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Migrating the concept of soliton from particle physics to condensed matter physics, the to ical

spin textures have been observed in various material platforms, e.g., magn

disks, and thin films within a wide range of temperature.”*® The for
requires an in-plane O(2) magnetic anisotropy and does not demaNg anyg&pecific type of
interactions, such as frustrated symmetric exchange interacfion the antisymmetric

Dzyaloshinskii-Moriya (DM) interaction which stabilize the s iong, /'8 Therefore, merons

could be one of the common topological solitons in low-dime weak spin-orbit coupling

(SOC) magnetic systems.'% ! More recently, the newly e ing ically thin two-dimensional
(2D) magnets may work as the neat and natural playgr for Wh topological spin textures. 2>~
25 There are numerous experimental measurement ing WFron states through suppression or

large fluctuations of magnetic orders esp, layer structures. For example, the

suppressed antiferromagnetic (AFM) order o iPS3 was reported, and the XY features

were discussed in monolayer CrCls.52

A systematic theoretical explggation is highlyf demanded in light of the recent experimental

achievements in exploring topolgs spin textures. The strict 2D planar magnetic vortices and

antivortices are known as the BKRp and have been heavily studied for decades?®?°. For the
topological merons in the 1 gaterial, the in-plane geometry of the magnetic vortices and
antivortices are inhert wunhke the strict 2D model, the out-of-plane spin texture is

presented around the to lower the free energy of meron in realistic materials. Current

studies about merg yns mainly focus on the structure and stability of bimerons in the
frustrated ferromgg ) or chiral AFM monolayers as well as their dynamical responses
under externa

34 The ac

(W magnetic fields within the Landau-Lifshitz-Gilbert framework.!3%-
ption of the structural properties of single meron is limited, which is, however,
the foun&gtion {@r studying bimerons and further collective interactions. To date, most previous
worls Tollqwed the continuum analysis that has been successful in describing skyrmions. For
exa structure of a single meron was mimicked through the micromagnetic simulations

MF package) accompanied by the continuum analysis®®, and its stability was also
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discussed through a continuum model based on the Heisenberg Hamiltonian with D

interaction included®®. However, different from skyrmions, merons typically exhibi R m
compact core structures and form complicated networks in real materials. 4gy poij
seminal work of G. M. Wysin' about 2D easy-plane ferromagnets, the region c

geometry center cannot be described well by a continuum field. This is becaypdthe rap variation
of magnetic moments at the core represents a singularity in the contin pe tive.! These
characters make the continuum approach contentious to describe genefgl progerties of merons.
Finally, the statistical distribution of the distance between merons igfang etermining property

of the integrative multi-meron networks in materials, whereagathere been barely rigorous

investigation about this fundamental trait in realistic m this regard, it is worth

individual merons and their

endeavoring to find a general model to describe the thorou 0

pairs.

distribution and their evolutiongwith the chara¥feristic exchange interaction strength. The Above

model results agree well with t gn-interfering Monte-Carlo (MC) simulations. Thus, this

discrete soliton method gives rif§ P¥neral way to study merons in practical materials and

provide a comprehensive pi of [Ow temperature meron statistical properties

Hamiltonian and SM setup. We consider the following XXZ-type Heisenberg

Hamiltonian with change interaction (J) and effective onsite anisotropy (A) to describe
2D magnets:
] —> —>
=AY;(m{)*+ S2<ij>Mi-m; (1),
where mffepresgnts the magnetic moment. Our previous study shows that the NN approximation
produges agreement with the experiment and can predict the characteristic transition

temferaturd of monolayer chromium trihalides within an error bar of several Kelvin.3” Hexagonal

lattic utilized in this study because most currently synthesized 2D magnets belong to this

. To mimic realistic materials, we initially set these parameters close to the effective
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values of monolayer CrCls: the values of the effective onsite anisotropy A and H ber
exchange constant J are 35 peV and -790 peV/, respectively, which are obtained by fj W)
calculations?®. We have to address that the effective anisotropy A takes igp acyRy the

magneto-crystalline anisotropy and the shape anisotropy (magnetic dipolar interw
positive sign results in the in-plane O(2) symmetry which is crucial for reging mefons while
prohibiting the formation of long-range magnetic orders at finite temper . Th proximation
can capture the essential meron physics while dramatically simplify the @d corresponding
MC simulations. Utilizing monolayer CrCls as the starting pointf wegsll keep A fixed while
scanning J within a reasonable range to predict the meron propgties i neral 2D magnets. In
other words, we mainly focus on the exchange interaction a@of J/A, to avoid scanning
a vast parameter space while grasping the essential ph

ysicgmR
Based on the Hamiltonian in Eq (1), we perform M ulatihs via the Metropolis algorithm on

t cells (if not particularly specified),

R jits

jodIC boundary condition is implemented in
to assign a new random direction in three-

dimensional (3D) space to one of the ran tic moments in the lattice, and the acceptance

out-of-plane direction at the initia g to mimic the experimental cooling condition with the help

The temperature of MC is g\0 kgT =],/36 to get a unclouded meron profile from thermal

blurring. We run 2.30& steps in total (averaged 2 X 10° steps per magnetic atom) to

of an external field.?>?3 Such initi

ensure the equilibrium sta ached.

om the merons in monolayer CrClz, a 2D magnet expected to be
promising to | gnetic polarizations and merons.'®?"?” Figures 1 (a) and (b) present
the sche t side views of merons obtained from MC simulations of monolayer CrCl3
using the\QFT-clculated J and A as mentioned above.?®% These figures reveal a few fundamental
chayfacters §f merons. First, the spin texture has a wave-pocket-like core with the 2 direction spin

com while the easy-plane spin components form the vortex or anti-vortex swirling around

VLMJG’“O"”. Secondly, under ideal conditions, the in-plane swirling of a meron/anti-meron

arrants the overall zero topological numbers of system.

Page 4 of 24



Page 5 of 24

oNOYTULT D WN =

O 00 N o U A W N B

[E
o

11
12

13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

AUTHOR SUBMITTED MANUSCRIPT - JPCM-119876.R1

or magnetic bubbles which are self-contained.>** For example, a general stugged sk§
decomposed into an inner core, an outer domain, and a domain wall separating l\

domains as plotted in the inset of Figure 1 (b).>%43 &

To quantitatively describe a single meron, we have calculated its to%I arge that has been

widely employed to characterize the topolog1ca1 propertles 0 > The topological

charge is defined as Q = [q(#) = [ ﬁ_’ a_n 44 4 the unit vector of local
magnetic moment #71. The schematic topological Charg ion q(7) of ameron in monolayer
CrCl3 is shown in Figure 1 (c). In this study, the integfa ogical charge of the considered

merons and anti-merons belongs to the half i . The half integer topological charge

supports the idea that merons have to form p e in an integer topology number form,
which agrees with previous studies and observa “§'>16 Moreover, the most topological charge
is condensed around the small core régi in Figure 1 (c), the diameter of the 5% isoline

of the maximum value of local topological cgée is about 4 nm, which is the length of 6 lattice

the skyrmions observed in Feos(@
topological charge, we ha ulated the magnetic energy distribution based on the
Heisenberg Hamiltonjgn 1). |l Figure 1 (d), the magnetic energy profile shows the similar

features as the topologi arge distribution: most magnetic energy is condensed around the core

7 nm. These results conclude that a manifest character of merons is
their highly inhof15qg spin texture around the core. The condensed core dominates most
Al properties of the single meron texture. This feature distinguishes
merons fr ion, in which the topological charge is allocated around domain wall far
away frofg the s@iton center. Interestingly, such highly inhomogeneous spin textures of meron are
suit to binary information based on the out-of-plane spin direction of cores and can be

marRgulatgl by external field pulse, which is not achievable for the strict 2D planar vortexes.'® On
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the other hand, as we will show in the following, such highly inhomogeneous spin tew
1y

bring difficulties in describing and quantifying merons through the traditional contin

o
The first step is to build a modeled profile function to describe the spin texture W
rofile Yun

Inspired by the hyperbolic secant form of the optic solitons*, we construct t

ction to

describe the meron geometry:

OB =vp+5  (2) %;
1

Tr
O(r) = = —arctan
2 .
sinh
L ( ao

where ®(¢) and O(r) are the azimuthal lar es, respectively, which describe the

direction of a magnetic moment 77 on the polar\ooro@¥te r(r, ¢) (illustrated in Figure 1 (a)), i.e.,

m=m, (sin(@) cos(®), sin(0)si .In Eq. (2), & is the phase factor varying from

0 to 21 describing the swirling. We refer positNg¢ vorticity v to a meron and negative v to an anti-

meron. In this work, we restrict discussion to |v| = 1, which is the most common and

fundamental meron state with

te

magnetic lattices. w is Nggfsca

Wlogical charge, although |v| > 1 can still exist if

considering specific excha ctions beyond NN. 47 In Eq. (3), a, is the lattice constant of

e of the meron core region, and it is the only tunable parameter

in this model. We cg

marked in Figure w the soliton form in Eq. (3), FWHM = 2 ln(Z + \/§) w = 2.63w.

D CO w with the widely used full width at half maximum (FWHM)

Next, we empNg the gderon&oliton profile in Egs. (2) and (3) to tune the parameter w for obtaining

the grourfd stateylowest) energy based on the Hamiltonian in Eq. (1). One popular way to evaluate
rg . )

.2,36,43,48

such use the continuum approximation:

E=[[(AmZ+Z|vai|?)ds (4).

Page 6 of 24
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A" and J' are treated as the continuous effective coefficients related with Eq. (1), and an ize

can be chosen as one since the ratio is relevant). Moreover, there are two mag

in one unit cell, which gives another factor of 2. As a result, we need a

1/+/3 to A'/J’. This approach has provided gratifying results for descNg yrmions.*® (See
section 1 of the Supplemental Information for the detailed analysis ) and corresponding

boundary effect) In Figure 2 (a), we present the radial profile o onolayer CrCls from

the continuum model (the dash line) and the MC simulatio Unfortunately, compared

with the MC result, the core size calculated by the contin oder'Ts apparently underestimated.

This deviation is from the fact that the main structures , such as the topological charge

treatment. This can be seen from Figure 1 (b ich sharp variations of the spin texture are

observed within a small-sized core.

To overcome such deviation i ed by the sihgularity at the meron core, we can deal with the
discrete degrees of freedom of on in hexagonal lattices applying the profile function,
without the continuum approxim ollowing this idea, we discretize the single meron profile

function (Egs (2) and (3)) bagnetic Bravais lattices and obtain the corresponding energy

by directly followin e berg Hamiltonian in Eq (1). Via the procedure of energy

optimization, the disggetize roach provides a very good portrait for the meron comparing with

the observed merqg e in the low-temperature (kzT = J,/36) MC simulation of monolayer
eement between the red solid line and dots in Figure 2 (a). Meanwhile,
such a good a alsofCorroborates the validation of our proposed soliton formula in Eq. (3)

for descrj

Thefi we g} beyond monolayer CrCls to check this discrete approach for general materials. We
have ated the single-meron profile by changing the exchange interaction J within a

e range of natural materials, such as chromium trihalides, (from 0.5 J, to 4/,, where ] is
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the exchange interaction strength of monolayer CrCls). The results are summarized in Fi (b).

The model based on the discrete soliton solution (Eq. 3) always provides satisfactory

o WS

with MC results within such a wide range of magnetic interactions. MoreovergFiguj % eals

the trend of merons core associated with the exchange interaction. For example w
ristic 1

interaction will increase the core size of merons. This is similar to the char gth Scale

increase as ///A in common magnetic domain wall structures. Such a trg#®is corstent with the
understanding that a larger exchange interaction J (in principle, J/A) in esdhe energy cost of
forming in-plane swirling at the core region and makes the s%r to the Z direction.
Consequently, the soliton favors a broader span of the spin v jon g Z and thus a larger

core size. It is worth mentioning that this trend is opposite veraf®ize shrinkage against the

increasing J in skyrmions. When the exchange J increase jze decrease of the inner region of
skyrmions overlays the thickness increase of the do wallinvolving the DM interaction,

resulting in an overall decreased size of skyrmions,

Figure 2 (c) summarizes the FWHM of mero d by the three approaches, i.e., simulated

from MC, optimized from the conti digcrete approaches based on profile function,

for a wide range of exchange interaction s explained above, the continuum approach neglects

the lattice discretization effect JRnd the core

en truncated with a, avoiding the singularity and
consequently underestimates the meron soliton. In contrast, by introducing the lattice
discretized profile function, the t [ prediction of meron size is in good agreement with the

MC simulation which is no erfared method with the model.

Nhat the meron core size is relatively robust against the distance

isplays the MC results of merons’ the out-of-plane (2) spin component

Finally, it is worth

between them. Fi

under the diff

pa ances ranging from 10 to 40 nm observed in simulations of monolayer
CrCls. The s n pg¥fileskare nearly the same within the wide range of distance. Notable, the
persiste f meron core structure against the pair distance emphasizes the importance of the
discrete capturing the meticulous structure of the meron core region and verifies the
feas‘bility i studying the interactions among merons through the rigid particle supposition, which

will ed in the following bimeron profile and multi-meron statistics.

Page 8 of 24
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Bimeron profile. Unlike a skyrmion which maintains an integer topological charge itsel
meron only carries half-integer topological charge and shows up in pairs, so-called
states, to ensure the system belongs to the integer topological class. Hence, thgyr pai

are worth being studied. Based on the in-plane geometry of vortex and anti-v Wwir

the spin moment (m(6, $)) of a bimeron can be written as Eq. (5) based ga the sifBle meron

profiles illustrated in Figure 3 (a):
{ 0=z"0tr—rt")+z7067(r—r") 5<) )
d=y"oTCr—-rH+y ¢ r—-r)+46

where we label the meron and anti-meron via the superscripts by, e swirling type: yt =

1 for vortex and y~ = —1 for anti-vortex, the corresponding e contained in angles ¢p*.

r* and r~ are the core locations of meron and anti-mero dicates the spin direction of
the meron (anti-meron) core along the positive (+1) or ive () z-axis. The overall sign of the

decided by the product of its core

bimerons discussed in this work, there are threela the overall topological index (0 and +1).

To corroborate results with experim ulation conveniently, we mainly focus on the

class O configurations (as illustrated in Fi (b)) where the spin z-direction of the cores in

meron and anti-meron are the sé his configuration can be smoothly transferred from the field-

induced FM state that could be § ized in experiments and MC simulations because the
conservation of the topologic d the initial setups of the perfect FM order in simulations.

Since we only consider the sgfropif exchange and onsite anisotropy, the phase factor § can be an

arbitrary value betwee 2T gives the same degenerated energies. For example, in Figure

3(b) we present the tri®re appearance of meron pairs with four typical values of §, i.e.,
1 3 . . .

0,5, m, and >/ observed in the MC simulations.!"'®

With thefibove yperon pair profile function, we can evaluate the pair interaction energy against the
dista — 77|) between meron and anti-meron by using the discrete method established
in tige bimejon profile Eq.5. First, we begin with merons in monolayer CrCls. Figure 3 (c) presents
the rest™®obtained by the discrete (dots) approach. An attractive interaction is observed between

nd anti-meron. A logarithm curve (dashed line) excellently fits the results for d > 2r.
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Interestingly, the Yang-Mills equations, which originally proposed meron-pair quasipw

high-energy physics, derives the similar logarithm-scale energy variation.>*

Such a logarithm scale can be understood by analyzing the asymptotic behavior

ay
center (|r| > |d|) via the continuum analysis which is well established in BKT phiysics.
Due to the highly concentrated meron profile, the corresponding asymp int ion between

meron and anti-meron mainly comes from the region far from the coresN&hus, # is dominated by
the exchange interaction of in-plane swirling of local magnetic momfntsgdace the highly localized
core region does not contribute to the interaction between merggaan i#leron instances by the
short-range Heisenberg exchange. To capture the primary sc@action, the energy can be
estimated as E = % [f Vimi - Vni dS. Combined with the rome (Eq (5)), we could get the
asymptotic energy expression as: (The details can be@ecﬂon 2. of the Supplemental
Information)

E=Jn[(y"+vy7)%1

where L is the system size. For bimeron states,
term is zero, and the residual second te es to a logarithm-scale energy between meron

and anti-meron.

We must emphasize that, alth ontinuum treatment is helpful in understanding the
asymptotic behavior, it can 0 n accurate description for the strength of pair interaction.
As discussed in the sing ron ghse, the center region of merons cannot be described by the
continuum model, an%aﬁon of Eq. (6) is only asymptotically valid at the large r limit.
Therefore, a discre etween the continuum model and discrete model should be expected.
As shown in Fig the continuum analysis gives an overestimated interaction strength
compared wi reyult the discrete model, although both exhibit a logarithm scale.

When w@eron interactions, the potential is truncated at 2r,, where 1, is the FWHM of the
e

uch a rigid core treatment for studying medium and long-range interactions at

sin rone
equwstate is supported by the MC simulations (Figure 2 (d)) which shows that the meron

Werties are barely affected by other merons that are apart larger than 27y.

Page 10 of 24
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1

2

3 1

4

5 2 The attractive interaction between meron and antimeron is not directly associated with QAT

6

7 3  stability. The observed meron-antimeron pairs are essentially thermodynagyic r¢ nite
g 4  temperature. Beside the ferromagnetic ground state at zero temperature, at finite tw g se
:(1) 5 quasi-orders with weak attractive interaction emerges from the Goldstone moga¥. 2% In offier words,
12 6  we can imagine that some meron-antimeron pairs annihilate (disappear) eo airs emerge
13

14 7 due to thermal fluctuations.

15

16 8

17 9  On the other hand, we must clarify that we constrain our studggto t tic profile of meron.
18

19 10  Therefore, our approach is not able to describe the meron i 1 'when their cores overlap
20 . . .

21 11  (r < 2ry), because the static profile model cannot grape t na rocess such as the creation
;g 12 and annihilation of meron pair when they are nestlingijgach o¥r. In that situation, the meron
24 13  profiles no longer follow the assumed soliton form . ile they are merging.

25

26 14

27

28 15

29 16

30

31 17

32

33 18

g;‘ 19  Importantly, Figure 3 (d) shows t he exchange interaction J increases, the meron/anti-meron
36 20  attractive interaction is enhancdy Mse the total energy is proportional to the exchange
37

38 21  interaction as seen from the iltpnian in Eq. (1).

39

40 22

2; 23  Finally, the scaling law o pairing energy vs the system size is known to be important as it
43 24  provides a scale giffl for the experimental realization of meron solitons in the magnetic
44

45 25 domains in nat 5424950 Unfortunately, the continuum solution confirms the energy
j? 26  convergence e syptem§p mentioned in Eq. (6) but it cannot provide the asymptotic behavior
48 27  with varyM@sy ize. On the contrary, our discrete model reveals that the energy of a pair of
49

50 28  merons h a fjlled distance d converges as 1/L?(~ 1/N) to the system size, as shown in Figure
51

52 29 3 (ef; and asystem size of 240x240 unit cells are utilized in the study.

53

30
55
56
57
58
59
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It is worth mentioning that the interaction between the same type merons or antimerons is |sive.
However, without imperfections, such as magnetic defects, the conservation of th gl

number will forbid the instance of a single pair of the same type merons oganti real
materials, more than one pair of meron/antimerons can be thermally excited, whi ing e

complex networks of merons/antimerons discussed in the following section. &

Nearest neighbor (NN) distance of merons in materials. With the Yispers@n of interaction
energy shown in Figure 3 (d), more general meron behaviors, e.g.f th ponse to the external
the

field and current induced torques>3%3!:3* can be studied throu equent macro soliton

effective models. In the following, we focus on the statistical
in materials. Merons in materials can form complicated str
from “dipole like” to “quadrupole like” or even m
topological defects networks were observed in MC 10%F of monolayer CrCls, as shown in

etw®k res, we calculate the NN distance

between merons, °! which is analogous to the\I e between meron and anti-meron in a simple

exchange intdggaftiony J. e rest part of this article, we will show that, using the bimeron
interactio, bove, we can develop a phenomenological model to capture the statistical

NN distaQge disg@ibution in Figures 5 (a)-(d).

By 1"ysaidPf the NN model in 2D free gas, we start from a probability integration equation for

ron systems with the rigid core approximation.>?

Page 12 of 24
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foy=(1-1;, faHdr)p@), () \

where f(r) represents the probability of finding an antithesis of a meron at the di xa o (1)

represents the probability of the bimeron having a distance of r with one SOlit&l fixed Q@ Sfigin.

We further assume that p(r) obeys the exponential relation with energy which can be

obtained from the discrete meron pair profile in Figure 3 (d). Thus< pEr) r e written as
_ E(r)
§2nre EGro) - in which E(2ry) is the reference energy, and t 0 ation factor Z, =
L _ E(r)
ero 2nre ECrodr. N is the total number of merons achi froM MC simulations. By
introducing the energy E (r) which can be obtained from the di eron pair profile in Figure

3 (d), we get the model describing the NN meron/anti-mgfon ce from Eq (7)

_E()
E@ (—2Zm g r'e EGrodr"), (8)

N
f(r)= ergexp (—m

where Z; is the normalization factor, igures 5 (a-d), this model is in good agreement

with statistical results from MC simulatio cially under the long-distance condition. On the

other hand, limited by the rigfQggre assumption and neglecting possible merging process of
merons and anti-merons, there ght discrepancies at the small (short-range) distance.
Nevertheless, the general agr
the discrete profile model nft #nly Jorks for single meron but also is suitable for studying multi-

meron states in materi @@ whr ands the scope of the model.

Follow the same single and bimeron studies, we have also studied the impact of the

exchange inte n e NN distance of merons. An observed trend from Figures 5 (a) - (d)
is that the larg@ge stfength J gives a shorter averaged NN distance and tighter distribution.
Figure 5 fe) ploty the highest probability distance and the averaged distance vs J. When J increases,
the distance exhibits a decreasing trend. This is because a larger J results in stronger

attr&tive irferactions between meron and anti-meron as we discussed above. This will intrinsically

lead to aller NN distance.
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Finally, we must emphasize that, although the interaction energy between merons is ivel

weak (Figure 3 (d)), this attractive interaction is significant in deciding the statistics of

figures 5 (a)-(d), we plot the result of the non-interacting free 2D gas in a daghed ¢

the weak attracting interaction, the most probable distance is substantially o imae
example, for monolayer CrClsz (Figure 5 (b)), the ideal gas model gives t ost pr@bable’ NN
distance at 210A while that from the discrete model is 116A. Mor r, t idth of the
distribution of ideal-gas model is broader, resulting in a larger averaged !@vce of 267A. The
number is larger than the discrete model (169A) because of the negleftiongaf attractive interactions.
The similar discrepancies are also observed at different exchangginteragtigh J, as summarized in
Figure 5 (e).

In summary, we built a discrete model in light of the sejiyfgal d1Sffssion of planar 2D magnets' to
explore the merons’ general properties covering thyggele ¥rons, meron pairs, and their low-
temperature equilibrium properties. By c ari%e continuum approach and cross-

tra

validating with MC simulation results, we

that such a discrete model accurately

captures the important characters of

in 2D magnets and 3D magneti
from our discrete model, igteresting models can be constructed to study the dynamic
properties of merons i 1 i¥s. This model would be useful for exploring the meron profile
of pinning, dragging, dn iiyo in presence of moderate magnetic defects or external dynamic
perturbations, whic 6 ectly connected with experimental realizations and further promising

applications.

QC)
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Figures: \

(b) Skyrmion

Figurel (a) Top view (in-plane glity) of merons on 2D magnetic lattices. For the articulating

by in-plane swirling types (M* for the vortex type and

purpose, meron and anti-meron a %
alar ghordinate 7(7, ) and m are illustrated in the dashed line

M~ for the anti-vortex type). The

and arrow, respectively (b) vigw of merons. The inset is the structure of a skyrmion. (c) and
(d) Schematic figures,of gh€opol@sical charge and energy distribution of a single meron. The
dashed circle indicates isolilte with 5% of the maximal value and the estimated diameters are

listed in figures.
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Figure4 (a) Schematic plot of meron networks from sim ons of monolayer CrClz. The
merons and anti-merons are labeled by red circle (M*)an triangle (M") (b) In-plane phase

map of (a). The swirling directions of meron End ayfti- e illustrated by arrowheads.
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