Experiments have reported an HS–LS crossover pressure in the range of 40–70 GPa at room or lower
temperatures [6–10], with xFe around 0.20. High temperature leads to an increase in the spin-crossover pres-
sure range and in the crossover onset pressure. This is caused by a mixed HS–LS state (MS) [2, 7, 11] caused
entropic contributions. Because of the strongly correlated nature of the 3d electrons in Fe and the large super-
cells used to study the fp solid-solution by first-principles, the HS–LS crossover diagram has been challenging.
Tsuchiya et al [2] first performed local density approximation (LDA) + U calculations to study the HS and LS
crossover with HS/LS configuration entropy and magnetic entropy. Later [4] extended LDA + U calculations
to include vibrational effects based on a virtual-crystal model. The model was also used to calculate thermo-
dynamic anomalies in fp [2]. While LDA + U can reasonably address the electronic structure of the correlated
3d electrons of iron, its performance on the crossover pressure highly depends on the U value [12–17]. It has
been argued that the complete dependence of U on pressure/volume, structure, spin state, or even pseudopo-
tential should be taken into account if one is to make predictions of phase transitions at extreme conditions.
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In this work, we employ a recent implementation of the self-consistent calculation of the Hubbard parameter
based on density-functional perturbation theory (DFPT) [18]. Using LDA + Usc calculations, we compute the
spin crossover diagram for fp with xFe = 0.1875. This calculation differs from previous ones from our group
by computing the HS and LS states’ vibrational spectra vs volume and going beyond the ideal solid-solution
model by computing the excess free energy due to HS–LS interaction in the MS state.

In the next section, we describe the computational details of the first-principle calculations. In section 3,
we first analyze the electronic structure of fp with xFe = 0.03125. In section 4, we present static calculations
of the spin-crossover of fp with xFe = 0.1875 at T = 0 K. In section 5, we compute the phonon spectra and
consider the finite temperature effect on the spin crossover by including various entropic contributions and
non-ideal mixing effects. We summarize all findings in section 6.

2. Methods

DFT + U calculations were performed using the simplified formulation of Dudarev et al [19] as implemented
in the quantum ESPRESSO code [20, 21]. The LDA was used for the exchange-correlation functional with spin
polarization. The projector-augmented wave (PAW) data sets from the high-accuracy version of PSlibrary [22]
were employed with valence electronic configurations 3s23p63d64s2, 2s22p63s2 and 2s22p4 for Fe, Mg, and O,
respectively. A kinetic-energy cutoff of 100 Ry for wave functions and 600 Ry for spin-charge density and
potentials were used. In all cases, atomic orbitals were used to construct occupation matrices and projectors
in the LDA + U scheme. A cubic supercell of B1 structure with 64 atoms was constructed for the current
study, i.e., (FexMg1-x)32O32. The 2 × 2 × 2 k-point mesh was used for Brillouin zone integration. Structure
optimization was performed by relaxing atom positions with a force convergence threshold of 0.01 eV/Å. The
convergence threshold of all self-consistent field (SCF) calculations was 1 × 10−9 Ry.

The Hubbard correction [23] was applied to Fe-3d states. The Hubbard parameter U was computed using
DFPQ [18] implemented in the quantum ESPRESSO code. The convergence threshold for the response func-
tion is 1 × 10−6 Ry. An automated iterative scheme was employed to obtain the self-consistent Usc parameter
while simultaneously optimizing the structure and desired spin state: starting from an empirical U of 4.3 eV,
the energies of all possible occupation matrices for a spin state were computed. There are five possible occu-
pation matrices corresponding to the HS state of ferrous iron with 3d6 configuration (S = 2), while there are
ten possibilities for the LS state (S = 0). The electronic configuration, i.e., occupation matrix, with the low-
est energy, was selected for further structural optimization of lattice parameters and atomic positions. Then
a new U parameter is recalculated for further structural optimization. The process continued until mutual
convergence of structure and U is achieved for a convergence threshold of 0.01 eV for the U parameter and
the convergence criteria mentioned above for structural optimizations. Only the lowest energy configuration
was adopted in subsequent calculations. Finite temperature effects on the static DFT energy were included
using the Mermin functional with the Fermi–Dirac smearing [24, 25]. The temperature-dependent electronic
entropy was obtained from 0 to 4500 K every 500 K and then interpolated. The scheme used here was described
in reference [26]. We also computed the excess free energy from non-ideal mixing of HS and LS states which
is described together with the ideal solution model in section 5.

With large unit cells containing 64 atoms, phonon calculations were performed using the finite-
displacement method, using Phonopy code [27] with force constants computed by quantum ESPRESSO.
Vibrational density of states (VDOSs) were obtained using a q-point 20 × 20 × 20 mesh. The vibrational con-
tribution to the free energy was calculated using the quasiharmonic approximation [28] with the qha code
[29].

3. Electronic structure fp with xFe = 0.031 25 (fp3)

To first have a clear picture of the electronic structure of fp, we consider only one Mg substitution by Fe in the
64-atom supercell, i.e., FeMg31O32, xFe = 0.031 25 (fp3 hereafter), as shown in figure 1(a). In this case, there is
no Fe–Fe interaction so that the energy levels of the 3d orbitals in the ferrous Fe can be well-identified. Ferrous
Fe (Fe2+) with 3d6 electronic configurations has six O neighbors in octahedral coordination. The octahedral
crystal field splits the fivefold d-orbital degeneracy, producing a doublet with eg symmetry and a triplet with
t2g symmetry. Because the t2g orbitals are pointing away from the oxygen neighbors, the t2g orbitals have lower
energy than the eg orbitals, shown in figure 1(c). In the HS state at low pressures, following Hund’s rule, five
of six electrons occupy five spin-up orbitals, and the remaining minority electron fills one of the t2g orbitals,
as shown in figure 1(a). The Fe–O octahedron is Jahn–Teller (JT) distorted in this electronic configuration,
i.e., it has two short and four long bonds. At P = 0 GPa, the difference between the short and long bonds is
2.4% in figure 1(a). The JT distortion, in turn, causes further energy splitting within the eg and t2g levels so
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Figure 1. (a) The HS state of fp3 at P = 0 GPa. Gray is Fe, green is Mg and red is O. The charge density (yellow) is shown for the
Fe minority electron occupying the dxy orbital. T Fe–O bond lengths in angstrom (Å) are shown inside the octahedron. Mg and O
without Fe–O bonds are drawn smaller for clarity. (b) The LS state of fp3 at P = 0 GPa. The charge density (yellow) is shown for
the occupied t2g orbitals. (c) and (d) Projected density of state (DOS) for Fe 3d orbitals in HS and LS fp3 at P = 0 GPa. The
schematic shows the energy splitting of eg doublet and t2g triplet.

that one can see a slight energy difference between dz
2 and dx

2
–y

2, as well as dxy and dzx (dzy). Ferrous Fe can
also exhibit the LS state with all six electrons in the t2g orbitals, as shown in figure 1(d). Because the occupied
t2g orbitals have cubic symmetry, as shown in figure 1(b), there is no JT distortion in the equilibrated LS state.
The volume of the FeO octahedron in the LS state is smaller than that in the HS state. Comparing the lattices
at 0 GPa in figures 1(a) and (b), the octahedron volume of the LS is 7.4% smaller than the one with Fe2+ in
the HS state. Both HS and LS of fp3 are insulators.

4. Spin crossover of fp18 at T = 0 K

We now perform static calculations to study the spin crossover in fp at T = 0 K. For a pyrolitic mantle com-
position, the fp volume fraction should be around 0.15–0.20 [1]. Here we focus on the spin crossover in the
Fe6Mg26O32 lattice, i.e., xFe = 0.1875 (fp18 hereafter), while some results on fp3 are also included for com-
parison. To construct the supercell structure, we distribute 6 Fe uniformly by occupying the face centers and
edge centers, as shown in figure 2. Because fp is a solid solution of FeO and MgO, a uniform distribution is
more relevant to the real situation. Moreover, it has been shown that different types of Fe configurations have
only a small effect on the spin crossover [30]. With xFe = 0.1875, one would expect the exchange interaction
between Fe ions in the HS state to be sizable because of the small Fe–Fe distance. Here we consider both the
ferromagnetic (FM) and antiferromagnetic (AFM) configurations with spins aligned as in figures 2(a) and (b).
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Figure 2. Supercell structure of fp18 with (a) FM and (b) AFM configurations. The [111] planes are indicated in (b). However, in
our collinear spin calculations, the direction of the spin magnetic moment is not relevant.

Considering the AFM spin configuration in FeO-B1 [17], we assign opposite magnetic moments in the AFM
configuration alternating in neighboring [111] planes.

Figure 3(a) shows the volume-dependent energy for fp18 HS states with FM and AFM configurations and
LS state. The HS states have lower energy at large volumes (low or negative pressures) than the LS state. The
AFM configuration has the lowest energy of all. Therefore, at ambient conditions, the ground state is the HS
with AFM magnetic order. This is consistent with the experimental measurement that AFM is the ground state
below the Néel temperature [10]. With decreasing volume, the LS state energy decreases w.r.t. to that of the
HS states. This is mainly because the energy splitting between t2g and eg increases with increasing pressure
(see supplementary figure S1 (https://stacks.iop.org/EST/4/014008/mmedia)), leading to the spin crossover.
Figure 3(b) shows the self-consistent Hubbard parameters for the different spin states. The Usc values of the LS
state are systematically higher than the HS states regardless of volume. This trend is similar to fp3 and previous
studies of Hubbard parameters of HS and LS states in the FeO system [17] (see supplementary figure S2). The
self-consistent U value of HS–FM and HS–AFM also shows a slight difference. The energy-volume data are
fitted by the third-order Birch–Murnaghan (BM) equation of state (EoS) using the least squares method. The
fitted results are shown in the supplementary table S1. The enthalpies are obtained from the fitted BM–EoS
and are shown in figure 3(c). Based on the enthalpy difference, the transition pressure from HS to LS can be
identified. In fp18, the transition pressures are 60 GPa for the FM state and 66 GPa for the AFM state. By
performing similar calculations with fp3, we find the HS–LS transition pressure in fp3 is 53 GPa. Therefore
the spin crossover pressure increases with an increasing iron concentration in fp. This transition pressure in
fp18 is in good agreement with the experimental measurement of fp with xFe = 0.17 at room temperature [8],
which is ∼60 GPa. A change in the distribution of iron in the supercell of fp18 changes the transition pressure
by a few GPa only [29], but it gives rise to a distribution of transition pressures.

The fp18 compression curves obtained from the zero-kelvin EoS are shown in figure 4. The curves of
HS–FM and HS–AFM states are almost overlapped here. The experimental measurement at room temper-
ature with xFe = 0.17 fp [8] is also included for comparison. The calculated zero-kelvin compression curves
are close but systematically smaller than the experimental data. This result is reasonable because no temper-
ature effect is included yet. As discussed later, vibrational effects at finite temperature further improve the
agreement with experiments.

Figure 5 shows the projected DOS of Fe-3d for fp18. Both HS and LS DOS are qualitatively similar to that of
fp3 in figure 1. However, a larger Fe concentration caused stronger crystal field splitting, leading to complicated
energy levels of different orbitals. Nevertheless, both HS and LS states remain to be the insulating states. The
gaps are around 2 eV and almost independent of the pressure increasing.

5. Finite temperature effect on the spin crossover

Phonon calculations are performed with LDA + Usc for all calculated volumes of both HS- and LS-fp18.
Figure 6 shows examples of three VDOS from low to high pressures. All other VDOS are shown in supple-
mentary figure S3. With increasing pressure, the phonon frequencies are shifted toward higher energies. No
imaginary frequency is found in either HS or LS state up to 100 GPa. This is consistent with the recent phonon
calculations in xFe = 0.0625 fp with density functional perturbation theory [30]. Therefore, both HS and LS
states of fp with iron concentrations lower than 0.1875 are dynamically stable.

With the inclusion of vibrational entropy and electronic entropy described by the Mermin functional in
static free energy calculations [24, 25], quasiharmonic calculations are performed to compute the free energy
and EoS at finite temperatures. With the inclusion of thermal electronic excitation effects on the static free
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Figure 3. (a) Upper panel shows the E vs V curves for the three states of fp18. The lower panel shows the energy difference
between the HS–AFM and HS–FM. (b) The self-consistent Hubbard parameters U for different spin states. (c) The enthalpy
difference between HS and LS (∆H = HHS − HLS).

Figure 4. Compression curve of fp18. The experimental data is at 300 K with xFe = 17% fp [8].

energy, the compression curve of both HS and LS at 300 K agrees very well with room-temperature experi-
mental measurements [8], as shown in figure 4. To obtain the HS–LS phase boundary at finite temperature,
we further consider the non-ideal mixing of HS and LS states and its contribution to the free energy. Using n
to represent the fraction of LS states, the total free energy of an ideal solid solution of HS and LS can be written
as

Gideal (P, T, n) = (1 − n) GHS (P, T) + nGLS (P, T) + Gideal
mix (n) , (1)

where GHS/LS is the molar Gibbs free energy of the pure HS/LS states (‘/’ indicates ‘or’), i.e.,

GHS/LS (P, T) = Gstat+vib
HS/LS (P, T) + Gmag

HS/LS, (2)
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Figure 5. Projected density of state (DOS) of the Fe 3d orbitals in fp18 with (a) HS at 0 GPa; (b) HS at 60 GPa; (c) LS at 0 GPa;
(d) LS at 60 GPa.

Figure 6. VDOS for (a) HS and (b) LS fp18 with three volumes. The upper and lower panels correspond to the same volume.
Their static pressures at zero kelvin are indicated in the figure.

where Gstat+vib
HS/LS (P, T) is the Gibbs free energy containing static and vibrational contribution and Gmag

HS/LS is the

magnetic contribution. Gmag
HS/LS is a purely entropic contribution that one can estimate approximately as

Gmag = −kBTxFe ln [m (2S + 1)] , (3)

where S and m are the spin and electronic configuration (orbital) degeneracies of iron. In HS, S = 2 and m = 3.
In LS, S = 0 and m = 1. The ideal free energy of mixing is given by the mixing entropy as

Gideal
mix (n) = −TSmix = −kBTxFe [n ln n + (1 − n) ln (1 − n)] . (4)
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Figure 7. Static energy as a function n at constant volume V = 7.2̊A3/atom for ideal mixing and non-ideal mixing models.

Equation (4) gives the free energy of mixing of the ideal solution of HS and LS states, where n is the LS
fraction. By minimizing the free energy in equation (1) with respect to n, one obtains

nideal =
1

1 + m (2S + 1) exp
[
∆GLS−HS(P,T)

kBTxFe

] , (5)

where ∆GLS−HS (P, T) = GLS (P, T) − GHS (P, T).
We now examine the effect of non-ideal mixing of HS and LS states. In this case, different HS/LS con-

figurations are considered for a single Mg/Fe atomic arrangement in fp18 and several n values. The single
Mg/Fe configuration in the (Mg26Fe6)O32 supercell is sampled for n = 1

6 , 2
6 , 3

6 , 4
6 and 5

6 . These configurations
are listed in supplementary table S2 and supplementary figure S4. The static energy εi of the ith non-equivalent
atomic configuration is computed in a large pressure range, using the consistent Hubbard parameters of fp18
shown in figure 3(b). The non-ideal mixing energy can be obtained by making a Boltzmann ensemble average
for all non-equivalent arrangements. Then

Enon−ideal =
∑

i
gipiεi, (6)

where gi is the multiplicity of the ith non-equivalent atomic configuration and pi is the Boltzmann factor

as pi = eεi/kBT
∑

igie
εi/kBT . Figure 7 shows that the results from non-ideal mixing deviate from the one in the ideal

mixing model, indicating that the non-ideal mixing effect is relatively significant when the HS and LS states
have similar static energies at the same volume. The excess energy can be obtained by calculating the energy
difference between ideal and non-ideal models as Eex (n) = Enon−ideal (n) − Eideal (n). As can be seen in figure 7,
the temperature dependence of Eex (n) is insignificant. We then include an excess free energy term, Gex (P, T, n),
of non-ideal mixing in equation (1),

Gnon−ideal (P, T, n) = Gideal (P, T, n) + Gex (P, T, n) . (7)

Here we assume the excess free energy is mainly contributed by the static part so that we keep the vibra-
tional contributions the same as the one in the ideal mixing model, i.e. Gex (P, T, n) ≈ Hex (P, T, n), where
the T-dependence is negligible as in Eex (n). The excess enthalpy can be obtained by fitting Enon−ideal with
3rd BM–EOS, obtaining pressure and adding the Pnon−idealV term. Similar to solving the ideal mixing model,
nnon−ideal can be obtained by minimizing equation (6) with respect to n, which leads to

f (P, T, n) = ∆GLS−HS (P, T) +
∂Hex (P, T, n)

∂n
+ kBTxFe ln

[
n

1 − n
(m (2S + 1))

]
= 0. (8)

We numerically solve equation (8) for nnon−ideal by first fitting Hex (n) with polynomial functions at each
pressure and temperature, as shown in supplementary figure S5. The obtained nnon−ideal (P, T) are plotted as a
function of pressure and temperature in figure 8.
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Figure 8. Temperature-dependent spin-crossover ranges with fp18 based on the different models. (a) and (b) are ideal and
non-ideal mixing models with Gmag; (c) and (d) are ideal and non-ideal mixing models without Gmag. The black line indicates the
geotherm [31, 32].

We now analyze how the magnetic entropy contribution and non-ideal mixing affect the temperature
dependence of the HS–LS spin-crossover pressures in figure 8. Comparing the results from ideal and non-
ideal mixing models (figure 8(a) vs 8(b), or 8(c) vs 8(d)), the HS–LS mixing range is much broader in the
non-ideal mixing models. At room temperature, the crossover pressure range is ∼5 GPa in the ideal mixing
model, while it is ∼30 GPa in the non-ideal mixing model. This MS pressure range broadens further at higher
temperatures. In principle, the non-ideal mixing model should be closer to the real situation than the ideal mix-
ing model. The wide crossover range agrees better with the experimental data [7]. By comparing figures 8(a)
and (c) (or figures 8(b) and (d)), we find Gmag significantly increases the Clapeyron slope of the spin crossover
range. The slope of the phase boundary in figure 8(d) is more similar to the previous experimental data from
reference [7] than others. This might occur because the current Gmag is an approximate analytical estimate of
the largest possible contribution of the magnetic entropy. In reality, the local spin magnetic moment at high
temperatures should not be as large as S = 2 for the HS state. Therefore, this magnetic entropic effect is likely
overestimated. Taking these factors into account, figure 8(d) might represent the most realistic situation for
the HS–LS spin cross in fp18. In figure 8(d), the spin crossover starts at ∼ 45 GPa. High temperatures do not
significantly affect the HS fraction at ∼45 GPa, which agrees with the experimental data [7]. We include the
mantle geotherm for a pyrolytic composition [31] in figure 8(d). The spin-crossover starts at ∼45 GPa, 2100 K
and ends at ∼115 GPa, 2400 K along the geotherm. These results indicate the MS state should predominate in
fp in most of the lower mantle. fp near the core-mantle boundary should be mainly in the LS state. We note
that thermal electronic excitation effects described using the Mermin functional do not significantly affect the
phase boundary, as shown in supplementary figure S6. This is expected as both HS and LS are insulators.
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6. Summary

In summary, we revisited the HS–LS crossover in fp by performing LDA + Usc calculations. The Hubbard
parameters U are determined self-consistently (Usc) using DFPT. The Usc parameter depends on pressure,
spin state, electronic and atomic configuration, etc, and varies by 1–2 eV. The AFM configuration is found to
be the ground state at low temperatures, consistent with experiments. The energy difference between FM and
AFM configurations is less than 10 meV/atom at T = 0 K, and magnetic ordering has a relatively minor impact
on the spin crossover pressure in static calculations for xFe = 0.1875. Phonon spectra are computed for both HS
and LS states. No imaginary frequencies are found in any case from 0 to 120 GPa, confirming phonon stability
in fp in the entire pressure range of the Earth’s mantle. Quasiharmonic free energy calculations offer ab initio
compression curves for HS and LS states in good agreement with experimental data at room temperature. The
HS–LS phase diagram is obtained by including all finite-temperature effects, i.e., vibrational, magnetic, elec-
tronic, and non-ideal HS–LS mixing contributions. The non-ideal HS–LS solid-solution mixing model gives
a crossover starting at ∼45 GPa at room temperature and is considerably broader than previous calculations.
The magnetic entropy is found to affect the Clapeyron slope of the HS–LS crossover significantly. Considering
these effects, the mixed spin state is predicted to predominate the fp throughout most of the lower mantle.
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