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We consider a nonlinear, spatially nonlocal initial value problem in one space dimension on R that
describes the motion of surface quasigeostrophic (SQG) fronts. We prove that the initial value problem has
a unique local smooth solution under a convergence condition on the multilinear expansion of the nonlinear
term in the equation, and, for sufficiently smooth and small initial data, we prove that the solution is global.
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1. Introduction

In this paper, we prove the existence of global small, smooth solutions of the initial value problem

1
% (x,t)—i—/[(px(x t) (px(x"i_{ t)]{__ }d§=2]0g|8x|§0x(xﬁ),
t €1 gt D—pcC. P (1-1)
@(x,0) =go(x),
where ¢ : R x Ry — R is defined for x e R, € R, and
= log |d| (1-2)

is the Fourier multiplier operator with symbol log |£|. Our main result is stated in Theorem 5.1.
This initial value problem describes front solutions of the surface quasigeostrophic (SQG) equation

O,+u-vo=0, u=(—A)""?v"1e, (1-3)

where (—A)~1/2 is a fractional inverse Laplacian on R? and V+ = (—dy, dx). The SQG equation arises
as a description of quasigeostrophic flows confined to a surface [Lapeyre 2017; Pedlosky 1987]. After the

Hunter was supported by the NSF under grant numbers DMS-1616988 and DMS-1908947.
MSC2020: primary 35Q35, 35Q86; secondary 86A10.
Keywords: surface quasigeostrophic equation, surface waves, nonlinear dispersive waves, global solutions.

403


http://msp.org/paa/
https://doi.org/10.2140/paa.2021.3-3
http://https://doi.org/10.2140/paa.2021.3.403
http://msp.org

404 JOHN K. HUNTER, JINGYANG SHU AND QINGTIAN ZHANG

incompressible Euler equation, it is the most physically important member of a family of two-dimensional
active scalar problems for 6 with a divergence-free transport velocity u = (—A)~%/>?V160 and 0 < o < 2.
The case o = 2 gives the vorticity-stream function formulation of the incompressible Euler equation
[Majda and Bertozzi 2002], while = 1 gives the SQG equation.

The SQG equation is also of interest from an analytical perspective because it has similar features to
the three-dimensional incompressible Euler equation [Constantin et al. 1994]; in both cases, the question
of singularity formation in smooth solutions remains open. The SQG equation has global weak solutions
[Marchand 2008; Resnick 1995], and, as for the Euler equation, nonunique weak solutions of the SQG
initial value problem may be constructed by convex integration [Buckmaster et al. 2019; Isett and Ma
2021]. The SQG equation also has a nontrivial family of global smooth solutions [Castro et al. 2020].

By SQG front solutions, we mean piecewise-constant solutions of (1-3) with

0 ify>ex,1),

9 9 7[ == .
(621 {9— ify <@(x, 1),

where 6, and 6_ are distinct constants, in which 6 has a jump discontinuity across a front located at
vy =¢(x,t) with x € R; in (1-1), the jump is normalized to 6, — 6_ = 2. We assume that the front is a
graph and do not consider questions related to the breaking or filamentation of the front.

We contrast these front solutions with SQG patches, in which

O if (x,y) € Q(),

e(x’y’”zio if (v, y) ¢ 200).

where Q (1) C R? is a bounded, simply connected region with smooth boundary. Contour dynamics
equations for the motion of patches in SQG, Euler, and generalized SQG (with arbitrary values of
0 < a < 2) are straightforward to write down, although they require an appropriate regularization of a
locally nonintegrable singularity in the Green’s function of (—A)%/2 when 0 < « < 1. Local well-posedness
of the contour dynamics equations for SQG and generalized SQG patches is proved in [Cérdoba et al.
2018; Gancedo 2008], and generalized SQG patches in the more locally singular regime 0 < o < 1 are
studied in [Chae et al. 2012; Khor and Rodrigo 2021a; 2021b].

The boundary of a vortex patch in the Euler equation remains globally smooth in time [Bertozzi and
Constantin 1993; Chemin 1993; 1998], but this question remains open for SQG patches. Splash singu-
larities cannot occur in a smooth boundary of an SQG patch [Gancedo and Strain 2014], while numerical
results suggest the formation of complex, self-similar singularities in a single patch [Scott and Dritschel
2014; 2019] and a curvature blow up when two patches touch [Cérdoba et al. 2005]. Singularity formation
in the boundary of generalized SQG patches has been proved in the presence of a rigid boundary when « is
sufficiently close to 2 [Gancedo and Patel 2021; Kiselev et al. 2016; 2017], and a class of nontrivial global
smooth solutions for SQG patches is constructed in [Castro et al. 2016a; 2016b; Gémez-Serrano 2019].

When 0 < o < 1, it is straightforward to derive contour dynamics equations for fronts in the same
way as one does for patches. In that case, [Cordoba et al. 2019] proves the global well-posedness of the
initial-value problem on R for small, smooth generalized SQG fronts.
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When 1 < o < 2, additional problems arise in the formulation of contour dynamics equations for
fronts as a result of the slow decay of the Green’s function and the lack of compact support of 6. Front
equations, including (1-1), are derived by a regularization procedure in [Hunter and Shu 2018], and a
detailed derivation of (1-1) from the SQG equation is given in [Hunter et al. 2020]. Unlike the front
equations with o # 1, the SQG front equation requires both “ultraviolet” and “infrared” regularization in
the front equation to account for the failure of both local and global integrability of the SQG Green’s
function G(r) = 1/r on R. This failure leads to the logarithmic derivatives in (1-1), rather than the
fractional derivatives that occur for generalized SQG fronts with o # 1.

In the case of spatially periodic fronts with x € T =R/27wZ, one can write down front equations directly
by using the Green’s function of (—A)*/? on the cylinder T x R. Local well-posedness for spatially
periodic SQG front-type equations is proved in [Rodrigo 2005] for C°°-solutions by a Nash—-Moser
method and in [Fefferman and Rodrigo 2011] for analytic solutions by a Cauchy—Kowalewski method.
Almost sharp fronts, across which 8 is continuous, are studied in [Cérdoba et al. 2004; Fefferman et al.
2012; Fefferman and Rodrigo 2012; 2015].

The local well-posedness in Sobolev spaces of a cubically nonlinear approximation of (1-1) for
spatially periodic solutions is proved in [Hunter et al. 2018]. In this paper, we consider the fully nonlinear
equation (1-1) on R. The problem on R differs from the problem on T in two respects. First, the logarithmic
multiplier log |£| is unbounded at low frequencies, which does not occur on T when & € Z\ {0} is discrete
and nonzero. Second, the linearized equation on R provides dispersive decay, which allows us to get
global solutions for sufficiently small, smooth initial data. In this paper, we do not attempt to obtain a
sharp regularity result for these solutions.

The general strategy for proving the global existence of small solutions of dispersive equations is to
prove an energy estimate together with a dispersive decay estimate. Energy estimates for (1-1) in the
usual H*-Sobolev spaces lead to a logarithmic loss of derivatives [Hunter and Shu 2018]. However, as
shown in [Hunter et al. 2018] for spatially periodic solutions of the cubic approximation, we can obtain
good energy estimates in suitably weighted H*-spaces by paralinearizing the equation and using the linear
dispersive term to control the logarithmic loss of derivatives from the nonlinear term.

The proof of the dispersive estimates is more delicate. The linear part of the equation provides ¢ ~!/2
decay for the L°°-norm of the solution, but this is not sufficient to close the global energy estimates for
the full equation, since the O (¢~!) contribution from the cubically nonlinear term is not integrable in time.
We therefore need to analyze the nonlinear dispersive behavior in more detail. We do this by the method
of space-time resonances introduced by Germain, Masmoudi and Shatah [Germain 2010; Germain et al.
2009; 2012], together with estimates for weighted Lgo—norms — the so-called Z-norms — developed
by Ionescu and his collaborators [Cérdoba et al. 2019; Deng et al. 2017a; 2017b; Ionescu and Pausader
2013; Tonescu and Pusateri 2015; 2016; 2018].

Our Z-norm estimates in Section 8 involve a detailed frequency-space analysis. The most difficult
part is the estimate of the cubically nonlinear terms. In most regions of frequency space, these terms are
nonresonant, and we can use integration by parts in either the spatial or temporal frequency variables to
estimate the corresponding oscillatory integrals. In regions of space-time resonances, we use the method
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of modified scattering to account for the nonlinear, long-time asymptotics of the solutions [Ionescu and
Pusateri 2014; Ozawa 1991].

In [Cérdoba et al. 2019], where the authors prove global well-posedness of the initial-value problem for
the generalized SQG front equation with 0 < & < 1, the linearized equation ¢, = 9, |d;|' “¢ has a scaling
invariance, with dispersion relation T = £|£| =2 and it commutes with the vector field xd, + (2 — «)79;.
This commutation provides a key ingredient in the dispersive estimates. The SQG equation considered
here corresponds to the limiting case o = 1, and its linearized dispersion relation is T = 2§ log |£|.
The linearized equation ¢; = 21og |d,|¢, is not scale-invariant, but it has a combined scaling-Galilean
invariance and commutes with the scaling-Galilean vector field S = (x 4 2¢)d, + 19;, which we use to
obtain dispersive estimates.

This paper is organized as follows. In Section 2, we collect some fundamental facts and estimates that
we use later. In Section 3, we expand and paralinearize the nonlinear terms in the evolution equation. In
Section 4, we derive weighted energy estimates and prove a local well-posedness result in Theorem 4.1.
In Section 5, we state the global existence result in Theorem 5.1. Finally, in Sections 6-8 we carry out the
three key steps in the proof of global existence: linear dispersive estimates, scaling-Galilean estimates,
and nonlinear dispersive estimates.

2. Preliminaries

2A. Paradifferential calculus. In this section, we state several lemmas for Fourier multiplier opera-
tors that follow from the Weyl paradifferential calculus. Further discussion of the Weyl calculus and
paraproducts can be found in [Bahouri et al. 2011; Chemin 1998; Hérmander 1985; Taylor 2000].

We denote the Fourier transform of f : R — C by f : R — C, where f = F f is given by

f(x)Z/f(g)eindg, f(g):%ff(x)e—isxdx'
R T Jr

For s € R, we denote by H*(R) the space of Schwartz distributions f with || f|| zs < 0o, where

R 12
1 f e = M(lﬂéﬂ)ﬂf@)ﬁdé} .

Throughout this paper, we use A < B to mean there is a constant C such that A < CB, and A 2 B to
mean there is a constant C such that A > CB. We use A ~ B to mean that A < B and B < A.
Let x : R — R be a smooth function such that

x is supported in the interval {§ e R | |£] < {5}, and x(§) =L on {& e R| €] < 5} (2-1)

If f is a Schwartz distribution and @ : R x R — C is a symbol, then we define a Weyl paraproduct 7, f by

B E—nl” \.(, _&+n\,
F[Taf](é)—Ax(l+lg+n|2)a<§ . )f(n)dn, (2-2)
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where a (&, n) denotes the partial Fourier transform of a(x, ) with respect to x. For r{, r, € Ng =NU {0},
we define a normed symbol space by
My ={a:RxR— C| llallmy,,,, < o0},
r rn (2 3)
lall g, ,, = sup {Z > a+Enflacalacx, s>|}.
(X’S)ERZ a=0 ;3:0
The following lemma is proved in Appendix B.

Lemma 2.1. Lets e R. Ifa € M(y,1)and f € H*(R), then T, f € H*(R) and

1Ta f s S Nall g f s

Next, we prove some commutator estimates. We denote by log, |0 | the Fourier multiplier with symbol

g 161 = {11 o
Lemma 2.2. Let s € R. Suppose that f € H*(R), a € M1y, and b € M 2y. Then
100x, Tal fll s S Nall v I f s, (2-4)
Ilog . [0x], Tal fllas S Nlall s, I1f st (2-5)
e, Tpl fllas S MO0 a1 Nas s (2-6)
IxTs f = Tep f s SN0 a1 f s (2-7)

Proof. (1) We have [0y, T,] = Tj 4, s0 (2-4) follows from Lemma 2.1.
(2) Next, we prove (2-5). By the definition (2-2) of the Weyl paraproduct, we have for & # 0 that

a2
Fllog, 3| T,v1(8) = log, Iéléx(&)&e—n, §+’7)a<n>dn

L+[&+nl? 2
6 —nl >~( E+n>A
=/ lo —-n-+ —— )al§ —n, v(n) dn. 2-8
/Rg+|€ n n|X(1+|S+n|2 §—n > () dn (2-8)
If (£, n) belongs to the support of x (|€ — n|?/(1 + |€ +1n|?)), then we claim that
— 17
Em I hen ) = 2. (2:9)
n 18
To prove this claim, we observe that
E—n* _ 1

L+ & +nP ~ 10
implies that

2
95;77_% <@+l<@’
n 9 =9 n%2~ 36
and it follows that
Sonl_|gzn_2|, 2_17
n |7 | n 9 971
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We introduce a smooth cutoff function ¢(n) supported in {|n| < 3} with «(n) =1 on {|n| <2}. In view
of (2-9), when |n| > 2 we can use

log |§ —n+n| =log|n| +log

and we obtain from (2-8) that, for |£]| > 1,

B £—n lE—nl* . £+
f[10g+|3x|Taf](€)—A(l—t(n))[log|n|+log 1+ . HX(1+|§+77|2)0( — )f(n)d

E—nl* . AV
+10g+ |5|/H%L(U)X<m>a<5 -, T)f(ﬂ) dn.
We also have

N E=nl*> \.(.  E+n);
f[Ta10g+|3x|f](§)—/[Rlog+|77|x(—l+|§+n|2)a(§ =5 )f(n)dn-

By taking the difference of the previous two equations, we get

Fllog, 0x|Ta f1(§) — FI[Talog, |9x]| f1(§)

(. §—n E=n \afe_, &F
_/R(l L(n))[IOgH n ‘]X<1+Ié+n|2)a( )f(n)dn

E—nl* . &t
+/Rt('7)(10g+ 1§ —log, [nD)x <m)a( - )f(fl) dn. (2-10)

The integrand in the first integral on the right-hand side of (2-10) is supported on

|& —nl 17}
< — .
1 18

{(S, U] ‘ Inl > 2

Thus, if P(&, n) is a smooth cutoff function supported in a small neighborhood of this set and equal to 1
on the set, then the first integral can be written as

n E—n 1€ —n)? ) ~( é+n)[1—t(n) A ]
P, log|1 — —n, dn.
/R 3 n)[%__}7 og1+ = HX(HEJH7|2 E—ma(s—n — o) dn

We define
26 4“1 20 |~ & &
A1, o) = 20 g'1+2€2_ , 81a(§1,§2)7’(§2+3,§ _E>’
so that
x_l . . -1 la 8
A(x, ) = 200,25 +idy) P ¢ 2—— Cz—l-? dra(x, £).
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Then the first integral on the right-hand-side of (2-10) can be written in terms of a paradifferential operator
with symbol A as

& —nl? >~( €+n)[ —u(n) ; ] _1[1—L ]
— T _)A(&—-n, dn = FIT, =F :
fo(l T §—n , fp|dn=FiTagl®). ¢ . f

By Lemma 2.1, we have

ITagll S WAl g Es S AT M I g1
Because of the cutoff function P, we see that the support of A({l, &) is contained in
2L 17
< —.
2004 13
So dia(-, &) — A(-, &) is a zeroth-order pseudodifferential operator. By carrying out a dyadic decom-
position and using Bernstein’s inequality [Bahouri et al. 2011], we obtain that

|2§2_§1|>4’ ‘

”A”M(l,l) S ||a”M(2,l)'

It follows that the first term on the right-hand side of (2-10) satisfies the estimate (2-5).
For the second term on the right-hand side of (2-10), the cutoff functions y, ¢ ensure that |£| < 6,
|n| < 3. Therefore we have the H*-estimate

) .
a1y [ aonoe. te1-tog, e (522 Ja(s = 55 ) Fonan

1+&+n)? 12
, E—nl* . £+
5H<1+|5|2>‘/210g+|5|fx(m) (s—n, )[t(n)f(n) o],
H<1+|5| )”2/ (%)5(5—77, S%)Mn) log,, [nl f(m)1d .
[ o n S5 uon ey .
n Rx(%)aé—n, E#)[wmlo&|n|f<n>]dn )

3
= 1Taglle2 + 1 Tah]| 2,

where IR _q N
g=F [fl, h=F"llog, Inlfl,

and Lemma 2.1 implies that the second term also satisfies (2-5).
(3) To prove (2-6), we compute that
Fllx, Tpr1 F1(5)

=i0¢ Ty 1 (€)~Tp () (&)

. E—nl* - E+n E—nl> \: £+
— o x50 s o (e oo 5 o
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We rewrite the first integral above as

/Rag["(lfg—’ll;l?)g( - Hn)]f(")d
Y
AT G .
2
- [ ot 8)[ (lfllfzjr'nlz) (1 ’&3”)]\& RIS
AN o TSNS

1+|&+n|? 2
It follows that
Fan)dn

: &1 —n)? )~< S2+77)_
Flo. Tl f =2i [ dg| x| —D )b (& —n, 221
[x, Tp1f l/u@ 5 |:X<1+|§2+77|2 1= i

21E — 2 a2 -
_ o [ HE—nl (S+Z)X/( & —nl )b(_ £+ n)f(n)d

R [1+1&+nl] I+[&+n)?
& —nl? )~( S+n)A
+i ———— | b , dn. (2-11
f(1+lé+n|225n 5 )fdn. (2-11)
From (2-9), in the support of the cutoff function y we have
wlil <1§l<3§lnl when|n|>2,  and  |§] <6 when|n| <2.

Thus, the first integral on the right-hand-side of (2-11) satisfies

2e—nPE+m L E—nP \s £ty
2\5/2 / _
H(H'S' L e are (1+|s+n|2)b( )f(”)d

21 —n*(E+n) ,( & —n|? >~< &+ )
Ltvism (g e =57 e sontan

21 —n*(E +1) ,( & —nl? )~( $+n
X b\& —
r [1+1&+nl%)? 1+ & +nl? 2

S

~

2
E

)[(l—t(n))(1+|n| )*/2 f ()1 dn

L

These terms can be expressed in terms of a Weyl pseudodifferential operator BY in (B-1) with symbol

489, —9?
B(x,§) = 1z ) <1+452) (x, ).

Using Theorem B.2 and Bernstein’s inequality, we then get that

, 206 —nl*(€ +1n) E—n> \- E+n)\ ;
2\s/2 / S
H<1+|s|> o T 1E+ PP X <1+|s+n|2>b( " )f(")d"

5 ”B”M(u) ”f”Hr
L2

S 1Bl 1L s
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The second integral on the right-hand-side of (2-11) is the paraproduct F[73,, f]. By using Lemma 2.1
and the previous estimate, we then obtain (2-6).

(4) To prove (2-7), we compute that

F@xTyf =T f)

. E—n> - E+n E—nl* \, - E4+nY] 2
= [l e 550 oo [ (g ol 57 ) rnan
£+

)
. E—nl* - E4n 1§ —nl? U
_lfw[a”(1+|s+n|2>b(é_"’T>+ (1+|E+n|2) (5 " )]f(")d

The first term satisfies

2
/Ra x(l E|;—Tn|2) (s (s ")f(n) dn S Wl S e
and the second term satisfies
X( £ —nl ) (5;‘ )f(n)dn S Mol ma o L fllas,
I+ +nP g Mu
which proves (2-7). O
Finally, writing D = —id,, we give an expansion of the operator |D| = |0, | acting on paraproducts;

see [Li 2019].
Lemma 2.3. Lets € R, s > 2. Ifa € M@z 1yand f € H*(R), then
IDITa f = TuI DI f +sTpa| DI >Df +R,
where R satisfies
IRIZ2 S Nall me o L1 52wy
and Da means that the differential operator D acts on the function x — a(x, &) for fixed &.

Proof. By the definition of the Weyl paraproduct

2
J'"(IDISTaf)(%‘)=I§|S/X(%)(&-W$+n>f(n)dn

& — P2 )( ) S+n>A
/|s D+l X(1+|S+n|2 7. 2 1) fonan,

where a denotes the partial Fourier transform of a in the first variable. The low-frequency part satisfies
the remainder estimate, so it can be absorbed into R, and we only need to consider the high-frequency
part with || > 2. In that case, (2-9) is satisfied on the support of x (|€ —n|2/(1 + |€ + n|?)). Define

b(x)=(14+x)* —1—sx. Then
- Inl“‘[l Pl +b(§_”)].
n n

§—n
E—n+nl’ = +—
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In the expression for F[|D|*T, f]1, we get

f— —_ —_ 2 A
FPT 16 = [ 1S o) (S V(e -0 550 ) Fan

Then we only need to estimate

2, (&1 E—nl* . E+n en 2
/R|77| b( . )X(l-l-lé-i-nlz)a(s_n’T>[(l_t(n))|n| fmldn. (2-12)

: 20 — & 2¢y -
1— b , 02).
( t( 2 )) (252—41)61({1 f2)

Then (2-12) can be viewed as a paradifferential operator with symbol A. By considering the supports of

Define the symbol A by

20 — ¢
2

A1, ) =‘

X, t and using Bernstein’s inequality, we see that

Al MG S lallag-
The result then follows by applying Lemma 2.1 to (2-12). U
2B. Fourier multipliers. Let ¥ : R — [0, 1] be a smooth function supported in [—%, %] and equal to 1
in [—%, %] For any k € Z, we define
W@ =y E/29—vE/27D va@® =29, Y@ =1-vE/2D,
V() = Y1 (§) + Y (§) + Y1 ),

and denote by Py, P<i, P>, and ﬁk the Fourier multiplier operators with symbols ¥, ¥<x, ¥k, and 1};(,

respectively. Notice that ¥ (£) = Yo (£/25), V(&) = Yo (£/25).
It is easy to check that

(2-13)

IWll e 282, NIyl ~ 2752 (2-14)

We will need the following interpolation lemma, whose proof can be found in [lonescu and Pusateri
2016].

Lemma 2.4. Foranyk € 7 and f € L*(R), we have
1 Pef il S NPT S 270 202408 Fll 2 + 1 £112).

We will also use an estimate for multilinear Fourier multipliers proved in [Ionescu and Pusateri 2015].
Before stating the estimate, we introduce some notation.
We define a norm on symbols « : RY — C by

-1
lliellsee = IF &It

and define the symbol class

§% = {k : RY — C | k continuous and ||« || s~ < 00}. (2-15)
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Given k € §°°, we define a multilinear operator M, acting on Schwartz functions fi, ..., fi, € S(R) by

A4K<fi’---’fm><x>==L/:ne”‘&*““+fm)x<sl,...,sm)fi(sl>---f;<aw>dsl--- dé.

Lemma 2.5. (i) If k1, ko € S, then k1ky € S

(i) Suppose that 1 < py, ..., pm <00, 1 < p < 00, satisfy
1 1 1 1
—+—+ -t —=—
pr D2 Pm

If k € S, then

IMcllLe scoxpom—rr S i llse.

(iii) Assume p, q,r € [1, oo] satisfy

1 1 1
—+—-—+-=1,
p q T
andm € §° LOQ Then, forany f € LP(R), g € L1(R), and h € L" (R),

n,m2

Slmlisge, el flliceliglallllzr

n1-m2

H/Rzm(m, 12, €) f ()& (& — 11 — 1) dipy dipa

Lg
In particular, using interpolation, we can estimate the S°°-norm of a symbol m (1, n72) in C2° by

1/4 1/2 1/4 .
s < el 5192 mll (182 82 mll \*,  where i =1, 2. (2-16)

3. Reformulation of the equation

3A. Expansion of the equation. In this section, we expand the nonlinearity in the SQG front equation

1 1
@ (x, t)+/[<px(x D=y (x+¢,1)] { }d§=210g|8x|<px(x,t) (3-1)

€l Ve ot —pGrs. 0P
for fronts with small slopes |, | << 1. As we will show, (3-1) can be rewritten as

o0

c ) A A .
@r(x, 1) — E - 3x/ T,(n,)o(Mm, P2, t) - - - GNan+1, t)el(ﬂl+nz+ +M2n41)% dn,
o 2n -+ 1 R2n+1
) =2log [0xl@s(x. 1), (3-2)

where N, = (771, n2,..., 772n+1), and

2n+1 1— “7j§
T(p—/n ( Lag, o= il . (3-3)

|§|2n+l

We remark that ¢, = O(n~"/?) as n — oo.
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In fact, if we expand the nonlinearity in (3-1) around ¢, (x, t) = 0, we find that

/|:€0x(?€,f)—§0x(x+§,f) _ Ox(x, 1) —px(x + ¢, 1) ]d
R

Iq Ve (p(x, 1) —p(x +¢,1)?
< [p:(x, 1) =@ (x + ¢, 0] [9(x, 1) —p(x + ¢, D"
__ZC" 2n+1 d¢
= r [Z]
o] _ 2n+1
:_Z Cn ax/ |:(P(x,t) (p(x+§vt)i| dé_
—n+1 " Jp e
Writing
. + 2n+1 . )
fn(x)zf[‘”(x) plx 5)] d¢. w(x)sz(n)e’""dn,
R [Z] R
we have

fax) = /2 T )@@DGD) -+ Gyl MR dy,
R n

which gives (3-2).

Isolating the lowest-degree nonlinear term in (3-2), which is cubic, we can also write (3-1) as

1 “ n n .
@i (x, t)+68x/3 Ty (11,12, 1)@ (01, DG (2, G (3, )€ MR dy digy digs +Nos () (x, 1)
R.
:210g|8x|¢x(x,[)7 (3_4)
where N>5(¢) denotes the nonlinear terms of quintic degree or higher:

oo
C N N A i
NZ5(¢)(X’I):_22;1:-18X/ T @)@, DG, 1)+ G (s, el TRy, (3-5)
R=4n
n=2

Equation (3-4) will be used in Section 8 in order to carry out nonlinear dispersive estimates, where the
main difficulty is controlling the slowest decay in time caused by the lowest-degree, cubic nonlinearity.
In Appendix A, we evaluate the integrals in (3-3) and show that we can write (3-2) in the alternative form

oo 2n+1

o1+ B {Z Y (=D d, 19?192 log |ax|¢f} = 21og |3 |¢x, (3-6)
n=1 t=1

where the constants d,, ¢ are given in (A-4). We will not use (3-6) in this paper since it makes sense

classically only for C*°-solutions and does not make explicit the fact that, owing to a cancellation of

derivatives, the nonlinear flux in (3-6) involves at most logarithmic derivatives of ¢. However, we remark

that if the quintic and higher-order terms in (3-6) are neglected, then the equation becomes

¢+ 30: {9 log |9k |rx — @ 1og 19,0 xx + 5 10g [ [(97)1x | = 210g |9,

which is the cubic approximation for the front equation that is derived in [Hunter and Shu 2018] and
analyzed in [Hunter et al. 2018].
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3B. Paralinearization of the equation. In this section, we paralinearize the SQG front equation (3-2)
and put it in a form that allows us to make weighted energy estimates. This form extracts a nonlinear
term log |9y |(Tgief,)¢) from the flux that is responsible for the logarithmic loss of derivatives in the
dispersionless equation.

We use Weyl paradifferential calculus to decompose the nonlinearity in (3-1). In the following, we use
C(n, s) to denote a positive constant depending only on n and s, which may change from line to line, and
L =log|d,| is defined in (1-2).

Proposition 3.1. Suppose that ¢( -, t) € H*(R) with s >4 and ||@x || w3.c + 1| 1og |0x |@x || w2 is sufficiently
small. Then (3-1) can be written as

@1+ 0x Tpopy )¢ + R(p) =10g |0x[[(2 — Tgioey) @1, (3-7)
where the symbols B°[¢] and B'°%[¢] are given by the following multilinear expansions in @,
o 0.¢]
B%[p]l(-,&) =) B\*[¢l(-,&), Blol(-,&)=) BoI(-,£),
n=1 n=1
2n 2n (2n+1)77
B2[g](-. &) =—F; " {2cnfRz 8((—2 nj) ] [injé(nj)x (T’ﬂ dp,, } (3-8)
j=1 j=1

2n 2n 2n

. 2n+1)n;
BJ[p1(-.&)=F, {26,1/“%”5(5—277;)]_[[injw(nj)x ((ng_)n,)] /[O oot > s
j:l j:l ’ j:l

Here, ¢, is given by (3-3), 8 is the delta-distribution, x is the cutoff function in (2-1), §,, = (11, N2, - - - » N2n),
and §, = (s1, ..., $21). The operators Ty, and Tpoj, are self-adjoint and their symbols satisfy the
estimates

ds, di, } .

1B 201 a1 NZC(n lealllgs . J=2.3.

n=1 (3_9)
1B Lo Mman S ZC(H $)lenl (1 1og [0l 15200 + I [32.50)
while the remainder term R satisfies
RO as S ||<P||Hv{z C(n, 9)lcal (1@ 1500 + [ 10g |9, |§0x”W2m)}7 (3-10)

n=1

where the constants C (n, s) have at most exponential growth in n.

Proof. We define

falx) = / LRGPl T
R n

In view of (3-2) and the commutator estimate (2-5), we only need to prove that

[e.0]
C,
= 3 G S ) = 0 Ty + O (Tighay)) log s l] + R.
n=1 n
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where R satisfies (3-10), and to do this it suffices to prove for each n that

S O S = =0T — 9xL(Tyony ) log 135191 + R

1Ralls S Cn 9)lenl(pallface + 11108 92 1@ 15200) 0l s

By symmetry, we can assume that |ny,+1] is the largest frequency in the expression of f;,. Then
Cn
—
2l o S (X)
=Cp ax | . Tn (ﬂn)@(ﬂl)@(ﬂz) T @(nZn—H)ei(nl+n2+...+n2n+l>x dnn
Mn+11=[n;1
forall j=1,...,.2n

=cnde | [ Ta@)@0)@(0) - Pl )e! MR i, o (1) dipgg - (3-11)
forall j=1.....2n

To proceed, we split the above integral into two parts corresponding to the lower and higher frequencies
of n2,41. Define U, (n,) = T,,(n,,) x (N2441) and A, (n,) = T, (n,)) — U, (,,). For the lower-frequency

part, we have

A U, (0,)9(m)@(12) - - - @(man) e’ MR FT10Y 4y 5 (134 1)1 dipgyy g

nj1<Im2n+1l
R forajllj 21,...1,
2n+1 ”]]
(M2n+1) | - ;A( )G(m2) -+ @ (n2n)
1<t X2n+1 mznﬂ Pn)P(m2) - - - §(nan
f 1 ..... ] A A 7
orall j .el(nl+n2+ +772n)x dﬂnw(n2n+1)elxn2"+l dr]2n+l

= 3x/ A (X, N2ns )P (M2nr1)e™ ™ dnapr,
R

where the symbol A, is defined by

1—[2n+1(1 eii¢ '
A= al x(nzn+1)/ dz 9(n)P(2) -+~ Gnan)e’ MTRT IR,

[n; |§|2n+]

forall j=1,...,

Using an L2-boundedness theorem for pseudodifferential operators [Boulkhemair 1999, Theorem 1.1],
Lemma 2.5, and the compact support of the cutoff functions, we obtain

ax/ Ap(x, 772n+1)(2)(772n+1)eixn2n+1 dnopy1
R

S Y N00h,  Anllzllellz

i,j=1

L2

N 2n+1 ,',7.4-

Hn(n , 772n+1)X(772n+1) ]_[ / )
S| [To+ b [ |;|2"+1 a) el

j=1 Nj j=1 S Lo
where
R 1 if |n;| < for j=1,...,2n,
un<nn,n2n+1>={ 171 < Vzns1] for J (3-12)
0 otherwise.

Thus, the lower-frequency part satisfies the estimate (3-10), and this term can be absorbed in R in (3-7).
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Next, we consider the higher-frequency part in (3-11), which we write as

2n

(2n + Dn; (2n + Dn; .
end f/ﬂ/|<nzn+1| n("”)l_[{ < Mot >+|:1_X<T+l>:|}§0(nj)

forall j=I,...,

MY 4y G (2 41) € dipp 1. (3-13)
We expand the product in the above integral, and consider two cases depending on whether a term
in the expansion contains only factors of y or contains at least one factor 1 — x. In the first case, the
frequency 712,41 is much larger than all of the other frequencies, and we can extract a logarithmic derivative
acting on the highest frequency; in the second case at least one other frequency is comparable to 12,41,
and we get a remainder term by distributing derivatives on comparable frequencies.

Case I: When we take only factors of x in the expansion of the product in (3-13), we get the integral

Cn+Dni\ . . :
C”ax/R/ImI<|nzn+1l n(nn)l_[ < L)@ ny)e! MR Ay G (nag1)e P dipgy .

forall j=1,. M2n+1
(3-14)
From (3-3), we can write A,, = [1 — x (2,+1)]7;, as an integral with respect to s, = (51, $2, . . ., S2p+1)»
2n+1
An(m,)=—(1- X(772n+1))/ Sgng“/ - 1_[ in;e'%¢ ds, d¢
[0 1] n+ '=l
2n+1 1
=2«4wa—xm21»( )f ds
" £! P Y2
2n n; 2n
=2(1 = x(n2 +1))( (in~)>/ log|1+ I_s; ;| —log si|ds
' ]1:[1 ") Jio.xpr Z Tons1 Z Mast |
2n 2n 2n
= 2(1 - X('72n+1)) IOg |n2n+1| . H(inj) - 2(1_[(an)> /[0 o log Z n;jSj d§n
j=1 j=l1 - ’
+ 0= x(m +1))( (in~))f log|1+ s;| ds,.
! Jljl ’ [0,1]2 Z ?72n+1 i
Substitution of this expression into (3-14) gives the three terms
n+1)n;\ . . o .
l J i n i n
end /f|ﬂ;|<|nzrz+1 Og("")l_[ < ) (ny)e O dn, @(mon+ )€™ dioy1,

forall j=1,...,

(3-15)

(2n+1)n;
cna//ln,lﬂnz"“ 0("n)1_[ ( , J ( )l(m—l—flz-i- +772n)xdnn(p(n2n+l)etxnzn+1 d’]2n+1,

forall j=1...., 2+ (3-16)
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n+Dn;\ . ; A ;
Cnax/ /l » l(ﬂn)(ﬂn) l_[ (—J)(P(ﬂj)el(nl+n2+ +n2m)x dﬂnfﬁ(UZn—o—l)elxmnH d772n+1a
R nj1<m2n41] Mmn+1
forall j=1,..., 2n
(3-17)
where
2n
AE(,) = 2(1 = X (angp) l0g [n2ngt |- | J@mp),
j=1
2n 2n
AY,) = —2(1— X(U2n+1))<l_[(i77j)) / log|y Jnjs; | di.
i [0,1]°" =1
j=1
2n
Az ) =2(1— x (2 1))( (lﬁ))/ log|1+ sj| dSp.
" " " JI:[] ! [0,1]2" Z M2n+1 T
We claim that the terms (3-15) and (3-16) can be rewritten as
—0, TBllog[(p] log, 0xlo+R1 and  — 3 Tpop1¥ + Ra, (3-18)

where R and R satisfy the estimate (3-10). Indeed,
-F[ax TB,I,Og [(ﬂ] 10g+ |ax |(p] (S)

o E—nl? o et ] .
__2C”ZS/RX(1+|§+ |2)10g+|n|/ ( gm>H[tnjw(n,)x<ﬁ)}dnn<p(n)dn,

j=1
while the Fourier transform of (3-15) is
2n+1

2C”i$/Rf|nj|§nzn+1l 5(5 Zﬁj)(l—X(ﬂ2n+1))10g|772n+1|
for all j=I1,...,.2n j=1 o
Cn+Dnj\ . . A
J T == )a@npe | d,gtants) dnangr.
=1 Mn+1
The difference of the above two integrals is
2n+1
2cpi§ o 1) (5— Zl 77,/) lOg 1M2n411
j:
2n
. Cn+Dnj\ .
‘|:|]n(7]n7772n+1)1_[)(<—] (i) (n;)(1=x (M2n+1))
=1 M2n+1

2n

| —nons1 ) < ) (2(2n+1)77i>>i| .

—x( e M=t [ [ im0 x | =) )| dia @m0 dmongr,  (3-19)
<1+|§+772n+1|2 o] i=1 s E+n2n+1 n ntl

where [, is given by (3-12).
When 7, satisfies

il < M2yt for j=1,2,...,2n, (3-20)

|—Ezn+1
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we have I, = 1 and x (21 + 1)1;/n2n4+1) = 1. In addition, since & = Y-3"%" n;, we have
2
E—manl? g =mnl _ [XLml a1 3
L+ 1& + 2041 7 1€ +n2nt1 |Z§”:1 nj+ 201 T (2= 15)n2npal 79 40
2@n+ Dl _ gl 23
& +mn1l T (2= 35)Imansal 79407

S0
€ — nans1]? 2(2n 4+ Dn;
Y e L LY R R (it U R )
L+ 1§ +n2ns1l & + N2t

Therefore the integrand of (3-19) is supported outside the set (3-20), and there exists j; € {1, ..., 2n},
such that

[nj| > [M2n41].

1
40 2n +1
Since [n2,+1] is the largest frequency, we see that |n;, | and [n2,41| are comparable in the error term.
Therefore, the H*-norm of (3-19) is bounded by
ol s C 0, $)lenl (e lysce + L [32.0)-

It follows that (3-15) can be written as in (3-18). A similar calculation applies to (3-16).

Next, we estimate the symbols B},Og[go] and B,?[(p]. First, we notice that they are real-valued, so that
TBrllog[(p] and Tgoy, are self-adjoint. Again, without loss of generality, we assume |12,| = maxi<;j<a, |7;|
and observe that

2n
log n;S;
[ e

j=1

2n—1
Nj
=log|n> |+f {( —s~>10g
" [0,1]27-1 ng N2n !

=logn2,|+0(1).

ds,

1

1+ og‘l-i- -
Z?ill(nj/rnn)sj

_ +1 —l}dsnl
Z?ill(nj/rnn)sj

Thus, using Young’s inequality, we obtain from (3-8) the estimate (3-9), where the constants C(n, s) have
at most exponential growth in 7.
To estimate the third term (3-17), we observe that on the support of the functions x ((2n+ 1)n;/n2,41),
we have
Il _ 1
|772n+1| N 10(21’1 + 1)

Since s; € [0, 1], a Taylor expansion gives

[TT52 i[5 nil]

A= ()] S
[M2n+1]

Therefore the H*-norm of (3-17) is bounded by C (n, s)|c,|l|@ || g5 || @x ||€"/’2,Oo, where C(n, s) has at most

exponential growth in .
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Case II: When there is at least one factor of the form 1 — x in the expansion of the product in the integral

(3-13), we get a term of the form

¢ 2n

I 2n + D, T 2n+ D,
fn ) zcnax/u%/lmklnzm An) [1_X<( i )] X<( T )

k=1 k=t+1

forall j=1 ... Mn+1 Mn+1
2n
. (1_[ (f)(nj)>el(m+"2+"'+”2")x dﬁﬂ@(nzn_i_l)elxnznﬂ dnons1, (3-21)
j=1
where 1 < ¢ <2n is an integer, and {j; : k=1, ..., 2n} is a permutation of {1, ..., 2n}.

We know 1 — x ((2n + 1)n;, /(n2,+1)) is compactly supported on

il 3
120411 — 40(2n+1)
By assumption, 17,41 has the largest absolute value, so
3
402n+1)

meaning that the frequencies |n;,| and |72,41| are comparable.

2011 < i | < [m2n+1l,

Without loss of generality, we assume that [n;, | < [1,,| < -+ < [n),,| < [n2a41], define nj,, ., = 12041,

and, using (3-3), split the integral for A, into three parts:

2n
An(m,) = AN m) + Y AT O, + AN,
k=1
where ) +1
[TZ (1 —e%)
AV () =[1 = x (n2n41)] S sgn¢ dg,
M2n+181<2 ¢

1—[2n+1(1 ””{)
S,

ATE® )y =1 — x (n2n11)]
2/ 1=181=2/Injj, |

175 (1 = efi)
2+ sgn¢ d¢.

ANy = [1— x (2n41)]
nj,¢1>2

To estimate (3-22), we notice that
2n+1 2n+1 in: 2n
|1 — ekt |
A ()] < H k| / ( e =c@o([[mil)
[M2n181<2 \ ;4 |njk§| k=1

Foreach 1 <k <2n, we cons1der two cases. If k # 2n, we estimate (3-23) as

|1—e""fﬂ|> ST — et

k
d, (k
ATt O oyl <TTinil- PR
=1

2/In_;k+1|§|§|§2/lnjk|(521 ung

k
2n+1—k —2n—1+k
<2 K T Inyl - g7 de
=1 2/"7/k+1‘<|§|<2/|71/k

< S (i P 1P ’“)]‘[|nﬂ| <2(1_[|n,k|>
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If kK = 2n, we have
2n

2n
1
|Anmed,(k)(nn)|§21_[|nje|. —d§:4l_[|77je|-log
e 2/ Mgy <1212/ 1, | 1€ r=1

N jont
ann

2n
<C@.s) [l
=1

where the last line follows from the fact that |5, | and |n},,., | are comparable.
As for (3-24), we have

|1 —e Ml ]\ |1 —emé]
: d

2n+1
|ARsh ) < ), (
o " Jyei2 ,!:[2 121 ;¢

2n
d¢ 4
<2%|n;| < ( |n~|).
J1 Iy, 152 |§-|2n n—1 ]!:[1 Jk

Collecting these estimates, we find that

2n
|An(n,)| < Cln, s)(H |n,~k|>.

k=1
Using the L?-boundedness theorem for pseudodifferential operators, we can bound the H*-norm of
f(n) in (3-21) by
I llas S D7 19405, Pallee,  llolas,

X M2n+1
j.k=0,1
where
2n+1 4
. R 2n+1)n;
P, (x. nn41) = (, > m)/ o (R M2n 1) T (1) H[l —x(—”‘
=1 R2" k=1 M2n+1
2n 2n
2n+1)n; R . .
. 1_[ X (—( )nf") l_[ (p(nj)el(m-i-nz-i-----i-nzn)x di,..
k=+1 an+1 j=1

Considering the support of the cutoff functions, we therefore have

o
I fonllzes < llpll s (Z C(n, s>|cn|||gox||%;’z.w).

n=1

So we have proved that the equation can be written as

®r + 0x TBO[(p](p +R(p) =2log |dx|px — [(TBlog[q;]) 10g+ [0x @]
Then the proposition follows by the commutator estimate (2-5) and the fact that 1j¢j-10, log [0]| is
bounded from H*(R) to H*(R). O

4. Energy estimates and local well-posedness

In this section, we prove a local well-posedness result for the initial value problem (1-1), together with
a criterion for the continuation of solutions, which is given in the next theorem. For simplicity, we
consider only integer norms with s € N, and we do not seek a result with optimal regularity. We recall
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that L =log |d,| denotes the operator in (1-2), and, from Theorem B.3, there exists a constant v > 0 such
that

1Tl 2 S vllallamg,, forallae Mq,y. 4-1)

Theorem 4.1. Let s > 7 be an integer and v > 0 the uniform constant in (4-1). There exists a constant
C > 0, depending only on s, such that the following statements hold. Suppose 0 < Cy < min{%, ﬁ},
Cy > 0 are constants and g € H® (R) satisfies

o0
1B"2[g0]llamtgry < Cor D Clenl(lgox s + Lo [p2e) < ot
n=1
where ¢, is defined in (3-3) and Blog[goo] is defined in (3-8). Then there exists a maximal time of existence
0 < Thax < 00, depending only on Cy, Cyy, and s such that the initial value problem (1-1) has a unique
solution with ¢ € C([0, Tmax); H* (R)) that satisfies

o0
1B 201l <2Co. D> Cleal(lox )y + 1 Lex () [5200) < 2Ca  forall t € [0, Tray).

n=1

If Thax < 00, then

o0
Jim (1B e (- Ol =2Co or t%irrixX_;C"|cn|<||<px(r)||%;zm+||Lgox<r>||€$z,w>=2cM. (4-2)

For any 0 < T < Tyax, the solution map U : H*(R) — C([0, T]; H*(R)) defined by U : ¢o +— ¢ is
continuous. Moreover, if 0 <r < s — 1 is an integer and ¢, ¥ € C([0, T]; H*(R)) are solutions of (1-1)
with initial data ¢(-,0) = ¢g, ¥ (-, 0) =y, then

loC-. ) =¥ (-, Dllar = Cllgo = Yollar  forallt €[0,T], (4-3)

where C is a constant depending on ||@o|| y7, |¥oll g7» Cos Cus C,and 7, with 7 = max(r + 2, 5).

This local well-posedness theorem is sufficient to continue solutions so long as the criterion in (4-2) is
not satisfied, which allows us to obtain global solutions with small initial data. The range of Cy is not
optimal and may be extended by more careful estimates. However, our proof method is not suitable for
large data because it depends on a multilinear expansion of the nonlinear term. We will not address the
question of local well-posedness for large data in the present paper.

As noted in the Introduction, standard H ®-estimates for (1-1) do not close, so we introduce homogeneous
and nonhomogeneous weighted energies

N

E®p](t) = / DI @(x, 1) - 2= Ty ' DI p(x. 1) dx,  EW[pl() =Y EV[pl(r). (4-4)
R ,
j=0
The solutions we construct satisfy || B'°¢[¢]]| My < % 80 (2—Tpguogpy)) 18 a positive, self-adjoint operator
on L?, and these weighted energies are equivalent to the standard H*-energies.
Theorem 4.1 is proved in the following subsections, where we use F to denote an increasing, continuous,
positive function, which might change from line to line.
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4A. Linearized equation and energy estimates. We begin by studying a linearization of (3-7). Given
functions ¢g(x), u(x, t), and Y (x, t), we consider the linear initial value problem

@1 + 0 Tpop 9 + T (x, 1) = L2 = Tgiog, Dls, @ (x, 0) = @o(x), (4-5)
and define linearized energies for this equation by
N
EPlp](t) = f D @(x. 1) (2= Tyu) ™ T IDFo(x, ) dx,  EQ[pl(0) =Y EL[](1).  (4-6)
R

Jj=0
In order to derive energy estimates for (4-5), we first state a lemma.

Lemma4.2. Lets € Nand T > 0. Suppose that u € C([0, T]; W3 (R)) with u, € C([0, T]; W>*®(R)),
and ¥ € C'([0, T1; L*(R)). Then
8[ (2 — TBlog[u])Sw = (2 — TBlog[u])Slﬂ[ — S(2 - TBlog[u])S7l Ta,Blog[u]W + Rz(w, I/t),
where the remainder term satisfies
o0
IR, )| e S ||w||Hk{ZC<n, )enl Nl + ||uxt||2v31.w>} forallk €N,

n=1

for constants C(n, s) with at most exponential growth in n.
Proof. Since s is an integer, we can calculate the time derivative as
3 (2 — Tpoeru)* ¥ = (2 — Tospu))* ¥r — Ty, proeuy 2 — Tpioeu)* ™' ¥
— (2 = Toegu) Ty, poeu) 2 — Toegu)* 29 — -+ = 2 = Tguogpy)* ™' T, proe -

By Lemma 2.1, the equivalence of symbol norms in (B-2), and the symbol estimates in Proposition 3.1,
we get that

LT, Boegu)» (2 — Toioeru)1f e S 1S e 10 B2l v, 1 B2 L] oy
00
< ||f||Hk{Z Cn. s)leal (i 12 o0 + ||ux,||%$l,m)}.
n=1

Taking f = (2 — TBlog[u])“zw, 2- TBlog[u])S*3x/f, .., (2= Tpgigp,¥ and applying the above estimate
repeatedly, we obtain the conclusion. O

We then get energy estimates and an existence result for the linearized initial value problem (4-5).

Proposition 4.3. Let s > 2 be an integer, let Cy; > 0, T > 0 be constants, and 0 < Cy < ﬁ, where v is a
positive constant from Theorem B.3. Then there exists a constant C > 0, depending only on s, such that

the following statements hold. Suppose that
go€ H'R), Y eL™(0,Tl;H R), ueL™(0,T]W"*R)),
with u;, Lu, € L®([0, T]; W>*(R)), and for all t € [0, T]

oo
1B E[u]llm < 2Co, D CllenlNux Ol + 1Lt ()32 + litex () 31.20) < 2Ca

n=1
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Then the initial value problem (4-5) has a unique solution ¢ € C ([0, T]; H*(R)). Moreover, the linearized
energy (4-6) satisfies

t
ED[pl(t) < E® o]+ /O F (|t () ootttz (0) [l wroo+ Lty () [ y2.00)

AN (@) ool (O oo HI L () w2o0)* 9 (1175
HIT@Ollas e astdr,  (4-7)

where F is an increasing, continuous, positive function such that

F(llux(Olwsee + e (D) lwioco + | Lt () [ly2.0)

o
~ Y Cewl (e e + e + 1Ltx (D) [2). (4-8)
n=0

Proof. The existence and uniqueness of solutions of (4-5) follow from energy estimates and a duality
argument, which we outline briefly.
We write the linearized equation in (4-5) as Ap = —Y, where the operator A is given by

A = 3t - axL(Z - TBlog[u]) + Bx TBO[L{]‘
The formal adjoint of A is
A* == —8, + (2 - TBlog[u])axL - TBo[u]Bx.

For T > 0, we define a space £ of test functions by
E={weC™(0,T]; H°(R)) | w(x, T) =0}
and for w € £, f € A*E consider the equation A*w = f, or
—0w + (2 — Tgiogp,) 0x Lw — Tpop10xw = f.
Applying the operator T, gioep,}) to this equation, we get that
~ T/ 2—Bloegupy 0w + 3y Lw — Tgop o proepuyy dx w = Ty jo—prospuyy f + R, (4-9)

where, in view of the commutator estimate in Theorem B.6, the remainder term R’ satisfies

IRlI2 5(

— + 1B [u] | pm )nwn 2.

Multiplying (4-9) by w, integrating with respect to x over R, and rewriting the result, we have

d
E / U)Tl/(z_Blog[u])w dx + f w[TBO[u]/(Z—BIOg[u])v 8x]w dx
R R
= \/I‘Q{w TB,(I/(Z—BIOg[u]))w dx — ZU)TI/(z_Blcg[qu — ZU)R/} dx.

By the assumptions on u, the M 1)-norm of the symbol 1/(2 — B¢[y]) is positive and bounded
away from zero. In fact, since ||Blog[u]||M(1.l) <2Cpand |2 — Blog[u]llM(l,l) >2—2Cq for Cy < Alf, we
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get from the definition in (2-3) of the M 1)-norm that

1
H 2 - BIOg[”]) ”M(l,l)

1 1 1
<l - BIOg 2 BIOg 2
B H (2 — B'og[u]) L, " H (2 — B'og[u])? L%, | el + H (2 — Blog[u])3 L, | L,
1 N 2C N 22Cp)? 1-Co+2C2 1+34
< = < = —.
2-2C) (2=2Cp2 (2-2Cp)3  2(1—Cp)? 2(%)3 3
Since
1 _L B°%[u]
2—Blog[y] 2 22— Blg[u])’
we also have
41 1

1 1
IB [l ity > 5= 53 5 =

o=, >2 2l o=
Q= BYu]) |y, "2 2| @=BOuD) | o,

Thus, the integral fR wT o— ploep,yw dx is equivalent to [|w ||i2. Integrating the previous equation over
the time interval [¢, T'], where 0 <t < T, and using the commutator estimate in Lemma 2.3, we obtain

T
IIw(t)||L2§/

Then, by Gronwall’s inequality,

1
2 — Blog[u] HM(M

£ (s)ll.2 ds.

"w(s)"L2+||B°[u]IIMQ.Z)||w<s>||Lz+H—H
2 — BlOg[u] Mo

T
||w(t)||L2</ N/ C=B D Ly HIB ]l ut 5, 07
0

T
[Lf ()Ml ds < C/O ILf(s)llz2 ds,

1
2 _ Blog[u] HM(“)

where C is a constant related to u. It follows that

T
lw®)||?, < cf IA*w(s)||7,ds  forevery w e € and all £ € [0, T, (4-10)
0

which implies that A* is one-to-one on €£.
The distributional form of (4-5) is

T T
/ (o, A*w) 2 dt + (¢, w(0))2 = / (=Y, w);2dr forallwef.
0 0
We define a linear form £ : A*€ — R by
T
2w = [Tz dr = (o, w O
0

Using the Cauchy—Schwarz inequality and (4-10), we have

1EA* W) S (TIT N 20 7. 12) + 9017 A W20 7.2,
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and £ extends to a continuous form on L?(0, T; L?) by the Hahn—Banach theorem. The Riesz representa-
tion theorem and the density of A*£ in L?(0, T; L?) then imply that there exists a unique ¢ € L>(0, T; L?)
such that

T
L£(A*w) = /0 (p(t), A*w(r)) 2 dt.

Thus, we have proved the existence of a unique weak solution of (4-5) in L%(0, T; L?). The H *-regularity
of solutions can be obtained by applying the above process to the equation for 93¢ with appropriately
weighted L2-norms.

To derive the energy estimates, we apply the operator |D|* to the equation in (4-5) to get

|D*@; + 3x| DI* Tgop 90 + |DI* Y = 0, L| DI*[(2 — Tpioep,) @] 4-11)
Using Lemma 2.3 and Proposition 3.1, we find that

|DI'[(2 = Tpoep)@] = 2| DI ¢ — | DI’ (Tpioey1)
= 2|D|A(p - TBlog[u]|D|S(p + STaxBlog[u] |D|S_2(,0x + Rz,

where

oo
19:Ra 12 S (Z Cn, s)|cn|||ux||$;z.m) ol g5
n=1

Thus, after absorbing a low-frequency part into the remainder, we can write the right-hand side of (4-11) as

0xLID|*[(2 — TBlog[u])(P] = 0y 10g+ |0 [(2 — TBlog[u])|D|s<P + STaxBlog[u] |D|S_2<Px] + R,

where

00
IR3 0.2 < <Z Cn, s>|cn|||ux||%§m) Il et
n=1

Applying (2—Tpgiogp,1)* to (4-11) and using Lemma 2.2 to commute (2 — Tgiogp,,1)* with 9 and log, [0, |,
we obtain that

(2 — TBlog[u])S|D|S§0[ + (2 — TBlog[u])sax |D|STBO[¢](p + (2 — TBlog[u])S|D|ST

= (2 — TBMg[M])Sax 10g+ |8x |[(2 — TBlog[u])|D|S§0 + STaxBlog[u“DlSiz(px] + (2 - TBlog[u])sR3

=log, [0, [{(2 — Tgioep,)* 0x[(2 = Tgioep, )| DI* @ 4 s T}_pgrogpy IDI* 20,1} + R4

=log, [0x|{(2— TBlﬂg[u])SJrl |DI @y — (s + 1D(2 — Tgioep))* Ty, poeuy | DI @} + Ry

=3, L{(2 — Tgiep) ' 1D 9} + Rs, (4-12)
where [|R4ll.2 + 1Rsll2 S (Xpey Cn, )lenlllux 13 ) @l s

w
By Lemma 4.2, with ¢ = | D|*¢, the time derivative of E,ﬁs)(t) in (4-6) is

d
5 Elel) = — fR 25+ DIDIP @ - (2 = Tpioey)) ™ Ty, sy | DI 9 dx

+2f |D|S<o-(2—Tglog[u])zs+‘|D|S<ptdx+fR2-|D|S<odx. (4-13)
R R
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We will estimate each of the terms on the right-hand side of (4-13), where the second term requires the
most work.
The first term on the right-hand side of (4-13) can be estimated by

f @5+ DIDP@- 2= Tyoau)™ T, goegy| DI @ dx
R

o0
< <Z C(n, $)leal (luxllfh + ||um||%';1,oo>) 117

n=1

Using Lemma 4.2, we can estimate the third term on the right-hand side of (4-13) by

oo
/ Ra-IDFdx S (Z C(n. 9)lenl (lue e + ||um||€';l,oo)) ol as 1ol -1
R n=1

To estimate the second term on the right-hand side (4-13), we multiply (4-12) by (2 — TBlog[u])S+l Do,
integrate the result with respect to x, and use the self-adjointness of (2 — TBlog[u])S+l, which gives

f IDI*¢ - (2 — Tgioep)) > T 1D g dx = [+ T+ T+ 1V,
R
where
I=-— / DI’ ¢ - (2= Tgioepy) ' [ DI° 0 Tpog 90 dx,
R

1= /R (2= Ty IDF @ - 8L — Tgup)** IDF g d,
1 = /R(z— Tpioer) T IDI @ - Rs dx,
IV = /R D¢ - (2 — Tgioepu)* DI Y dx.
We have Il = 0, since 9d, L is skew-symmetric, and

o
I g (Z C(n, s>|cn|||ux||$;’3_m> Il IV S Flluxllwseo) llol s 001 s

n=1
since | Rsllr2 S (Xoney €, $)lenlllux 3 o) @l s and (2 — Tgioep,)** is bounded on L2,
Term I estimate: We write I = —I, + 1, where

lo= /R D@+ 2= Ty 18 Tog| DI dix,
b= [ 1D+ Q= Ty 0, T, 1Dl .
By a commutator estimate and (3-9), the second integral satisfies
| S (i C(n, 9)lcal (ux 30 + ||Lux||€$z,oo)) el Zs.-
n=1

To estimate the first integral, we write it as

Ia = Ial - IaQ,
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where
Ial = / |D|‘s(p . [(2 — TBlog[u])zs_'—l, ax](TBO[u]lle(p) dx’
R
I, = / IDI @y - (2 — Tgroep) ™ (Tgop | DI° @) dx.
R

Term I, estimate: A Kato—Ponce type commutator estimate and (3-9) gives

Loy | S (Z C(n, 8)lenl (e 3.0 + | Lit 5 oo)> ol

n=1

Term I,, estimate: We have
I, = / (Tgop | DI @) - {8 (2 — Tioepu)* T DI @) — [, (2 — Tgioep) ™ 11D} dx
R

- / 0y (Tyopa| DI 9) - (2 — Tyoapu) ™ ' | DI
R

—/(TBO[M]|D|S¢)-[ax, Q2 — T > T1ID g dx

f (o DI 0s + [0s. Tyop 1| DI'@) - (2 = Tgrsgu)* DI dx
/ (Tyor| DI'9) - [0y 2 — Ty 1Dl v, (4-14)

Using commutator estimates and (3-9), we get that

I0x, Tpopg 1D @llr2 S <ZC(H S)Icnl(lluxllwzooJrIILMXIIWzoc)>|I<pIIHs

n=1

113 (2 = Tgier, ) TIDP @l 2 S (Z C(n, s)|cn|(||ux||wm>) Il ars

19: 12 = Tpoe)* ', Toop 11D gll2 S (Z C(n, $)leal (luxllfne + ||Lux||Wm>) ol s

n=1
Since Tpoy, 18 self-adjoint, we can rewrite (4-14) as
Iaz = _Iaz +R69
with
Rel < (Z C(n. 9)lenl (s |13 + ||Lux||wm>)||<a||%,s,

n=1

and we conclude that

ey | < (Z C(n, 8)lenl ([} + ||Lux||Wm)) ol

This completes the estimate of the terms on the right-hand side of (4-13). Collecting the above estimates
and using the interpolation inequalities for E,EO) and E,Es), we obtain (4-7).
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Finally, by Proposition 3.1, we observe that the coefficients C(n, s) > 0 grow at most exponentially
with n. Thus, there exists a sufficiently large constant C (s) > O such that C(n, s) < C (s)". The series
in (4-8) then converges whenever ||uy || 3.0 + ||tsx |l wioo + | Lux(T) || w2 is sufficiently small, and we
can choose F' to be an increasing, continuous, positive function that satisfies (4-8). UJ

In particular, setting # = ¢ in Proposition 4.3, and using the continuity of ¢ in time, we get the
following a priori estimate for (1-1).

Proposition 4.4. Let s > 5 be an integer and let 0 < Cy < 4—,
Theorem B.3. Let Cy; > 0 be a constant. Then there exist constants C> 0, depending only on s, and
T > 0 such that the following statements hold. If @9 € H*(R) satisfies

where v is a positive constant from

1B" %[0l a1, < Co, Z C"lcnl(18:@0ll .0 + | LOs0ll3200) < Cia

n=1

then the solution ¢ € C([0, T]; H*(R)) of (1-1) with initial data ¢( -, 0) = @y satisfies

E®[p1(1) < EW[gol + / (lgx (D) llwse + I L@ (D) ly2)?
F o @l + 1Ll EVlpl@) T, s

1B %0 ()]l .1y < 2C0, ZC"|cn|(||<px(r)||Wm+||wa(r)||wm><2cM

n=1

forallt €0, T]. In (4-15), E® js defined in (4-4), and F (-) is an increasing, continuous, nonnegative
function such that

F(llgellwsoe + I Lgxllwaee) = Z C™lcnl(l@x 30 + 1 L@ I500)-
n=0

4B. Iteration scheme. Given a function u satisfying the conditions in Proposition 4.3 and ¢y € H*(R),
we define a map G : u — ¢, where ¢ € L*°([0, T]; H*(R)) is the solution of the initial value problem

@1 + 0x Tpop 90 + R(u) = L[(2 — Tgiogp,Pelx,  @(x, 0) = @o(x),

with the same remainder R( -) as the one in (3-7).
We then construct a sequence {¢®)} of approximate solutions of (1-1) by

eV, ) =po(x), 9P =G V) forieN. (4-16)

For sufficiently small T > 0, we will prove that this sequence is bounded in L*° ([0, T]; H*(R)) and Cauchy
in L ([0, T]; H*(R)), which implies that its limit is a local solution of the initial value problem (1-1).
To begin with, we identify a bounded subset X7 of L*°([0, T']; H*(R)) that G maps into itself.

Proposition 4.5 (boundedness). Let s > 6. Suppose that 0 < Co < min{
constants and ¢y € H® (R) satisfies

%,ﬁ},CM>O,5>Oare

1B"¢[@o] .1, < Co, ZC"|cn|<||<p0x||Wm +ILgoxllan) < Cur. llgollme <C.

n=1
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Define

Xr = {u € L([0, T1; H*(R)) | uy, Lu, € L*([0, T]; W>™(R)),

(2+2C0>s+1/2 c
min{1, (2 —2Co)s+1/2}

o0
D CMenl (s Ol + I Ltk () 15200 + Nt (D [31.00) < 2Cia,

n=1

1B (Ol a,y < 2Co forall t €0, T, u(0) = </)0}-

|l oo, 71, 1 (R)) <2

Then there exists T > 0 such that G : X7 — X7.

Proof. Taking T = R(u) in Proposition 4.3 and using (3-10), we obtain that

t
EW[pl(t) < E®[go]+ /0 (et (T) [ y3.00 12 (T) [l oo+l Lty (T) | y0)?
F (||t () oo+t (0) Lo | Lt (D) [ w2.00) Q@ (D 13 H (D) 137) d,

where F is a positive continuous function. Since u € X7, by Sobolev embedding, there exists a constant
C; > 0, which depends only on C, C, Cy, Cpy, such that

et (D) lyaco + it (D) e + | Ly (D 2o < Ci.
Since [|golus < C, we have E’[go] < (2+2vC)**!C?, and
min{1, (2 — 2vC)* (-, D% < EDLel(t) < 24 20C)* ullg(-, 1)1, (4-17)

where v is the constant in (4-1).
Writing E”[¢]() = E{ (1), we therefore get that

EW (1) < 2+ 20Cy)» ! C?

t - 2 4+2uC 2s+1 _
+/ ch(cl)[max{l,(2—2uco)—25—1}E;S>(r)+4- (@2 +2vCo) 2] dr.
0

min{1, (2 —2vCp)?+t1}
Thus, when
1
T < ———min[l, (2—=2vCy)**],
4CTF(Ch) (1, ( 0]
we have

IES (1) l1x0.1) < 2 +20C)* T C? + HIED (1)1, + 2 +20C)* 1 C?,

and it follows that
IES (D lz=@.1) < 5+ 2+ 20C)* ' C2.
Then, from (4-17), we get that

(2+2vCp)* /2
min{1, (2 — 2vCp)**1/?}

o) llL>©,7;Hs®) <2
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Using the equation for ¢, we see that ||¢;(¢)|| ;v is bounded for any 0 < s" < 5, and ||y (?)|| s 18
bounded for any 0 < s” < 4. Thus |[[¢(t)|l ;v and |l¢;(t)|| s are continuous in ¢. By Sobolev embedding
and the symbol estimates in Proposition 3.1,

o¢]
19: B S (@]l S Y €O )lenlllgellyitllgiellwice < Ca(Cu, Cor5),  j =2,3,

n=1

for some constant C>(Cyy, Co, s) > 0 depending on Cy;, Co, and s. Therefore,

t
I B 2[o(]ll g,y < 1B E[0O)lIn, ) + f I B¢[@ ()1l m,.y, dT < Co+1Co(Cr, Co, 5),
0

and by taking T < Co/(C(Cy, Co, 5)), we obtain | B2[(1)] ]|y, < 2Co-
Next, for ¢t € [0, T], we observe that

o0

3 CM el (g (12 + 1L (2 + 02 (1 210)

Z cn|[<||gox(0>||wsoo + / 101x (@)l A0 + (1L (O) 2

2n
+/ IL@ex (7)o dT)™ + (II(ﬂzx(O)IIWLoo +/ @rex (T) [l w00 df) ]
0 0

MS

C"lenl (1@ O30 + I L@x (O[30 + 01 O 131 20) + T C3(Cat, Cop, )
1

3
I

for some constant C3 (Cu, Cy, s) > 0 depending on Cy, Cy and s. Since

Z C"eal (l@x O 150 + 1 L@x O 10 + 91 O)1371.50) < Ci,
n=1
we obtain that when T < Cys/(C3(Cyy, Co, 5)),
o0
D CMlenl(l@e s + IL@x ()30 + I 00x ()1 31.00) < 2C .

By combining the above arguments, we find that for

C c
T :min{Z—min[l, (2 —20Cy) >, 0 , M }
4CTF(Cy) C2(Cpy, Co, 5) C3(Cp, Co, 5)

we have that G : X7 — X7r. O
Next, we prove that G is a contraction with respect to a low norm.

Proposition 4.6 (contraction). For sufficiently small T > 0, the map G : X7 — X7 defined above is a
contraction with respect 1o || - || Lo 3.

Proof. For u, v € Xr, let ¢ and v be solutions of the equations
@r + 0x Tpop ¢ + R(u) = LI(2 — Tgiogp, )@l
Y+ 0x Tpop ¥ + R(v) = L2 — Tgiog)) ¥l
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with the same initial data. Taking the difference of these equations, we get

(¢ = V)i + 0 Tpopy (@ — )
= L[(2 = Tgiogp) (@ — ¥)1x + 0x (Tgory) — Tgop)¥ — LITgioep) — Tioepu) ¥ 1x + R(v) — R(u).

Applying Proposition 4.3 with
Y = =0y (Tgopy) — TpopP ¥ + LI(Tgioepy) + Tgiogpy ¥ 1y + R(u) — R(v),

we obtain that, for k <3,

& [ 101 =)@~ Ty DI (0 = )

< (lux oo + e lwroe + 1| Lty w2oo) Fy (g llwseo + litex oo -+ | Ly l2o) llo — 117
+ By (llux llwsoe + lttex oo + I Lty oo + 10x lwsoe + [vecllwros + 1L g [ly2.00)

Nu=vllgalle = ¥l llellwes,

where Fy, F, are positive, continuous functions. Since ¢ = i at ¢t = 0, we have, by Gronwall’s inequality,

@ — )OOl < fo el PO By @) =) (- T s 19 (-5 T e dT,

where (---) denotes the same arguments as above.
By the H’-energy estimate in Proposition 4.3 with s > 5, the function

ot Fi-)®) SE ()
is bounded by a positive constant C (Cyy, Co, s) on [0, T'] for k < 3. Thus, by taking T < 1/C(Cy, Cy, s),
we deduce that
lo —VllLooo,1:m3) < Allu —vlpo@,7: 5%
for some 0 < A < 1. U
Proposition 4.6 implies that for any s > 6 and ¢y € H*(R) that satisfies the conditions in Proposition 4.5,
the sequence {¢'"} defined in (4-16), which share a common life span [0, 7] with T is only related to the

constants Cy, Co, s, is a Cauchy sequence with respect to || - || 3. In fact, for any 0 < € < I, there is a
positive integer N = log, (1 — A)e/(3C) such that, for all i > j > N,

@ — Do <Ml =0 Pllpeeps +- -+ 1Y+ =0V o g

< N TN D M s 3C
- ()Li—N—l g +AJ_N)A.N||(P(1) _(P(O)”L%’HS < —1 —A)\N < €.

lle

So ¢ =1lim;_, o) exists in L>°([0, T]; H3(R)). From Proposition 4.5, the sequence is bounded in
L*>([0, T]; H*(R)), and it follows by a weak compactness argument that ¢ € L*°([0, T']; H*(R)). Hence,
@ is a fixed point of G and a solution of (1-1).
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4C. Continuity in time. Next, we prove that the solution just constructed is a continuous function of
time with values in H®. First, we notice that ¢, € L*([0, T]; H S’([R)) for any s’ < s — 1, which implies
that ¢ € C([0, T]; H* (R)).

The equation is time-reversible and translation-invariant in time, so it suffices to prove that

lim [lo(7) —@0)[|gs =0
t—0+

Since ||¢(¢)||gs is bounded on [0, T] and ¢(t) — ¢(0) strongly in H s' the weak H*-limit of any
convergent subsequence is unique, and we see that ¢(¢) converges to ¢(0) in the weak H*-topology. To
show convergence in the strong H*-topology, we only need to prove the norm-convergence

lim (lo@)|lms = ll@O) [ as. (4-18)
t—0+

Writing the weighted energy in (4-4) as E® (1) = E®[¢](¢), we have from the a priori estimate in
Proposition 4.4 that

E® () - /0 Nlex (D) lwaoe + I Lpx (Do) 2 F (19x (T) e + 1L (0)[ly200) E®) () do

t
SEW @) SEW(0) + / (lgx () [l + 1 L@x (D) [ 2.00) 2 F (|5 (D) 3o + |1 Lpx (D) [ w2e) ES (7) d,
0

and by Gronwall’s inequality,
FO (0)e o U900t Lo Dlly.00) Fllgpe (Ol oo HIL e (Dl y2.00) de

< EO () < BO(0)e 19 OllysoHILoe@ 2000 Fllipe (Olly 0 HI Lo (D) y2.00) T

Using the notation in (4-6), we define an equivalent weighted norm on H® by

ol ey = (Egygy [91 ()2,
Then
lim E((O)(t) = lim EW ()= ESy 0),

s0 (4-18) holds, which proves that ¢ € C([0, T]; H*(R)).

4D. Lipschitz continuous dependence on H". To prove the stability estimate (4-3), we suppose that
s > 7 is an integer, and ¢, ¥ € C([0, T]; H*(R)) are solutions of (1-1) with initial data ¢¢ and v,
respectively. Then
@r + 0x Tgopp19 + R(¢) = LI(2 — Tgioepy)@lxs  ¢(0) = ¢o,

Vi + 0x Tpopy1¥ + R(V) = LIQ2 — Tgiey PV lx, ¥ (0) = vo.
Taking the difference of these equations, we obtain an equation for ¢ — :
(9 =)+ 0, Tpop (9 — ¥) + R(9) — R(W)

= L[(2 — Tusy)) (0 — ¥ = 0 Tpogg)— pogyy¥ — LITgsgg)-prospy) ¥l (4-19)
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Using (3-8), we compute that

B)[](-. €)= B2 [W]1(-. &)

2n 2n k—1 o) 1 2 1
=—f;1{2cn/ﬂw8<§ Zm)Z]_[[m](p(m)x(( ng )77])] |:lT]k(‘P(77k) ¥ (1)) X (%ﬂ)}
j=1 k=1 j=1
&l A 2n+1)n;\] ..
T[22}
j=k+1

By an argument similar to the one in Proposition 3.1, we get the following symbol estimates:
2n

1BY2[0] = B[yl amgny S COn)lenl Y Nlgellyiblloe = Yellwioe 1¥elliprne,  J=2.3,
k=1
so that

o0 2n
1B"%[0] — B[ Y1l amy S D C9)leal Y Mol lor — Vallwose Ik, j=2.3.
n=1 k=1

Similarly, we have

I1B%[¢] — Bo[w]nm )

<ZC<n s>|cn|Z 1Ll 1L (0 = ¥ oo I L sk + o Iyl 10 = ¥ e (W [ %)

and

IR@) R s S Nl — wnm{ZC(n s)|cn|Zl|Lgox||Wm||L«o Ve lwaoo | L2

n=1 k=1 Yn—k
F oI5 (e — V) xllwaoe I 125 2 ¢ -

We apply 97, to (4-19) for ¢ — 1, and carry out weighted energy estimates for the homogeneous energies
EJ[¢ — ] defined by (4-4). We then get that

Aoy,
q B Lo —v10)
< (l@xllwsee + 1V lwse)* Prlll@l e 1V 1 5 ) ES Lo — w1(t)

+ (l@xllwsee + 1¥xllwse) Pa(l@lar 1 1D NLY (Ol gr+i 1< = ) Ol ar I1(@ — ) Ol as, (4-20)

where P; and P, are positive polynomials. Here we have used the estimates

197 L T puoe ) proe gy ¥ 2 < ||a’“Lw||LzZC<n s>|cn|Z||<px||Wm||gox Vellweo 1 5%
n=1 k=1

and

197+ Tgogyy- Bow,]wuLz<||af“w||LzZC<n s>|cn|Z 1L a1 (@ — ¥l 1L eI
1 k=1 _
" F a0 = ¥ allwse (Y15 %)
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Thus, if 5 <r < s — 1, Gronwall’s inequality implies that

EQlo— 1) <EQlp — w<0>exp/<||<p||m+||w||m> Pilllelar, 1¥ 1 ar)
+ (lellar + 1 e P2l 1 Il aOILY | g dt.

On the other hand, when 0 <r < 5,

P L EO -y 1)

< (el as+1¥ 1) Prlliel s, 1¥ll 4 ES o= 1)
+11Blo]=B Y Ml 2 19 | s o=l ar + 11 BE o] = B[ 1 2 | L Nl s o= N e

<ELTo= 18l s+ 1) Prlol s, 19 1) HILY L asPa(l@ s, 19 1) Al s+ 19 1)},

and Gronwall’s inequality implies that

EPlo — 1) < EPlep — ¥1(0) expf0 {Aellas + 115 Pillielgs, 1l gs)
FULY I asPadll@l s 19 ) Al s + 1Y 5s) | de

Here we have used the fact that (Eg))l/ 2 and the H”-norm are equivalent, as in (4-17).
In either case, the stability estimate (4-3) follows.

4E. Continuous dependence on H®. Assume s > 7, and suppose that ¢ € C ([0, T]; H*(R)) is a solution
of (1-1) with initial data ¢(0) =
For € > 0, define a smoothing operator J. by

Jef(x) =F e ) F (1),

where v(§) is a smooth bump function supported on |§| <2 and equal to 1 on |§]| < 1.
Let ¢©) be a smooth approximate solution for ¢ with initial data

(/)(6)(0) g0(()5)’ wéf) = J. 90,

so that ||¢g — w(()e) lzs — 0 as € — 04. Note that the smoothed initial data also satisfy the conditions

||Blog[]€(p0 ”M(l 1) < C07 ch|cn|(”a J€¢O|lw’%oo + ||La ]€(p0|lw2oc) < CM'

n=1

Since the life span T is only related to the constants Co, Cyy, s, the solutions go(e) and ¢ share the common
life span [0, T1].
We shall prove that

sup [lo(1) =@ Dllgs — 0 as e — 0+ 4-21)
tel0,T]
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Taking ¥ = ¢©) and r = s in (4-20) in the above stability argument, we obtain that

d
5 Eole =910

< Ulellas + 1o Na)*Prlielas, 19 1a)ESlp — 0'91(0)
+ (el as + e Nz Palllas, 10€ 1) ILE @ st I1(@ — @)Yl 1 (@ — ) (@) | 5.

Notice that

1L | st < e M ogel - 91l s,
le logell(@ — )l us S1e 2@ — O Ns S @ — o)l g

Therefore, since s > 7 and ||¢© || zs < |l¢|lzs, we have

d
—EP 9 — 910 < llolzsPrllelus, 191l u) ES lp — 0 91)

dr
+ o3 Palll@l s, 1ol ms) 1@ — @) (D) |13

Thus, we obtain

t
EPle =910 < EY 9 —¢'91(0) exp /0 N3 (P + P l@l s 9 llas) dr. (4-22)

which implies that (4-21) holds.
Finally, suppose that {¢g , | » € N} is a sequence in H*(R) with ¢y, = ¢o in H*(R) as n — oo, and
¢, € C([0, T,,]; H*(R)) are solutions of (1-1) with initial data ¢g ,. By Sobolev embedding,

lim [ B"%[¢o a1l ., = 1B (@0l M.y, < Cos
n—oQ

x o0
Tim Y CFlerl (1090, 1330 + 1 L8xg0ll20) = D Colexl (135 oll g + 1L 3x0ll 320 < Conr.
k=1 k=1

Therefore, there exists N € N such that for n > N; we have

o
1B" 2 g0.nlllatg sy < Coo D Colerl (10: 0 llggace + L3P0 l32m) < Car.
k=1
Hence, the ¢, share the same life span as ¢ for n > Nj.
Denote by ¢ and (p,g€> the solutions with initial data J.¢g and Jc ¢y ,, respectively. Then

(€) (e)

o — @allms <l — @ llms + l9© — 0N ms + 0L — @ull s

Fix § > 0. In view of (4-22) and the fact that the H*-norms of ||¢, || are uniformly bounded, by taking €
small enough, we can make

sup flo(t) — @O llus < 18, sup [0\ (t) — @u(@) s < 36 forall n e N.
tel0,T] te(0,T]
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The stability estimate (4-3) with r = s implies that there exists N, > N such that

(€)

sup [lo' — @ |y < %8 for all n > N>.

tel0,T]
It follows that

sup ¢ —@ullus <8 foralln > Ny,
1€[0.T]

and since § > 0 is arbitrary, we conclude that
lim [l¢ —@ullcqo,71;15) =0,
n—oo

which proves the continuous dependence of the solution map on H°.

5. Global solution for small initial data

Beginning with this section, we address the global well-posedness of (1-1) with small initial data. From
now on, we fix the parameter values

s=1200, r=1, po=10"% (5-1)
The front equation (1-1) is invariant under the transformation
X+ Ax +2log|Alt), tr—At, @ Ap.
The scaling-Galilean part of this transformation is generated by the vector field
S=x+2t)0 +10;, (5-2)

and the linearized equation ¢, = 21og |0, |¢, commutes with S (see Lemma 7.1). We also introduce the
notation

h(x, 1) =e 201eldg 1), h(E, 1) =e 215l EIGE 1) (5-3)

for the function / obtained by removing the action of the linearized evolution group on ¢. When
convenient, we write h(-,t) = h(t), (-, 1) = @(1).
Our global existence theorem is as follows.

Theorem 5.1. Let s, r, pg be defined as in (5-1). There exists a constant 0 < € <K 1 such that if g9 € H*(R)
satisfies
lgollas + [Ix0x@ollHr < €0

for some 0 < €y < €, then there exists a unique global solution ¢ € C ([0, 0co); H*(R)) of (1-1). Moreover,
this solution satisfies

leOllas + ISe DIl < €0 + DP,

where S is the vector field defined in (5-2).
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To prove this theorem, given the local existence theory, we only need to show that the criterion (4-2)
in Theorem 4.1 is never satisfied. In particular, Lemma 5.3 below, together with the symbol estimates in
Proposition 3.1, guarantees that the life-span of solutions can be extended to infinity.

In order to derive the global a priori estimates, we introduce the Z-norm of a function f € L*(R),
defined by

£ 11z = 11+ &1 F @), (5-4)

and prove the global bounds in Theorem 5.1 by use of the following bootstrap argument.

Proposition 5.2 (bootstrap). Let T > 1 and suppose that ¢ € C([0, T]; H®) is a solution of (1-1), where
the initial data satisfies

lwollms + lxOx@ollur < €0

/3

for some 0 < €y K 1. If there exists g K €1 < eé such that the solution satisfies

@+ D7UleOllas +1SeDllar) + lellz < €

foreveryt € [0, T], then the solution satisfies an improved bound

@+ D UeOlus + 1SeOllar) + llellz < €o.

We call the assumptions in Proposition 5.2 the bootstrap assumptions. To prove the proposition, we
establish the following lemmas, most of whose proofs are deferred to the following sections. As before,
we let L denote the Fourier multiplier (1-2).

Lemma 5.3 (sharp pointwise decay). Under the bootstrap assumptions,
118512 @x )l + I Lex (Dl S €1t + D72
Lemma 5.4 (scaling-Galilean estimate). Under the bootstrap assumptions,
t+ D™ NSeDllar < €o-
Lemma 5.5. Under the bootstrap assumptions,
t+ D7 "le®llus + Ixd 0Ol ar) S €o-

Proof. Recall the energy estimate (4-15)

FO (1) < B (0)elo FUgOllyotILor@ 2000 (o (@l oo HILge (Dl 2000 d

From Lemma 5.3, we have

F(lex (O llwse + 1 Lox (Dllw2e) S 1,

lox (O llwse + 1 Loy (D) lweee < 4+ 172,
which implies that
EO@) S g+
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for some constant C, so once 612 < po, we have
(t+ 1D Pollgs < eo.

Next, we observe that we can use ||S¢| g to control ||xd, A | g-. It follows from (5-3), the definition
of S, and (3-2) that

Filx8,:h)(€) = =8 (6h(€)) = —h(§) — £0:h(E),
EQ:h(E, 1) = £e M1 1021 (21 (log |£] + )@(E, 1) + B P(E, 1))

. _ (5-5)
= e bl £ 995, 1) — Qits — DPE, D) — 191 (€, ) —IN(E, 1) = (5, 1)]
= e MR _Sp(&, 1) — G5, 1) — N, D),
where N denotes the nonlinear term in (3-2), which satisfies the estimate
o
oA N2 S s e + 1 Lgx )@l e forall j=0,....r (5-6)
n=1
By the bootstrap assumptions, Lemma 5.3, and Lemma 5.4 we then find that
(t+ D7Plxdch(®) | ar < €o,
and the same estimate holds for ¢ in view of (5-3). U

Lemma 5.6 (nonlinear dispersive estimate). Under the bootstrap assumptions, the solution of (1-1)
satisfies

le®lz < €o-
Proposition 5.2 then follows by combining Lemmas 5.3-5.6. Lemma 5.3 will be proved in Section 6,
Lemma 5.4 will be proved in Section 7, and Lemma 5.6 will be proved in Section 8.
6. Linear dispersive estimate

In this section, we prove a dispersive estimate for the linearized evolution operator ¢ ?1°21%:| defined in
(5-3) and use it to prove Lemma 5.3. We recall that P, and Py are the frequency-localization operators
with symbols i, and @k, respectively (see (2-13)).

Lemma 6.1. Fort > 0 and f € L?, we have the linear dispersive estimates
e P10 P fllpe S (6 + D)7V Pefllige + (0 + D727 P Pl + 1P f 21 (6-1)
Proof. Using the inverse Fourier transform, we can write the solution as

emxlogMPkf:/eixs+zi<51og|$|)z¢k(§>f(g)dg.
R

Since
aé_eixé-i-Zi(é log |&)t — [lx + 2lt(10g |§-| + l)]eixf-i-Zi(S log \§|)l" (6_2)
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we can integrate by parts to get
08P £ oo

= | [[ereresn fepneras
R

1
rix+2it(log|&|+1)

eix§+2i(§ log Iél)ta (

LOO

aseixs+2i(§1°glg‘)tf(g)wk(g)dg

I
=

LOO

f@)wk@)) de

ix+2it(log|€|+1)
—2it
Elix+2it(logl&[+1)]

LOO

Y (§)de £ ()

I
5

ixE+2iElog € )t ;
¢ ( 2f(S)Wk(S)+ix+2it(log|5|+1)

f@)%@)) dt

+- ;
ix+2it(log|&|+1) Lo

(1) If |ix +2it(log |&] + 1)| = (¢ + 1), we use (2-14) and get

298 Pl S /R E71 FEVE |+ 1V ®)de f ©)1+ 1 @i §)] ds
S RPN BS I 27 PN PF T 60 Dlla + 271 B ol

Then (6-1) follows when (t 4+ 1)~! < 2% Otherwise, when 7 + 1 < 27, we have
> 180 P fll oo S 2K Peflleze S (6 + D)7 V224 2| Pefllze.
(2) Next we prove estimates for the case when |ix + 2if(log || +1)] < (¢ +1). Let
é_.i — o/
=

be the solutions of x +2¢(log || 4+ 1) = 0. Since v is supported in an annulus with radius around 2%, we
only need to consider the case when |.§Oi| ~ 2% and y is supported on the neighborhood of the stationary
phase point égt. We decompose the integral and estimate it as

/Reixg+zi@1og|s>tf(§)¢k(g)dg‘5 PN (EAErAE

[<k+N
with

I = [ eI g €L s — 65

where 11 is the indicator function supported on Ry and N is large enough that the support of ¥ is

covered by the set Ul§k+N{§ | Y1 (€ — é(;—L) =1}.
When 2/ < 2/2(t +1)~1/2, we have

Yoovfs Y 2Bl <22+ )TV P e
20 <2k/2(¢41)"1/2 2/ <2k2(14-1)"1/2
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When 2K/2(¢ +1)71/2 <2/ < 25N since |& — &y| &~ 2! and |&| &~ 2%, we get the estimate

21
l:l:?

x+2t(log|§|+ 1) =2t log

i‘ ~ 2t log
€0

Using (6-2) and integration by parts, we have

1751 S (t:ll) R{(|3§f(§)|+2_l|f(§)|)1ﬁl($—50i)+|f(5)1ﬁk(5)1ﬁ1/(§—foi)|}d§
k=l k—1/2 R
S (t+1)”f||L°°+ 1D 119g fllz2.
Then we take the sum of J; over 2! > 2K/2(r + 1)~1/2 to get the estimates (6-1). U

Proof of Lemma 5.3. After splitting into high-frequency and low-frequency parts, it suffices to bound the

> PiLy; > Pt
k>0

k<0
Take the function f in Lemma 6.1 to be L3, 4. Since ¢*% 10219 and P, commute, and

terms

’

LOO

LOO

xath =0, (x0,Lh) —0,Lh =0,[x0y, LTh+ 0, L(x0,h) —0,Lh=—0,h+09,L(x0,h)—0,Lh,
we have that

1P Locgllie S ¢+ 17N F(PLIOL S ?0) [
+ (04 D TARCDR) PL(xdh) 12+ 2R 4 kDI Pehll 2 4 11 Pe (1921 L) [ 2]

It follows from (5-5) that
I Pexaxm) 2 SN Peplipe + | PeSell2 + 1l PNl 2
We first observe that k < 0 automatically leads to (t + 1)~ 1/4+PoG/Dk k| < 1, and then we have

IPLocgllie S ¢+ D722k [y (§)1E1G ()l
+ @+ D) Pl + I PSollp + I PN 2] (6-3)

Summing over for £ < 0, using (5-6), the bootstrap assumptions, and (6-3) in the corresponding ranges
of k, and we obtain that
Z P Loy

k<0

Sea@+1D)7
Loo

To estimate || Px|d,| 2@y ||z, we take the function f in Lemma 6.1 to be |3, | "2h, and obtain

1Peloe el S (64 1)~ 2 IFPeloe ™72 0) 11z
(4 DA P9 ) 2+ P07 ) 2]
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Using
—x |0 = [0y, 9x10x "2 1h + 0|0 T (xch) = —(r + 3)0x 105" T2h + 0y 10| (x ),
and (5-5), we get that
1Pl x| o
S+ DT I@®IETT20E) e
+ (DRI 0: Pegllz + 10 PeSellzz + 10 Prepllzz + 11192172 PN 2]
For k € Z, and (¢t 4 1)~ 1/4+po20+11/9k <1 'we have
1Pel3: el S (0 4+ D727 2y @161 @) Iy
+ 4+ DTV Pl e + [ PeSellz + I PN 2], (6-4)
Finally, for k € Z, and (t + 1)~ 1/4Fro20+1/Dk > 1 we have
1Py P ulie SIEFTYi@@@ s S ME " Ya® 2| Peoll e
S 2B HDR Bgllgs < (0 4 DT CTT2EIAA/ATHED Y Bg | . (6-5)

Summing over k € Z, using (5-6), the bootstrap assumptions, and (6-4)—(6-5) in the corresponding
ranges of k, we obtain that

Sea@+1)7"2,
LOO

> Pl g,

k>0
which completes the proof. (|

7. Scaling-Galilean estimate

In this section, we prove the scaling-Galilean estimate in Lemma 5.4.
First, we summarize some commutator identities for the scaling-Galilean operator S defined in (5-2)
and L = log|dy|. The straightforward proofs follow by use of the Fourier transform and are omitted.

Lemma 7.1. Let ¢(x, t) be a Schwartz distribution on R? such that Lo(x, t) is a Schwartz distribution.
Then

[S,0xlp =—0xp, [S,Llp=—¢, [S,Lolp=—¢x—Ligp,
[S, 0/l = —20,¢ — 0, [S,0; —2L0 ] = —0,¢0 +2L0,¢.

Next, we prove a weighted energy estimate for S¢.

Proof of Lemma 5.4. Applying S to (3-7) and using Lemma 7.1, we get
(S9): —2L3:(Sp) + 3x Tpoy;S@ + L[Tgrog(1S¢lx + SR = commutators,
where the commutators are

0[S, Tpoplos 1S, 01 Tgop10s  [S, LN (Tgisppre)s L (S, Tioegy 1)
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The first commutator can be written as
[S, Tpopg)le = [(x +21)0x + 10y, Tpopyle

= (x + 21)0x Tpop19 — Top)[(x +21)0x @] + 10 Tpopp190 — Tpoj1(10:0)

= (x +20) Ty, porg1¢ + [(x + 21), Tpoyp110x@ + Ti, o1

= Tx+20)0, B[ T (X Ty, poyg19 — Ths, pop19) + [X, Tpoy110x¢ + Tiy, pogg) -
By the commutator estimates in Lemma 2.2 and Theorem B.4, we obtain for 0 < k < r that

[10x[S, Tgopgl@llax S Nxs Tpopg10x @l st + 1x Ty, gorg190 — Ta, Bojo1® | et + 1T o1 @ |l ¢
SIB T 90tz + I BP0 M 191 it + IS BOL@TI 22 0 [l oo
Using (3-9), together with Lemma 2.5 and similar estimates for ||S B[] 2, We find that
1.5, Taoggn10 it S FUL@ellwas + 10 lw2) (1L lwzos +19x o) 1@l rsroe (1S@ e+l L1
Similarly, we have
| L3 (S, ety )0) s
S F(ILexllwzee + l@xllwze) (LL@x w2 + llgxllw2o) l@x lwriec (IS@llar + @l as)-
By Lemma 7.1, Lemma 2.1, and (3-9), the second and third commutators satisfy
LS, 0x1T o190 | 5% = 1 TBoy1 @ | Fris1
S FUILgxllwze+lgxllwzoe) (L@ ez +lx lwzoe)* ol i
I[S, Lox1(Tgoerp1 @) |l ik = | (Tgrog[190) x+L0x (Tgroe[1 ) |l 1
S FULec oo+l gallwieo) ULoc oo+ @xllwro) U@l i+ Lol i)
Thus, the evolution equation for S¢ can be written as
(S@): + 0x Tpop)S¢ + Rs = LI(2 — Tpiog1) Se],

where the remainder R g satisfies

IRsl gt S Ulexlwzee + 1 Lox lw2e) > (IS@ll ar + @l gre1 + [ Lol ).
As in (4-4), we define a weighted energy for S¢ by

ES 1) = f IDVSp(x, 1) - (2 = Tgu)™ ' [DVSp(x, ) dx,  j=0,1,....7,
R

,
EQ =) EJ 0.
Jj=0
and repeat estimates similar to the ones in the proof of Proposition 4.3 to get

d .
GBSO S FULgy s +lleelwes) (L llyzos + x ) IS0l

+ (lexllwaee + 1Lexlw2e) (ISl 1 + 1@l et + 1L 1) 1Sl gy
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Using Lemma 5.3 and the equivalence of Eg) and ||S g0||%1, when |2 — Tgiog[yy | 22— 12 is bounded away
from zero, we find by integrating in ¢ that

EQ () Sege+ 1),
which proves the lemma. O

8. Nonlinear dispersive estimate

In this section, we prove the estimate

(&1 +16* 19, D Seo forallé eR, (8-1)

which establishes Lemma 5.6 for the Z-norm ||¢||z defined in (5-4).

Using the interpolation result in Lemma 2.4, we first prove in Section 8 A that the estimate (8-1) holds for
sufficiently large and small |£|. In Section 8B, we introduce a logarithmic phase shift into the solution which
is used later to absorb the effects of the space-time resonances. The main part of the section is a detailed
analysis of the nonresonant and resonant interactions between different Fourier components of the solution,
which is carried out in Sections 8C-8G. A detailed flow-chart of the cases considered is given in Figure 1.

To classify the cubic resonances between frequencies & — n; — 12, 11, 12 into &, where &, n1, 2 € R,
we introduce the phase

(&, 01, m2) =2(6 —m —n2) log |§ — 1 — ma| + 201 log 1] + 2nz log In2| — 2§ log |€]. (8-2)

The space resonances satisfy 9, ® = 9,,® = 0, which implies that the frequencies & — n1 — 12, 11, 72
have the same linearized group velocity. It is straightforward to check that the only space resonances are
(‘i: —n1—n2, N1, 772) = (_g’ év 5)9 (S’ _Sv 5)7 or (ga é:v _g)’ (8'3)

(€ —ni —m2, m1,m2) = (36, 36, 36). (8-4)

The time resonances satisfy ® = 0, which implies that the time frequencies of & — n; — 12, 11, 12 are
in resonance with the time frequency of &. This condition is satisfied by the resonances (8-3), which are

space-time resonances, but not by (8-4), which is a space resonance. There are additional time resonances
of the form & = & — n+ 1, but they are not space resonances for & # 7, so they require no further analysis.

8A. Large and small frequencies. When |£| < (¢4 1)77°, Lemma 2.4, the bootstrap assumptions,
Lemma 5.4, and the conservation of ||¢||;2, imply that

1UE1+ 1816, D12 S (61 +18HEI 10N, (€116 1.2 + 191 2)
S 181+ 180l (1S el + o) S €.

Let p; = 107% When |£| > (¢ + 1)7", similarly from Lemma 2.4 and the bootstrap assumptions we get

r+4\2
81+ E7 9@, DP < %

2r+7— 2 2 2r+7—s+2 2 2
SIEPHTS (e 4 1?0l < |gPrTst2m/niel < e

el as ISl + llell2)

since 2r +7 — s +2po/ p1 < O for the parameter values in (5-1).
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Thus, we only need to consider the frequency range (¢ 4+ 1) 770 < |&| < (¢ + 1)?'. In the following, we
fix £ in this range, and use 0 to denote a smooth cutoff function such that

06, =1on{E |+ =<[E| =@+ D"},

(8-5)
0(&, 1) is supported on a small neighborhood of {(£,7) | t +1)77° < |§| < (¢ + 1)P'}.

8B. Modified scattering. Taking the Fourier transform of (3-4), we obtain that

@i (&, t)+ // T (1, m, E—mi—n2)@E—n1—n2, )1, 1)@ (2, ) dny dia
+N>5(<p)($ t)=2iklog|&|p(&,1), (8-6)

where N>5(¢) is given by (3-5), and, from (A-3),

T\ (1,12, 13) = —n3log |n1|—n3log 2| —n3 log |n3|— (n +n2+n3) > log |1 +ma+ns|
+{(mi+m2)? log 1 +na2 |41 +n3)* log 1 +n3 |+ (n2+n3)* log I +n31}. - (8-7)
We can also write (8-6) in terms of h = e~2itélog ¥1% defined in (5-3) as
P+ / / Ty m2, E—m—n2)e ™ EMI & —ny —na, )R (ny. D (2. 1) dyy gz
e HESEI N () (£,) =0, (8-8)

where & is defined in (8-2).

Nonlinearity leads to a cumulative frequency shift in the long-time behavior of the Fourier components
of the solution due to space-time resonances of the form £ =& + & — &. To account for this effect, we use
the method of modified scattering and introduce a phase correction

2
00 =""TNE & 5+ TE 5O +Ti (- sssn/ ""@ L @9

This phase correction is generic in cubically nonlinear dispersive equations and grows logarithmically in
time; see [Cordoba et al. 2019; Ifrim and Tataru 2015; 2016; Ionescu and Pusateri 2015]. We then let

D(E, 1) = CED(E, 1).
Using (8-8) and (8-9), we find that
D&, 1) = e OCO[h (£, 1) + 10, Dh(E, )] = U(E, 1) — e 2HE IO NT ()& 1), (8-10)

where

- i l. . .
U(E,1) =e’0@”){—§//2 Ty (1, 2, E—mi—ma)e' CEM (g —n —n2)h(n1)h(n2) dng dia
R

. h(E. DIPh(E,
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nonlinear dispersive
estimates for (8-6)

/\

cubic term: decompose higher-degree terms
integration regions of (8-12)

max{ji, j2, j3} = 10~ log, |1+1|

\‘\)Qa ft:i]ge
high frequencies max{|ji—jsl, | jo—j3l} > 1
< Ll
nonresonant max{ky, ky} >log,[01(¢)]
frequencies < %l

near resonances  resonant frequencies

(Section 8F)
space space-time
resonance resonances

| |

Section 8C Section 8D Section 8E Section 8F1 Section 8F2 Section 8G

Figure 1. Plan of Section 8. Here (i, j», j3) € Z° are the dyadic blocks in the cubic
decomposition (8-12), and o (¢) is defined in (8-23).

Then we get from (8-10) that
lpllz = (&1 + 11T (E, Dllzg =111+ EIFHD(E, Dz
t —_—
5/0 {||(|§|+|§I’+4)U(S,f)IILg°+I|(|§I+|§|’+4)st(<ﬂ)(§,f)IILgo}dt-

We will estimate the cubic terms in U in Sections 8C—8F and the higher-degree terms involving N> 5(¢)
in Section 8G. We do not need to consider the terms in U that involve the phase correction until we come

to an analysis of the space-time resonances in Section 8F.

Suppressing the dependence of h(€, 1) ont, we carry out a dyadic decomposition of the integral in the

expression (8-11) for U, and write it as a sum over (ji, j2, j3) € 73 of terms of the form

f/Z Ty (01, m2, & — 1 — 02)e @ EMM e (i, (n2)h (€ — 1 — 12) digy dipa.
R

Here, hj = P;h, where P; is the Fourier multiplier with symbol v; defined in (2-13). In the following

subsections, we estimate this integral in various regions of frequency space.
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In Section 8C, we estimate the integral for high frequencies (at least one of j;, j», j3 is large). In
Section 8D, we estimate the integral for nonresonant frequencies, using oscillatory integral estimates with
respect to the frequency variables together with multilinear estimates to get sufficient time decay.

In Section 8E, we consider frequencies that are close to the resonant frequencies. In that case, the
bounds for the multilinear symbols are worse, so we cannot obtain sufficient time decay by the method
used for the nonresonant frequencies. We resolve this issue by an additional dyadic decomposition
centered at each resonant point and a refinement of the symbol estimates.

Finally, in Section 8F, we consider frequencies that are at the space resonance or space-time resonances.
For the space resonance, we estimate the integral in a region about the space resonance point that shrinks
in time, using an oscillatory integral estimate with respect to time and the equation to eliminate the time
derivative of the solution. For the space-time resonances, we take advantage of the modified scattering
phase correction and estimate the integral on shrinking regions about the space-time resonance points.

As a checklist for the complete discussion of all cases, the plan for the rest of Section 8 is displayed in
Figure 1.

8C. High frequencies. When max{ji, j», j3} > 1073 log, |t + 1|, we can estimate the nonlinear terms
(8-12) by using Lemma 2.5, with the L°°-norm placed on the lowest-derivative term. There are, in total,
r 4+ 6 = 13 derivatives shared by three factors of ¢. Thus, we can ensure that the term with least derivatives
has at most four derivatives, with or without a logarithmic derivative.

To be more specific, introducing the cutoff function ? in (8-5), using Holder’s inequality, Sobolev
embedding, and the bootstrap assumptions, we obtain the estimate

E(EI+IEI ™0, 1) f/Rz Ty (01, m2, & — 1 —n2)e &M o () hy, (), (€ — 1 —n2) dpy di

Lg
< @+ D g2 (lPmeall o + |3 @meallwroe) [ ma 2
S @+ D o sl s s e

where max, med, min represent the maximum, median, and minimum of jj, j», j3. From (5-1), we have

(r +8—5)1073 < —1.1, so the right-hand-side is summable over j;, j», j3, and the sum is integrable for
t € (0, 00).

8D. Nonresonant frequencies. We now only need to consider when max{j;, j», j3} < 1073 log, (¢t 4 1).
The regions |j; — j3| > 1 and |j, — j3| > 1 correspond to nonresonant frequencies. Without loss of
generality, we assume |j; — j3| > 1.

Notice that by (8-2), we have

Oy, @ =2log|ni| —2log|§ —ni — 2. (8-13)
Since |n;| and |§ — n; — 2| are in different dyadic blocks, we have

1l —1& — 1 — n2ll 2 max{[n1l, |§ —n1 —n2f}.
Therefore, |0, ®| 2 1.
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After integrating by parts, we have

f/z Ti(n1, m2, € — 1 — n2)e ®EMM s (n)hy, (n2)h jy (8 — 1 — 12) dipy diga
R

nnm§—m—m)., o - . .
= : By, €' EMm () Ry, () (8 — 1y — m2) dy dny
//RZ itdy, ®E, n,m) : 2 %

=—-W;— W, - W,
where

Ti(ni, m, & —m —m) | o A A A
Wl(s,z>=// 5 [ . HPEMII (Vs (1) (& — m — ) diy dipa,
e L it0y @& n1,m) S

T(m,m,&E—m—n2) | ie A A A
Wz@,r):ff[ : 1PEMII (Vs (1) B (6 = — ) iy g,
rel 13, PE, ni, M) / S

T, m, §—m —m) | o A A A
W€, 1) = UGy, i (m)hy, (12)h (& — n1 — n2) g dna.
3(6, 1) //RZ[ 10, O, 11, 1) }e mhj (MDA, ()R 3 (8 — 01— n2) Ay dia

In order to estimate these terms, we note from (8-7) that

Oy [T1 (1, m2, & — 1 — )] = =2{m log |ni| — (m + n2) log |01 + 2|
+ (E —n)1og|& —ni| — (€ —n1 — m) log |§ — 1 — 2l

O [T1 (1, m2, & — 1 — m)1 = —2{m2log |n2| — (71 + m2) log [ + a2 (19
+ (& —mo) log [§ — ma| — (€ — 1 —m2) log [€ — n1 — mal}.
Estimate of Wj: Since
Wil S IF~ WD, (8-15)

it suffices to estimate the L!-norm of
: Tl(m,nz,é—m—nz)] s - ~ ~
) [ : e PEMID oy (1), (n2)h 3 (€ — 1 — m2) dipy 2 d.
f//R "L ity @ m,m) AR
Notice that by (8-13)

5 Tl(nl,nz,é—nl—nz)_Kl(m s é_m_nz)_/cz(m,nz,é‘—m—nz)
"8, PE, L M) T 2 ’

where
8n1Tl(771, n2, 773) - 81’]3 Tl (7717 n2, 773)

log [n1] — log [n3]
1/m+1/n3
(log |n1| —log In3])?

Making a change of variable n3 =& — n; — 12, we need to estimate the trilinear form

k1M1, 2, M3) =

El

k2(n1, m2, m3) = T1(n1, n2, 13)

1 . . . .
o /f/; e L (1, m2, m3) + k21, m2s 13185 (1)), (12) @5 (03) dipy iz dips,
R\

with symbol
[«1(M1, m2, m3) +k2(n1, M2, 135, (MDY, (12) ¥ 5 (03).
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According to Lemma 2.5, this trilinear operator is bounded on L? x L? x L® — L! by
k1 (1, m2, 13) + k201, n2, 13) 1, (MDY, (2) W 5 (13) || s
< (185, Ty (s m2, ) Vg, ()Y, 02) W gy (13) s
+ 19y, T1 (11, 12, 03) W5, 0V, 02) W, (13) [l 50 ) - '
{

Ty(n1,n2,13) ~
N

Uiy )Wy (12) 5 (13)
In the following lemmas, we prove S*°-estimates for these symbols.

Vi M), (m2) ¥ (n3)
log [n1| —logn3] | g=

00

Y MDY, (12) ¥, (n3)
(log |ni| —logn3))? | g

By
+H me]m(m)m(m)

(8-16)

Lemma 8.1. Suppose that |j, — j3| > 1. Then foranym € 7,

1
(log |n1] —log [n3 )™

<1.
SOO

Vi )Y, (12) ¥ 5 (13)

Proof. By the definition of the $°°-norm (2-15) and the definition of ¥ (2-13), we have that

‘ Vi (DY, (2) ¥ ;5 (13)
(log [n1| —log [m3D)™ || g0

= “ /[ l//j‘ (?71)%'2 (772)1/fj3 (n’i) ei(y1m+y2n2+y3n3) dn; dnp dns
g3 (log|ni| —log|nsl) L

= ‘///RS ‘/\//Rz 1pO(z_h77])1ﬂ0(2_12772)1p0(2_ﬁ773)ei(yl771-!-)'2772-4-)/3773) dn; dny dns

(log 1] —log [n3))™
where the last inequality comes from oscillatory integral estimates, using the facts that | j; — j3| > 1 and

the support of ¥ is [—%, —%] U [%, %] U

dydy,dy; <1,

For the estimates of the other symbols in (8-16), we have the following lemma.

Lemma 8.2. For any ji, j2, j3 € Z, we have

19, T3 (a1, 2, 1), MOV, (1) jy (p3) 5o S 27XV, (8-17)
Ty (01s 122 1)V, ()W, )W (73) [l gm0 < 28X U2 JsbHminG, 2.3 8-18)
and
Ti(n1, n2, m3) -~ ~ = .
‘ s ()W, ()W ()| S 2B (8-19)
SOO

Furthermore, since T is symmetric, we also have

18, T1 (71, 2, 13) W5, ()W) )W 5 (03) || g0 S 2max U172}

TR
D012 18) )G )5 n)

< pmax{ji,j2}
SOC




450 JOHN K. HUNTER, JINGYANG SHU AND QINGTIAN ZHANG

Proof. (1) We prove (8-17) first. Using inverse Fourier transform in (11, 12, 173), we obtain

F 0, Ti(n1. m2. 13) W5, ()W, (025 (03)]
[ (yimiFyana+ysns) H] ((1—e™6) 7. 7 7
=/// TR g, [/—dé“]l//j.(nl)l/sz(nz)lﬂjg(m)dnldnzdm

|3
iNC+y1) (piyanz _ pim(E+32) Y (piyanz _ pinz(E+y3) » " N
///I;{‘ |:f _ite € ¢ TE UG ¢ )d(}d’jl(ﬁl)‘//jz(ﬂz)‘ﬁjg(%)dmd’?zdm
= — [F "W 10 HOMF 102 —F 1) IIF 103 —F ~ 1 +y3)1dg

RIS | 3
Notice that

|F 5, 00n + O = 22N F ol @7 (1 + 0))1,
|F 7 W1 (32) — F W1 + y2) | = 221 F  [01(272y2) — F [0l (272(¢ + y2),

\F 0 0(3) — F W10 4 y3)l = 2831 F ol (22 y3) — F W0l (25 (¢ + y3))l,
and that

/R |F 02 (v 4+ ¢) [ dyy 270,
fR \F 10272 y:) — F Y1272 + y2)) | dyr Sminf272, (¢},

/R |F Y 51027 y3) — FUW 125 (¢ 4 y3)) | dys S min{275, |¢ ).
Therefore, we have
IF =08y, Ty (o1 2, 13) W )Y, (02) 5 (13Dl

< / #21'2“3 min{27%2, [¢]} min{27 5, ¢} d¢
R

— 2t (/ LZ 273 de
|¢|>max{27/2,27/3} |§|2

1
+/ — min{2~2, 2" /‘}d§+/ 1d§>
min{2-72,2- 3} <|¢|<max(2~2,2-73} || |¢|<min{2—72,2773)

(2) Next, we prove (8-18) and (8-19). The estimate of (8-18) is similar to (8-17). We first use the inverse
Fourier transform and write

FUT 01, m2, 13) 5, )Wy (02) W3 (03)]

(1—emi%) _ N -
= / f / ’@'”1*”"2*”"”[ / H]llTdC]le(m)%(nz)%(’%)dﬁldﬂ2d773

(€Y —imEHyDY (piyanz _ g (E+32)) (o313 _ i3 (E+13)) s s .
///R3 |:/ TE d§:| Vi (DY) ¥ js(n3) dny dnz dns

= W[f " 10 =F 5 1@+ yD1F 5, 100) —F g, 16 +y2)]
(F 5103 —F 1 +y3)1de.

< gmax{ja, 3}
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Taking the L'-norm, we obtain

IF T (s m2, m3) 05, ()8, (02D W 5 (13)1 1

P | . . .
§/2“+’2+J3W min{27/", [¢ [} min{27 7, [¢[} min{277, [¢]} dg
R

<

N/ - _—3d§+/ - 2iRthgr
|¢|>max{2—i1 ,2-72,2-53} |{ ] |£|<min{2-1 272 23}

+/ 2med{j1,jz,j3}+min{j1:j2,j3}L de
min{2771,2772, 2773} <|¢ | <med{27/1,2772,2773) ¢l
+/ Zmin{jl,.izyj,%}L de¢
med{27/1,27/2,27 73} <|¢ | <max{27/1,2772 2773} &P

2min{;ji, 2, j3} max{j1, j2, j3}+med{ji, j2, j3} max{ji. j2, j3}+min{ji, j2, j3} min{jy, j2, j3}+med{ i, j2,j3}
<2 +2 +2 +2

< pmax{ji, j2,j3}+min{ji, j2, j3}
~ b

which proves (8-18).
As for (8-19), we define
k+3

m=3" vim.

j=k=3
Then it follows from the support of ¥, and the fact that i forms a partition of unity that

Lo m N 5
Mxpjl(m)%(ﬁz)‘/fﬁ(m)

- - - 1 = = =
=[Ti(m1, m2, n3)V;, MDY, 2) Y ;5 (n3)] - |:El//j1 (771)1#]'2(772)1//;3(773)]-

m

By Lemma 2.5, we have

Ty -
H D022 18) . 1y, 205, ()

M

S0 - - -
- - . Vi ()Y, 1)V g, (13)
ST (1, 72, 03, )Yy, (02) Wjs (03) [ 500 | = ”m . (8-20)
SOC
In view of (8-18), we only need to estimate the second term. To this end, we have
l:' :. :. . _1:' imyld 1 :. 1 :. <2—j1
" Vi)Y, )Y ;(m3) || = . n Vi (e mF YRl F a1l S .
S0 L

Therefore, by (8-20) and considering all the possible relations between j;, j», and j3, we obtain (8-19). [J

Applying the above lemmas to (8-16) and (8-15), we obtain

IWillzge S @+ D7 [10x@maxti i) |2 197 122 | 0mingi, o 122 + 18 @maxto,js 12 107 122 | @ming o, o) 122
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Since the two terms are symmetric in j; and js, it suffices to estimate one of them, as the other one is
similar. We use Lemma 6.1 and get

||8x(ﬂmax{j1,j2} I 7.00
A DT PEP P hmantj e + ¢+ D748 P Prvaxtji o) G812 + 185 P Amany oy 122]-

Therefore,

Wil S D7 (Lmaxgji oy <022 ™ U2 E a2

—-3/2— i1, J 37
C32mDma I &1 sy oy 1222) 1195 122 | ming 1 o) 122

H1max{jy. j}>02
+ DT85 Povaxtjr, oy 3 m) | 2135 P * Brmaxgjy, iy 122 ] 19055 122 I @ming iy, o N2

+(+ D)7 (Lmaxgjo, 3y <022 ™23 18 imax oyl e

}>02(—3/2—r)max{j2,j3} || |$ |r+3lfl

Fmax(jn. s max(jo.js} 122°) 107, | 22 1 @ming . s} I 2

DT P Praxt s, js) 0 2+ 1105 P Armax oy 122 1951 122 1 @ming iy 122
5 (,_,_1)—3/2(lmax{jl’1_2}502(1/2)max{jl,jz}_|_1max{j1 ’jz}>02(—3/2—r)max{j1,jz})
Nhmaxtjs.jo) | 2105 122 | @mingi o 122
A DT N0 Praxi. oy @I 21105 P * Prmaxtjr o 122 110 22 1 @mingjy oy 2.2
+(r+ 1)*3/2 (lmax{jz,j3}502(1/2) max{jz,js}+1max{j2’j3}>02(*3/2*r) max{jz,js})
Whmaxijo, js3 | Z19j, 12 | @ming ja., j3) 122

+ D T8 Povaxtjo, 3y 3 m) | 213 P * Brmaxt o, 7y 122 |10, 122 | @rming o, o) 1 2

Estimate of W, and W3: We rewrite W, as

Ty (n1, 2, & —m — m2) Dm0 ) h h
iHEmmp . h. 11 —=1), hi(E—n1— dny dns.
/:/[Rz[itan1¢(§,ﬂl,ﬂ2)(§—ﬂl—ﬂz)]e 7 DRy, (12)[(E—n1—12) 0y, 13 (6 —n1—n2)1dny diz

In view of the multilinear estimate Lemma 2.5, we need to estimate the S°°-norm of the symbol

Ti(n1, 12, 13)
(log [n1] —log [n31)n3

Y MV 12) Y, (13).

In a similar way to the estimates of Wy, using Lemmas 8.1 and 8.2, we obtain

IWallzz S 4+ 1D 10 gmati, oy 1 163 s 2 I pming .o 12
Using Lemma 6.1, we have

IWallzge S D)7 Mmax i, o) 022 VP Ly, oy 02 T2 70 M)y
Whmaxiji, o 12118 e js | 2 N @mingjy, o3 1l 2
+ DT8P Praxt iy QB 21182 ¥ Bt oy 12216 B 1 2 | oming .o 22+
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Similarly, we have
IWallzge S (D2 Mmax (o, ) <02 P TV 4 gy 02277 M)
Nhmaxtjo, s} 121 O jy 2 N @mingjo, js) 2
DTN Prvat iy 0 2 10k P Ao o) 122118 B, N 2 | omin . 122

In conclusion, for nonresonant frequencies we have shown that

H5(|s|+|5|’+“)0(s,z> f /R Tiln. N2, E—m—n2)e " ®EMM i (n)Vhy, (n2)h j, (E—n1—n2) dipy dg

LOO
&
S EHDTIP(WillLe +I Wallze +1 Wallge)

S DRI g N2 | @min . 122 16 B 112 | @ming o 2 122)

}<02(1/2) maX{jz,j3}+1 }>02(—3/2—r)max{j2,j3}) ||hmax{j2 i) |z

“(Imax{ . js
DI (2 N 9ming o) 216 05 h o |2 | ooy [122)

02(1/2)max{j1,j2}+1

max{j, j3

02(—3/2—r) max{ ,4/'2}) 112

“(Amax(ji, o)< max{ji. jo}> max{ji. jo} 1 Z

+(t+1)—7/4+<’+5>1”'[<|||ax|3/4Pmax{,-l, 2 O 21102 P Pmax i o) 122 1051122 I rming ooy 1.2
(10 * Pt s} 0 24110 * A s iy 122 19322 | ming o sy 122
(1 1 P51 o) (B 21182 1Y a1 1) 1§ B ol 2 | @i oo 12
(1107 Prvaxt . o) B L2110k P P o 3y 12 15 B o 2 | o oo 2

By the bootstrap assumptions and Lemma 5.5, the right-hand side is summable for j;, j», j3 and the sum
is integrable for ¢ € (0, 00).

8E. Close to resonance. When
max{ji, ja, j3} < 102 logy(t + 1), |j3—jal <1, |j3—jil <1, (8-21)

in (8-12), we need to consider the following two cases:
(i) The frequencies 1, 72 and & — n; — n; have the same sign. By the definition of the multiplier P; and
the cutoff function i, we can assume that

82 <Iml =32, 2R <impl=522 2R <i§—m —ml =525,
and therefore

%(21'1 42 +2j3) <&l < %(2]1 420 +2j3)_

This corresponds to the region near the space resonance ny = =& —n; — 1 = %é} in (8-4).
(ii) The frequencies 11, 12 and & — n; — 1, do not have the same sign. This corresponds to the region near

the space-time resonances (11, 2) = (£, &), (§, —&), or (=&, &) in (8-3). Since the symbol T{(m, 12, 13)
is symmetric in 1y, 12, and 73, it suffices to consider (8-12) in the region near (&, &).

To estimate (8-12) in the region (8-21), we decompose the region further. Writing (&1, &2, §3) =
(&,&, =& or (%%‘ %f, %S), we decompose (8-21) using the additional cutoff functions ¥, (71 — &;) and
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Yk, (112 — &2). Since
D Y —ENYn — &) =1,

(k1,kp)ez?

we can write the integral (8-12) as
//2 Ty (1, 12, & — 1 — 1) &M (n) iy, (), (6 — my — 1)
R

max{ji, j3}41 max{jz, j3}+1
: [ D Yk —51):| : [ Y. Yun —52)} dny dn,

ki=—00 ko=—00

where
max{jp, j3}+1 max{fp, j3}+1
[ > wk.(m—s])]-[ > sz(nz—gz)]=1
k1:—OO kzZ—OO

on the support of fzjl (nl)fzjz(ng)fzj3 (¢ —n1 — np). Thus, we need to consider

//2 Ty (1, m2, & — 1 — 2)e ™ @ EMM e (i, (n2)h 1, (€ — 1 — m2)
K Yk (01— ED Yk, 02 — E2) Ay dipa. (8-22)

In this subsection, we restrict our attention to

ki >logy[o1(2)] or ky >logy[o1(2)],
where

01(H) = (t+1)70%. (8-23)

The case of k; < log,[01(¢)] and k» < log,[01(?)], related to the resonant frequencies, will be discussed
in Section 8F.

Since these expressions are symmetric in 7; and 12, we assume without loss of generality that
J1 > ki >1og,[01(¢)]. The other case can be discussed in a similar way.

Integrating by parts, we can write (8-22) as

Ti(n1,n2, 6 —n1—m) - N . .
// 2 Oy, &1 CEMI () hy, (1) (6 — 1y —m2)
r2 2it(log [n1] —log|& —n1 —n2|) Y, (M — ED Yk, (2 — &2) dipy dipp
1 2

i
= Z(Vl + Vo +Vi+Vy),
where
Ti(n,m2, 6 —n1—m) ; A - A
Vi) = / /R dy [log o log =l |6y (0, (1), =i = o)
Y, (1 — ED Y, (72 — &2) dny dia,

(i, m, & —m —m) 1D (E ~ A -
Vo(E, 1) = i Mg f h ho(§=n —
2, 1) //Rz[loglml—loglé—m—n2|i|e mhi D, (M) (6 — 11 —n2)
Y (M = 81 Y, (12 — §2) dipy dia,
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Ti(ni,ms§—m—m) | joe A A A
V(€. t) = it®Em.m)j . h o hi (5§ —n —
3(6,1) //Rz[loglml—loglé—m—nzl]e (MR, (12)0y, k(6 — 11 —m2)
Y, (M — &)Yk, (2 — &2) dnpy dia,

Tl(’?l, ’7275_7’1_"2) q>( )'\ A ~
Vi, 1) = // [ HPEM M ()R, ()R gy (E — 1 — n2)
r2 | log[ni| —log|& —ny — 2] N 2 3
<0, Yk, (N1 — ED Yk, (2 — &2) dpy dipa.

Estimate of V;: We first denote the symbol for V; as

m(my, n2,§)
-2

~ log |m| —log|& —nm —n

N [ log Imi| — (1 + n2) log I + n2
+ (& —m) log|§ —ni| — (6 —n1 —m2) log |§ — 1 — 2]
Nt E—m =)

2 2 2
| =nylog Ini| —n3log[n2| — n3log|ns]
(log 1] —log |& — n1 — na])? [=m 2 ’

— (1 + 12+ n3) log |1 + n2 4 3l 4+ (71 4 n2)? log |1 + 2|
+ (1 +n3)*log |1 + 03] + (12 +n3)* log In2 + 3] .

After the change of variables v; = n; — &;,i = 1, 2, it suffices to estimate

H//2 m(vi +&1, vy + &, S)eit¢(€’ul+s“vz+&)ﬁjl (v1 + El)iljz(vz + 52)ﬁj3 &3 —vi—v)
§ Ay WDk, (02) dvy dvy

Le
Using Lemma 2.5, we have
IVillee S 15 E @i, va, ©)m(ur + &1, 2+ &2, E) s, 1

jlsj3 v,Up

@) Wi +ED Yk (WDl 1 l19) (W2 +E) Yk, (VDI 1193l

where

3

X2 (1, v, 8) = Py (WD Ty (WD T, (U1 +ED 5, (V2 + E) Ty (B3 — U1 — V) X (£).

() If (&1,86,&) = (%S, %5, %5) since S*°-norm is rotational and scaling invariant, setting w; = vy,

wy = —2v1 — vy, and using (2-16), we have

ki, k
G135 Wi vz, E)m (v + &1, v2 + 62, ) sz, 10

G
= X5 w1, ~2w1 — wa, Emwy + &1 —2w1 —wa+ 82, )lls 1
S ”Xﬁl”ll'{;(w]’ —2w; —wy, §)m(wy + &1, 2w —wr + &, é)”i/;lszoo

oy, [Xfll,’j’?(wh —2w — wa, E)m(wy + &1, —2w — wa + &, g)]”L{‘jsz?

. ||83)181202[Xf11,’]l-{32(w1, —2wy — wy, E)m(wy + &1, —2w; — wa + &, 5)1”1141%@0

< (1+1ji |)(2j1 2./1)1/4(2—j1—2k12]1)1/2(2—j1—3k1—k22j1)1/4
= +|jD- 2J1/2=(Tki+k2) /4 <1 +j1])- 2/1/2—k1—/<2’
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where we have used the estimate

ki,ky
lesj3 < 2j1—k1
log|wy + 1&| —log|3€ + wi +wo| |~
kidka 2 1 < 23—k p2=2j1+k) _ p—ji—ki
B oglwy + 1£| —log|1E +wi +ws||
kikig2 o2 ! < 95U1—k1)9=2j192(~2j1-+k1) _ g—i1=3k1

IeB T log wy + S€| — log| 3£ + wi + wa
Therefore, using (2-14), (6-1), and (8-21), we obtain
Villzge

S A+ D2 PR TR DTG, (01D Y WD iz, 10197 (V2 HE) Vi, (WD) [z, 1 1950 1L

S A+ D272 2R g 6 e 19 9 g
LD T PEPPR Y Lot )TN PR e h) 21110 4R 20) (8-24)

(1) If (&1, &, &) = (&, &, —§&), we use (2-16) to obtain

ki k
XG5 (i, v2, E)m(ui + 61, v+ 62, ) llse 1

%)

ki,k 1/4 ki,k 1/2
SIXE 1 v, Eymur +E1, v+ 82, B0 192 D002 (1, v, E)m vy + E1, va + £, O]
viv2 ) Vv

1/4
02,02, L5 (i, va, )m(y + &1, vy + 62, O]
%)

< (1+1j |)(2j1+k1 2j|)1/4(2—j1 —ki 2j|)1/2(2—j1 —2k1—k22j1)1/4
= (L+1jil)- 27727,

where we have used the estimates
ki.ko
lesj3 < 2j1—k2
log|v; +£&|—log|—& —vi —wvy|| ™

ki g2 1 < 2301k p2(=2j1+k2) _ p—ji—k
Ji.j3 Tun ~ o ’
T og lur +&| —log | —§ — vy — vy

kg2 g2 1 < 95G1—k2) g =21 92(~2j1+ka) _ p—j1—3hk2.
i % og [y + €[~ log | — & — vi — val |

Therefore, using (2-14), (6-1), and (8-21)
Vil S A+ D227 D7 Gy, (04860, WD iz, 101185 (V262 Vi, U2 iz 12 110x@)s 1

S U+ )27 PRy 0 e 1 @ Nl
@D TPNEP PR e +@+D T8, P Py o) 2+ 10 *h s 21 (8-25)

Estimates of V,—Vj: The estimates for V,—V, are similar to V;. We omit the details here. The resulting

estimates are as follows.
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The symbol for V,—V, can be estimated as

T/ +v, &+ v, & — v — 1))
log |&1 +vi| —log &5 — v — Vs

Ky k
lel,j;(vla V2, §)
Soiu Le’
< (2j| +ki 221|)1/4(2—j1 —ki 22j1)1/2(2—j1—2k2—k| 22j1)1/4
= (14122,
We then have the following estimates:

IVallege S AN 202718, @5 ) ez 1k B e
ACHDTPNEP PR e A0 T N0: P Py (each) 10 hysll20), - (8-26)

IV3llzge < A+ D27 2027 038,05, (13) 102, 1P Iz
AGHDTPNER PRy, g+ DT N0 Py o 2+ 110y 21, (8-27)

IVallzge S A+1D2M 2211, 95 e 1 5 e
ACHDTPNEP PR A0 T N0: P Py o) 210yl 20} (8-28)

Finally, we sum over log,[01(#)] < k1, ko <max{ji, j3} + 1, and combine the estimates (8-24)—(8-28)
to get

Hs<|5|+|s|r+“>o<s,r> f fR TG, E=m—m)e M EI (1), () (E—m—nn)

max{ji, j3}+1 max{ja, j3}+1
[ > wm—a)H > %(nz—sz)} dn; iy
ki=log,[01(1)] ky=log, 01 (1)] Lg

< (| jiDImax{ji, js}=logalor O+ D" g1 (1)1
LNE Wk, @iy e 11E 1o @i o+l B, @5 (1) e, N1E1Wka By e 18 Wk, @y e 1728, B (1) 122, ]
AEHDTNEP PR e+ @D A0 Py (o) 241106 4R 1213

The right-hand side is summable with respect to ji, j», j3 under |j3 — j»| <1 and | j3 — ji| < 1, since
we can write
NEP PRz S (1j<02"? + 12027 /2 1kl 2,

and the resulting sum is integrable for ¢ € (0, co) due to (8-23).
8F. Resonant frequencies. In this section, we estimate (8-22) in the region

lj1—731<1, |jp—jl=<1, ki<logloi(®)], k»<logloi(®)],

after summing over (ky, k7).
Ifm <logy,01(t) <m+1formeZ, then —oo <k; <m fori=1,2, and

> Y (&) issupportedin {& e R | £ < §.27}.

k[Z—OO
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Thus, after summing over (k1, k2), we only need to consider (8-22) with a cutoff function in the integrand

of the form
m — & m— 5;'2)
b, n1,m,t) = — -y —==), 8-29
&, m,m, 1) w( o) ) W( o) (8-29)
where the function o(¢) is defined by
o(H)y=2" if 2" < i(r) <2t
In particular, from (8-23), we have
e+ <o) <+ 170, (8-30)
The point
(&1, 6) € {(36, 36). 6. ), (5, —6), (=£,8)}

is one of the resonance points in (8-3)—(8-4). We therefore need to estimate (8-22) with the cutoff function
(8-29) replacing Y, (1 — &1) ¥, (n2 — &2), in which case the integral is taken over one of the following
four disjoint sets:

={m.m) ||m —3&| < Lo, |m— 3£] < 2o}
= {1, m) | Im =&l < 3@, I —§1 < S0},

. m) | 1 =) < 20@), I — (—8)| < 20},
(. m) | Im = (=) < Lo, I —&| < 200}

Al
Az
Az
Ay

The regions A, Ay, Az, A4 are discs centered at (%5, %S), (£,8), (§,—&), and (—§&, &), respectively. The
region A; corresponds to space resonances & = %5 + %5 + %5 , while A,, A3z, A4 correspond to space-time
resonances £ =& +& —&.

8F1. Space resonances. When (n1, n2) € A1, we can expand 7/ ® around (E, %S, %5) as

Ti(n1,m2, & —m —m) (1 210g2> < £ 2>
2 0 -1 ) 8-31
(&, n1,1m2) 2 3log3 s+ n (8-31)

3
— 27m/0.49

2

§
m-—x| +

3

Form e Z, let t,, — 1 denote the time such that log, 0;(#,) = m, and for ¢ € [0, 00), let
M (t) € Z be the negative integer such that M (t) < log, 01(t) < M(¢) + 1. Then o(¢) and the cut-off
function b(&, 11, 12, t) in (8-29) are discontinuous at t = t,,. After writing

it®E,n1,m2) _ 1 it®(&,n1,m2)
e = d.e 1,

idE, N, M)

and integrating by parts with respect to T in each time interval between the time discontinuities, we get

t
JR R e U RO I N R TR A
0 R

t
= Jl—/ Jr(T)dr,
0
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Ti(ni, m2, & —m —m2) 2
J - h ) h 5 h - - )
=[] TR I o, o, € = 1= 2, _

.encb(é,m,nz)[,(g’ N1, N2, T)dny dns

T(fl n —n1—n) s T=tM(1)
+ Z // 1(m1, M2, & 1 2 h]](m,t)hn(nz,t)hh(g n—1n,T)

M+ @ (&, 1, m2) et

L TPEMIm g (e ny, ) dny Ay ;

h(r)=¢ // Ti(n. 12§ =M =) icoennm)
R2 @&, n1, n2)

d:[hj, (n1, TV, (02, Ry (E — 1 — 12, TIOE, 71, M2, T) digy dipa.
For J;, we have from (8-31) that

r T\, m, & —n—n)» A .
‘(|§|+|§| +) /[sz(%‘,m,nz,t)%‘ S (1, €~ )
o ,eirq)(s,m,nz) d’?l d772

< ‘(m e f / 6, . D8 01, T O, D (6 — 1 — 2, DETE iy
R

+(E+ I / /.; 6 12, D1y, 00 D 02, D€ =y = 12, 0 iy i

S @+ DI E e 1 e 11E sl (Lo (DT + [o(D)TY).

Notice that for A, the number of summations over j;, j,, j3 in J; and over m are of the order log(z + 1).
Therefore, the right-hand side of this inequality is uniformly bounded for T > 0 after summing over ji,
J2> J3-

After taking the time derivative, the term J, can be written as a sum of three terms:

Ty(n1,m2,§—mi—m2) ~ . .
5//2 e TPEM [ (1, T, (02, DA (E—m1—n2, TIBE, 01, 02, T) dny diga,
R

D&, n1,m2)
T (77 i ’g_n -n ) i 7 ~ A N
s// ‘ ;)(; - m‘) 22T EI MR (), 1) by (02, TR jy (T, & =11 —02)1B(E, 1, 12, T) dipy dipa,
R 9 b
T( ) S T - ) i ~ ~ ~
£ / / -~ ”QD(”; jl 22‘) 12 i @Emamd [ (n1, )y, (12, T)3ch 1y (E—m1—m. T)16(E, 01, 12, T) dipy dna.
R 9 b

Notice that by (8-8),and the bootstrap assumptions and Lemma 5.3, we have

[N Hs / /R i m, E=m=—n)e *EM b =i —n)h()h(m) dmdny | +HINE5 @) g

o0
Lg

S 19, {@? log |y 1@xr —@log 851 (@)xx+510g [0x (97 x 1 +HIN=5 (@) |

o0
2j+1 2j+1 _
Slelzs Y (sl Lol Se e+,
j=0
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Therefore, we obtain
[GEI+1EFH RS D ke Iz 10che, | eyl zle ()1
S+ D@ Y e lizlihe iz,

where we sum over all permutations (€1, £, £3) of (ji, j2, j3) in the space resonance region A;. Again,
we notice that the number of summations is of order log(z + 1), and the resulting sum is integrable for
T € (1, 00).

8F2. Space-time resonances. We now use modified scattering to consider the term in (8-11) given by

i . . .
// —Sb(é, s 2, DT (1, 2, & — 01— n2)e " CEMD (g —ny — n)h(n)h(n2) dny diga
AyJAs U A4 6

_ mi§|§]
3(t+1)

[Ti(&, & —&) + Ti(€, —£, &) + T1 (=&, &£, Olh(t, &)Ph(t, &). (8-32)

The estimates for Ay, A3, and A4 are similar, so we only present the details for the A, integral. The
corresponding integral for A; in (8-32) can be decomposed into

ﬁ// GHPEM Mg 1 po f)
6 Ao

{111, mas E=ni—n2) s, 0y, (1) o (E—mi—m2) =T (8, &, —E)|AE)*h(E)] dnidny  (8-33)

and

_g 27 1P (E.m1.7m2) ( 5) (’72_5) _2”_|§|] ]
TiE. £, —5) A, £)ha, s>[// oty () (B ) an = 5 39

The estimates for (8-33) are achieved by a Taylor expansion and (8-14)

‘<|5|+|5|’+4 i ff HPETIIG(E 11 1 T (01 120 € — 11— 1)y, 0y () s (6 =1 —12)
—T1(§,&, =€) |h(E)Ph(E)]dn; dna

S (I$|+I$Ir+4)lél// |9y, [T1 (1, m2, €= —m2) ey, ()R, (02) By (E =1 —n2)1 5, = _y E=m)]
A
[0, [T1 (1. 2. E—m1 =02, (1), (02) By (=11 =12y, (€ —12) | dipy i
SEADTIPED N2 1E@p e &) Ielo T+ IEPe e 1Ee I 1Ses | o)1,
where (1], n5) in the first inequality is some point on the line segment connecting (£, &) and (1, 12),
and the summation in the second inequality is over permutations (£1, {2, £3) of (ji, j2, j3). Taking a

summation over ji, jo, j3 and using the estimates in the above subsections together with the time decay
of o(¢) in (8-30), we see that this term is integrable in time and is bounded by a constant multiple of eg.
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As for (8-34), it suffices to estimate

— 2
‘<|s|+|s|’+4>5n<ss o)l o P, s>[// o, ””w("‘ 5) x/x('” S)dmdnz——n'gl]’
o(1) o(1) t

SIAEHEHPE) e 1E1GE g 115 1+IEHSE) I

. 1D &) '71—5>, (m—é)d i
“//Aze 1/j(Q(t) v o) )M

Qi1 ®Enn y, (T § m—E& _2m|§]|
" w( o(t) ) w( o(t) >dmdnz t

Le

3
Sllellz

o0
Lg

Writing (11, n2) = (§ + ¢1, & + &), we find from (8-2) that

3+ 3
O 1, m) = —“;2 + O(K‘ §2§2> = —%+ 0ot + 1)*™).

Since pp = 10™* and o(¢) satisfies (8-30), the error term is integrable in time, so we now only need to

estimate
_ 2m|§]|
lt51§2/§w< ) W( ) d¢ydg — —=— (8-35)
H/ fR o) "\ g
Making the change of variables
{1:‘/|§—|x1, sz\/@xz
in (8-35) and using the fact that |£| < (r 4+ 1)?!, we find that
(r+ DM // i ( £ ) ( €] )
< — e 2y x| -y x1 | dx;dx, — 27 (8-36)
R? Vio(t) Vio(®) L

3

The integral identity

f e br gy = [ P/@D forall g b e C with %ia > 0
R a

gives that
// f,’_"x‘xze_’clz/B2 —x3/B dx;dx; = ﬁB/ e_x%/Bze_Bzx§/4 dx, =27 + O(B_l) as B — oo,
R? R

and therefore

—ixixpy [ X1 X2 —1/2
e Y| —= )Yl = )dxidx; =27n + O(B ) as B — oo. (8-37)
R2 B B
Using (8-37) with B = /7o(t)/+/]E] = O (t*°1=P0/2) in (8-36) then yields
<

~ T /1.005
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Since p; = 1079, the right-hand side decays faster in time than 1/¢, which implies that (8-34) is integrable
in time and bounded by a constant multiple of 68.
Putting all the above estimates together, we conclude that

o
| g1+ ier v e i o s e
0
8G. Higher-degree terms. In this subsection, we prove that

1(&] + 161 HAZs (@) e

is integrable in time. We begin by proving an estimate for the symbol 7;,. We have

F UL, (1,m2s s n2n DV, 0DV, (12) - Wiy (M2041) ]

1—[2n+1(1 e”;/g)
:/// ol imAy2mt Y2 1m2n 1) /#dg Vi DY, (m2) - Vs (M2ng1) dnp,,
R2n+1 |§| et

(elyl N _eim (Q”ryl)) (etyzn+1 M2nt+1 _ piMan+1 (C+yzn+1))
//‘/RZnJrl |:/ |§|2n+1 d; 1/’j1(771)""//j2n+1(772n+1)d77n

~ Ja |§-|2n+1 [F ' 100 =F 1@ H+yD] - [F T 1 e ) 0204 = F W 1€+ 32040 ] d2

and it follows that

IF T, s - oy m2ne DV 0DV (12) -+ Wy (2 Dl

. . 1 . . .
< / 2 g (20, g [ min(2 (g ) ming2 e ) de.
R

Let £1, €5, ..., £2,4+1 be a permutation of ji, ja, ..., jo,4+1 satisfying 270 <2t <... <27t Then

IF T, s - s n2ne DV 0DV (12) -+ Wy (2ng )1l

< /t 2 n+1 g ; /2 2n [¢ 2 n+1 g dé‘
~ | |> & | |2n ! ¢ <| |< & | |2n
Zel Z2}1

+~--+/ —d;+/ bttt g
>tcpr<2t2 €] lgl<2-t

< plattbons
Therefore, by Lemma 2.5, we have

IUEL+ N5 @)l < @+ DO INLs @) < el Zﬂl% 175 + I L 7.
n=2
Using the dispersive estimate Lemma 5.3, we see that the right-hand-side is integrable in ¢, which leads to

fo 1G] + 161N (@) e de S €o.

This completes the proof of Theorem 5.1.
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Appendix A: Alternative formulation of the SQG front equation

We first prove an algebraic identity that will be used in deriving (3-6).
Lemma A.1. Let N > 2 be an integer. Then for any integer 1 < p < N—1landanyn; €R, j=1,2,..., N,

N
> > (=D Oy + Ty + -+ + 1, )? =0, (A-1)

=1 1<mi<my<--<my<N

Proof. A general term in the expansion of left-hand-side of (A-1) is proportional to

nyny -y (A-2)
where o1, o, ..., ay are nonnegative integers such that oy + o + - - - + ay = p. It suffices to show that
the coefficients of the monomials (A-2) are zero. Let 1 < M < N — 1 denote the number of nonzero terms
in the list (1, @, . .., ay). Using the multinomial theorem, we see that the coefficient of (A-2) is

N-M
p ) _ M+j<N_M)_( 4 )‘_ My _{\N—-M _
]:
To compute T, (n,,) in (3-3), we first expand the product
2n+1 2n+1
n[[a-erH=1+>" > (=1 o8 ((m, + 1ty + -+ + 1w )0

j=1 =1 1<mj<my<---<m;<2n+1

2n+1
=Y > (=D)L = cos((my + Ny + -+ -+ 1 )01

=1 1<my<my<---<m;<2n+1
We replace the integral over R in (3-3) by an integral over R\ (—¢, €), where € < 1, and decompose
the expression for T}, into a sum of terms of the form

/ 1—cos(n¢) . _ f 143 (=1 )2 /2 )1 —cos(ng) G / 1—cos(1¢)
€<[f|<o0 e<|¢|<1/Inl| [£1=>1/1nl

|§|2n+1 |§|2n+1 |§|2n+1

i(—l)fnzf/ L
= N Jeciei<iypy 1€ P72

n

) N (=D
=Cpin' =y

- ———d¢+o(1),
o 2! fe<|§|51/|n |g|2n—2i+

where

do

Cn,1=/ 1+Z’}:1(—1)f(9)2f/(2j)!—cos(é’)d9+/ 1 —cos(6)
o]1<1 16]>1

|9|2n+1 |9|2n+1

is some constant that depends only on .

We have
n j 2] n—1
(—l)fnZJ/ 1 s e o )
2— ——d; =C; ™" + § CI5n™ + Cpan™ log I,
= CDY Jeqisim 18P " =
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where

n—1

Z_: (— 1)]+1 2(_1)n+110g6 Cj’e_(_l)jEZj—Zn B (_l)n-i-l
S =) el T m—pept T T !

Thus, we conclude that
1 —cos(n¢)
/ —a ¥ =G =C con — ZCJ — Cpan™ log n].
e<lgl<t/inl 1¢1

We use these results in the expression for 7,, and take the limit as € — 0™. The singularity at € = 0 does
not enter into the final result because of the cancellation in Lemma A.1, and we find that

(_ 1)n+1 2n+1

> (=D Oy ++ - A0, 108 [, + 70y ++ -+, |- (A3)

=1 1<mi<my<---<my<2n+1

It follows that
2n+1

-1 2 1
Toe=1

fn:2

Therefore, we conclude that

/[QOx(x,l)—(ﬂx(eré“,l) _ (Px(x,l‘)—(Px(X-FC, 1) :|d
R Iq Ve + (o, 1) —p(x +¢,1))?

_ N 2ea =D 20+ ¢ 2n—t+1 2
__;max{;( )( Dy (x, 102" log |9, | (9" (x, t))}

00 +1
=YD (=D 0 0™ (x, 007" Tog [0 (9" (x, 1)),

where

2V >0
IT(3—n)|T+DrRn+2—-0OT(n+1)

o = (A-4)

Using this expansion in (3-1), we get (3-6).

Appendix B: Paradifferential calculus

In this appendix, we use the Weyl calculus [Lerner 2010] to prove some estimates for Weyl paraproducts.

B.1. Weyl operators. The Weyl quantization of a symbol a : R x R — C is the operator a* defined by

@" f)(x) = /[ ik ( )f(y)dydé‘ /fz ( ery,x—y)f(y)dy,
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where F;a denotes the Fourier transform of a(xy, xo) with respect to with the i-th variable (i =1, 2). The
Fourier transform of a" f can be written as

1 . .
Fa" )& = 5 / / /R 3 e‘“—”"—‘xsa(%, n)f(y) dy di dx
=/f11a<é—n, —S;”>f(n)dn. (B-1)
R

For m € R, we have the symbol class

St ={a(x, &) € CPRx R) | sup [0¢la(-, &)= < Cap(l + €D 1! for all o, B € Np}.
EeR

For integers ry, r, > 0, we define a symbol norm by

M, (@) = max sup[[(1+[ED*"0a (-, E)llwn,

e 0<a=<r geR
and introduce a class of symbols with finite regularity

I, ={a:RxR— C| M, (a) <oo}.

r,r

We note that if M, ,) is the symbol class defined in (2-3), then

I+ 15D ax, §) g,y ~ M2, (@) (B-2)
In particular, M, ,) = F?NZ.

B.2. Paradifferential operators. Recall from Section 2 that y : R — R is a smooth function supported
in the interval {§ € R | |&| < -5} andequalto lon { eR ||| < 3} If f:R— Canda:RxR— C
is a symbol, then the Weyl paraproduct 7, f in (2-2) is defined by

B E—nl> \ (. _ &+n\;
f[Taf](S)—/Rx(—lﬂernIz)a(é 7 S0 )f(n)dn-

Introducing the notation

2
oq(-, ) =F [X (H—|+I|§2|2>&(§1’ Cz)i|,

we can also write
. -1 AW
FIT. f1¢) = -7:1 Oa é_an S () dn.
R
Comparing this result with (B-1), we see that 7, = 0,".
LemmaB.1. Ifa €I} ., theno, €}l . and M}, (0,) < My, (a).

Proof. To prove that o, € I'} , , we write

i |§‘1|2 B
8?{2850'a(xg H) = Z Cil,iz,a]:;l |:8§;X (m 858}341({1, o),
i1+ih=«a

where the ¢;, ;, o are multinomial coefficients.
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For each term, by Young’s inequality,

_ 2
otz o (e o]

515

= ‘}—cl [(1 + 102D 0y <T|C2|2

)][(1 +102h29g0f a(—x, &)

i1 qi1 |§1|2 irqi298 —
< || F, [(1+|§ "oy (—1+4|§2|2)](x,§z) Li”(H'CZD 05, 0y a(—x, &) llrge.

Using Faa di Bruno’s formula, a general term of (1 + |§2|)’18 X(|§1| /(1 +4|2,]%)) is a linear combi-
nation of the terms of the form

(1+|§2|)ilX(Vn1+"'+mil)< |§1|2 )11_1[|:a€ ( |§1|2 ):|m(
L+4102 ), C\1+41012)]

where m, € N satisfies le'zl Img =1ig.
Bernstein’s inequality implies that

i1 i I<1% / i ( 2001 /2 i ( I<15 ))
1 i1 ql1 (244 1 4 i1/2ql1
H]:s“l |:( +1820) 3;2)((—1_'_4'{2'2)} y L (1 + 4521770, x THA1GP d¢

since the middle term in this inequality is supported on the set {(¢1, &2) | [¢1] S /1 + 4]22]?}). Therefore,
we have that

<1,

~

Ly

~ ‘

3l tiahetofoar Dl S Y. DA +10h 8k afa(—x, p)llix < A+ 18D™,

a<ry,f<r a<ry,Bf<r| i<a
so M, (04) S M, (a). 0

B.3. Hf estimates. The next theorem follows from [Boulkhemair 1999, Theorem 1.2].

Theorem B.2. Letm € R. If a € I'{'y, then the Weyl operator a” : H*(R) — H*™"(R) with symbol a is
bounded and its operator norm is bounded by M{",(a).

Using Lemma B.1 and the fact that 7, = ¢, we then get the following estimate for Weyl paraproducts.

Theorem B.3. Ifa € l"l |» then the Weyl paraproduct operator T, : H*(R) — H*~"(R) is bounded for
allm,s € R, and

1 Ta flpgs=m < VM @I f s
where v > 0 is a constant independent of a.

In particular, setting m = 0 and using the fact that M? (@) = |lallmgy > we get Lemma 2.1.
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B.4. L°°-L? estimates. We also need some estimates in which we bound |7}, f|| 12 by || fllLe.

Theorem B.4. Let p(&) = |£|X, k>0o0r p(§) = |£|*log |€|, k > 1. Assume f € L®(R) with p(d,)d, f €
L>®(R), and a(x, &) is a function such that ||a||£% < 00, where

lallz = Sl;P(Ila( 2+ N10za(-, E)llL2)-

Then we have

1P Ta fllrz S (Lf llze +11p(B) 3 fllze)llal z2.
Proof. Recall that

i (x+y 1§ —nl* . E+n) ;
T =¥ = F 1 —_— X d =/ — -n, dn.
af(x)=0, f(x) /R 2 Oa( 7 X y)f(y) y RX(1+I§+77|2 a\§—n. —— |f(mdn
We split T, f into a low-frequency part

(XY N\ _ & —nl )~(_ $+n)A
/sz aa( N y)u(zay)f(y)]dy—/Rt(nu(—m“mz a(g—n"2") fonay

and a high-frequency part
(Y N [ & —nl )N(_ é+n)A
/sz Ua( 5 X y)[(l t(zay))f(y)]dy—/R(l L(n))x<—1+|§+n|2 al&—n, 5 S () dn.

Here, the cutoff function ¢ is the same as the one defined in the proof of Lemma 2.2.

The integrand in the low-frequency part is supported in |§| < 6, |n| < 2. Thus, |§ + n| < 10 and
¢ — | < 10 on its support, so we can put a cutoff function ¢(1(€ +n)):(3(¢§ — n)) into the integral
without changing its value:

/Rf;]aa(“ LA y) [L(id,) £ ()] dy

2
N 1§ —nl E+n\ (E=n\~(, _ E+n\,
= o (e (5 (55 Jale = 552 fnan

Therefore, defining b(x, §) = L(%iax)t(%éf)a(x, &), we have

1 (x+Yy , _ E—nl* \: AW
Afz Oq (T’ X —}’>[L(lay)f(}’)]dy —/ﬂ;(’?)X(m)b(f -n, T)f(ﬂ) dn

= /sz_labc er y,x — y) [t(idy) f(¥)]dy.

/sz_lffb<x Ty X = y) [e(idy) f(¥)]1dy

2
]__2_10b<x+y’x_y>

fz_lab (x - %; Z)

So we obtain

‘ p(ax)/nglob(x Y . —y)u(iay)f(y)]dy

2

S
L3 &

S NeG@y) f () llese

L2

= [lt@dy) f (Ml

LL3
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where the last term satisfies

‘f—lob(x—f z> =||F7'F [x( 6] )5(;1 g)]<x—5 z)
: 2’ LiL? £ 78 14+4[&|? ’ 2’ LlL?
- 1>\ - Z 1
_ 1 _a2\1/2
~l fg'{(l % [X<1+4|5|2>b(§"5)“(" 2 >—<1+Zz)1/z
2
S fs‘lfcl{(l—asz)”z[x( o )Bm,s)}}u,z)

2 ~
= (1—a§)l/z[x(lﬁﬂsp)b(a,s)}(;l,@

LlL2

1212

Sblzgy S llal g

272
LSLll

For the high-frequency part, we make a dyadic decomposition of f, after which we mainly need to
estimate

/ f;@(%w —y)[(l — L3P F () dy

2 .
/(l—t(n))x(HliSZ| |2)~( =, S%)wk(n)f(n)dn.

wInl <1E1< B, Sl <1E+n <Ll

When || > 2, we have

on the support of the cutoff function x (|& — n|>/(1 + |&€ + n|?)). Therefore || = |& + 5| ~ |£] ~ 2* on
the support, and, since |n| > 2, we only need to consider k > 0.
By the Holder inequality and a change of coordinates,

+
Hp(ax> / Frlo, (’% x— y)[(l —1(idy)) fe(y)]dy
R LZ

_ al® . Xty
Fe ' T [x (W)a(cl, S)wk@)] (T x = y)

—1 KR z
Fe Fa [X (—1 +4|Slz)a<zl, swk@)] (x +3. z)
The last term satisfies

_ ST b4
HFE "7, |:X (TW)G(CL f)‘//k(é)} (x+§’z) L

o sanl (18P !
- H“rf f“{(l_as)l/ [X(l+4|5|2>“(“’§)‘”"(§)“( )W

_ IR
< Hfs lfa{(l - 85)‘/2[x (W)a(;l, swk@)}}(x,z)

< 27K p(30) 8y fillLoe

L'le)z(

< 27K p(30) 8y f Il

LlL?

LlL2

212
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S Ha [x(i)&m By (5)} +”x(i)a(¢l EY(®)
o N KANET TR At | I o

1+4[52
H 81112112 ( 1212 )a@
A +aep2 T4z )*0

1112 >~ H ( IS15 )~
+HX<—1+4|SIZ a(ty, &)y (§) L§1L§+ X T3 aiEE a(t, &)y (&)

S22t )z +2 0t e +27ate, Ollizry +27 0 )l

2 72
LC] LE

112 -
+lx| ——=5 )%a(C1, &)y (&)
L; L

2

2 72
L{] LE

Summing these inequalities over k > 0, we obtain that

|

The theorem then follows by combining the low- and high-frequency estimates. (|

+
p(@,) /R f;laa(x - ,x—y)[a—taay))f(y)]dy < 1p@0d, fl<llall 2.
L

B.5. Composition. Finally, we state a commutator estimate for Weyl paraproducts. The composition of
two symbols a and b is defined by

a#b(x, &) = // e Ma(x, & +n)b(y+x, &) dydn.
IRZ

The following theorem is from [Lerner 2010, Theorem 2.3.7].

Theorem B.5 (composition). Let a; € Sy and ay € Sy'(,. Then

2
ar#ar —ayay — —{611, a} e Smler2 .

where {ay, a} = 0:a10vax — dzazdyay is the Poisson bracket.
Using Theorem B.3, we therefore obtain the following estimate.

Theorem B.6. Leta € I'J'}, b € I'53, and f € H*(R). Then

1
Ty f =Ta f + ZT{a,b}f+Ra
where {a, b} = 0ya - 01b — b - 01a is the Poisson bracket of a and b, and the remainder R satisfies

IR gs—ompamy— S M3 3@ M3 3D f || s
In addition,
Ty Toll gm0 S MES(@ MEZB) 11 s
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