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We consider a nonlinear, spatially nonlocal initial value problem in one space dimension on R that
describes the motion of surface quasigeostrophic (SQG) fronts. We prove that the initial value problem has
a unique local smooth solution under a convergence condition on the multilinear expansion of the nonlinear
term in the equation, and, for sufficiently smooth and small initial data, we prove that the solution is global.
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1. Introduction

In this paper, we prove the existence of global small, smooth solutions of the initial value problemϕt(x, t)+
∫

R

[ϕx(x, t)−ϕx(x+ζ, t)]
{

1
|ζ |
−

1√
ζ 2+[ϕ(x, t)−ϕ(x+ζ, t)]2

}
dζ = 2log |∂x |ϕx(x, t),

ϕ(x,0)=ϕ0(x),
(1-1)

where ϕ : R×R+→ R is defined for x ∈ R, t ∈ R+, and

L = log |∂x | (1-2)

is the Fourier multiplier operator with symbol log |ξ |. Our main result is stated in Theorem 5.1.
This initial value problem describes front solutions of the surface quasigeostrophic (SQG) equation

θt + u · ∇θ = 0, u = (−1)−1/2
∇
⊥θ, (1-3)

where (−1)−1/2 is a fractional inverse Laplacian on R2 and ∇⊥ = (−∂y, ∂x). The SQG equation arises
as a description of quasigeostrophic flows confined to a surface [Lapeyre 2017; Pedlosky 1987]. After the
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incompressible Euler equation, it is the most physically important member of a family of two-dimensional
active scalar problems for θ with a divergence-free transport velocity u = (−1)−α/2∇⊥θ and 0< α ≤ 2.
The case α = 2 gives the vorticity-stream function formulation of the incompressible Euler equation
[Majda and Bertozzi 2002], while α = 1 gives the SQG equation.

The SQG equation is also of interest from an analytical perspective because it has similar features to
the three-dimensional incompressible Euler equation [Constantin et al. 1994]; in both cases, the question
of singularity formation in smooth solutions remains open. The SQG equation has global weak solutions
[Marchand 2008; Resnick 1995], and, as for the Euler equation, nonunique weak solutions of the SQG
initial value problem may be constructed by convex integration [Buckmaster et al. 2019; Isett and Ma
2021]. The SQG equation also has a nontrivial family of global smooth solutions [Castro et al. 2020].

By SQG front solutions, we mean piecewise-constant solutions of (1-3) with

θ(x, y, t)=
{
θ+ if y > ϕ(x, t),
θ− if y < ϕ(x, t),

where θ+ and θ− are distinct constants, in which θ has a jump discontinuity across a front located at
y = ϕ(x, t) with x ∈ R; in (1-1), the jump is normalized to θ+− θ− = 2π . We assume that the front is a
graph and do not consider questions related to the breaking or filamentation of the front.

We contrast these front solutions with SQG patches, in which

θ(x, y, t)=
{
θ+ if (x, y) ∈�(t),
0 if (x, y) /∈�(t),

where �(t) ⊂ R2 is a bounded, simply connected region with smooth boundary. Contour dynamics
equations for the motion of patches in SQG, Euler, and generalized SQG (with arbitrary values of
0< α ≤ 2) are straightforward to write down, although they require an appropriate regularization of a
locally nonintegrable singularity in the Green’s function of (−1)α/2 when 0<α≤1. Local well-posedness
of the contour dynamics equations for SQG and generalized SQG patches is proved in [Córdoba et al.
2018; Gancedo 2008], and generalized SQG patches in the more locally singular regime 0< α < 1 are
studied in [Chae et al. 2012; Khor and Rodrigo 2021a; 2021b].

The boundary of a vortex patch in the Euler equation remains globally smooth in time [Bertozzi and
Constantin 1993; Chemin 1993; 1998], but this question remains open for SQG patches. Splash singu-
larities cannot occur in a smooth boundary of an SQG patch [Gancedo and Strain 2014], while numerical
results suggest the formation of complex, self-similar singularities in a single patch [Scott and Dritschel
2014; 2019] and a curvature blow up when two patches touch [Córdoba et al. 2005]. Singularity formation
in the boundary of generalized SQG patches has been proved in the presence of a rigid boundary when α is
sufficiently close to 2 [Gancedo and Patel 2021; Kiselev et al. 2016; 2017], and a class of nontrivial global
smooth solutions for SQG patches is constructed in [Castro et al. 2016a; 2016b; Gómez-Serrano 2019].

When 0 < α < 1, it is straightforward to derive contour dynamics equations for fronts in the same
way as one does for patches. In that case, [Córdoba et al. 2019] proves the global well-posedness of the
initial-value problem on R for small, smooth generalized SQG fronts.
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When 1 ≤ α ≤ 2, additional problems arise in the formulation of contour dynamics equations for
fronts as a result of the slow decay of the Green’s function and the lack of compact support of θ . Front
equations, including (1-1), are derived by a regularization procedure in [Hunter and Shu 2018], and a
detailed derivation of (1-1) from the SQG equation is given in [Hunter et al. 2020]. Unlike the front
equations with α 6= 1, the SQG front equation requires both “ultraviolet” and “infrared” regularization in
the front equation to account for the failure of both local and global integrability of the SQG Green’s
function G(r) = 1/r on R. This failure leads to the logarithmic derivatives in (1-1), rather than the
fractional derivatives that occur for generalized SQG fronts with α 6= 1.

In the case of spatially periodic fronts with x ∈T=R/2πZ, one can write down front equations directly
by using the Green’s function of (−1)α/2 on the cylinder T× R. Local well-posedness for spatially
periodic SQG front-type equations is proved in [Rodrigo 2005] for C∞-solutions by a Nash–Moser
method and in [Fefferman and Rodrigo 2011] for analytic solutions by a Cauchy–Kowalewski method.
Almost sharp fronts, across which θ is continuous, are studied in [Córdoba et al. 2004; Fefferman et al.
2012; Fefferman and Rodrigo 2012; 2015].

The local well-posedness in Sobolev spaces of a cubically nonlinear approximation of (1-1) for
spatially periodic solutions is proved in [Hunter et al. 2018]. In this paper, we consider the fully nonlinear
equation (1-1) on R. The problem on R differs from the problem on T in two respects. First, the logarithmic
multiplier log |ξ | is unbounded at low frequencies, which does not occur on T when ξ ∈ Z\ {0} is discrete
and nonzero. Second, the linearized equation on R provides dispersive decay, which allows us to get
global solutions for sufficiently small, smooth initial data. In this paper, we do not attempt to obtain a
sharp regularity result for these solutions.

The general strategy for proving the global existence of small solutions of dispersive equations is to
prove an energy estimate together with a dispersive decay estimate. Energy estimates for (1-1) in the
usual H s-Sobolev spaces lead to a logarithmic loss of derivatives [Hunter and Shu 2018]. However, as
shown in [Hunter et al. 2018] for spatially periodic solutions of the cubic approximation, we can obtain
good energy estimates in suitably weighted H s-spaces by paralinearizing the equation and using the linear
dispersive term to control the logarithmic loss of derivatives from the nonlinear term.

The proof of the dispersive estimates is more delicate. The linear part of the equation provides t−1/2

decay for the L∞-norm of the solution, but this is not sufficient to close the global energy estimates for
the full equation, since the O(t−1) contribution from the cubically nonlinear term is not integrable in time.
We therefore need to analyze the nonlinear dispersive behavior in more detail. We do this by the method
of space-time resonances introduced by Germain, Masmoudi and Shatah [Germain 2010; Germain et al.
2009; 2012], together with estimates for weighted L∞ξ -norms — the so-called Z -norms — developed
by Ionescu and his collaborators [Córdoba et al. 2019; Deng et al. 2017a; 2017b; Ionescu and Pausader
2013; Ionescu and Pusateri 2015; 2016; 2018].

Our Z -norm estimates in Section 8 involve a detailed frequency-space analysis. The most difficult
part is the estimate of the cubically nonlinear terms. In most regions of frequency space, these terms are
nonresonant, and we can use integration by parts in either the spatial or temporal frequency variables to
estimate the corresponding oscillatory integrals. In regions of space-time resonances, we use the method
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of modified scattering to account for the nonlinear, long-time asymptotics of the solutions [Ionescu and
Pusateri 2014; Ozawa 1991].

In [Córdoba et al. 2019], where the authors prove global well-posedness of the initial-value problem for
the generalized SQG front equation with 0<α < 1, the linearized equation ϕt = ∂x |∂x |

1−αϕ has a scaling
invariance, with dispersion relation τ = ξ |ξ |1−α, and it commutes with the vector field x∂x + (2−α)t∂t .
This commutation provides a key ingredient in the dispersive estimates. The SQG equation considered
here corresponds to the limiting case α = 1, and its linearized dispersion relation is τ = 2ξ log |ξ |.
The linearized equation ϕt = 2 log |∂x |ϕx is not scale-invariant, but it has a combined scaling-Galilean
invariance and commutes with the scaling-Galilean vector field S = (x + 2t)∂x + t∂t , which we use to
obtain dispersive estimates.

This paper is organized as follows. In Section 2, we collect some fundamental facts and estimates that
we use later. In Section 3, we expand and paralinearize the nonlinear terms in the evolution equation. In
Section 4, we derive weighted energy estimates and prove a local well-posedness result in Theorem 4.1.
In Section 5, we state the global existence result in Theorem 5.1. Finally, in Sections 6–8 we carry out the
three key steps in the proof of global existence: linear dispersive estimates, scaling-Galilean estimates,
and nonlinear dispersive estimates.

2. Preliminaries

2A. Paradifferential calculus. In this section, we state several lemmas for Fourier multiplier opera-
tors that follow from the Weyl paradifferential calculus. Further discussion of the Weyl calculus and
paraproducts can be found in [Bahouri et al. 2011; Chemin 1998; Hörmander 1985; Taylor 2000].

We denote the Fourier transform of f : R→ C by f̂ : R→ C, where f̂ = F f is given by

f (x)=
∫

R

f̂ (ξ)eiξ x dξ, f̂ (ξ)= 1
2π

∫
R

f (x)e−iξ x dx .

For s ∈ R, we denote by H s(R) the space of Schwartz distributions f with ‖ f ‖H s <∞, where

‖ f ‖H s =

[∫
R

(1+ |ξ |2)s | f̂ (ξ)|2 dξ
]1/2

.

Throughout this paper, we use A . B to mean there is a constant C such that A ≤ C B, and A & B to
mean there is a constant C such that A ≥ C B. We use A ≈ B to mean that A . B and B . A.

Let χ : R→ R be a smooth function such that

χ is supported in the interval
{
ξ ∈ R

∣∣ |ξ | ≤ 1
10

}
, and χ(ξ)= 1 on

{
ξ ∈ R

∣∣ |ξ | ≤ 3
40

}
. (2-1)

If f is a Schwartz distribution and a :R×R→C is a symbol, then we define a Weyl paraproduct Ta f by

F[Ta f ](ξ)=
∫

R

χ

(
|ξ − η|2

1+ |ξ + η|2

)
ã
(
ξ − η,

ξ + η

2

)
f̂ (η) dη, (2-2)
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where ã(ξ, η) denotes the partial Fourier transform of a(x, η) with respect to x . For r1, r2 ∈N0 =N∪{0},
we define a normed symbol space by

M(r1,r2) = {a : R×R→ C | ‖a‖M(r1,r2)
<∞},

‖a‖M(r1,r2)
= sup
(x,ξ)∈R2

{ r1∑
α=0

r2∑
β=0

(1+ |ξ |)β |∂αx ∂
β
ξ a(x, ξ)|

}
.

(2-3)

The following lemma is proved in Appendix B.

Lemma 2.1. Let s ∈ R. If a ∈M(1,1) and f ∈ H s(R), then Ta f ∈ H s(R) and

‖Ta f ‖H s . ‖a‖M(1,1)‖ f ‖H s .

Next, we prove some commutator estimates. We denote by log+ |∂x | the Fourier multiplier with symbol

log+ |ξ | =
{

log |ξ | for |ξ |> 1,
0 for |ξ | ≤ 1.

Lemma 2.2. Let s ∈ R. Suppose that f ∈ H s(R), a ∈M(2,1), and b ∈M(1,2). Then

‖[∂x , Ta] f ‖H s . ‖a‖M(2,1)‖ f ‖H s , (2-4)

‖[log+ |∂x |, Ta] f ‖H s . ‖a‖M(2,1)‖ f ‖H s−1, (2-5)

‖[x, Tb] f ‖H s . ‖b‖M(1,2)‖ f ‖H s , (2-6)

‖xTb f − Txb f ‖H s . ‖b‖M(1,2)‖ f ‖H s . (2-7)

Proof. (1) We have [∂x , Ta] = T∂x a , so (2-4) follows from Lemma 2.1.

(2) Next, we prove (2-5). By the definition (2-2) of the Weyl paraproduct, we have for ξ 6= 0 that

F[log+ |∂x |Tav](ξ)= log+ |ξ |
∫

R

χ

(
|ξ − η|2

1+ |ξ + η|2

)
ã
(
ξ − η,

ξ + η

2

)
v̂(η) dη

=

∫
R

log+ |ξ − η+ η|χ
(
|ξ − η|2

1+ |ξ + η|2

)
ã
(
ξ − η,

ξ + η

2

)
v̂(η) dη. (2-8)

If (ξ, η) belongs to the support of χ(|ξ − η|2/(1+ |ξ + η|2)), then we claim that∣∣∣∣ξ − ηη
∣∣∣∣≤ 17

18
when |η| ≥ 2. (2-9)

To prove this claim, we observe that
|ξ − η|2

1+ |ξ + η|2
≤

1
10

implies that

9
∣∣∣∣ξ − ηη −

2
9

∣∣∣∣2 ≤ 40
9
+

1
η2 ≤

169
36
,

and it follows that ∣∣∣∣ξ − ηη
∣∣∣∣≤ ∣∣∣∣ξ − ηη −

2
9

∣∣∣∣+ 2
9
≤

17
18
.
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We introduce a smooth cutoff function ι(η) supported in {|η| ≤ 3} with ι(η)= 1 on {|η| ≤ 2}. In view
of (2-9), when |η|> 2 we can use

log |ξ − η+ η| = log |η| + log
∣∣∣∣1+ ξ − ηη

∣∣∣∣,
and we obtain from (2-8) that, for |ξ |> 1,

F[log+ |∂x |Ta f ](ξ)=
∫

R

(1− ι(η))
[

log |η|+ log
∣∣∣∣1+ ξ − ηη

∣∣∣∣]χ( |ξ − η|2

1+ |ξ + η|2

)
ã
(
ξ−η,

ξ + η

2

)
f̂ (η) dη

+ log+ |ξ |
∫

R

ι(η)χ

(
|ξ − η|2

1+ |ξ + η|2

)
ã
(
ξ − η,

ξ + η

2

)
f̂ (η) dη.

We also have

F[Ta log+ |∂x | f ](ξ)=
∫

R

log+ |η|χ
(
|ξ − η|2

1+ |ξ + η|2

)
ã
(
ξ − η,

ξ + η

2

)
f̂ (η) dη.

By taking the difference of the previous two equations, we get

F[log+ |∂x |Ta f ](ξ)−F[Ta log+ |∂x | f ](ξ)

=

∫
R

(1− ι(η))
[

log
∣∣∣∣1+ ξ − ηη

∣∣∣∣]χ( |ξ − η|2

1+ |ξ + η|2

)
ã
(
ξ − η,

ξ + η

2

)
f̂ (η) dη

+

∫
R

ι(η)(log+ |ξ | − log+ |η|)χ
(
|ξ − η|2

1+ |ξ + η|2

)
ã
(
ξ − η,

ξ + η

2

)
f̂ (η) dη. (2-10)

The integrand in the first integral on the right-hand side of (2-10) is supported on{
(ξ, η)

∣∣∣∣ |η|> 2,
|ξ − η|

|η|
<

17
18

}
.

Thus, if P(ξ, η) is a smooth cutoff function supported in a small neighborhood of this set and equal to 1
on the set, then the first integral can be written as∫

R

P(ξ, η)
[

η

ξ − η
log
∣∣∣∣1+ ξ − ηη

∣∣∣∣]χ( |ξ − η|2

1+ |ξ + η|2

)
(ξ − η)ã

(
ξ − η,

ξ + η

2

)[
1− ι(η)
η

f̂ (η)
]

dη.

We define

Ã(ζ1, ζ2)=
2ζ2− ζ1

2iζ1
log
∣∣∣∣1+ 2ζ1

2ζ2− ζ1

∣∣∣∣∂̃1a(ζ1, ζ2)P
(
ζ2+

ζ1

2
, ζ2−

ζ1

2

)
,

so that

A(x, ζ2)=
∂−1

x

2
(2ζ2+ i∂x) log |1− 2i∂x(2ζ2+ i∂x)

−1
|P
(
ζ2−

i∂x

2
, ζ2+

i∂x

2

)
∂xa(x, ζ2).
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Then the first integral on the right-hand-side of (2-10) can be written in terms of a paradifferential operator
with symbol A as∫

R

χ

(
|ξ − η|2

1+ |ξ + η|2

)
Ã
(
ξ − η,

ξ + η

2

)[
1− ι(η)
η

f̂ (η)
]

dη = F[TAg](ξ), g = F−1
[

1− ι
η

f̂
]
.

By Lemma 2.1, we have

‖TAg‖. ‖A‖M(1,1)‖g‖H s . ‖A‖M(1,1)‖ f ‖H s−1 .

Because of the cutoff function P , we see that the support of Ã(ζ1, ζ2) is contained in

|2ζ2− ζ1|> 4,
∣∣∣∣ 2ζ1

2ζ2− ζ1

∣∣∣∣< 17
18
.

So ∂1a( · , ζ2) 7→ A( · , ζ2) is a zeroth-order pseudodifferential operator. By carrying out a dyadic decom-
position and using Bernstein’s inequality [Bahouri et al. 2011], we obtain that

‖A‖M(1,1) . ‖a‖M(2,1) .

It follows that the first term on the right-hand side of (2-10) satisfies the estimate (2-5).
For the second term on the right-hand side of (2-10), the cutoff functions χ , ι ensure that |ξ | < 6,
|η|< 3. Therefore we have the H s-estimate∥∥∥∥(1+ |ξ |2)s/2 ∫

R

ι(η)(log+ |ξ | − log+ |η|)χ
(
|ξ − η|2

1+ |ξ + η|2

)
ã
(
ξ − η,

ξ + η

2

)
f̂ (η) dη

∥∥∥∥
L2
ξ

.

∥∥∥∥(1+ |ξ |2)s/2 log+ |ξ |
∫

R

χ

(
|ξ − η|2

1+ |ξ + η|2

)
ã
(
ξ − η,

ξ + η

2

)
[ι(η) f̂ (η)] dη

∥∥∥∥
L2
ξ

+

∥∥∥∥(1+ |ξ |2)s/2 ∫
R

χ

(
|ξ − η|2

1+ |ξ + η|2

)
ã
(
ξ − η,

ξ + η

2

)
[ι(η) log+ |η| f̂ (η)] dη

∥∥∥∥
L2
ξ

.

∥∥∥∥∫
R

χ

(
|ξ − η|2

1+ |ξ + η|2

)
ã
(
ξ − η,

ξ + η

2

)
[ι(η) f̂ (η)] dη

∥∥∥∥
L2
ξ

+

∥∥∥∥∫
R

χ

(
|ξ − η|2

1+ |ξ + η|2

)
ã
(
ξ − η,

ξ + η

2

)
[ι(η) log+ |η| f̂ (η)] dη

∥∥∥∥
L2
ξ

= ‖Tag‖L2 +‖Tah‖L2,

where
g = F−1

[ι f̂ ], h = F−1
[ι log+ |η| f̂ ],

and Lemma 2.1 implies that the second term also satisfies (2-5).

(3) To prove (2-6), we compute that

F[[x, Tb] f ](ξ)

= i∂ξ T̂b f (ξ)−T̂b(x f )(ξ)

= i
∫

R

∂ξ

[
χ

(
|ξ−η|2

1+|ξ+η|2

)
b̃
(
ξ−η,

ξ+η

2

)]
f̂ (η) dη−i

∫
R

χ

(
|ξ−η|2

1+|ξ+η|2

)
b̃
(
ξ−η,

ξ+η

2

)
∂η f̂ (η) dη.
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We rewrite the first integral above as∫
R

∂ξ

[
χ

(
|ξ−η|2

1+|ξ+η|2

)
b̃
(
ξ−η,

ξ+η

2

)]
f̂ (η)dη

=

∫
R

(∂ξ1+∂ξ2)

[
χ

(
|ξ1−η|

2

1+|ξ2+η|2

)
b̃
(
ξ1−η,

ξ2+η

2

)]∣∣∣∣
ξ1=ξ2=ξ

f̂ (η)dη

=

∫
R

(2∂ξ2−∂η)

[
χ

(
|ξ1−η|

2

1+|ξ2+η|2

)
b̃
(
ξ1−η,

ξ2+η

2

)]∣∣∣∣
ξ1=ξ2=ξ

f̂ (η)dη

=

∫
R

2∂ξ2

[
lχ
(
|ξ1−η|

2

1+|ξ2+η|2

)
b̃
(
ξ1−η,

ξ2+η

2

)]∣∣∣∣
ξ1=ξ2=ξ

f̂ (η)+
[
χ

(
|ξ−η|2

1+|ξ+η|2

)
b̃
(
ξ−η,

ξ+η

2

)]
∂η f̂ (η)dη.

It follows that

F[x, Tb] f = 2i
∫

R

∂ξ2

[
χ

(
|ξ1− η|

2

1+ |ξ2+ η|2

)
b̃
(
ξ1− η,

ξ2+ η

2

)]∣∣∣∣
ξ1=ξ2=ξ

f̂ (η) dη

= 2i
∫

R

2|ξ − η|2(ξ + η)
[1+ |ξ + η|2]2

χ ′
(
|ξ − η|2

1+ |ξ + η|2

)
b̃
(
ξ − η,

ξ + η

2

)
f̂ (η) dη

+ i
∫

R

χ

(
|ξ − η|2

1+ |ξ + η|2

)
∂̃2b

(
ξ − η,

ξ + η

2

)
f̂ (η) dη. (2-11)

From (2-9), in the support of the cutoff function χ we have

1
18 |η| ≤ |ξ | ≤

35
18 |η| when |η|> 2, and |ξ |< 6 when |η|< 2.

Thus, the first integral on the right-hand-side of (2-11) satisfies∥∥∥∥(1+ |ξ |2)s/2 ∫
R

2|ξ − η|2(ξ + η)
[1+ |ξ + η|2]2

χ ′
(
|ξ − η|2

1+ |ξ + η|2

)
b̃
(
ξ − η,

ξ + η

2

)
f̂ (η) dη

∥∥∥∥
L2
ξ

.

∥∥∥∥∫
R

2|ξ − η|2(ξ + η)
[1+ |ξ + η|2]2

χ ′
(
|ξ − η|2

1+ |ξ + η|2

)
b̃
(
ξ − η,

ξ + η

2

)
[ι(η) f̂ (η)] dη

∥∥∥∥
L2
ξ

+

∥∥∥∥∫
R

2|ξ − η|2(ξ + η)
[1+ |ξ + η|2]2

χ ′
(
|ξ − η|2

1+ |ξ + η|2

)
b̃
(
ξ − η,

ξ + η

2

)
[(1− ι(η))(1+ |η|2)s/2 f̂ (η)] dη

∥∥∥∥
L2
ξ

.

These terms can be expressed in terms of a Weyl pseudodifferential operator Bw in (B-1) with symbol

B(x, ξ)=
4ξ∂x

(1+ 4ξ 2)2
χ ′
(
−∂2

x

1+ 4ξ 2

)
b(x, ξ).

Using Theorem B.2 and Bernstein’s inequality, we then get that∥∥∥∥(1+ |ξ |2)s/2 ∫
R

2|ξ − η|2(ξ + η)
[1+ |ξ + η|2]2

χ ′
(
|ξ − η|2

1+ |ξ + η|2

)
b̃
(
ξ − η,

ξ + η

2

)
f̂ (η) dη

∥∥∥∥
L2
ξ

. ‖B‖M(1,1)‖ f ‖H s

. ‖b‖M(1,1)‖ f ‖H s .
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The second integral on the right-hand-side of (2-11) is the paraproduct F[T∂2b f ]. By using Lemma 2.1
and the previous estimate, we then obtain (2-6).

(4) To prove (2-7), we compute that

F(xTb f −Txb f )

= i
∫

R

∂ξ

[
χ

(
|ξ−η|2

1+|ξ+η|2

)
b̃
(
ξ−η,

ξ+η

2

)]
f̂ (η) dη−i

∫
R

[
χ

(
|ξ−η|2

1+|ξ+η|2

)
∂1b̃

(
ξ−η,

ξ+η

2

)]
f̂ (η) dη

= i
∫

R

[
∂ξχ

(
|ξ−η|2

1+|ξ+η|2

)
b̃
(
ξ−η,

ξ+η

2

)
+

1
2
χ

(
|ξ−η|2

1+|ξ+η|2

)
∂2b̃

(
ξ−η,

ξ+η

2

)]
f̂ (η) dη.

The first term satisfies∥∥∥∥∫
R

∂ξχ

(
|ξ − η|2

1+ |ξ + η|2

)
b̃
(
ξ − η,

ξ + η

2

)
f̂ (η) dη

∥∥∥∥
H s
. ‖b‖M(1,1)‖ f ‖H s ,

and the second term satisfies∥∥∥∥∫
R

χ

(
|ξ − η|2

1+ |ξ + η|2

)
∂2b̃

(
ξ − η,

ξ + η

2

)
f̂ (η) dη

∥∥∥∥
H s
. ‖b‖M(1,2)‖ f ‖H s ,

which proves (2-7). �

Finally, writing D =−i∂x , we give an expansion of the operator |D| = |∂x | acting on paraproducts;
see [Li 2019].

Lemma 2.3. Let s ∈ R, s ≥ 2. If a ∈M(3,1) and f ∈ H s(R), then

|D|s Ta f = Ta|D|s f + sTDa|D|s−2 D f +R,

where R satisfies
‖R‖L2 . ‖a‖M(3,1)‖ f ‖H s−2(R),

and Da means that the differential operator D acts on the function x 7→ a(x, ξ) for fixed ξ .

Proof. By the definition of the Weyl paraproduct

F(|D|s Ta f )(ξ)= |ξ |s
∫

R

χ

(
|ξ − η|2

1+ |ξ + η|2

)
ã
(
ξ − η,

ξ + η

2

)
f̂ (η) dη

=

∫
R

|ξ − η+ η|sχ

(
|ξ − η|2

1+ |ξ + η|2

)
ã
(
ξ − η,

ξ + η

2

)
f̂ (η) dη,

where ã denotes the partial Fourier transform of a in the first variable. The low-frequency part satisfies
the remainder estimate, so it can be absorbed into R, and we only need to consider the high-frequency
part with |η| > 2. In that case, (2-9) is satisfied on the support of χ(|ξ − η|2/(1+ |ξ + η|2)). Define
b(x)= (1+ x)s − 1− sx . Then

|ξ − η+ η|s = |η|s
∣∣∣∣1+ ξ − ηη

∣∣∣∣s = |η|s[1+ s
ξ − η

η
+ b

(
ξ − η

η

)]
.
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In the expression for F[|D|s Ta f ], we get

F[|D|s Ta f ](ξ)=
∫

R

|η|s
[

1+ s
ξ − η

η
+ b

(
ξ − η

η

)]
χ

(
|ξ − η|2

1+ |ξ + η|2

)
ã
(
ξ − η,

ξ + η

2

)
f̂ (η) dη.

Then we only need to estimate∫
R

|η|2b
(
ξ − η

η

)
χ

(
|ξ − η|2

1+ |ξ + η|2

)
ã
(
ξ − η,

ξ + η

2

)
[(1− ι(η))|η|s−2 f̂ (η)] dη. (2-12)

Define the symbol A by

Ã(ζ1, ζ2)=

∣∣∣∣2ζ2− ζ1

2

∣∣∣∣2(1− ι
(

2ζ2− ζ1

2

))
b
(

2ζ1

2ζ2− ζ1

)
ã(ζ1, ζ2).

Then (2-12) can be viewed as a paradifferential operator with symbol A. By considering the supports of
χ , ι and using Bernstein’s inequality, we see that

‖A‖M(1,1) . ‖a‖M(3,1) .

The result then follows by applying Lemma 2.1 to (2-12). �

2B. Fourier multipliers. Let ψ : R→ [0, 1] be a smooth function supported in
[
−

8
5 ,

8
5

]
and equal to 1

in
[
−

5
4 ,

5
4

]
. For any k ∈ Z, we define

ψk(ξ)= ψ(ξ/2k)−ψ(ξ/2k−1), ψ≤k(ξ)= ψ(ξ/2k), ψ≥k(ξ)= 1−ψ(ξ/2k−1),

ψ̃k(ξ)= ψk−1(ξ)+ψk(ξ)+ψk+1(ξ),
(2-13)

and denote by Pk , P≤k , P≥k , and P̃k the Fourier multiplier operators with symbols ψk, ψ≤k, ψ≥k , and ψ̃k ,
respectively. Notice that ψk(ξ)= ψ0(ξ/2k), ψ̃k(ξ)= ψ̃0(ξ/2k).

It is easy to check that
‖ψk‖L2 ≈ 2k/2, ‖ψ ′k‖L2 ≈ 2−k/2. (2-14)

We will need the following interpolation lemma, whose proof can be found in [Ionescu and Pusateri
2016].

Lemma 2.4. For any k ∈ Z and f ∈ L2(R), we have

‖P̂k f ‖2L∞ . ‖Pk f ‖2L1 . 2−k
‖ f̂ ‖L2

ξ
[2k
‖∂ξ f̂ ‖L2

ξ
+‖ f̂ ‖L2

ξ
].

We will also use an estimate for multilinear Fourier multipliers proved in [Ionescu and Pusateri 2015].
Before stating the estimate, we introduce some notation.

We define a norm on symbols κ : Rd
→ C by

‖κ‖S∞ = ‖F−1κ‖L1,

and define the symbol class

S∞ = {κ : Rd
→ C | κ continuous and ‖κ‖S∞ <∞}. (2-15)
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Given κ ∈ S∞, we define a multilinear operator Mκ acting on Schwartz functions f1, . . . , fm ∈ S(R) by

Mκ( f1, . . . , fm)(x)=
∫

Rm
ei x(ξ1+···+ξm)κ(ξ1, . . . , ξm) f̂1(ξ1) · · · f̂m(ξm) dξ1 · · · dξm .

Lemma 2.5. (i) If κ1, κ2 ∈ S∞, then κ1κ2 ∈ S∞.

(ii) Suppose that 1≤ p1, . . . , pm ≤∞, 1≤ p ≤∞, satisfy

1
p1
+

1
p2
+ · · ·+

1
pm
=

1
p
.

If κ ∈ S∞, then

‖Mκ‖L p1×···×L pm→L p . ‖κ‖S∞ .

(iii) Assume p, q, r ∈ [1,∞] satisfy
1
p
+

1
q
+

1
r
= 1,

and m ∈ S∞η1,η2
L∞ξ . Then, for any f ∈ L p(R), g ∈ Lq(R), and h ∈ Lr (R),∥∥∥∥∫

R2
m(η1, η2, ξ) f̂ (η1)ĝ(η2)ĥ(ξ − η1− η2) dη1 dη2

∥∥∥∥
L∞ξ

. ‖m‖S∞η1,η2
L∞ξ ‖ f ‖L p‖g‖Lq‖h‖Lr .

In particular, using interpolation, we can estimate the S∞-norm of a symbol m(η1, η2) in C∞c by

‖m‖S∞ . ‖m‖
1/4
L1 ‖∂

2
ηi

m‖1/2L1 ‖∂
2
η1
∂2
η2

m‖1/4L1 , where i = 1, 2. (2-16)

3. Reformulation of the equation

3A. Expansion of the equation. In this section, we expand the nonlinearity in the SQG front equation

ϕt(x, t)+
∫

R

[ϕx(x, t)−ϕx(x+ζ, t)]
{

1
|ζ |
−

1√
ζ 2+[ϕ(x, t)−ϕ(x+ζ, t)]2

}
dζ = 2log |∂x |ϕx(x, t) (3-1)

for fronts with small slopes |ϕx | � 1. As we will show, (3-1) can be rewritten as

ϕt(x, t)−
∞∑

n=1

cn

2n+ 1
∂x

∫
R2n+1

Tn(ηn)ϕ̂(η1, t)ϕ̂(η2, t) · · · ϕ̂(η2n+1, t)ei(η1+η2+···+η2n+1)x dηn

= 2 log |∂x |ϕx(x, t), (3-2)

where ηn = (η1, η2, . . . , η2n+1), and

Tn(ηn)=

∫
R

∏2n+1
j=1 (1− eiηj ζ )

|ζ |2n+1 dζ, cn =

√
π

0
( 1

2 − n
)
0(n+ 1)

. (3-3)

We remark that cn = O(n−1/2) as n→∞.
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In fact, if we expand the nonlinearity in (3-1) around ϕx(x, t)= 0, we find that∫
R

[
ϕx(x, t)−ϕx(x + ζ, t)

|ζ |
−

ϕx(x, t)−ϕx(x + ζ, t)√
ζ 2+ (ϕ(x, t)−ϕ(x + ζ, t))2

]
dζ

=−

∞∑
n=1

cn

∫
R

[ϕx(x, t)−ϕx(x + ζ, t)] · [ϕ(x, t)−ϕ(x + ζ, t)]2n

|ζ |2n+1 dζ

=−

∞∑
n=1

cn

2n+ 1
∂x

∫
R

[
ϕ(x, t)−ϕ(x + ζ, t)

|ζ |

]2n+1

dζ.

Writing

fn(x)=
∫

R

[
ϕ(x)−ϕ(x + ζ )

|ζ |

]2n+1

dζ, ϕ(x)=
∫

R

ϕ̂(η)eiηx dη,

we have

fn(x)=
∫

R2n+1
Tn(ηn)ϕ̂(η1)ϕ̂(η2) · · · ϕ̂(η2n+1)ei(η1+η2+···+η2n+1)x dηn,

which gives (3-2).
Isolating the lowest-degree nonlinear term in (3-2), which is cubic, we can also write (3-1) as

ϕt(x, t)+
1
6
∂x

∫
R3

T1(η1,η2,η3)ϕ̂(η1, t)ϕ̂(η2, t)ϕ̂(η3, t)ei(η1+η2+η3)x dη1 dη2 dη3+N≥5(ϕ)(x, t)

= 2log |∂x |ϕx(x, t), (3-4)

where N≥5(ϕ) denotes the nonlinear terms of quintic degree or higher:

N≥5(ϕ)(x, t)=−
∞∑

n=2

cn

2n+1
∂x

∫
R2n+1

Tn(ηn)ϕ̂(η1, t)ϕ̂(η2, t) · · · ϕ̂(η2n+1, t)ei(η1+η2+···+η2n+1)x dηn. (3-5)

Equation (3-4) will be used in Section 8 in order to carry out nonlinear dispersive estimates, where the
main difficulty is controlling the slowest decay in time caused by the lowest-degree, cubic nonlinearity.

In Appendix A, we evaluate the integrals in (3-3) and show that we can write (3-2) in the alternative form

ϕt + ∂x

{ ∞∑
n=1

2n+1∑
`=1

(−1)`+1dn,`ϕ
2n−`+1∂2n

x log |∂x |ϕ
`

}
= 2 log |∂x |ϕx , (3-6)

where the constants dn,` are given in (A-4). We will not use (3-6) in this paper since it makes sense
classically only for C∞-solutions and does not make explicit the fact that, owing to a cancellation of
derivatives, the nonlinear flux in (3-6) involves at most logarithmic derivatives of ϕ. However, we remark
that if the quintic and higher-order terms in (3-6) are neglected, then the equation becomes

ϕt +
1
2∂x

{
ϕ2 log |∂x |ϕxx −ϕ log |∂x |(ϕ

2)xx +
1
3 log |∂x |(ϕ

3)xx
}
= 2 log |∂x |ϕx ,

which is the cubic approximation for the front equation that is derived in [Hunter and Shu 2018] and
analyzed in [Hunter et al. 2018].
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3B. Paralinearization of the equation. In this section, we paralinearize the SQG front equation (3-2)
and put it in a form that allows us to make weighted energy estimates. This form extracts a nonlinear
term log |∂x |(TB log[ϕ]ϕ) from the flux that is responsible for the logarithmic loss of derivatives in the
dispersionless equation.

We use Weyl paradifferential calculus to decompose the nonlinearity in (3-1). In the following, we use
C(n, s) to denote a positive constant depending only on n and s, which may change from line to line, and
L = log |∂x | is defined in (1-2).

Proposition 3.1. Suppose that ϕ( · , t)∈H s(R) with s≥4 and ‖ϕx‖W 3,∞+‖ log |∂x |ϕx‖W 2,∞ is sufficiently
small. Then (3-1) can be written as

ϕt + ∂x TB0[ϕ]ϕ+R(ϕ)= log |∂x |[(2− TB log[ϕ])ϕ]x , (3-7)

where the symbols B0
[ϕ] and B log

[ϕ] are given by the following multilinear expansions in ϕx :

B log
[ϕ]( · ,ξ)=

∞∑
n=1

B log
n [ϕ]( · ,ξ), B0

[ϕ]( · ,ξ)=

∞∑
n=1

B0
n [ϕ]( · ,ξ),

B log
n [ϕ]( · ,ξ)=−F

−1
ζ

{
2cn

∫
R2n
δ

(
ζ−

2n∑
j=1

ηj

) 2n∏
j=1

[
iηj ϕ̂(ηj )χ

(
(2n+1)ηj

ξ

)]
dη̂n

}
,

B0
n [ϕ]( · ,ξ)=F−1

ζ

{
2cn

∫
R2n
δ

(
ζ−

2n∑
j=1

ηj

) 2n∏
j=1

[
iηj ϕ̂(ηj )χ

(
(2n+1)ηj

ξ

)]∫
[0,1]2n

log
∣∣∣∣ 2n∑

j=1

ηj sj

∣∣∣∣dŝn dη̂n

}
.

(3-8)

Here, cn is given by (3-3), δ is the delta-distribution, χ is the cutoff function in (2-1), η̂n= (η1, η2, . . . , η2n),
and ŝn = (s1, . . . , s2n). The operators TB log[ϕ] and TB0[ϕ] are self-adjoint and their symbols satisfy the
estimates

‖B log
[ϕ]‖M( j,2) .

∞∑
n=1

C(n, s)|cn|‖ϕx‖
2n
W j,∞, j = 2, 3,

‖B0
[ϕ]‖M(2,2) .

∞∑
n=1

C(n, s)|cn|(‖ log |∂x |ϕx‖
2n
W 2,∞ +‖ϕx‖

2n
W 2,∞),

(3-9)

while the remainder term R satisfies

‖R(ϕ)‖H s . ‖ϕ‖H s

{ ∞∑
n=1

C(n, s)|cn|(‖ϕx‖
2n
W 3,∞ +‖ log |∂x |ϕx‖

2n
W 2,∞)

}
, (3-10)

where the constants C(n, s) have at most exponential growth in n.

Proof. We define

fn(x)=
∫

R2n+1
Tn(ηn)ϕ̂(η1)ϕ̂(η2) · · · ϕ̂(η2n+1)ei(η1+η2+···+η2n+1)x dηn.

In view of (3-2) and the commutator estimate (2-5), we only need to prove that

−

∞∑
n=1

cn

2n+ 1
∂x fn(x)= ∂x TB0[ϕ]ϕ+ ∂x [(TB log[ϕ]) log |∂x |ϕ] +R,
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where R satisfies (3-10), and to do this it suffices to prove for each n that
cn

2n+ 1
∂x fn(x)=−∂x TB0

n [ϕ]
ϕ− ∂x [(TB log

n [ϕ]
) log |∂x |ϕ] +Rn,

‖Rn‖H s . C(n, s)|cn|(‖ϕx‖
2n
W 2,∞ +‖ log |∂x |ϕx‖

2n
W 2,∞)‖ϕ‖H s .

By symmetry, we can assume that |η2n+1| is the largest frequency in the expression of fn . Then
cn

2n+1
∂x fn(x)

= cn∂x

∫
|η2n+1|≥|ηj |

for all j=1,...,2n

Tn(ηn)ϕ̂(η1)ϕ̂(η2) · · · ϕ̂(η2n+1)ei(η1+η2+···+η2n+1)x dηn

= cn∂x

∫
R

∫
|ηj |≤|η2n+1|

for all j=1,...,2n

Tn(ηn)ϕ̂(η1)ϕ̂(η2) · · · ϕ̂(η2n)ei(η1+η2+···+η2n)x dη̂nϕ̂(η2n+1)ei xη2n+1 dη2n+1. (3-11)

To proceed, we split the above integral into two parts corresponding to the lower and higher frequencies
of η2n+1. Define Un(ηn) = Tn(ηn)χ(η2n+1) and 3n(ηn) = Tn(ηn)−Un(ηn). For the lower-frequency
part, we have

∂x

∫
R

∫
|ηj |≤|η2n+1|

for all j=1,...,2n

Un(ηn)ϕ̂(η1)ϕ̂(η2) · · · ϕ̂(η2n)ei(η1+η2+···+η2n)x dη̂nϕ̂(η2n+1)ei xη2n+1 dη2n+1

= ∂x

∫
R

∫
|ηj |≤|η2n+1|

for all j=1,...,2n

χ(η2n+1)

∫
R

∏2n+1
j=1 (1− eiηj ζ )

|ζ |2n+1 dζ ϕ̂(η1)ϕ̂(η2) · · · ϕ̂(η2n)

· ei(η1+η2+···+η2n)x dη̂nϕ̂(η2n+1)ei xη2n+1 dη2n+1

= ∂x

∫
R

An(x, η2n+1)ϕ̂(η2n+1)ei xη2n+1 dη2n+1,

where the symbol An is defined by

An(x,η2n+1)=

∫
|ηj |≤|η2n+1|

for all j=1,...,2n

χ(η2n+1)

∫
R

∏2n+1
j=1 (1−eiηj ζ )

|ζ |2n+1 dζ ϕ̂(η1)ϕ̂(η2) · · · ϕ̂(η2n)ei(η1+η2+···+η2n)x dη̂n.

Using an L2-boundedness theorem for pseudodifferential operators [Boulkhemair 1999, Theorem 1.1],
Lemma 2.5, and the compact support of the cutoff functions, we obtain∥∥∥∥∂x

∫
R

An(x, η2n+1)ϕ̂(η2n+1)ei xη2n+1 dη2n+1

∥∥∥∥
L2

.
∑

i, j≤1

‖∂ i
x∂

j
η2n+1

An‖L∞‖ϕ‖L2

.

∥∥∥∥ In(η̂n, η2n+1)χ(η2n+1)∏2n
j=1(1+ |ηj |)

2n∏
j=1

(1+ |ηj |)

∫
R

∏2n+1
j=1 (1− eiηj ζ )

|ζ |2n+1 dζ
∥∥∥∥

S∞
η̂n

L∞η2n+1

‖ϕ‖2n
W 1,∞‖ϕ‖L2,

where

In(η̂n, η2n+1)=

{
1 if |ηj | ≤ |η2n+1| for j = 1, . . . , 2n,
0 otherwise.

(3-12)

Thus, the lower-frequency part satisfies the estimate (3-10), and this term can be absorbed in R in (3-7).
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Next, we consider the higher-frequency part in (3-11), which we write as

cn∂x

∫
R

∫
|ηj |≤|η2n+1|

for all j=1,...,2n

3n(ηn)

2n∏
j=1

{
χ

(
(2n+ 1)ηj

η2n+1

)
+

[
1−χ

(
(2n+ 1)ηj

η2n+1

)]}
ϕ̂(ηj )

· ei(η1+η2+···+η2n)x dη̂nϕ̂(η2n+1)ei xη2n+1 dη2n+1. (3-13)

We expand the product in the above integral, and consider two cases depending on whether a term
in the expansion contains only factors of χ or contains at least one factor 1− χ . In the first case, the
frequency η2n+1 is much larger than all of the other frequencies, and we can extract a logarithmic derivative
acting on the highest frequency; in the second case at least one other frequency is comparable to η2n+1,
and we get a remainder term by distributing derivatives on comparable frequencies.

Case I: When we take only factors of χ in the expansion of the product in (3-13), we get the integral

cn∂x

∫
R

∫
|ηj |≤|η2n+1|

for all j=1,...,2n

3n(ηn)

2n∏
j=1

χ

(
(2n+ 1)ηj

η2n+1

)
ϕ̂(ηj )ei(η1+η2+···+η2n)x dη̂nϕ̂(η2n+1)ei xη2n+1 dη2n+1.

(3-14)
From (3-3), we can write 3n = [1−χ(η2n+1)]Tn as an integral with respect to sn = (s1, s2, . . . , s2n+1),

3n(ηn)=−(1−χ(η2n+1))

∫
R

sgn ζ
∫
[0,1]2n+1

2n+1∏
j=1

iηj eiηj sj ζ dsn dζ

= 2(−1)n(1−χ(η2n+1))

(2n+1∏
j=1

ηj

)∫
[0,1]2n+1

1∑2n+1
j=1 ηj sj

dsn

= 2(1−χ(η2n+1))

( 2n∏
j=1

(iηj )

)∫
[0,1]2n

log
∣∣∣∣1+ 2n∑

j=1

ηj

η2n+1
sj

∣∣∣∣− log
∣∣∣∣ 2n∑

j=1

ηj

η2n+1
sj

∣∣∣∣ dŝn

= 2(1−χ(η2n+1)) log |η2n+1| ·

2n∏
j=1

(iηj )− 2
( 2n∏

j=1

(iηj )

)∫
[0,1]2n

log
∣∣∣∣ 2n∑

j=1

ηj sj

∣∣∣∣ dŝn

+ (1−χ(η2n+1))

( 2n∏
j=1

(iηj )

)∫
[0,1]2n

log
∣∣∣∣1+ 2n∑

j=1

ηj

η2n+1
sj

∣∣∣∣ dŝn.

Substitution of this expression into (3-14) gives the three terms

cn∂x

∫
R

∫
|ηj |≤|η2n+1|

for all j=1,...,2n

3log
n (ηn)

2n∏
j=1

χ

(
(2n+1)ηj

η2n+1

)
ϕ̂(ηj )ei(η1+η2+···+η2n)x dη̂nϕ̂(η2n+1)ei xη2n+1 dη2n+1,

(3-15)

cn∂x

∫
R

∫
|ηj |≤|η2n+1|

for all j=1,...,2n

30
n(ηn)

2n∏
j=1

χ

(
(2n+1)ηj

η2n+1

)
ϕ̂(ηj )ei(η1+η2+···+η2n)x dη̂nϕ̂(η2n+1)ei xη2n+1 dη2n+1,

(3-16)
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cn∂x

∫
R

∫
|ηj |≤|η2n+1|

for all j=1,...,2n

3≤−1
n (ηn)(ηn)

2n∏
j=1

χ

(
(2n+1)ηj

η2n+1

)
ϕ̂(ηj )ei(η1+η2+···+η2n)x dη̂nϕ̂(η2n+1)ei xη2n+1 dη2n+1,

(3-17)
where

3log
n (ηn)= 2(1−χ(η2n+1)) log |η2n+1| ·

2n∏
j=1

(iηj ),

30
n(ηn)=−2(1−χ(η2n+1))

( 2n∏
j=1

(iηj )

)∫
[0,1]2n

log
∣∣∣∣ 2n∑

j=1

ηj sj

∣∣∣∣ dŝn,

3≤−1
n (ηn)= 2(1−χ(η2n+1))

( 2n∏
j=1

(iηj )

)∫
[0,1]2n

log
∣∣∣∣1+ 2n∑

j=1

ηj

η2n+1
sj

∣∣∣∣ dŝn.

We claim that the terms (3-15) and (3-16) can be rewritten as

−∂x TB log
n [ϕ]

log+ |∂x |ϕ+R1 and − ∂x TB0
n [ϕ]
ϕ+R2, (3-18)

where R1 and R2 satisfy the estimate (3-10). Indeed,

F[∂x TB log
n [ϕ]

log+ |∂x |ϕ](ξ)

=−2cniξ
∫

R

χ

(
|ξ−η|2

1+|ξ+η|2

)
log+ |η|

∫
R2n
δ

(
ξ−η−

2n∑
j=1

ηj

) 2n∏
j=1

[
iηj ϕ̂(ηj )χ

(
2(2n+1)ηj

ξ+η

)]
dη̂nϕ̂(η)dη,

while the Fourier transform of (3-15) is

2cniξ
∫

R

∫
|ηj |≤|η2n+1|

for all j=1,...,2n

δ

(
ξ −

2n+1∑
j=1

ηj

)
(1−χ(η2n+1)) log |η2n+1|

·

2n∏
j=1

[
χ

(
(2n+ 1)ηj

η2n+1

)
(iηj )ϕ̂(ηj )

]
dη̂nϕ̂(η2n+1) dη2n+1.

The difference of the above two integrals is

2cniξ
∫

R2n+1
δ

(
ξ−

2n+1∑
j=1

ηj

)
log |η2n+1|

·

[
In(η̂n,η2n+1)

2n∏
j=1

χ

(
(2n+1)ηj

η2n+1

)
(iηj )ϕ̂(ηj )(1−χ(η2n+1))

−χ

(
|ξ−η2n+1|

2

1+|ξ+η2n+1|2

)
1|η2n+1|>1

2n∏
j=1

(
iηj ϕ̂(ηj )χ

(
2(2n+1)ηj

ξ+η2n+1

))]
dη̂nϕ̂(η2n+1)dη2n+1, (3-19)

where In is given by (3-12).
When ηn satisfies

|ηj | ≤
1
40

1
2n+ 1

|η2n+1| for j = 1, 2, . . . , 2n, (3-20)
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we have In = 1 and χ((2n+ 1)ηj/η2n+1)= 1. In addition, since ξ =
∑2n+1

j=1 ηj , we have

|ξ − η2n+1|
2

1+ |ξ + η2n+1|2
≤
|ξ − η2n+1|

|ξ + η2n+1|
=

∣∣∑2n
j=1 η j

∣∣∣∣∑2n
j=1 η j + 2η2n+1

∣∣ ≤ 1
40 |η2n+1|(

2− 1
40

)
|η2n+1|

=
1
79
<

3
40
,

2(2n+ 1)|ηj |

|ξ + η2n+1|
≤

1
20 |η2n+1|(

2− 1
40

)
|η2n+1|

=
2
79
<

3
40
,

so

χ

(
|ξ − η2n+1|

2

1+ |ξ + η2n+1|2

)
= 1, χ

(
2(2n+ 1)ηj

ξ + η2n+1

)
= 1.

Therefore the integrand of (3-19) is supported outside the set (3-20), and there exists j1 ∈ {1, . . . , 2n},
such that

|ηj1 |>
1
40

1
2n+ 1

|η2n+1|.

Since |η2n+1| is the largest frequency, we see that |ηj1 | and |η2n+1| are comparable in the error term.
Therefore, the H s-norm of (3-19) is bounded by

‖ϕ‖H s C(n, s)|cn|(‖ϕx‖
2n
W 3,∞ +‖Lϕx‖

2n
W 2,∞).

It follows that (3-15) can be written as in (3-18). A similar calculation applies to (3-16).
Next, we estimate the symbols B log

n [ϕ] and B0
n [ϕ]. First, we notice that they are real-valued, so that

TB log
n [ϕ]

and TB0
n [ϕ]

are self-adjoint. Again, without loss of generality, we assume |η2n| =max1≤ j≤2n |η j |

and observe that∫
[0,1]2n

log
∣∣∣∣ 2n∑

j=1

ηj sj

∣∣∣∣dŝn

= log |η2n|+

∫
[0,1]2n−1

{(2n−1∑
j=1

ηj

η2n
sj

)
log
∣∣∣∣1+ 1∑2n−1

j=1 (ηj/η2n)sj

∣∣∣∣+log
∣∣∣∣1+ 1∑2n−1

j=1 (ηj/η2n)sj

∣∣∣∣−1
}

dsn−1

= log |η2n|+O(1).

Thus, using Young’s inequality, we obtain from (3-8) the estimate (3-9), where the constants C(n, s) have
at most exponential growth in n.

To estimate the third term (3-17), we observe that on the support of the functions χ((2n+1)ηj/η2n+1),
we have

|ηj |

|η2n+1|
≤

1
10(2n+ 1)

.

Since sj ∈ [0, 1], a Taylor expansion gives

|3≤−1
n (ηn)|.

[∏2n
j=1 |ηj |

][∑2n
j=1 |ηj |

]
|η2n+1|

.

Therefore the H s-norm of (3-17) is bounded by C(n, s)|cn|‖ϕ‖H s‖ϕx‖
2n
W 2,∞ , where C(n, s) has at most

exponential growth in n.
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Case II: When there is at least one factor of the form 1−χ in the expansion of the product in the integral
(3-13), we get a term of the form

f(n)(x)= cn∂x

∫
R

∫
|ηj |≤|η2n+1|

for all j=1,...,2n

3n(ηn)
∏̀
k=1

[
1−χ

(
(2n+ 1)η jk

η2n+1

)] 2n∏
k=`+1

χ

(
(2n+ 1)η jk

η2n+1

)

·

( 2n∏
j=1

ϕ̂(ηj )

)
ei(η1+η2+···+η2n)x dη̂nϕ̂(η2n+1)ei xη2n+1 dη2n+1, (3-21)

where 1≤ `≤ 2n is an integer, and { jk : k = 1, . . . , 2n} is a permutation of {1, . . . , 2n}.
We know 1−χ((2n+ 1)ηj1/(η2n+1)) is compactly supported on

|ηj1 |

|η2n+1|
≥

3
40(2n+ 1)

.

By assumption, η2n+1 has the largest absolute value, so

3
40(2n+ 1)

|η2n+1| ≤ |ηj1 | ≤ |η2n+1|,

meaning that the frequencies |ηj1 | and |η2n+1| are comparable.
Without loss of generality, we assume that |ηj1 | ≤ |ηj2 | ≤ · · · ≤ |η j2n | ≤ |η2n+1|, define η j2n+1 = η2n+1,

and, using (3-3), split the integral for 3n into three parts:

3n(ηn)=3
low
n (ηn)+

2n∑
k=1

3med,(k)
n (ηn)+3

high
n (ηn),

where

3low
n (ηn)= [1−χ(η2n+1)]

∫
|η2n+1ζ |<2

∏2n+1
j=1 (1− eiηj ζ )

ζ 2n+1 sgn ζ dζ, (3-22)

3med,(k)
n (ηn)= [1−χ(η2n+1)]

∫
2/|η jk+1 |≤|ζ |≤2/|η jk |

∏2n+1
j=1 (1− eiηj ζ )

ζ 2n+1 sgn ζ dζ, (3-23)

3high
n (ηn)= [1−χ(η2n+1)]

∫
|ηj1ζ |>2

∏2n+1
j=1 (1− eiηj ζ )

ζ 2n+1 sgn ζ dζ. (3-24)

To estimate (3-22), we notice that

|3low
n (ηn)| ≤

2n+1∏
k=1

|ηk | ·

∫
|η2n+1ζ |<2

(2n+1∏
k=1

|1− eiη jk ζ |

|η jkζ |

)
dζ ≤ C(n, s)

( 2n∏
k=1

|η jk |

)
.

For each 1≤ k ≤ 2n, we consider two cases. If k 6= 2n, we estimate (3-23) as

|3med,(k)
n (ηn)| ≤

k∏
`=1

|η j` | ·

∫
2/|η jk+1 |≤|ζ |≤2/|η jk |

( k∏
`=1

|1− eiη j`ζ |

|η j`ζ |

)
·

∏2n+1
`=k+1 |1− eiη j`ζ |

|ζ |2n+1−k dζ

≤ 22n+1−k
k∏
`=1

|η j` | ·

∫
2/|η jk+1 |≤|ζ |≤2/|η jk |

|ζ |−2n−1+k dζ

≤
2

2n− k
(|η jk |

2n−k
+ |η jk+1 |

2n−k)

k∏
`=1

|η j` | ≤ 2
( 2n∏

k=1

|η jk |

)
.
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If k = 2n, we have

|3med,(k)
n (ηn)| ≤ 2

2n∏
`=1

|η j` | ·

∫
2/|η j2n+1 |≤|ζ |≤2/|η j2n |

1
|ζ |

dζ = 4
2n∏
`=1

|η j` | · log
∣∣∣∣η j2n+1

η j2n

∣∣∣∣≤ C(n, s)
2n∏
`=1

|η j` |,

where the last line follows from the fact that |η j2n | and |η j2n+1 | are comparable.
As for (3-24), we have

|3high
n (ηn)| ≤ |ηj1 |

∫
|ηj1ζ |>2

(2n+1∏
k=2

|1− eiη jk ζ |

|ζ |

)
·
|1− eiηj1ζ |

|ηj1ζ |
dζ

≤ 22n
|ηj1 |

∫
|ηj1ζ |>2

dζ
|ζ |2n ≤

4
2n− 1

( 2n∏
k=1

|η jk |

)
.

Collecting these estimates, we find that

|3n(ηn)| ≤ C(n, s)
( 2n∏

k=1

|η jk |

)
.

Using the L2-boundedness theorem for pseudodifferential operators, we can bound the H s-norm of
f(n) in (3-21) by

‖ f(n)‖H s .
∑

j,k=0,1

‖∂ j
x ∂

k
η2n+1

Pn‖L∞x,η2n+1
‖ϕ‖H s ,

where

Pn(x, η2n+1)=

(
i

2n+1∑
j=1

η j

)∫
R2n

In(η̂n, η2n+1)Tn(ηn)
∏̀
k=1

[
1−χ

(
(2n+ 1)η jk

η2n+1

)]

·

2n∏
k=`+1

χ

(
(2n+ 1)η jk

η2n+1

) 2n∏
j=1

ϕ̂(ηj )ei(η1+η2+···+η2n)x dη̂n.

Considering the support of the cutoff functions, we therefore have

‖ f(n)‖H s . ‖ϕ‖H s

( ∞∑
n=1

C(n, s)|cn|‖ϕx‖
2n
W 2,∞

)
.

So we have proved that the equation can be written as

ϕt + ∂x TB0[ϕ]ϕ+R(ϕ)= 2 log |∂x |ϕx − [(TB log[ϕ]) log+ |∂x |ϕ]x .

Then the proposition follows by the commutator estimate (2-5) and the fact that 1|ξ |<1∂x log |∂x | is
bounded from H s(R) to H s(R). �

4. Energy estimates and local well-posedness

In this section, we prove a local well-posedness result for the initial value problem (1-1), together with
a criterion for the continuation of solutions, which is given in the next theorem. For simplicity, we
consider only integer norms with s ∈ N, and we do not seek a result with optimal regularity. We recall
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that L = log |∂x | denotes the operator in (1-2), and, from Theorem B.3, there exists a constant υ > 0 such
that

‖Ta‖L2→L2 ≤ υ‖a‖M(1,1) for all a ∈M(1,1). (4-1)

Theorem 4.1. Let s ≥ 7 be an integer and υ > 0 the uniform constant in (4-1). There exists a constant
C̃ > 0, depending only on s, such that the following statements hold. Suppose 0 < C0 < min

{1
4 ,

1
4υ

}
,

CM > 0 are constants and ϕ0 ∈ H s(R) satisfies

‖B log
[ϕ0]‖M(1,1) < C0,

∞∑
n=1

C̃n
|cn|(‖ϕ0x‖

2n
W 3,∞ +‖Lϕ0x‖

2n
W 2,∞) < CM ,

where cn is defined in (3-3) and B log
[ϕ0] is defined in (3-8). Then there exists a maximal time of existence

0< Tmax ≤∞, depending only on C0, CM , and s such that the initial value problem (1-1) has a unique
solution with ϕ ∈ C([0, Tmax); H s(R)) that satisfies

‖B log
[ϕ(t)]‖M(1,1) < 2C0,

∞∑
n=1

C̃n
|cn|(‖ϕx(t)‖2n

W 3,∞ +‖Lϕx(t)‖2n
W 2,∞) < 2CM for all t ∈ [0, Tmax).

If Tmax <∞, then

lim
t↑Tmax

‖B log
[ϕ( · , t)]‖M(1,1) = 2C0 or lim

t↑Tmax

∞∑
n=1

C̃n
|cn|(‖ϕx(t)‖2n

W 3,∞+‖Lϕx(t)‖2n
W 2,∞)= 2CM . (4-2)

For any 0 < T < Tmax, the solution map U : H s(R)→ C([0, T ]; H s(R)) defined by U : ϕ0 7→ ϕ is
continuous. Moreover, if 0≤ r < s− 1 is an integer and ϕ,ψ ∈ C([0, T ]; H s(R)) are solutions of (1-1)
with initial data ϕ( · , 0)= ϕ0, ψ( · , 0)= ψ0, then

‖ϕ( · , t)−ψ( · , t)‖H r ≤ C‖ϕ0−ψ0‖H r for all t ∈ [0, T ], (4-3)

where C is a constant depending on ‖ϕ0‖H r̃ , ‖ψ0‖H r̃ , C0, CM , C̃ , and r̃ , with r̃ =max(r + 2, 5).

This local well-posedness theorem is sufficient to continue solutions so long as the criterion in (4-2) is
not satisfied, which allows us to obtain global solutions with small initial data. The range of C0 is not
optimal and may be extended by more careful estimates. However, our proof method is not suitable for
large data because it depends on a multilinear expansion of the nonlinear term. We will not address the
question of local well-posedness for large data in the present paper.

As noted in the Introduction, standard H s-estimates for (1-1) do not close, so we introduce homogeneous
and nonhomogeneous weighted energies

E (s)[ϕ](t)=
∫

R

|D|sϕ(x, t) · (2− TB log[ϕ])
2s+1
|D|sϕ(x, t) dx, Ẽ (s)[ϕ](t)=

s∑
j=0

E ( j)
[ϕ](t). (4-4)

The solutions we construct satisfy ‖B log
[ϕ]‖M(1,1) <

1
2υ , so (2−TB log[ϕ]) is a positive, self-adjoint operator

on L2, and these weighted energies are equivalent to the standard H s-energies.
Theorem 4.1 is proved in the following subsections, where we use F to denote an increasing, continuous,

positive function, which might change from line to line.
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4A. Linearized equation and energy estimates. We begin by studying a linearization of (3-7). Given
functions ϕ0(x), u(x, t), and ϒ(x, t), we consider the linear initial value problem

ϕt + ∂x TB0[u]ϕ+ϒ(x, t)= L[(2− TB log[u])ϕ]x , ϕ(x, 0)= ϕ0(x), (4-5)

and define linearized energies for this equation by

E (s)u [ϕ](t)=
∫

R

|D|sϕ(x, t) · (2− TB log[u])
2s+1
|D|sϕ(x, t) dx, Ẽ (s)u [ϕ](t)=

s∑
j=0

E ( j)
u [ϕ](t). (4-6)

In order to derive energy estimates for (4-5), we first state a lemma.

Lemma 4.2. Let s ∈N and T > 0. Suppose that u ∈ C([0, T ];W 3,∞(R)) with ut ∈ C([0, T ];W 2,∞(R)),
and ψ ∈ C1([0, T ]; L2(R)). Then

∂t(2− TB log[u])
sψ = (2− TB log[u])

sψt − s(2− TB log[u])
s−1T∂t B log[u]ψ +R2(ψ, u),

where the remainder term satisfies

‖R2(ψ, u)‖H k . ‖ψ‖H k

{ ∞∑
n=1

C(n, s)|cn|(‖ux‖
2n
W 1,∞ +‖uxt‖

2n
W 1,∞)

}
for all k ∈ N,

for constants C(n, s) with at most exponential growth in n.

Proof. Since s is an integer, we can calculate the time derivative as

∂t(2− TB log[u])
sψ = (2− TB log[u])

sψt − T∂t B log[u](2− TB log[u])
s−1ψ

− (2− TB log[u])T∂t B log[u](2− TB log[u])
s−2ψ − · · ·− (2− TB log[u])

s−1T∂t B log[u]ψ.

By Lemma 2.1, the equivalence of symbol norms in (B-2), and the symbol estimates in Proposition 3.1,
we get that

‖[T∂t B log[u], (2− TB log[u])] f ‖H k . ‖ f ‖H k‖∂t B log
[u]‖M(1,1)‖B

log
[u]‖M(1,1)

. ‖ f ‖H k

{ ∞∑
n=1

C(n, s)|cn|(‖ux‖
2n
W 1,∞ +‖uxt‖

2n
W 1,∞)

}
.

Taking f = (2− TB log[u])
s−2ψ, (2− TB log[u])

s−3ψ, . . . , (2− TB log[u])ψ and applying the above estimate
repeatedly, we obtain the conclusion. �

We then get energy estimates and an existence result for the linearized initial value problem (4-5).

Proposition 4.3. Let s ≥ 2 be an integer, let CM > 0, T > 0 be constants, and 0< C0 <
1

4υ , where υ is a
positive constant from Theorem B.3. Then there exists a constant C̃ > 0, depending only on s, such that
the following statements hold. Suppose that

ϕ0 ∈ H s(R), ϒ ∈ L∞([0, T ]; H s(R)), u ∈ L∞([0, T ];W 4,∞(R)),

with ut , Lux ∈ L∞([0, T ];W 2,∞(R)), and for all t ∈ [0, T ]

‖B log
[u(t)]‖M(1,1) < 2C0,

∞∑
n=1

C̃n
|cn|(‖ux(t)‖2n

W 3,∞ +‖Lux(t)‖2n
W 2,∞ +‖ut x(t)‖2n

W 1,∞) < 2CM .
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Then the initial value problem (4-5) has a unique solution ϕ ∈C([0, T ]; H s(R)). Moreover, the linearized
energy (4-6) satisfies

Ẽ (s)u [ϕ](t)≤ Ẽ (s)u [ϕ0]+

∫ t

0
F(‖ux(τ )‖W 3,∞+‖ut x(τ )‖W 1,∞+‖Lux(t)‖W 2,∞)

·{(‖ux(τ )‖W 3,∞+‖ut x(τ )‖W 1,∞+‖Lux(t)‖W 2,∞)2‖ϕ(τ)‖2H s

+‖ϒ(τ)‖H s‖ϕ(τ)‖H s }dτ, (4-7)

where F is an increasing, continuous, positive function such that

F(‖ux(τ )‖W 3,∞ +‖ut x(τ )‖W 1,∞ +‖Lux(t)‖W 2,∞)

≈

∞∑
n=0

C̃n
|cn|(‖ux‖

2n
W 3,∞ +‖ut x‖

2n
W 1,∞ +‖Lux(τ )‖

2n
W 2,∞). (4-8)

Proof. The existence and uniqueness of solutions of (4-5) follow from energy estimates and a duality
argument, which we outline briefly.

We write the linearized equation in (4-5) as Aϕ =−ϒ, where the operator A is given by

A = ∂t − ∂x L(2− TB log[u])+ ∂x TB0[u].

The formal adjoint of A is
A∗ =−∂t + (2− TB log[u])∂x L − TB0[u]∂x .

For T > 0, we define a space E of test functions by

E = {w ∈ C∞([0, T ]; H∞(R)) | w(x, T )= 0}

and for w ∈ E , f ∈ A∗E consider the equation A∗w = f , or

−∂tw+ (2− TB log[u])∂x Lw− TB0[u]∂xw = f.

Applying the operator T1/(2−B log[u]) to this equation, we get that

−T1/(2−B log[u])∂tw+ ∂x Lw− TB0[u]/(2−B log[u])∂xw = T1/(2−B log[u]) f +R′, (4-9)

where, in view of the commutator estimate in Theorem B.6, the remainder term R′ satisfies

‖R′‖L2 .

(∥∥∥∥ 1
2− B log[u]

∥∥∥∥
M(2,2)

+‖B0
[u]‖M(2,2)

)
‖w‖L2 .

Multiplying (4-9) by w, integrating with respect to x over R, and rewriting the result, we have

d
dt

∫
R

wT1/(2−B log[u])w dx +
∫

R

w[TB0[u]/(2−B log[u]), ∂x ]w dx

=

∫
R

{wT∂t (1/(2−B log[u]))w dx − 2wT1/(2−B log[u]) f − 2wR′} dx .

By the assumptions on u, the M(1,1)-norm of the symbol 1/(2− B log
[u]) is positive and bounded

away from zero. In fact, since ‖B log
[u]‖M(1,1) < 2C0 and ‖2− B log

[u]‖M(1,1) > 2− 2C0 for C0 <
1
4 , we
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get from the definition in (2-3) of the M(1,1)-norm that∥∥∥∥ 1
(2− B log[u])

∥∥∥∥
M(1,1)

≤

∥∥∥∥ 1
(2− B log[u])

∥∥∥∥
L∞x,ξ

+

∥∥∥∥ 1
(2− B log[u])2

∥∥∥∥
L∞x,ξ

‖B log
[u]‖M(1,1) + 2

∥∥∥∥ 1
(2− B log[u])3

∥∥∥∥
L∞x,ξ

‖B log
[u]‖2M(1,1)

<
1

2− 2C0
+

2C0

(2− 2C0)2
+

2(2C0)
2

(2− 2C0)3
=

1−C0+ 2C2
0

2(1−C0)3
<

1+ 1
8

2
( 3

4

)3 =
4
3
.

Since
1

2− B log[u]
=

1
2
+

B log
[u]

2(2− B log[u])
,

we also have∥∥∥∥ 1
(2− B log[u])

∥∥∥∥
M(1,1)

≥
1
2
−

1
2

∥∥∥∥ 1
(2− B log[u])

∥∥∥∥
M(1,1)

‖B log
[u]‖M(1,1) >

1
2
−

1
2
·

4
3
·

1
2
=

1
6
.

Thus, the integral
∫

R
wT1/(2−B log[u])w dx is equivalent to ‖w‖2L2 . Integrating the previous equation over

the time interval [t, T ], where 0≤ t ≤ T, and using the commutator estimate in Lemma 2.3, we obtain

‖w(t)‖L2.
∫ T

t

∥∥∥∥ 1
2− B log[u]

∥∥∥∥
M(2,2)

‖w(s)‖L2+‖B0
[u]‖M(2,2)‖w(s)‖L2+

∥∥∥∥ 1
2− B log[u]

∥∥∥∥
M(2,2)

‖ f (s)‖L2 ds.

Then, by Gronwall’s inequality,

‖w(t)‖L2.
∫ T

0
e
∫ t

s ‖1/(2−B log
[u])‖M(2,2)+‖B

0
[u]‖M(2,2) dτ

∥∥∥∥ 1
2− B log[u]

∥∥∥∥
M(2,2)

‖ f (s)‖L2 ds≤C
∫ T

0
‖ f (s)‖L2 ds,

where C is a constant related to u. It follows that

‖w(t)‖2L2 ≤ C
∫ T

0
‖A∗w(s)‖2L2 ds for every w ∈ E and all t ∈ [0, T ], (4-10)

which implies that A∗ is one-to-one on E .
The distributional form of (4-5) is∫ T

0
(ϕ, A∗w)L2 dt + (ϕ0, w(0))L2 =

∫ T

0
(−ϒ,w)L2 dt for all w ∈ E .

We define a linear form L : A∗E→ R by

L(A∗w)=
∫ T

0
(−ϒ,w)L2 dt − (ϕ0, w(0))L2 .

Using the Cauchy–Schwarz inequality and (4-10), we have

|L(A∗w)|2 . (T ‖ϒ‖2L2(0,T ;L2)
+‖ϕ0‖

2
L2)‖A∗w‖2L2(0,T ;L2)

,
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and L extends to a continuous form on L2(0, T ; L2) by the Hahn–Banach theorem. The Riesz representa-
tion theorem and the density of A∗E in L2(0, T ; L2) then imply that there exists a unique ϕ ∈ L2(0, T ; L2)

such that

L(A∗w)=
∫ T

0
(ϕ(t), A∗w(t))L2 dt.

Thus, we have proved the existence of a unique weak solution of (4-5) in L2(0, T ; L2). The H s-regularity
of solutions can be obtained by applying the above process to the equation for ∂s

xϕ with appropriately
weighted L2-norms.

To derive the energy estimates, we apply the operator |D|s to the equation in (4-5) to get

|D|sϕt + ∂x |D|s TB0[u]ϕ+ |D|
sϒ = ∂x L|D|s[(2− TB log[u])ϕ]. (4-11)

Using Lemma 2.3 and Proposition 3.1, we find that

|D|s[(2− TB log[u])ϕ] = 2|D|sϕ− |D|s(TB log[u]ϕ)

= 2|D|sϕ− TB log[u]|D|
sϕ+ sT∂x B log[u]|D|

s−2ϕx +R2,

where

‖∂xR2‖L2 .

( ∞∑
n=1

C(n, s)|cn|‖ux‖
2n
W 3,∞

)
‖ϕ‖H s−1 .

Thus, after absorbing a low-frequency part into the remainder, we can write the right-hand side of (4-11) as

∂x L|D|s[(2− TB log[u])ϕ] = ∂x log+ |∂x |[(2− TB log[u])|D|
sϕ+ sT∂x B log[u]|D|

s−2ϕx ] +R3,

where

‖R3‖L2 .

( ∞∑
n=1

C(n, s)|cn|‖ux‖
2n
W 3,∞

)
‖ϕ‖H s−1 .

Applying (2−TB log[u])
s to (4-11) and using Lemma 2.2 to commute (2− TB log[u])

s with ∂x and log+ |∂x |,
we obtain that

(2− TB log[u])
s
|D|sϕt + (2− TB log[u])

s∂x |D|s TB0[ϕ]ϕ+ (2− TB log[u])
s
|D|sϒ

= (2− TB log[u])
s∂x log+ |∂x |[(2− TB log[u])|D|

sϕ+ sT∂x B log[u]|D|
s−2ϕx ] + (2− TB log[u])

sR3

= log+ |∂x |{(2− TB log[u])
s∂x [(2− TB log[u])|D|

sϕ+ sT∂x B log[u]|D|
s−2ϕx ]}+R4

= log+ |∂x |{(2− TB log[u])
s+1
|D|sϕx − (s+ 1)(2− TB log[u])

s T∂x B log[u]|D|
sϕ}+R4

= ∂x L{(2− TB log[u])
s+1
|D|sϕ}+R5, (4-12)

where ‖R4‖L2 +‖R5‖L2 .
(∑
∞

n=1 C(n, s)|cn|‖ux‖
2n
W 3,∞

)
‖ϕ‖H s .

By Lemma 4.2, with ψ = |D|sϕ, the time derivative of E (s)u (t) in (4-6) is

d
dt

E (s)u [ϕ](t)=−
∫

R

(2s+ 1)|D|sϕ · (2− TB log[u])
2s T∂t B log[u]|D|

sϕ dx

+ 2
∫

R

|D|sϕ · (2− TB log[u])
2s+1
|D|sϕt dx +

∫
R

R2 · |D|sϕ dx . (4-13)
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We will estimate each of the terms on the right-hand side of (4-13), where the second term requires the
most work.

The first term on the right-hand side of (4-13) can be estimated by∣∣∣∣∫
R

(2s+1)|D|sϕ · (2−TB log[u])
2s T∂t B log[u]|D|

sϕ dx
∣∣∣∣.( ∞∑

n=1

C(n, s)|cn|(‖ux‖
2n
W 1,∞+‖ut x‖

2n
W 1,∞)

)
‖ϕ‖2H s .

Using Lemma 4.2, we can estimate the third term on the right-hand side of (4-13) by∫
R

R2 · |D|sϕ dx .
( ∞∑

n=1

C(n, s)|cn|(‖ux‖
2n
W 2,∞ +‖ut x‖

2n
W 1,∞)

)
‖ϕ‖H s‖ϕ‖H s−1 .

To estimate the second term on the right-hand side (4-13), we multiply (4-12) by (2− TB log[u])
s+1
|D|sϕ,

integrate the result with respect to x , and use the self-adjointness of (2− TB log[u])
s+1, which gives∫

R

|D|sϕ · (2− TB log[u])
2s+1
|D|sϕt dx = I+ II+ III+ IV,

where

I=−
∫

R

|D|sϕ · (2− TB log[u])
2s+1
|D|s∂x TB0[ϕ]ϕ dx,

II=
∫

R

(2− TB log[u])
s+1
|D|sϕ · ∂x L(2− TB log[u])

s+1
|D|sϕ dx,

III=
∫

R

(2− TB log[u])
s+1
|D|sϕ ·R5 dx,

IV=
∫

R

|D|sϕ · (2− TB log[u])
2s+1
|D|sϒ dx .

We have II= 0, since ∂x L is skew-symmetric, and

III.
( ∞∑

n=1

C(n, s)|cn|‖ux‖
2n
W 3,∞

)
‖ϕ‖2H s , IV. F(‖ux‖W 3,∞)‖ϕ‖H s‖ϒ‖H s ,

since ‖R5‖L2 .
(∑
∞

n=1 C(n, s)|cn|‖ux‖
2n
W 3,∞

)
‖ϕ‖H s and (2− TB log[u])

s+1 is bounded on L2.

Term I estimate: We write I=−Ia + Ib, where

Ia =

∫
R

|D|sϕ · (2− TB log[u])
2s+1∂x TB0[u]|D|

sϕ dx,

Ib =

∫
R

|D|sϕ · (2− TB log[u])
2s+1∂x [TB0[u], |D|

s
]ϕ dx .

By a commutator estimate and (3-9), the second integral satisfies

|Ib|.

( ∞∑
n=1

C(n, s)|cn|(‖ux‖
2n
W 2,∞ +‖Lux‖

2n
W 2,∞)

)
‖ϕ‖2H s .

To estimate the first integral, we write it as

Ia = Ia1 − Ia2,
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where
Ia1 =

∫
R

|D|sϕ · [(2− TB log[u])
2s+1, ∂x ](TB0[u]|D|

sϕ) dx,

Ia2 =

∫
R

|D|sϕx · (2− TB log[u])
2s+1(TB0[u]|D|

sϕ) dx .

Term Ia1 estimate: A Kato–Ponce type commutator estimate and (3-9) gives

|Ia1 |.

( ∞∑
n=1

C(n, s)|cn|(‖ux‖
2n
W 2,∞ +‖Lux‖

2n
W 1,∞)

)
‖ϕ‖2H s .

Term Ia2 estimate: We have

Ia2 =

∫
R

(TB0[u]|D|
sϕ) · {∂x((2− TB log[u])

2s+1
|D|sϕ)− [∂x , (2− TB log[u])

2s+1
]|D|sϕ} dx

=−

∫
R

∂x(TB0[u]|D|
sϕ) · (2− TB log[u])

2s+1
|D|sϕ dx

−

∫
R

(TB0[u]|D|
sϕ) · [∂x , (2− TB log[u])

2s+1
]|D|sϕ dx

=−

∫
R

(TB0[u]|D|
sϕx + [∂x , TB0[u]]|D|

sϕ) · (2− TB log[u])
2s+1
|D|sϕ dx

−

∫
R

(TB0[u]|D|
sϕ) · [∂x , (2− TB log[u])

2s+1
]|D|sϕ dx . (4-14)

Using commutator estimates and (3-9), we get that

‖[∂x , TB0[u]]|D|
sϕ‖L2 .

( ∞∑
n=1

C(n, s)|cn|(‖ux‖
2
W 2,∞ +‖Lux‖

2
W 2,∞)

)
‖ϕ‖H s ,

‖[∂x , (2− TB log[u])
2s+1
]|D|sϕ‖L2 .

( ∞∑
n=1

C(n, s)|cn|(‖ux‖
2n
W 2,∞)

)
‖ϕ‖H s ,

‖∂x [(2− TB log[u])
2s+1, TB0[u]]|D|

sϕ‖L2 .

( ∞∑
n=1

C(n, s)|cn|(‖ux‖
2n
W 2,∞ +‖Lux‖

2n
W 2,∞)

)
‖ϕ‖H s .

Since TB0[u] is self-adjoint, we can rewrite (4-14) as

Ia2 =−Ia2 +R6,

with

|R6|.

( ∞∑
n=1

C(n, s)|cn|(‖ux‖
2n
W 2,∞ +‖Lux‖

2n
W 2,∞)

)
‖ϕ‖2H s ,

and we conclude that

|Ia2 |.

( ∞∑
n=1

C(n, s)|cn|(‖ux‖
2n
W 2,∞ +‖Lux‖

2n
W 2,∞)

)
‖ϕ‖2H s .

This completes the estimate of the terms on the right-hand side of (4-13). Collecting the above estimates
and using the interpolation inequalities for E (0)u and E (s)u , we obtain (4-7).
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Finally, by Proposition 3.1, we observe that the coefficients C(n, s) > 0 grow at most exponentially
with n. Thus, there exists a sufficiently large constant C̃(s) > 0 such that C(n, s) ≤ C̃(s)n. The series
in (4-8) then converges whenever ‖ux‖W 3,∞ +‖ut x‖W 1,∞ +‖Lux(τ )‖W 2,∞ is sufficiently small, and we
can choose F to be an increasing, continuous, positive function that satisfies (4-8). �

In particular, setting u = ϕ in Proposition 4.3, and using the continuity of ϕ in time, we get the
following a priori estimate for (1-1).

Proposition 4.4. Let s ≥ 5 be an integer and let 0 < C0 <
1

4υ , where υ is a positive constant from
Theorem B.3. Let CM > 0 be a constant. Then there exist constants C̃ > 0, depending only on s, and
T > 0 such that the following statements hold. If ϕ0 ∈ H s(R) satisfies

‖B log
[ϕ0]‖M(1,1) < C0,

∞∑
n=1

C̃n
|cn|(‖∂xϕ0‖

2n
W 3,∞ +‖L∂xϕ0‖

2n
W 2,∞) < CM ,

then the solution ϕ ∈ C([0, T ]; H s(R)) of (1-1) with initial data ϕ( · , 0)= ϕ0 satisfies

Ẽ (s)[ϕ](t)≤ Ẽ (s)[ϕ0] +

∫ t

0
(‖ϕx(τ )‖W 3,∞ +‖Lϕx(τ )‖W 2,∞)2

· F(‖ϕx(τ )‖W 3,∞ +‖Lϕx(τ )‖W 2,∞)Ẽ (s)[ϕ](τ ) dτ,

‖B log
[ϕ(t)]‖M(1,1) < 2C0,

∞∑
n=1

C̃n
|cn|(‖ϕx(t)‖2n

W 3,∞ +‖Lϕx(t)‖2n
W 2,∞) < 2CM

(4-15)

for all t ∈ [0, T ]. In (4-15), Ẽ (s) is defined in (4-4), and F( · ) is an increasing, continuous, nonnegative
function such that

F(‖ϕx‖W 3,∞ +‖Lϕx‖W 2,∞)≈

∞∑
n=0

C̃n
|cn|(‖ϕx‖

2n
W 3,∞ +‖Lϕx‖

2n
W 2,∞).

4B. Iteration scheme. Given a function u satisfying the conditions in Proposition 4.3 and ϕ0 ∈ H s(R),
we define a map G : u 7→ ϕ, where ϕ ∈ L∞([0, T ]; H s(R)) is the solution of the initial value problem

ϕt + ∂x TB0[u]ϕ+R(u)= L[(2− TB log[u])ϕ]x , ϕ(x, 0)= ϕ0(x),

with the same remainder R( · ) as the one in (3-7).
We then construct a sequence {ϕ(i)} of approximate solutions of (1-1) by

ϕ(0)(x, t)= ϕ0(x), ϕ(i) = G(ϕ(i−1)) for i ∈ N. (4-16)

For sufficiently small T >0, we will prove that this sequence is bounded in L∞([0, T ]; H s(R)) and Cauchy
in L∞([0, T ]; H 3(R)), which implies that its limit is a local solution of the initial value problem (1-1).

To begin with, we identify a bounded subset XT of L∞([0, T ]; H s(R)) that G maps into itself.

Proposition 4.5 (boundedness). Let s ≥ 6. Suppose that 0 < C0 < min
{1

4 ,
1

4υ

}
, CM > 0, C > 0 are

constants and ϕ0 ∈ H s(R) satisfies

‖B log
[ϕ0]‖M(1,1) < C0,

∞∑
n=1

C̃n
|cn|(‖ϕ0x‖

2n
W 3,∞ +‖Lϕ0x‖

2n
W 2,∞) < CM , ‖ϕ0‖H s ≤ C .
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Define

XT =

{
u ∈ L∞([0, T ]; H s(R))

∣∣∣∣ ut , Lux ∈ L∞([0, T ];W 2,∞(R)),

‖u‖L∞([0,T ];H s(R)) ≤ 2 ·
(2+ 2C0)

s+1/2

min{1, (2− 2C0)s+1/2}
C,

∞∑
n=1

C̃n
|cn|(‖ux(t)‖2n

W 3,∞ +‖Lux(t)‖2n
W 2,∞ +‖ut x(t)‖2n

W 1,∞) < 2CM ,

‖B log
[u(t)]‖M(1,1) < 2C0 for all t ∈ [0, T ], u(0)= ϕ0

}
.

Then there exists T > 0 such that G : XT → XT .

Proof. Taking ϒ =R(u) in Proposition 4.3 and using (3-10), we obtain that

Ẽ (s)u [ϕ](t)≤ Ẽ (s)u [ϕ0]+

∫ t

0
(‖ux(τ )‖W 3,∞+‖ut x(τ )‖W 1,∞+‖Lux(τ )‖W 2,∞)2

·F(‖ux(τ )‖W 3,∞+‖ut x(τ )‖W 1,∞+‖Lux(τ )‖W 2,∞)(‖ϕ(τ)‖2H s+‖u(τ )‖2H s )dτ,

where F is a positive continuous function. Since u ∈ XT , by Sobolev embedding, there exists a constant
C1 > 0, which depends only on C̃ , C , C0, CM , such that

‖ux(τ )‖W 3,∞ +‖ut x(τ )‖W 1,∞ +‖Lux(τ )‖W 2,∞ ≤ C1.

Since ‖ϕ0‖H s ≤ C , we have Ẽ (s)u [ϕ0] ≤ (2+ 2υC0)
2s+1C2, and

min{1, (2− 2υC0)
2s+1
}‖ϕ( · , t)‖2H s ≤ Ẽ (s)u [ϕ](t)≤ (2+ 2υC0)

2s+1υ‖ϕ( · , t)‖2H s , (4-17)

where υ is the constant in (4-1).
Writing Ẽ (s)u [ϕ](t)= Ẽ (s)u (t), we therefore get that

Ẽ (s)u (t)≤ (2+ 2υC0)
2s+1C2

+

∫ t

0
C2

1 F(C1)

[
max{1, (2− 2υC0)

−2s−1
}Ẽ (s)u (τ )+ 4 ·

(2+ 2υC0)
2s+1

min{1, (2− 2υC0)2s+1}
C2
]

dτ.

Thus, when

T <
1

4C2
1 F(C1)

min[1, (2− 2υC0)
2s+1
],

we have

‖Ẽ (s)u (t)‖L∞(0,T ) ≤ (2+ 2υC0)
2s+1C2

+
1
4‖Ẽ

(s)
u (t)‖L∞(0,T )+ (2+ 2υC0)

2s+1C2,

and it follows that
‖Ẽ (s)u (t)‖L∞(0,T ) ≤ 8

3 · (2+ 2υC0)
2s+1C2.

Then, from (4-17), we get that

‖ϕ(t)‖L∞(0,T ;H s(R)) ≤ 2 ·
(2+ 2υC0)

s+1/2

min{1, (2− 2υC0)s+1/2}
C .



GLOBAL SOLUTIONS OF A SURFACE QUASIGEOSTROPHIC FRONT EQUATION 431

Using the equation for ϕ, we see that ‖ϕt(t)‖H s′ is bounded for any 0 < s ′ < 5, and ‖ϕt t(t)‖H s′′ is
bounded for any 0< s ′′ < 4. Thus ‖ϕ(t)‖H s′ and ‖ϕt(t)‖H s′′ are continuous in t . By Sobolev embedding
and the symbol estimates in Proposition 3.1,

‖∂t B log
[ϕ]‖M( j,2) .

∞∑
n=1

C(n, s)|cn|‖ϕx‖
2n−1
W j,∞‖ϕt x‖W j,∞ ≤ C2(CM ,C0, s), j = 2, 3,

for some constant C2(CM ,C0, s) > 0 depending on CM , C0, and s. Therefore,

‖B log
[ϕ(t)]‖M(1,1) ≤ ‖B

log
[ϕ(0)]‖M(1,1) +

∫ t

0
‖B log

[ϕ(τ)]‖M(1,1) dτ ≤ C0+ tC2(CM ,C0, s),

and by taking T < C0/(C2(CM ,C0, s)), we obtain ‖B log
[ϕ(t)]‖M(1,1) < 2C0.

Next, for t ∈ [0, T ], we observe that
∞∑

n=1

C̃n
|cn|(‖ϕx(t)‖2n

W 3,∞ +‖Lϕx(t)‖2n
W 2,∞ +‖ϕt x(t)‖2n

W 1,∞)

≤

∞∑
n=1

C̃n
|cn|

[
(‖ϕx(0)‖W 3,∞ +

∫ t

0
‖ϕt x(τ )‖W 3,∞ dτ)2n

+ (‖Lϕx(0)‖W 2,∞

+

∫ t

0
‖Lϕt x(τ )‖W 2,∞ dτ)2n

+

(
‖ϕt x(0)‖W 1,∞ +

∫ t

0
‖ϕt t x(τ )‖W 1,∞ dτ

)2n]
≤

∞∑
n=1

C̃n
|cn|(‖ϕx(0)‖2n

W 3,∞ +‖Lϕx(0)‖2n
W 2,∞ +‖ϕt x(0)‖2n

W 1,∞)+ T C3(CM ,C0, s)

for some constant C3(CM ,C0, s) > 0 depending on CM , C0 and s. Since
∞∑

n=1

C̃n
|cn|(‖ϕx(0)‖2n

W 3,∞ +‖Lϕx(0)‖2n
W 2,∞ +‖ϕt x(0)‖2n

W 1,∞) < CM ,

we obtain that when T < CM/(C3(CM ,C0, s)),
∞∑

n=1

C̃n
|cn|(‖ϕx(t)‖2n

W 3,∞ +‖Lϕx(t)‖2n
W 2,∞ +‖ϕt x(t)‖2n

W 1,∞)≤ 2CM .

By combining the above arguments, we find that for

T =min
{

1
4C2

1 F(C1)
min[1, (2− 2υC0)

2s+1
],

C0

C2(CM ,C0, s)
,

CM

C3(CM ,C0, s)

}
we have that G : XT → XT . �

Next, we prove that G is a contraction with respect to a low norm.

Proposition 4.6 (contraction). For sufficiently small T > 0, the map G : XT → XT defined above is a
contraction with respect to ‖ · ‖L∞t H3

x
.

Proof. For u, v ∈ XT , let ϕ and ψ be solutions of the equations

ϕt + ∂x TB0[u]ϕ+R(u)= L[(2− TB log[u])ϕ]x ,

ψt + ∂x TB0[v]ψ +R(v)= L[(2− TB log[v])ψ]x ,
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with the same initial data. Taking the difference of these equations, we get

(ϕ−ψ)t + ∂x TB0[u](ϕ−ψ)

= L[(2− TB log[u])(ϕ−ψ)]x + ∂x(TB0[v]− TB0[u])ψ − L[(TB log[u]− TB log[v])ψ]x +R(v)−R(u).

Applying Proposition 4.3 with

ϒ =−∂x(TB0[v]− TB0[u])ψ + L[(TB log[u]+ TB log[v])ψ]x +R(u)−R(v),

we obtain that, for k ≤ 3,

d
dt

∫
R

|D|k(ϕ−ψ)(2− TB log[u])
2k+1
|D|k(ϕ−ψ) dx

. (‖ux‖W 3,∞ +‖ut x‖W 1,∞ +‖Lux‖W 2,∞)2 F1(‖ux‖W 3,∞ +‖ut x‖W 1,∞ +‖Lux‖W 2,∞)‖ϕ−ψ‖2H k

+ F2(‖ux‖W 3,∞ +‖ut x‖W 1,∞ +‖Lux‖W 2,∞ +‖vx‖W 3,∞ +‖vt x‖W 1,∞ +‖Lvx‖W 2,∞)

· ‖u− v‖H4‖ϕ−ψ‖H k‖ψx‖W k,∞,

where F1, F2 are positive, continuous functions. Since ϕ =ψ at t = 0, we have, by Gronwall’s inequality,

‖(ϕ−ψ)(t)‖H k .
∫ t

0
e
∫ t
τ

F1(··· )(s) ds F2(· · · )(τ )‖(u− v)( · , τ )‖H3‖ψx( · , τ )‖W k,∞ dτ,

where (· · · ) denotes the same arguments as above.
By the H s-energy estimate in Proposition 4.3 with s ≥ 5, the function

e
∫ t
τ

F1(··· )(s) ds F2(· · · )(τ )

is bounded by a positive constant C(CM ,C0, s) on [0, T ] for k ≤ 3. Thus, by taking T < 1/C(CM ,C0, s),
we deduce that

‖ϕ−ψ‖L∞(0,T ;H3) ≤ λ‖u− v‖L∞(0,T ;H3)

for some 0< λ < 1. �

Proposition 4.6 implies that for any s≥ 6 and ϕ0 ∈ H s(R) that satisfies the conditions in Proposition 4.5,
the sequence {ϕ(i)} defined in (4-16), which share a common life span [0, T ] with T is only related to the
constants CM ,C0, s, is a Cauchy sequence with respect to ‖ · ‖L∞t H3

x
. In fact, for any 0< ε < 1, there is a

positive integer N = logλ(1− λ)ε/(3C) such that, for all i > j > N ,

‖ϕ(i)−ϕ( j)
‖L∞t H3

x
≤ ‖ϕ(i)−ϕ(i−1)

‖L∞t H3
x
+ · · ·+ ‖ϕ( j+1)

−ϕ( j)
‖L∞t H3

x

≤ (λi−N−1
+ · · ·+ λ j−N )‖ϕ(N+1)

−ϕ(N )‖L∞t H3
x

≤ (λi−N−1
+ · · ·+ λ j−N )λN

‖ϕ(1)−ϕ(0)‖L∞t H3
x
≤

3C
1− λ

λN < ε.

So ϕ = lim j→∞ ϕ
( j) exists in L∞([0, T ]; H 3(R)). From Proposition 4.5, the sequence is bounded in

L∞([0, T ]; H s(R)), and it follows by a weak compactness argument that ϕ ∈ L∞([0, T ]; H s(R)). Hence,
ϕ is a fixed point of G and a solution of (1-1).
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4C. Continuity in time. Next, we prove that the solution just constructed is a continuous function of
time with values in H s. First, we notice that ϕt ∈ L∞([0, T ]; H s′(R)) for any s ′ < s− 1, which implies
that ϕ ∈ C([0, T ]; H s′(R)).

The equation is time-reversible and translation-invariant in time, so it suffices to prove that

lim
t→0+
‖ϕ(t)−ϕ(0)‖H s = 0.

Since ‖ϕ(t)‖H s is bounded on [0, T ] and ϕ(t) → ϕ(0) strongly in H s′, the weak H s-limit of any
convergent subsequence is unique, and we see that ϕ(t) converges to ϕ(0) in the weak H s-topology. To
show convergence in the strong H s-topology, we only need to prove the norm-convergence

lim
t→0+
‖ϕ(t)‖H s = ‖ϕ(0)‖H s . (4-18)

Writing the weighted energy in (4-4) as Ẽ (s)(t) = Ẽ (s)[ϕ](t), we have from the a priori estimate in
Proposition 4.4 that

Ẽ (s)(0)−
∫ t

0
(‖ϕx(τ )‖W 3,∞ +‖Lϕx(τ )‖W 2,∞)2 F(‖ϕx(τ )‖W 3,∞ +‖Lϕx(τ )‖W 2,∞)Ẽ (s)(τ ) dτ

. Ẽ (s)(t). Ẽ (s)(0)+
∫ t

0
(‖ϕx(τ )‖W 3,∞ +‖Lϕx(τ )‖W 2,∞)2 F(‖ϕx(τ )‖W 3,∞ +‖Lϕx(τ )‖W 2,∞)Ẽ (s)(τ ) dτ,

and by Gronwall’s inequality,

Ẽ (s)(0)e−
∫ t

0 (‖ϕx (τ )‖W 3,∞+‖Lϕx (τ )‖W 2,∞ )
2 F(‖ϕx (τ )‖W 3,∞+‖Lϕx (τ )‖W 2,∞ ) dτ

≤ Ẽ (s)(t)≤ Ẽ (s)(0)e
∫ t

0 (‖ϕx (τ )‖W 3,∞+‖Lϕx (τ )‖W 2,∞ )
2 F(‖ϕx (τ )‖W 3,∞+‖Lϕx (τ )‖W 2,∞ ) dτ .

Using the notation in (4-6), we define an equivalent weighted norm on H s by

‖ϕ‖H s
w
= (Ẽ (s)ϕ(0)[ϕ](t))

1/2.

Then
lim

t→0+
Ẽ (s)ϕ(0)(t)= lim

t→0+
Ẽ (s)(t)= Ẽ (s)ϕ(0)(0),

so (4-18) holds, which proves that ϕ ∈ C([0, T ]; H s(R)).

4D. Lipschitz continuous dependence on H r . To prove the stability estimate (4-3), we suppose that
s ≥ 7 is an integer, and ϕ,ψ ∈ C([0, T ]; H s(R)) are solutions of (1-1) with initial data ϕ0 and ψ0,
respectively. Then

ϕt + ∂x TB0[ϕ]ϕ+R(ϕ)= L[(2− TB log[ϕ])ϕ]x , ϕ(0)= ϕ0,

ψt + ∂x TB0[ψ]ψ +R(ψ)= L[(2− TB log[ψ])ψ]x , ψ(0)= ψ0.

Taking the difference of these equations, we obtain an equation for ϕ−ψ :

(ϕ−ψ)t + ∂x TB0[ϕ](ϕ−ψ)+R(ϕ)−R(ψ)

= L[(2− TB log[ϕ])(ϕ−ψ)]x − ∂x TB0[ϕ]−B0[ψ]ψ − L[(TB log[ϕ]−B log[ψ])ψ]x . (4-19)
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Using (3-8), we compute that

B log
n [ϕ]( · ,ξ)−B log

n [ψ]( · ,ξ)

=−F−1
ζ

{
2cn

∫
R2n
δ

(
ζ−

2n∑
j=1

ηj

) 2n∑
k=1

k−1∏
j=1

[
iηj ϕ̂(ηj )χ

(
(2n+1)ηj

ξ

)][
iηk(ϕ̂(ηk)−ψ̂(ηk))χ

(
(2n+1)ηk

ξ

)]
·

2n∏
j=k+1

[
iηj ψ̂(ηj )χ

(
(2n+1)ηj

ξ

)]
dη̂n

}
.

By an argument similar to the one in Proposition 3.1, we get the following symbol estimates:

‖B log
n [ϕ] − B log

n [ψ]‖M( j,2) . C(n, s)|cn|

2n∑
k=1

‖ϕx‖
k−1
W j,∞‖ϕx −ψx‖W j,∞‖ψx‖

2n−k
W j,∞, j = 2, 3,

so that

‖B log
[ϕ] − B log

[ψ]‖M( j,2) .
∞∑

n=1

C(n, s)|cn|

2n∑
k=1

‖ϕx‖
k−1
W j,∞‖ϕx −ψx‖W j,∞‖ψx‖

2n−k
W j,∞, j = 2, 3.

Similarly, we have

‖B0
[ϕ] − B0

[ψ]‖M(2,2)

.
∞∑

n=1

C(n, s)|cn|

2n∑
k=1

(
‖Lϕx‖

k−1
W 2,∞‖L(ϕ−ψ)x‖W 2,∞‖Lψx‖

2n−k
W 2,∞ +‖ϕx‖

k−1
W 2,∞‖(ϕ−ψ)x‖W 2,∞‖ψx‖

2n−k
W 2,∞

)
,

and

‖R(ϕ)−R(ψ)‖H s . ‖ϕ−ψ‖H s

{ ∞∑
n=1

C(n, s)|cn|

2n∑
k=1

(
‖Lϕx‖

k−1
W 2,∞‖L(ϕ−ψ)x‖W 2,∞‖Lψx‖

2n−k
W 2,∞

+‖ϕx‖
k−1
W 2,∞‖(ϕ−ψ)x‖W 2,∞‖ψx‖

2n−k
W 2,∞

)}
.

We apply ∂r
x to (4-19) for ϕ−ψ , and carry out weighted energy estimates for the homogeneous energies

E (r)ϕ [ϕ−ψ] defined by (4-4). We then get that

d
dt

E (r)ϕ [ϕ−ψ](t)

≤ (‖ϕx‖W 3,∞ +‖ψx‖W 3,∞)2P1(‖ϕ‖H r , ‖ψ‖H r )E (r)ϕ [ϕ−ψ](t)

+ (‖ϕx‖W 3,∞ +‖ψx‖W 3,∞)P2(‖ϕ‖H r , ‖ψ‖H r )‖Lψ(t)‖H r+1‖(ϕ−ψ)(t)‖H r‖(ϕ−ψ)(t)‖H5, (4-20)

where P1 and P2 are positive polynomials. Here we have used the estimates

‖∂r+1
x LTB log[ϕ]−B log[ψ]ψ‖L2 . ‖∂r+1

x Lψ‖L2

∞∑
n=1

C(n, s)|cn|

2n∑
k=1

‖ϕx‖
k−1
W 3,∞‖ϕx −ψx‖W 2,∞‖ψx‖

2n−k
W 3,∞,

and

‖∂r+1
x TB0[ϕ]−B0[ψ]ψ‖L2 . ‖∂r+1

x ψ‖L2

∞∑
n=1

C(n, s)|cn|

2n∑
k=1

(
‖Lϕx‖

k−1
W 2,∞‖L(ϕ−ψ)x‖W 2,∞‖Lψx‖

2n−k
W 2,∞

+‖ϕx‖
k−1
W 2,∞‖(ϕ−ψ)x‖W 2,∞‖ψx‖

2n−k
W 2,∞

)
.
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Thus, if 5≤ r < s− 1, Gronwall’s inequality implies that

Ẽ (r)ϕ [ϕ−ψ](t)≤ Ẽ (r)ϕ [ϕ−ψ](0) exp
∫ t

0
(‖ϕ‖H r +‖ψ‖H r )2P1(‖ϕ‖H r , ‖ψ‖H r )

+ (‖ϕ‖H r +‖ψ‖H r )P2(‖ϕ‖H r , ‖ψ‖H r )‖Lψ‖H r+1 dt.

On the other hand, when 0≤ r < 5,

d
dt

Ẽ (r)ϕ [ϕ−ψ](t)

≤ (‖ϕ‖H5+‖ψ‖H5)2P1(‖ϕ‖H5,‖ψ‖H5)Ẽ (r)ϕ [ϕ−ψ](t)
+‖B0

[ϕ]−B0
[ψ]‖L2‖ψ‖H5‖ϕ−ψ‖H r+‖B log

[ϕ]−B log
[ψ]‖L2‖Lψ‖H5‖ϕ−ψ‖H r

≤ Ẽ (r)ϕ [ϕ−ψ](t){(‖ϕ‖H5+‖ψ‖H5)2P1(‖ϕ‖H5,‖ψ‖H5)+‖Lψ‖H5P2(‖ϕ‖H5,‖ψ‖H5)(‖ϕ‖H5+‖ψ‖H5)},

and Gronwall’s inequality implies that

Ẽ (r)ϕ [ϕ−ψ](t)≤ Ẽ (r)ϕ [ϕ−ψ](0) exp
∫ t

0

{
(‖ϕ‖H5 +‖ψ‖H5)2P1(‖ϕ‖H5, ‖ψ‖H5)

+‖Lψ‖H5P2(‖ϕ‖H5, ‖ψ‖H5)(‖ϕ‖H5 +‖ψ‖H5)
}

dt.

Here we have used the fact that (E (r)ϕ )1/2 and the H r -norm are equivalent, as in (4-17).
In either case, the stability estimate (4-3) follows.

4E. Continuous dependence on H s. Assume s≥ 7, and suppose that ϕ ∈C([0, T ]; H s(R)) is a solution
of (1-1) with initial data ϕ(0)= ϕ0.

For ε > 0, define a smoothing operator Jε by

Jε f (x)= F−1
[ν(ε · ) f̂ ( · )](x),

where ν(ξ) is a smooth bump function supported on |ξ | ≤ 2 and equal to 1 on |ξ | ≤ 1.
Let ϕ(ε) be a smooth approximate solution for ϕ with initial data

ϕ(ε)(0)= ϕ(ε)0 , ϕ
(ε)
0 = Jεϕ0,

so that ‖ϕ0−ϕ
(ε)
0 ‖H s → 0 as ε→ 0+. Note that the smoothed initial data also satisfy the conditions

‖B log
[Jεϕ0]‖M(1,1) < C0,

∞∑
n=1

C̃n
|cn|(‖∂x Jεϕ0‖

2n
W 3,∞ +‖L∂x Jεϕ0‖

2n
W 2,∞) < CM .

Since the life span T is only related to the constants C0,CM , s, the solutions ϕ(ε) and ϕ share the common
life span [0, T ].

We shall prove that

sup
t∈[0,T ]

‖ϕ(t)−ϕ(ε)(t)‖H s → 0 as ε→ 0+. (4-21)



436 JOHN K. HUNTER, JINGYANG SHU AND QINGTIAN ZHANG

Taking ψ = ϕ(ε) and r = s in (4-20) in the above stability argument, we obtain that

d
dt

E (s)ϕ [ϕ−ϕ
(ε)
](t)

≤ (‖ϕ‖H s +‖ϕ(ε)‖H s )2P1(‖ϕ‖H s , ‖ϕ(ε)‖H s )E (s)ϕ [ϕ−ϕ
(ε)
](t)

+ (‖ϕ‖H s +‖ϕ(ε)‖H s )P2(‖ϕ‖H s , ‖ϕ(ε)‖H s )‖Lϕ(ε)‖H s+1‖(ϕ−ϕ(ε))(t)‖H s‖(ϕ−ϕ(ε))(t)‖H5 .

Notice that

‖Lϕ(ε)‖H s+1 . |ε−1 log ε| · ‖ϕ(ε)‖H s ,

|ε−1 log ε|‖(ϕ−ϕ(ε))(t)‖H5 . |ε−2
|‖(ϕ−ϕ(ε))(t)‖H5 . ‖(ϕ−ϕ(ε))(t)‖H7 .

Therefore, since s ≥ 7 and ‖ϕ(ε)‖H s ≤ ‖ϕ‖H s , we have

d
dt

E (s)ϕ [ϕ−ϕ
(ε)
](t)≤ ‖ϕ‖2H sP1(‖ϕ‖H s , ‖ϕ(ε)‖H s )E (s)ϕ [ϕ−ϕ

(ε)
](t)

+‖ϕ‖2H sP2(‖ϕ‖H s , ‖ϕ(ε)‖H s )‖(ϕ−ϕ(ε))(t)‖2H s .

Thus, we obtain

E (s)ϕ [ϕ−ϕ
(ε)
](t)≤ E (s)ϕ [ϕ−ϕ

(ε)
](0) exp

∫ t

0
‖ϕ‖2H s (P1+P2)(‖ϕ‖H s , ‖ϕ(ε)‖H s ) dτ, (4-22)

which implies that (4-21) holds.
Finally, suppose that {ϕ0,n | n ∈ N} is a sequence in H s(R) with ϕ0,n→ ϕ0 in H s(R) as n→∞, and

ϕn ∈ C([0, Tn]; H s(R)) are solutions of (1-1) with initial data ϕ0,n . By Sobolev embedding,

lim
n→∞
‖B log

[ϕ0,n]‖M(1,1) = ‖B
log
[ϕ0]‖M(1,1) < C0,

lim
n→∞

∞∑
k=1

C̃k
|ck |(‖∂xϕ0,n‖

2k
W 3,∞ +‖L∂xϕ0,n‖

2k
W 2,∞)=

∞∑
k=1

C̃k
|ck |(‖∂xϕ0‖

2k
W 3,∞ +‖L∂xϕ0‖

2k
W 2,∞) < CM .

Therefore, there exists N1 ∈ N such that for n > N1 we have

‖B log
[ϕ0,n]‖M(1,1) < C0,

∞∑
k=1

C̃k
|ck |(‖∂xϕ0,n‖

2k
W 3,∞ +‖L∂xϕ0,n‖

2k
W 2,∞) < CM .

Hence, the ϕn share the same life span as ϕ for n > N1.
Denote by ϕ(ε) and ϕ(ε)n the solutions with initial data Jεϕ0 and Jεϕ0,n , respectively. Then

‖ϕ−ϕn‖H s ≤ ‖ϕ−ϕ(ε)‖H s +‖ϕ(ε)−ϕ(ε)n ‖H s +‖ϕ(ε)n −ϕn‖H s .

Fix δ > 0. In view of (4-22) and the fact that the H s-norms of ‖ϕn‖ are uniformly bounded, by taking ε
small enough, we can make

sup
t∈[0,T ]

‖ϕ(t)−ϕ(ε)(t)‖H s < 1
3δ, sup

t∈[0,T ]
‖ϕ(ε)n (t)−ϕn(t)‖H s < 1

3δ for all n ∈ N.
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The stability estimate (4-3) with r = s implies that there exists N2 > N1 such that

sup
t∈[0,T ]

‖ϕ(ε)−ϕ(ε)n ‖H s < 1
3δ for all n > N2.

It follows that

sup
t∈[0,T ]

‖ϕ−ϕn‖H s < δ for all n > N2,

and since δ > 0 is arbitrary, we conclude that

lim
n→∞
‖ϕ−ϕn‖C([0,T ];H s) = 0,

which proves the continuous dependence of the solution map on H s.

5. Global solution for small initial data

Beginning with this section, we address the global well-posedness of (1-1) with small initial data. From
now on, we fix the parameter values

s = 1200, r = 1, p0 = 10−4. (5-1)

The front equation (1-1) is invariant under the transformation

x 7→ λ(x + 2 log |λ|t), t 7→ λt, ϕ 7→ λϕ.

The scaling-Galilean part of this transformation is generated by the vector field

S = (x + 2t)∂x + t∂t , (5-2)

and the linearized equation ϕt = 2 log |∂x |ϕx commutes with S (see Lemma 7.1). We also introduce the
notation

h(x, t)= e−2t∂x log |∂x |ϕ(x, t), ĥ(ξ, t)= e−2i tξ log |ξ |ϕ̂(ξ, t) (5-3)

for the function h obtained by removing the action of the linearized evolution group on ϕ. When
convenient, we write h( · , t)= h(t), ϕ( · , t)= ϕ(t).

Our global existence theorem is as follows.

Theorem 5.1. Let s, r , p0 be defined as in (5-1). There exists a constant 0<ε̄� 1 such that if ϕ0 ∈ H s(R)

satisfies

‖ϕ0‖H s +‖x∂xϕ0‖H r ≤ ε0

for some 0< ε0 ≤ ε̄, then there exists a unique global solution ϕ ∈ C([0,∞); H s(R)) of (1-1). Moreover,
this solution satisfies

‖ϕ(t)‖H s +‖Sϕ(t)‖H r . ε0(t + 1)p0,

where S is the vector field defined in (5-2).
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To prove this theorem, given the local existence theory, we only need to show that the criterion (4-2)
in Theorem 4.1 is never satisfied. In particular, Lemma 5.3 below, together with the symbol estimates in
Proposition 3.1, guarantees that the life-span of solutions can be extended to infinity.

In order to derive the global a priori estimates, we introduce the Z -norm of a function f ∈ L2(R),
defined by

‖ f ‖Z = ‖(|ξ | + |ξ |
r+4) f̂ (ξ)‖L∞ξ , (5-4)

and prove the global bounds in Theorem 5.1 by use of the following bootstrap argument.

Proposition 5.2 (bootstrap). Let T > 1 and suppose that ϕ ∈ C([0, T ]; H s) is a solution of (1-1), where
the initial data satisfies

‖ϕ0‖H s +‖x∂xϕ0‖H r ≤ ε0

for some 0< ε0� 1. If there exists ε0� ε1 . ε
1/3
0 such that the solution satisfies

(t + 1)−p0(‖ϕ(t)‖H s +‖Sϕ(t)‖H r )+‖ϕ‖Z ≤ ε1

for every t ∈ [0, T ], then the solution satisfies an improved bound

(t + 1)−p0(‖ϕ(t)‖H s +‖Sϕ(t)‖H r )+‖ϕ‖Z . ε0.

We call the assumptions in Proposition 5.2 the bootstrap assumptions. To prove the proposition, we
establish the following lemmas, most of whose proofs are deferred to the following sections. As before,
we let L denote the Fourier multiplier (1-2).

Lemma 5.3 (sharp pointwise decay). Under the bootstrap assumptions,

‖|∂x |
r+2ϕx(t)‖L∞ +‖Lϕx(t)‖L∞ . ε1(t + 1)−1/2.

Lemma 5.4 (scaling-Galilean estimate). Under the bootstrap assumptions,

(t + 1)−p0‖Sϕ(t)‖H r . ε0.

Lemma 5.5. Under the bootstrap assumptions,

(t + 1)−p0(‖ϕ(t)‖H s +‖x∂xϕ(t)‖H r ). ε0.

Proof. Recall the energy estimate (4-15)

Ẽ (s)(t). Ẽ (s)(0)e
∫ t

0 F(‖ϕx (τ )‖W 3,∞+‖Lϕx (τ )‖W 2,∞ )(‖ϕx (τ )‖W 3,∞+‖Lϕx (τ )‖W 2,∞ )
2 dτ .

From Lemma 5.3, we have

F(‖ϕx(τ )‖W 3,∞ +‖Lϕx(τ )‖W 2,∞). 1,

‖ϕx(τ )‖W 3,∞ +‖Lϕx(τ )‖W 2,∞ . (t + 1)−1/2ε1,

which implies that
Ẽ (s)(t). ε2

0(t + 1)Cε
2
1
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for some constant C , so once ε2
1 � p0, we have

(t + 1)−p0‖ϕ‖H s . ε0.

Next, we observe that we can use ‖Sϕ‖H r to control ‖x∂x h‖H r . It follows from (5-3), the definition
of S, and (3-2) that

Fx [x∂x h](ξ)=−∂ξ (ξ ĥ(ξ))=−ĥ(ξ)− ξ∂ξ ĥ(ξ),

ξ∂ξ ĥ(ξ, t)= ξe−2i tξ log |ξ |(−2i t (log |ξ | + 1)ϕ̂(ξ, t)+ ∂ξ ϕ̂(ξ, t))

= e−2i tξ log |ξ |
[ξ∂ξ ϕ̂(ξ, t)− (2i tξ − 1)ϕ̂(ξ, t)− t ϕ̂t(ξ, t)− tN̂ (ξ, t)− ϕ̂(ξ, t)]

= e−2i tξ log |ξ |
[−Ŝϕ(ξ, t)− ϕ̂(ξ, t)− tN̂ (ξ, t)],

(5-5)

where N denotes the nonlinear term in (3-2), which satisfies the estimate

‖|∂x |
jN‖L2 .

∞∑
n=1

(‖ϕx‖
2n
W 3,∞ +‖Lϕx‖

2n
W 2,∞)‖ϕ‖H j+2 for all j = 0, . . . , r. (5-6)

By the bootstrap assumptions, Lemma 5.3, and Lemma 5.4 we then find that

(t + 1)−p0‖x∂x h(t)‖H r . ε0,

and the same estimate holds for ϕ in view of (5-3). �

Lemma 5.6 (nonlinear dispersive estimate). Under the bootstrap assumptions, the solution of (1-1)
satisfies

‖ϕ(t)‖Z . ε0.

Proposition 5.2 then follows by combining Lemmas 5.3–5.6. Lemma 5.3 will be proved in Section 6,
Lemma 5.4 will be proved in Section 7, and Lemma 5.6 will be proved in Section 8.

6. Linear dispersive estimate

In this section, we prove a dispersive estimate for the linearized evolution operator e2t∂x log |∂x | defined in
(5-3) and use it to prove Lemma 5.3. We recall that Pk and P̃k are the frequency-localization operators
with symbols ψk and ψ̃k , respectively (see (2-13)).

Lemma 6.1. For t > 0 and f ∈ L2, we have the linear dispersive estimates

‖e2t∂x log |∂x |Pk f ‖L∞ . (t + 1)−1/22k/2
‖P̂k f ‖L∞ξ + (t + 1)−3/42−k/4

[‖Pk(x∂x f )‖L2 +‖P̃k f ‖L2]. (6-1)

Proof. Using the inverse Fourier transform, we can write the solution as

e2t∂x log |∂x |Pk f =
∫

R

ei xξ+2i(ξ log |ξ |)tψk(ξ) f̂ (ξ) dξ.

Since

∂ξei xξ+2i(ξ log |ξ |)t
= [i x + 2i t (log |ξ | + 1)]ei xξ+2i(ξ log |ξ |)t , (6-2)
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we can integrate by parts to get

‖e2t∂x log |∂x |Pk f ‖L∞

=

∥∥∥∥∫
R

ei xξ+2i(ξ log |ξ |)t f̂ (ξ)ψk(ξ)dξ
∥∥∥∥

L∞

=

∥∥∥∥∫
R

1
i x+2i t (log |ξ |+1)

∂ξei xξ+2i(ξ log |ξ |)t f̂ (ξ)ψk(ξ)dξ
∥∥∥∥

L∞

=

∥∥∥∥∫
R

ei xξ+2i(ξ log |ξ |)t∂ξ

(
1

i x+2i t (log |ξ |+1)
f̂ (ξ)ψk(ξ)

)
dξ
∥∥∥∥

L∞

=

∥∥∥∥∫
R

ei xξ+2i(ξ log |ξ |)t
(

−2i t
ξ [i x+2i t (log |ξ |+1)]2

f̂ (ξ)ψk(ξ)+
1

i x+2i t (log |ξ |+1)
ψk(ξ)∂ξ f̂ (ξ)

+
1

i x+2i t (log |ξ |+1)
f̂ (ξ)ψ ′k(ξ)

)
dξ
∥∥∥∥

L∞
.

(1) If |i x + 2i t (log |ξ | + 1)|& (t + 1), we use (2-14) and get

‖e2t∂x log |∂x |Pk f ‖L∞ .
1

t+1

∫
R

|ξ−1 f̂ (ξ)ψk(ξ)| + |ψk(ξ)∂ξ f̂ (ξ)| + | f̂ (ξ)ψ ′k(ξ)| dξ

. 1
t+1
[2−k/2

‖P̂k f ‖L2
ξ
+ 2−k/2

‖PkF−1(ξ∂ξ f̂ )‖L2 + 2−k/2
‖P̃k f ‖L2].

Then (6-1) follows when (t + 1)−1 . 2k. Otherwise, when t + 1. 2−k, we have

‖e2t∂x log |∂x |Pk f ‖L∞ . 2k
‖P̂k f ‖L∞ξ . (t + 1)−1/22k/2

‖P̂k f ‖L∞ξ .

(2) Next we prove estimates for the case when |i x + 2i t (log |ξ | + 1)| � (t + 1). Let

ξ±0 =±e−1−x/2t

be the solutions of x +2t (log |ξ |+1)= 0. Since ψk is supported in an annulus with radius around 2k, we
only need to consider the case when |ξ±0 | ≈ 2k and ψk is supported on the neighborhood of the stationary
phase point ξ±0 . We decompose the integral and estimate it as∣∣∣∣∫

R

ei xξ+2i(ξ log |ξ |)t f̂ (ξ)ψk(ξ) dξ
∣∣∣∣. ∑

l≤k+N

[|J+l | + |J
−

l |],

with

J±l =
∫

R

ei xξ+2i(ξ log |ξ |)t f̂ (ξ)ψk(ξ)1±(ξ)ψl(ξ − ξ
±

0 ) dξ,

where 1± is the indicator function supported on R± and N is large enough that the support of ψk is
covered by the set

⋃
l≤k+N {ξ | ψl(ξ − ξ

±

0 )= 1}.
When 2l

≤ 2k/2(t + 1)−1/2, we have∑
2l≤2k/2(t+1)−1/2

|J±l |.
∑

2l≤2k/2(t+1)−1/2

2l
‖P̂k f ‖L∞ ≤ 2k/2(t + 1)−1/2

‖P̂k f ‖L∞ .
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When 2k/2(t + 1)−1/2
≤ 2l
≤ 2k+N, since |ξ − ξ0| ≈ 2l and |ξ0| ≈ 2k, we get the estimate

x + 2t (log |ξ | + 1)= 2t log
∣∣∣∣ ξξ0

∣∣∣∣≈ 2t log
∣∣∣∣1± 2l

2k

∣∣∣∣.
Using (6-2) and integration by parts, we have

|J±l |.
2k−l

(t + 1)

∫
R

{(
|∂ξ f̂ (ξ)| + 2−l

| f̂ (ξ)|
)
ψl(ξ − ξ

±

0 )+ | f̂ (ξ)ψk(ξ)ψ
′

l (ξ − ξ
±

0 )|
}

dξ

.
2k−l

(t + 1)
‖ f̂ ‖L∞ +

2k−l/2

(t + 1)
‖∂ξ f̂ ‖L2.

Then we take the sum of Jl over 2l
≥ 2k/2(t + 1)−1/2 to get the estimates (6-1). �

Proof of Lemma 5.3. After splitting into high-frequency and low-frequency parts, it suffices to bound the
terms ∥∥∥∥∑

k≤0

Pk Lϕx

∥∥∥∥
L∞
,

∥∥∥∥∑
k>0

Pk∂
3+ε
x ϕ

∥∥∥∥
L∞
.

Take the function f in Lemma 6.1 to be L∂x h. Since e2t∂x log |∂x | and Pk commute, and

x∂2
x Lh = ∂x(x∂x Lh)− ∂x Lh = ∂x [x∂x , L]h+ ∂x L(x∂x h)− ∂x Lh =−∂x h+ ∂x L(x∂x h)− ∂x Lh,

we have that

‖Pk L∂xϕ‖L∞ . (t + 1)−1/2
‖F(Pk L|∂x |

3/2ϕ)‖L∞ξ

+ (t + 1)−3/4
[2(3/4)k‖Pk L(x∂x h)‖L2 + 2(3/4)k(1+ |k|)‖Pkh‖L2 +‖P̃k(|∂x |

3/4Lϕ)‖L2].

It follows from (5-5) that

‖Pk(x∂x h)‖L2 . ‖Pkϕ‖L2 +‖PkSϕ‖L2 + t‖PkN‖L2 .

We first observe that k ≤ 0 automatically leads to (t + 1)−1/4+p02(3/4)k |k|. 1, and then we have

‖Pk L∂xϕ‖L∞ . (t + 1)−1/22k/2
|k|‖ψk(ξ)|ξ |ϕ̂(ξ)‖L∞ξ

+ (t + 1)−1/2−p0[‖P̃kϕ‖L2 +‖PkSϕ‖L2 + t‖PkN‖L2]. (6-3)

Summing over for k ≤ 0, using (5-6), the bootstrap assumptions, and (6-3) in the corresponding ranges
of k, and we obtain that ∥∥∥∥∑

k≤0

Pk Lϕx

∥∥∥∥
L∞
. ε1(t + 1)−1/2.

To estimate ‖Pk |∂x |
r+2ϕx‖L∞ , we take the function f in Lemma 6.1 to be |∂x |

r+2hx and obtain

‖Pk |∂x |
r+2ϕx‖L∞ . (t + 1)−1/2

‖F(Pk |∂x |
r+7/2ϕ)‖L∞ξ

+ (t + 1)−3/4
[2−k/4

‖Pk(x |∂x |
r+4h)‖L2 +‖P̃k(|∂x |

r+7/4ϕx)‖L2].
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Using

−x |∂x |
r+4h = [x∂x , ∂x |∂x |

r+2
]h+ ∂x |∂x |

r+2(x∂x h)=−(r + 3)∂x |∂x |
r+2h+ ∂x |∂x |

r+2(x∂x h),

and (5-5), we get that

‖Pk |∂x |
r+2ϕx‖L∞

. (t + 1)−1/2
‖ψk(ξ)|ξ |

r+7/2ϕ̂(ξ)‖L∞ξ

+ (t + 1)−3/42(3/4)k
[
‖|∂x |

r+2 P̃kϕ‖L2 +‖|∂x |
r+2 PkSϕ‖L2 +‖|∂x |

r+2 Pkϕ‖L2 + t‖|∂x |
r+2 PkN‖L2

]
.

For k ∈ Z+ and (t + 1)−1/4+p02(r+11/4)k . 1, we have

‖Pk |∂x |
r+2ϕx‖L∞ . (t + 1)−1/22−k/2

‖ψk(ξ)|ξ |
r+4ϕ̂(ξ)‖L∞ξ

+ (t + 1)−1/2−p0[‖P̃kϕ‖L2 +‖PkSϕ‖L2 + t‖PkN‖L2]. (6-4)

Finally, for k ∈ Z+ and (t + 1)−1/4+p02(r+11/4)k & 1, we have

‖Pk∂
r+2
x ϕx‖L∞ . ‖|ξ |

r+3ψk(ξ)ϕ̂(ξ)‖L1
ξ
. ‖|ξ |r+3−sψk(ξ)‖L2‖P̃kϕ‖H s

. 2(r+3−s+1/2)k
‖P̃kϕ‖H s . (t + 1)−(s−7/2−r)(1−4p0)/(11+4r)

‖P̃kϕ‖H s . (6-5)

Summing over k ∈ Z+, using (5-6), the bootstrap assumptions, and (6-4)–(6-5) in the corresponding
ranges of k, we obtain that ∥∥∥∥∑

k>0

Pk |∂x |
r+2ϕx

∥∥∥∥
L∞
. ε1(t + 1)−1/2,

which completes the proof. �

7. Scaling-Galilean estimate

In this section, we prove the scaling-Galilean estimate in Lemma 5.4.
First, we summarize some commutator identities for the scaling-Galilean operator S defined in (5-2)

and L = log |∂x |. The straightforward proofs follow by use of the Fourier transform and are omitted.

Lemma 7.1. Let ϕ(x, t) be a Schwartz distribution on R2 such that Lϕ(x, t) is a Schwartz distribution.
Then

[S, ∂x ]ϕ =−∂xϕ, [S, L]ϕ =−ϕ, [S, L∂x ]ϕ =−ϕx − L∂xϕ,

[S, ∂t ]ϕ =−2∂xϕ− ∂tϕ, [S, ∂t − 2L∂x ]ϕ =−∂tϕ+ 2L∂xϕ.

Next, we prove a weighted energy estimate for Sϕ.

Proof of Lemma 5.4. Applying S to (3-7) and using Lemma 7.1, we get

(Sϕ)t − 2L∂x(Sϕ)+ ∂x TB0[ϕ]Sϕ+ L[TB log[ϕ]Sϕ]x +SR= commutators,

where the commutators are

∂x [S, TB0[ϕ]]ϕ, [S, ∂x ]TB0[ϕ]ϕ, [S, L∂x ](TB log[ϕ]ϕ), L∂x([S, TB log[ϕ]]ϕ).
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The first commutator can be written as

[S, TB0[ϕ]]ϕ = [(x + 2t)∂x + t∂t , TB0[ϕ]]ϕ

= (x + 2t)∂x TB0[ϕ]ϕ− TB0[ϕ][(x + 2t)∂xϕ] + t∂t TB0[ϕ]ϕ− TB0[ϕ](t∂tϕ)

= (x + 2t)T∂x B0[ϕ]ϕ+ [(x + 2t), TB0[ϕ]]∂xϕ+ Tt∂t B0[ϕ]ϕ

= T(x+2t)∂x B0[ϕ]ϕ+ (xT∂x B0[ϕ]ϕ− Tx∂x B0[ϕ]ϕ)+ [x, TB0[ϕ]]∂xϕ+ Tt∂t B0[ϕ]ϕ.

By the commutator estimates in Lemma 2.2 and Theorem B.4, we obtain for 0≤ k ≤ r that

‖∂x [S, TB0[ϕ]]ϕ‖H k . ‖[x, TB0[ϕ]]∂xϕ‖H k+1 +‖xT∂x B0[ϕ]ϕ− Tx∂x B0[ϕ]ϕ‖H k+1 +‖TSB0[ϕ]ϕx‖H k

. ‖B0
[ϕ]‖M(1,2)‖ϕ‖H k+2 +‖B0

[ϕ]‖M(2,2)‖ϕ‖H k+1 +‖SB0
[ϕ]‖L2

1
‖ϕx‖W k+1,∞ .

Using (3-9), together with Lemma 2.5 and similar estimates for ‖SB0
[ϕ]‖L2

1
, we find that

‖∂x [S, TB0[ϕ]]ϕ‖H k . F(‖Lϕx‖W 2,∞+‖ϕx‖W 2,∞)(‖Lϕx‖W 2,∞+‖ϕx‖W 2,∞)‖ϕx‖W r+1,∞(‖Sϕ‖H r+‖ϕ‖H s ).

Similarly, we have

‖L∂x([S, TB log[ϕ]]ϕ)‖H k

. F(‖Lϕx‖W 2,∞ +‖ϕx‖W 2,∞)(‖Lϕx‖W 2,∞ +‖ϕx‖W 2,∞)‖ϕx‖W r+1,∞(‖Sϕ‖H r +‖ϕ‖H s ).

By Lemma 7.1, Lemma 2.1, and (3-9), the second and third commutators satisfy

‖[S,∂x ]TB0[ϕ]ϕ‖H k =‖TB0[ϕ]ϕ‖H k+1

. F(‖Lϕx‖W 2,∞+‖ϕx‖W 2,∞)(‖Lϕx‖W 2,∞+‖ϕx‖W 2,∞)2‖ϕ‖H k+1,

‖[S, L∂x ](TB log[ϕ]ϕ)‖H k =‖(TB log[ϕ]ϕ)x+L∂x(TB log[ϕ]ϕ)‖H k

. F(‖Lϕx‖W 1,∞+‖ϕx‖W 1,∞)(‖Lϕx‖W 1,∞+‖ϕx‖W 1,∞)2(‖ϕ‖H k+1+‖Lϕ‖H k+1).

Thus, the evolution equation for Sϕ can be written as

(Sϕ)t + ∂x TB0[ϕ]Sϕ+RS = L[(2− TB log[ϕ])Sϕ],

where the remainder RS satisfies

‖RS‖H k . (‖ϕx‖W 2,∞ +‖Lϕx‖W 2,∞)2(‖Sϕ‖H r +‖ϕ‖H r+1 +‖Lϕ‖H r+1).

As in (4-4), we define a weighted energy for Sϕ by

E ( j)
S (t)=

∫
R

|D| jSϕ(x, t) · (2− TB log[ϕ])
2 j+1
|D| jSϕ(x, t) dx, j = 0, 1, . . . , r,

Ẽ (r)S (t)=
r∑

j=0

E ( j)
S (t),

and repeat estimates similar to the ones in the proof of Proposition 4.3 to get

d
dt

E ( j)
S (t). F(‖Lϕx‖W 2,∞ +‖ϕx‖W 2,∞)(‖Lϕx‖W 2,∞ +‖ϕx‖W 3,∞)2‖Sϕ‖2H j

+ (‖ϕx‖W 2,∞ +‖Lϕx‖W 2,∞)2(‖Sϕ‖H r +‖ϕ‖H r+1 +‖Lϕ‖H r+1)‖Sϕ‖H j .
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Using Lemma 5.3 and the equivalence of Ẽ (r)S and ‖Sϕ‖2H r when ‖2− TB log[ϕ]‖L2→L2 is bounded away
from zero, we find by integrating in t that

Ẽ (r)S (t). ε2
0(t + 1)2p0,

which proves the lemma. �

8. Nonlinear dispersive estimate

In this section, we prove the estimate

(|ξ | + |ξ |r+4)|ϕ̂(ξ, t)|. ε0 for all ξ ∈ R, (8-1)

which establishes Lemma 5.6 for the Z -norm ‖ϕ‖Z defined in (5-4).
Using the interpolation result in Lemma 2.4, we first prove in Section 8A that the estimate (8-1) holds for

sufficiently large and small |ξ |. In Section 8B, we introduce a logarithmic phase shift into the solution which
is used later to absorb the effects of the space-time resonances. The main part of the section is a detailed
analysis of the nonresonant and resonant interactions between different Fourier components of the solution,
which is carried out in Sections 8C–8G. A detailed flow-chart of the cases considered is given in Figure 1.

To classify the cubic resonances between frequencies ξ − η1− η2, η1, η2 into ξ , where ξ, η1, η2 ∈ R,
we introduce the phase

8(ξ, η1, η2)= 2(ξ − η1− η2) log |ξ − η1− η2| + 2η1 log |η1| + 2η2 log |η2| − 2ξ log |ξ |. (8-2)

The space resonances satisfy ∂η18 = ∂η28 = 0, which implies that the frequencies ξ − η1− η2, η1, η2

have the same linearized group velocity. It is straightforward to check that the only space resonances are

(ξ − η1− η2, η1, η2)= (−ξ, ξ, ξ), (ξ,−ξ, ξ), or (ξ, ξ,−ξ), (8-3)

(ξ − η1− η2, η1, η2)=
( 1

3ξ,
1
3ξ,

1
3ξ
)
. (8-4)

The time resonances satisfy 8= 0, which implies that the time frequencies of ξ − η1− η2, η1, η2 are
in resonance with the time frequency of ξ . This condition is satisfied by the resonances (8-3), which are
space-time resonances, but not by (8-4), which is a space resonance. There are additional time resonances
of the form ξ = ξ −η+η, but they are not space resonances for ξ 6= η, so they require no further analysis.

8A. Large and small frequencies. When |ξ | < (t + 1)−p0, Lemma 2.4, the bootstrap assumptions,
Lemma 5.4, and the conservation of ‖ϕ‖L2 , imply that

|(|ξ | + |ξ |r+4)ϕ̂(ξ, t)|2 . (|ξ | + |ξ |r+4)2|ξ |−1
‖ϕ̂‖L2

ξ
(|ξ |‖∂ξ ϕ̂‖L2

ξ
+‖ϕ̂‖L2

ξ
)

. (|ξ | + |ξ |r+4)‖ϕ‖L2(‖Sϕ‖L2 +‖ϕ‖L2). ε2
0 .

Let p1 = 10−6. When |ξ | ≥ (t + 1)p1, similarly from Lemma 2.4 and the bootstrap assumptions we get

|(|ξ | + |ξ |r+4)ϕ̂(ξ, t)|2 .
(|ξ | + |ξ |r+4)2

|ξ |s+1 ‖ϕ‖H s (‖Sϕ‖L2 +‖ϕ‖L2)

. |ξ |2r+7−s(t + 1)2p0ε2
0 . |ξ |

2r+7−s+2p0/p1ε2
0 . ε

2
0 ,

since 2r + 7− s+ 2p0/p1 < 0 for the parameter values in (5-1).
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Thus, we only need to consider the frequency range (t + 1)−p0 ≤ |ξ | ≤ (t + 1)p1. In the following, we
fix ξ in this range, and use d to denote a smooth cutoff function such that

d(ξ, t)= 1 on {(ξ, t) | (t + 1)−p0 ≤ |ξ | ≤ (t + 1)p1},

d(ξ, t) is supported on a small neighborhood of {(ξ, t) | (t + 1)−p0 ≤ |ξ | ≤ (t + 1)p1}.
(8-5)

8B. Modified scattering. Taking the Fourier transform of (3-4), we obtain that

ϕ̂t(ξ, t)+
iξ
6

∫∫
R2

T1(η1,η2,ξ−η1−η2)ϕ̂(ξ−η1−η2, t)ϕ̂(η1, t)ϕ̂(η2, t)dη1 dη2

+N̂≥5(ϕ)(ξ, t)= 2iξ log |ξ |ϕ̂(ξ, t), (8-6)

where N≥5(ϕ) is given by (3-5), and, from (A-3),

T1(η1,η2,η3)=−η
2
1 log |η1|−η

2
2 log |η2|−η

2
3 log |η3|−(η1+η2+η3)

2 log |η1+η2+η3|

+{(η1+η2)
2 log |η1+η2|+(η1+η3)

2 log |η1+η3|+(η2+η3)
2 log |η2+η3|}. (8-7)

We can also write (8-6) in terms of ĥ = e−2i tξ log |ξ |ϕ̂ defined in (5-3) as

ĥt(ξ, t)+
iξ
6

∫∫
R2

T1(η1,η2,ξ−η1−η2)ei t8(ξ,η1,η2)ĥ(ξ−η1−η2, t)ĥ(η1, t)ĥ(η2, t)dη1 dη2

+e−2i tξ log |ξ |N̂≥5(ϕ)(ξ, t)= 0, (8-8)

where 8 is defined in (8-2).
Nonlinearity leads to a cumulative frequency shift in the long-time behavior of the Fourier components

of the solution due to space-time resonances of the form ξ = ξ + ξ − ξ . To account for this effect, we use
the method of modified scattering and introduce a phase correction

2(ξ, t)=
πξ |ξ |

3
[T1(ξ, ξ,−ξ)+ T1(ξ,−ξ, ξ)+ T1(−ξ, ξ, ξ)]

∫ t

0

|ϕ̂(ξ, τ )|2

τ + 1
dτ. (8-9)

This phase correction is generic in cubically nonlinear dispersive equations and grows logarithmically in
time; see [Córdoba et al. 2019; Ifrim and Tataru 2015; 2016; Ionescu and Pusateri 2015]. We then let

v̂(ξ, t)= ei2(ξ,t)ĥ(ξ, t).

Using (8-8) and (8-9), we find that

v̂t(ξ, t)= ei2(ξ,t)
[ĥt(ξ, t)+ i2t(ξ, t)ĥ(ξ, t)] =U (ξ, t)− e−2i tξ log |ξ |ei2(ξ,t)N̂≥5(ϕ)(ξ, t), (8-10)

where

U (ξ, t)= ei2(ξ,t)
{
−

iξ
6

∫∫
R2

T1(η1,η2,ξ−η1−η2)ei t8(ξ,η1,η2)ĥ(ξ−η1−η2)ĥ(η1)ĥ(η2)dη1 dη2

+
π iξ |ξ |

3
[T1(ξ,ξ,−ξ)+T1(ξ,−ξ,ξ)+T1(−ξ,ξ,ξ)]

|ĥ(ξ, t)|2ĥ(ξ, t)
t+1

}
. (8-11)
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nonlinear dispersive
estimates for (8-6)

cubic term: decompose
integration regions of (8-12)

higher-degree terms

max{ j1, j2, j3}≥ 10−3 log2 |t+1|

true false

high frequencies max{| j1− j3|, | j2− j3|}> 1

true false

nonresonant
frequencies

max{k1,k2}≥ log2[%1(t)]

true false

near resonances resonant frequencies
(Section 8F)

space
resonance

space-time
resonances

Section 8C Section 8D Section 8E Section 8F1 Section 8F2 Section 8G

Figure 1. Plan of Section 8. Here ( j1, j2, j3) ∈ Z3 are the dyadic blocks in the cubic
decomposition (8-12), and %1(t) is defined in (8-23).

Then we get from (8-10) that

‖ϕ‖Z = ‖(|ξ | + |ξ |
r+4)ϕ̂(ξ, t)‖L∞ξ = ‖(|ξ | + |ξ |

r+4)v̂(ξ, t)‖L∞ξ

.
∫ t

0
{‖(|ξ | + |ξ |r+4)U (ξ, τ )‖L∞ξ +‖(|ξ | + |ξ |

r+4)N̂≥5(ϕ)(ξ, τ )‖L∞ξ } dτ.

We will estimate the cubic terms in U in Sections 8C–8F and the higher-degree terms involving N̂≥5(ϕ)

in Section 8G. We do not need to consider the terms in U that involve the phase correction until we come
to an analysis of the space-time resonances in Section 8F.

Suppressing the dependence of ĥ(ξ, t) on t , we carry out a dyadic decomposition of the integral in the
expression (8-11) for U, and write it as a sum over ( j1, j2, j3) ∈ Z3 of terms of the form∫∫

R2
T1(η1, η2, ξ − η1− η2)ei t8(ξ,η1,η2)ĥ j1(η1)ĥ j2(η2)ĥ j3(ξ − η1− η2) dη1 dη2. (8-12)

Here, h j = Pj h, where Pj is the Fourier multiplier with symbol ψj defined in (2-13). In the following
subsections, we estimate this integral in various regions of frequency space.
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In Section 8C, we estimate the integral for high frequencies (at least one of j1, j2, j3 is large). In
Section 8D, we estimate the integral for nonresonant frequencies, using oscillatory integral estimates with
respect to the frequency variables together with multilinear estimates to get sufficient time decay.

In Section 8E, we consider frequencies that are close to the resonant frequencies. In that case, the
bounds for the multilinear symbols are worse, so we cannot obtain sufficient time decay by the method
used for the nonresonant frequencies. We resolve this issue by an additional dyadic decomposition
centered at each resonant point and a refinement of the symbol estimates.

Finally, in Section 8F, we consider frequencies that are at the space resonance or space-time resonances.
For the space resonance, we estimate the integral in a region about the space resonance point that shrinks
in time, using an oscillatory integral estimate with respect to time and the equation to eliminate the time
derivative of the solution. For the space-time resonances, we take advantage of the modified scattering
phase correction and estimate the integral on shrinking regions about the space-time resonance points.

As a checklist for the complete discussion of all cases, the plan for the rest of Section 8 is displayed in
Figure 1.

8C. High frequencies. When max{ j1, j2, j3} ≥ 10−3 log2 |t + 1|, we can estimate the nonlinear terms
(8-12) by using Lemma 2.5, with the L∞-norm placed on the lowest-derivative term. There are, in total,
r+6= 13 derivatives shared by three factors of ϕ. Thus, we can ensure that the term with least derivatives
has at most four derivatives, with or without a logarithmic derivative.

To be more specific, introducing the cutoff function d in (8-5), using Hölder’s inequality, Sobolev
embedding, and the bootstrap assumptions, we obtain the estimate∥∥∥∥∥ξ(|ξ |+|ξ |r+4)d(ξ, t)

∫∫
R2

T1(η1, η2, ξ−η1−η2)ei t8(ξ,η1,η2)ĥ j1(η1)ĥ j2(η2)ĥ j3(ξ−η1−η2) dη1 dη2

∥∥∥∥∥
L∞ξ

. (t + 1)(r+8−s)10−3
‖ϕmin‖L2(‖ϕmed‖L∞ +‖L∂xϕmed‖W r,∞)‖ϕmax‖H s

. (t + 1)(r+8−s)10−3
‖ϕj1‖H s‖ϕj2‖H s‖ϕ j3‖H s ,

where max, med, min represent the maximum, median, and minimum of j1, j2, j3. From (5-1), we have
(r + 8− s)10−3 <−1.1, so the right-hand-side is summable over j1, j2, j3, and the sum is integrable for
t ∈ (0,∞).

8D. Nonresonant frequencies. We now only need to consider when max{ j1, j2, j3}< 10−3 log2(t + 1).
The regions | j1 − j3| > 1 and | j2 − j3| > 1 correspond to nonresonant frequencies. Without loss of
generality, we assume | j1− j3|> 1.

Notice that by (8-2), we have

∂η18= 2 log |η1| − 2 log |ξ − η1− η2|. (8-13)

Since |η1| and |ξ − η1− η2| are in different dyadic blocks, we have

||η1| − |ξ − η1− η2||&max{|η1|, |ξ − η1− η2|}.

Therefore, |∂η18|& 1.
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After integrating by parts, we have∫∫
R2

T1(η1, η2, ξ − η1− η2)ei t8(ξ,η1,η2)ĥ j1(η1)ĥ j2(η2)ĥ j3(ξ − η1− η2) dη1 dη2

=

∫∫
R2

T1(η1, η2, ξ − η1− η2)

i t∂η18(ξ, η1, η2)
∂η1ei t8(ξ,η1,η2)ĥ j1(η1)ĥ j2(η2)ĥ j3(ξ − η1− η2) dη1 dη2

=−W1−W2−W3,

where

W1(ξ, t)=
∫∫

R2
∂η1

[
T1(η1, η2, ξ − η1− η2)

i t∂η18(ξ, η1, η2)

]
ei t8(ξ,η1,η2)ĥ j1(η1)ĥ j2(η2)ĥ j3(ξ − η1− η2) dη1 dη2,

W2(ξ, t)=
∫∫

R2

[
T1(η1, η2, ξ − η1− η2)

i t∂η18(ξ, η1, η2)

]
ei t8(ξ,η1,η2)ĥ j1(η1)ĥ j2(η2)∂η1 ĥ j3(ξ − η1− η2) dη1 dη2,

W3(ξ, t)=
∫∫

R2

[
T1(η1, η2, ξ − η1− η2)

i t∂η18(ξ, η1, η2)

]
ei t8(ξ,η1,η2)∂η1 ĥ j1(η1)ĥ j2(η2)ĥ j3(ξ − η1− η2) dη1 dη2.

In order to estimate these terms, we note from (8-7) that

∂η1[T1(η1, η2, ξ − η1− η2)] = −2
{
η1 log |η1| − (η1+ η2) log |η1+ η2|

+ (ξ − η1) log |ξ − η1| − (ξ − η1− η2) log |ξ − η1− η2|
}
,

∂η2[T1(η1, η2, ξ − η1− η2)] = −2
{
η2 log |η2| − (η1+ η2) log |η1+ η2|

+ (ξ − η2) log |ξ − η2| − (ξ − η1− η2) log |ξ − η1− η2|
}
.

(8-14)

Estimate of W1: Since
‖W1‖L∞ξ . ‖F

−1(W1)‖L1, (8-15)

it suffices to estimate the L1
x -norm of∫∫∫

R3
eiξ x∂η1

[
T1(η1, η2, ξ − η1− η2)

i t∂η18(ξ, η1, η2)

]
ei t8(ξ,η1,η2)ĥ j1(η1)ĥ j2(η2)ĥ j3(ξ − η1− η2) dη1 dη2 dξ.

Notice that by (8-13)

∂η1

T1(η1, η2, ξ − η1− η2)

∂η18(ξ, η1, η2)
= κ1(η1, η2, ξ − η1− η2)−

κ2(η1, η2, ξ − η1− η2)

2
,

where
κ1(η1, η2, η3)=

∂η1 T1(η1, η2, η3)− ∂η3 T1(η1, η2, η3)

log |η1| − log |η3|
,

κ2(η1, η2, η3)= T1(η1, η2, η3)
1/η1+ 1/η3

(log |η1| − log |η3|)2
.

Making a change of variable η3 = ξ − η1− η2, we need to estimate the trilinear form

1
i t

∫∫∫
R3

eiξ x
[κ1(η1, η2, η3)+ κ2(η1, η2, η3)]ϕ̂j1(η1)ϕ̂j2(η2)ϕ̂ j3(η3) dη1 dη2 dη3,

with symbol
[κ1(η1, η2, η3)+ κ2(η1, η2, η3)]ψj1(η1)ψj2(η2)ψ j3(η3).
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According to Lemma 2.5, this trilinear operator is bounded on L2
× L2

× L∞→ L1 by

‖[κ1(η1, η2, η3)+ κ2(η1, η2, η3)]ψj1(η1)ψj2(η2)ψ j3(η3)‖S∞

.
(
‖∂η1 T1(η1, η2, η3)ψ̃j1(η1)ψ̃j2(η2)ψ̃ j3(η3)‖S∞

+‖∂η3 T1(η1, η2, η3)ψ̃j1(η1)ψ̃j2(η2)ψ̃ j3(η3)‖S∞
)
·

∥∥∥∥ψj1(η1)ψj2(η2)ψ j3(η3)

log |η1| − log |η3|

∥∥∥∥
S∞

+

(∥∥∥∥T1(η1, η2, η3)

η1
ψ̃j1(η1)ψ̃j2(η2)ψ̃ j3(η3)

∥∥∥∥
S∞

+

∥∥∥∥T1(η1, η2, η3)

η3
ψ̃j1(η1)ψ̃j2(η2)ψ̃ j3(η3)

∥∥∥∥
S∞

)
·

∥∥∥∥ψj1(η1)ψj2(η2)ψ j3(η3)

(log |η1| − log |η3|)2

∥∥∥∥
S∞
. (8-16)

In the following lemmas, we prove S∞-estimates for these symbols.

Lemma 8.1. Suppose that | j1− j3|> 1. Then for any m ∈ Z+,∥∥∥∥ 1
(log |η1| − log |η3|)m

ψj1(η1)ψj2(η2)ψ j3(η3)

∥∥∥∥
S∞
. 1.

Proof. By the definition of the S∞-norm (2-15) and the definition of ψk (2-13), we have that∥∥∥∥ψj1(η1)ψj2(η2)ψ j3(η3)

(log |η1| − log |η3|)m

∥∥∥∥
S∞

=

∥∥∥∥∫∫∫
R3

ψj1(η1)ψj2(η2)ψ j3(η3)

(log |η1| − log |η3|)m
ei(y1η1+y2η2+y3η3) dη1 dη2 dη3

∥∥∥∥
L1

=

∫∫∫
R3

∣∣∣∣∫∫∫
R3

ψ0(2− j1η1)ψ0(2− j2η2)ψ0(2− j3η3)

(log |η1| − log |η3|)m
ei(y1η1+y2η2+y3η3) dη1 dη2 dη3

∣∣∣∣ dy1 dy2 dy3 . 1,

where the last inequality comes from oscillatory integral estimates, using the facts that | j1− j3|> 1 and
the support of ψ0 is

[
−

8
5 ,−

5
8

]
∪
[ 5

8 ,
8
5

]
. �

For the estimates of the other symbols in (8-16), we have the following lemma.

Lemma 8.2. For any j1, j2, j3 ∈ Z, we have

‖∂η1 T1(η1, η2, η3)ψ̃j1(η1)ψ̃j2(η2)ψ̃ j3(η3)‖S∞ . 2max{ j2, j3}, (8-17)

‖T1(η1, η2, η3)ψ̃j1(η1)ψ̃j2(η2)ψ̃ j3(η3)‖S∞ . 2max{ j1, j2, j3}+min{ j1, j2, j3}, (8-18)

and ∥∥∥∥T1(η1, η2, η3)

η1
ψ̃j1(η1)ψ̃j2(η2)ψ̃ j3(η3)

∥∥∥∥
S∞
. 2max{ j2, j3}. (8-19)

Furthermore, since T1 is symmetric, we also have

‖∂η3 T1(η1, η2, η3)ψ̃j1(η1)ψ̃j2(η2)ψ̃ j3(η3)‖S∞ . 2max{ j1, j2},∥∥∥∥T1(η1, η2, η3)

η3
ψ̃j1(η1)ψ̃j2(η2)ψ̃ j3(η3)

∥∥∥∥
S∞
. 2max{ j1, j2}.
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Proof. (1) We prove (8-17) first. Using inverse Fourier transform in (η1, η2, η3), we obtain

F−1
[∂η1 T1(η1,η2,η3)ψ̃j1(η1)ψ̃j2(η2)ψ̃ j3(η3)]

=

∫∫∫
R3

ei(y1η1+y2η2+y3η3)∂η1

[∫
R

∏3
j=1(1−eiηj ζ )

|ζ |3
dζ
]
ψ̃j1(η1)ψ̃j2(η2)ψ̃ j3(η3)dη1 dη2 dη3

=

∫∫∫
R3

[∫
R

−iζeiη1(ζ+y1)(eiy2η2−eiη2(ζ+y2))(eiy3η3−eiη3(ζ+y3))

|ζ |3
dζ
]
ψ̃j1(η1)ψ̃j2(η2)ψ̃ j3(η3)dη1 dη2 dη3

=

∫
R

−iζ
|ζ |3
·[F−1

[ψ̃j1](y1+ζ )]·[F−1
[ψ̃j2](y2)−F−1

[ψ̃j2](ζ+y2)][F−1
[ψ̃ j3](y3)−F−1

[ψ̃ j3](ζ+y3)]dζ.

Notice that
|F−1
[ψ̃j1](y1+ ζ )| = 2 j1 |F−1

[ψ̃0](2 j1(y1+ ζ ))|,

|F−1
[ψ̃j2](y2)−F−1

[ψ̃j2](ζ + y2)| = 2 j2 |F−1
[ψ̃0](2 j2 y2)−F−1

[ψ̃0](2 j2(ζ + y2))|,

|F−1
[ψ̃ j3](y3)−F−1

[ψ̃ j3](ζ + y3)| = 2 j3 |F−1
[ψ̃0](2 j3 y3)−F−1

[ψ̃0](2 j3(ζ + y3))|,
and that ∫

R

|F−1
[ψ̃0](2 j1(y1+ ζ ))| dy1 . 2− j1,∫

R

|F−1
[ψ̃j2](2

j2 y2)−F−1
[ψ̃j2](2

j2(ζ + y2))| dy2 .min{2− j2, |ζ |},∫
R

|F−1
[ψ̃ j3](2

j3 y3)−F−1
[ψ̃ j3](2

j3(ζ + y3))| dy3 .min{2− j3, |ζ |}.

Therefore, we have

‖F−1
[∂η1 T1(η1, η2, η3)ψ̃j1(η1)ψ̃j2(η2)ψ̃ j3(η3)]‖L1

.
∫

R

1
|ζ |2

2 j2+ j3 min{2− j2, |ζ |}min{2− j3, |ζ |} dζ

= 2 j2+ j3

(∫
|ζ |>max{2− j2 ,2− j3 }

1
|ζ |2

2− j2− j3 dζ

+

∫
min{2− j2 ,2− j3 }<|ζ |<max{2− j2 ,2− j3 }

1
|ζ |

min{2− j2, 2− j3} dζ +
∫
|ζ |<min{2− j2 ,2− j3 }

1 dζ
)

. 2max{ j2, j3}.

(2) Next, we prove (8-18) and (8-19). The estimate of (8-18) is similar to (8-17). We first use the inverse
Fourier transform and write

F−1
[T1(η1,η2,η3)ψ̃j1(η1)ψ̃j2(η2)ψ̃ j3(η3)]

=

∫∫∫
R3

ei(y1η1+y2η2+y3η3)

[∫
R

∏3
j=1(1−eiηj ζ )

|ζ |3
dζ
]
ψ̃j1(η1)ψ̃j2(η2)ψ̃ j3(η3)dη1 dη2 dη3

=

∫∫∫
R3

[∫
R

(eiy1η1−eiη1(ζ+y1))(eiy2η2−eiη2(ζ+y2))(eiy3η3−eiη3(ζ+y3))

|ζ |3
dζ
]
ψ̃j1(η1)ψ̃j2(η2)ψ̃ j3(η3)dη1 dη2 dη3

=

∫
R

1
|ζ |3
[F−1
[ψ̃j1](y1)−F−1

[ψ̃j1](ζ+y1)]·[F−1
[ψ̃j2](y2)−F−1

[ψ̃j2](ζ+y2)]

·[F−1
[ψ̃ j3](y3)−F−1

[ψ̃ j3](ζ+y3)]dζ.
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Taking the L1-norm, we obtain

‖F−1
[T1(η1, η2, η3)ψ̃j1(η1)ψ̃j2(η2)ψ̃ j3(η3)]‖L1

.
∫

R

2 j1+ j2+ j3 1
|ζ |3

min{2− j1, |ζ |}min{2− j2, |ζ |}min{2− j3, |ζ |} dζ

.
∫
|ζ |>max{2− j1 ,2− j2 ,2− j3 }

1
|ζ |3

dζ +
∫
|ζ |<min{2− j1 ,2− j2 ,2− j3 }

2 j1+ j2+ j3 dζ

+

∫
min{2− j1 ,2− j2 ,2− j3 }<|ζ |<med{2− j1 ,2− j2 ,2− j3 }

2med{ j1, j2, j3}+min{ j1, j2, j3} 1
|ζ |

dζ

+

∫
med{2− j1 ,2− j2 ,2− j3 }<|ζ |<max{2− j1 ,2− j2 ,2− j3 }

2min{ j1, j2, j3} 1
|ζ |2

dζ

. 22 min{ j1, j2, j3}+ 2max{ j1, j2, j3}+med{ j1, j2, j3}+ 2max{ j1, j2, j3}+min{ j1, j2, j3}+ 2min{ j1, j2, j3}+med{ j1, j2, j3}

. 2max{ j1, j2, j3}+min{ j1, j2, j3},

which proves (8-18).
As for (8-19), we define

˜̃
ψk(η)=

k+3∑
j=k−3

ψj (η).

Then it follows from the support of ψk and the fact that ψk forms a partition of unity that

T1(η1, η2, η3)

η1
ψ̃j1(η1)ψ̃j2(η2)ψ̃ j3(η3)

= [T1(η1, η2, η3)ψ̃j1(η1)ψ̃j2(η2)ψ̃ j3(η3)] ·

[
1
η1

˜̃
ψj1(η1)

˜̃
ψj2(η2)

˜̃
ψ j3(η3)

]
.

By Lemma 2.5, we have∥∥∥∥T1(η1, η2, η3)

η1
ψ̃j1(η1)ψ̃j2(η2)ψ̃ j3(η3)

∥∥∥∥
S∞

. ‖T1(η1, η2, η3)ψ̃j1(η1)ψ̃j2(η2)ψ̃ j3(η3)‖S∞

∥∥∥∥ ˜̃ψj1(η1)
˜̃
ψj2(η2)

˜̃
ψ j3(η3)

η1

∥∥∥∥
S∞
. (8-20)

In view of (8-18), we only need to estimate the second term. To this end, we have∥∥∥∥ 1
η1

˜̃
ψj1(η1)

˜̃
ψj2(η2)

˜̃
ψ j3(η3)

∥∥∥∥
S∞
=

∥∥∥∥∫
R

η−1
1
˜̃
ψj1(η1)eiη1 y1 dη1F−1

[
˜̃
ψj2](y2)F−1

[
˜̃
ψ j3](y3)

∥∥∥∥
L1
. 2− j1 .

Therefore, by (8-20) and considering all the possible relations between j1, j2, and j3, we obtain (8-19). �

Applying the above lemmas to (8-16) and (8-15), we obtain

‖W1‖L∞ξ . (t + 1)−1[
‖∂xϕmax{ j1, j2}‖L∞‖ϕ j3‖L2‖ϕmin{ j1, j2}‖L2 +‖∂xϕmax{ j2, j3}‖L∞‖ϕj1‖L2‖ϕmin{ j2, j3}‖L2

]
.
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Since the two terms are symmetric in j1 and j3, it suffices to estimate one of them, as the other one is
similar. We use Lemma 6.1 and get

‖∂xϕmax{ j1, j2}‖L∞

. (t + 1)−1/2
‖|ξ |3/2ĥmax{ j1, j2}‖L∞ξ + (t + 1)−3/4[

‖|∂x |
3/4 Pmax{ j1, j2}(x∂x h)‖L2 +‖|∂x |

3/4hmax{ j1, j2}‖L2
]
.

Therefore,

‖W1‖L∞ξ . (t+1)−3/2(1max{ j1, j2}≤02(1/2)max{ j1, j2}‖|ξ |ĥmax{ j1, j2}‖L∞ξ

+1max{ j1, j2}>02(−3/2−r)max{ j1, j2}‖|ξ |r+3ĥmax{ j1, j2}‖L∞ξ

)
‖ϕ j3‖L2‖ϕmin{ j1, j2}‖L2

+(t+1)−7/4[
‖|∂x |

3/4 Pmax{ j1, j2}(x∂x h)‖L2+‖|∂x |
3/4hmax{ j1, j2}‖L2

]
‖ϕ j3‖L2‖ϕmin{ j1, j2}‖L2

+(t+1)−3/2(1max{ j2, j3}≤02(1/2)max{ j2, j3}‖|ξ |ĥmax{ j2, j3}‖L∞ξ

+1max{ j2, j3}>02(−3/2−r)max{ j2, j3}‖|ξ |r+3ĥmax{ j2, j3}‖L∞ξ

)
‖ϕj1‖L2‖ϕmin{ j2, j3}‖L2

+(t+1)−7/4[
‖|∂x |

3/4 Pmax{ j2, j3}(x∂x h)‖L2+‖|∂x |
3/4hmax{ j2, j3}‖L2

]
‖ϕj1‖L2‖ϕmin{ j2, j3}‖L2

. (t+1)−3/2(1max{ j1, j2}≤02(1/2)max{ j1, j2}+1max{ j1, j2}>02(−3/2−r)max{ j1, j2}
)

·‖hmax{ j1, j2}‖Z‖ϕ j3‖L2‖ϕmin{ j1, j2}‖L2

+(t+1)−7/4[
‖|∂x |

3/4 Pmax{ j1, j2}(x∂x h)‖L2+‖|∂x |
3/4hmax{ j1, j2}‖L2

]
‖ϕ j3‖L2‖ϕmin{ j1, j2}‖L2

+(t+1)−3/2(1max{ j2, j3}≤02(1/2)max{ j2, j3}+1max{ j2, j3}>02(−3/2−r)max{ j2, j3}
)

·‖hmax{ j2, j3}‖Z‖ϕj1‖L2‖ϕmin{ j2, j3}‖L2

+(t+1)−7/4[
‖|∂x |

3/4 Pmax{ j2, j3}(x∂x h)‖L2+‖|∂x |
3/4hmax{ j2, j3}‖L2

]
‖ϕj1‖L2‖ϕmin{ j2, j3}‖L2 .

Estimate of W2 and W3: We rewrite W2 as∫∫
R2

[
T1(η1, η2, ξ − η1− η2)

i t∂η18(ξ, η1, η2)(ξ − η1− η2)

]
ei t8(ξ,η1,η2)ĥ j1(η1)ĥ j2(η2)[(ξ−η1−η2)∂η1 ĥ j3(ξ−η1−η2)] dη1 dη2.

In view of the multilinear estimate Lemma 2.5, we need to estimate the S∞-norm of the symbol

T1(η1, η2, η3)

(log |η1| − log |η3|)η3
ψj1(η1)ψj2(η2)ψ̃ j3(η3).

In a similar way to the estimates of W1, using Lemmas 8.1 and 8.2, we obtain

‖W2‖L∞ξ . (t + 1)−1
‖∂xϕmax{ j1, j2}‖L∞‖ξ∂ξ ĥ j3‖L2

ξ
‖ϕmin{ j1, j2}‖L2 .

Using Lemma 6.1, we have

‖W2‖L∞ξ . (t+1)−3/2(1max{ j1, j2}≤02(1/2)max{ j1, j2}+1max{ j1, j2}>02(−3/2−r)max{ j1, j2})

·‖hmax{ j1, j2}‖Z‖ξ∂ξ ĥ j3‖L2
ξ
‖ϕmin{ j1, j2}‖L2

+(t+1)−7/4
[‖|∂x |

3/4 Pmax{ j1, j2}(x∂x h)‖L2+‖|∂x |
3/4hmax{ j1, j2}‖L2]‖ξ∂ξ ĥ j3‖L2

ξ
‖ϕmin{ j1, j2}‖L2 .
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Similarly, we have

‖W3‖L∞ξ . (t+1)−3/2(1max{ j2, j3}≤02(1/2)max{ j2, j3}+1max{ j2, j3}>02(−3/2−r)max{ j2, j3})

·‖hmax{ j2, j3}‖Z‖ξ∂ξ ĥ j1‖L2
ξ
‖ϕmin{ j2, j3}‖L2

+(t+1)−7/4
[‖|∂x |

3/4 Pmax{ j2, j3}(x∂x h)‖L2+‖|∂x |
3/4hmax{ j2, j3}‖L2]‖ξ∂ξ ĥ j1‖L2

ξ
‖ϕmin{ j2, j3}‖L2 .

In conclusion, for nonresonant frequencies we have shown that∥∥∥∥ξ(|ξ |+|ξ |r+4)d(ξ, t)
∫∫

R2
T1(η1,η2,ξ−η1−η2)ei t8(ξ,η1,η2)ĥ j1(η1)ĥ j2(η2)ĥ j3(ξ−η1−η2)dη1 dη2

∥∥∥∥
L∞ξ

. (t+1)(r+5)p1(‖W1‖L∞ξ +‖W2‖L∞ξ +‖W3‖L∞ξ )

. (t+1)−3/2+(r+5)p1(‖ϕj1‖L2‖ϕmin{ j2, j3}‖L2+‖ξ∂ξ ĥ j1‖L2
ξ
‖ϕmin{ j2, j3}‖L2)

·(1max{ j2, j3}≤02(1/2)max{ j2, j3}+1max{ j2, j3}>02(−3/2−r)max{ j2, j3})‖hmax{ j2, j3}‖Z

+(t+1)−3/2+(r+5)p1(‖ϕ j3‖L2‖ϕmin{ j1, j2}‖L2+‖ξ∂ξ ĥ j3‖L2
ξ
‖ϕmin{ j1, j2}‖L2)

·(1max{ j1, j2}≤02(1/2)max{ j1, j2}+1max{ j1, j2}>02(−3/2−r)max{ j1, j2})‖hmax{ j1, j2}‖Z

+(t+1)−7/4+(r+5)p1

[
(‖|∂x |

3/4Pmax{ j1, j2}(x∂x h)‖L2+‖|∂x |
3/4hmax{ j1, j2}‖L2)‖ϕ j3‖L2‖ϕmin{ j1, j2}‖L2

+(‖|∂x |
3/4Pmax{ j2, j3}(x∂x h)‖L2+‖|∂x |

3/4hmax{ j2, j3}‖L2)‖ϕj1‖L2‖ϕmin{ j2, j3}‖L2

+(‖|∂x |
3/4Pmax{ j1, j2}(x∂x h)‖L2+‖|∂x |

3/4hmax{ j1, j2}‖L2)‖ξ∂ξ ĥ j3‖L2
ξ
‖ϕmin{ j1, j2}‖L2

+(‖|∂x |
3/4Pmax{ j2, j3}(x∂x h)‖L2+‖|∂x |

3/4hmax{ j2, j3}‖L2)‖ξ∂ξ ĥ j1‖L2
ξ
‖ϕmin{ j2, j3}‖L2

]
.

By the bootstrap assumptions and Lemma 5.5, the right-hand side is summable for j1, j2, j3 and the sum
is integrable for t ∈ (0,∞).

8E. Close to resonance. When

max{ j1, j2, j3}< 10−3 log2(t + 1), | j3− j2| ≤ 1, | j3− j1| ≤ 1, (8-21)

in (8-12), we need to consider the following two cases:

(i) The frequencies η1, η2 and ξ − η1− η2 have the same sign. By the definition of the multiplier Pj and
the cutoff function ψ , we can assume that

5
8 2 j1 ≤ |η1| ≤

8
5 2 j1, 5

8 2 j2 ≤ |η2| ≤
8
5 2 j2, 5

8 2 j3 ≤ |ξ − η1− η2| ≤
8
5 2 j3,

and therefore
5
8(2

j1 + 2 j2 + 2 j3)≤ |ξ | ≤ 8
5(2

j1 + 2 j2 + 2 j3).

This corresponds to the region near the space resonance η1 = η2 = ξ − η1− η2 =
1
3ξ in (8-4).

(ii) The frequencies η1, η2 and ξ−η1−η2 do not have the same sign. This corresponds to the region near
the space-time resonances (η1, η2)= (ξ, ξ), (ξ,−ξ), or (−ξ, ξ) in (8-3). Since the symbol T ′1(η1, η2, η3)

is symmetric in η1, η2, and η3, it suffices to consider (8-12) in the region near (ξ, ξ).

To estimate (8-12) in the region (8-21), we decompose the region further. Writing (ξ1, ξ2, ξ3) =

(ξ, ξ,−ξ) or
( 1

3ξ,
1
3ξ,

1
3ξ
)
, we decompose (8-21) using the additional cutoff functions ψk1(η1− ξ1) and
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ψk2(η2− ξ2). Since ∑
(k1,k2)∈Z2

ψk1(η1− ξ1)ψk2(η2− ξ2)= 1,

we can write the integral (8-12) as∫∫
R2

T1(η1, η2, ξ − η1− η2)ei t8(ξ,η1,η2)ĥ j1(η1)ĥ j2(η2)ĥ j3(ξ − η1− η2)

·

[max{ j1, j3}+1∑
k1=−∞

ψk1(η1− ξ1)

]
·

[max{ j2, j3}+1∑
k2=−∞

ψk2(η2− ξ2)

]
dη1 dη2,

where [max{ j1, j3}+1∑
k1=−∞

ψk1(η1− ξ1)

]
·

[max{ j2, j3}+1∑
k2=−∞

ψk2(η2− ξ2)

]
= 1

on the support of ĥ j1(η1)ĥ j2(η2)ĥ j3(ξ − η1− η2). Thus, we need to consider∫∫
R2

T1(η1, η2, ξ − η1− η2)ei t8(ξ,η1,η2)ĥ j1(η1)ĥ j2(η2)ĥ j3(ξ − η1− η2)

·ψk1(η1− ξ1)ψk2(η2− ξ2) dη1 dη2. (8-22)

In this subsection, we restrict our attention to

k1 ≥ log2[%1(t)] or k2 ≥ log2[%1(t)],

where

%1(t)= (t + 1)−0.49. (8-23)

The case of k1 < log2[%1(t)] and k2 < log2[%1(t)], related to the resonant frequencies, will be discussed
in Section 8F.

Since these expressions are symmetric in η1 and η2, we assume without loss of generality that
j1 ≥ k1 ≥ log2[%1(t)]. The other case can be discussed in a similar way.

Integrating by parts, we can write (8-22) as∫∫
R2

T1(η1, η2, ξ − η1− η2)

2i t (log |η1| − log |ξ − η1− η2|)
∂η1ei t8(ξ,η1,η2)ĥ j1(η1)ĥ j2(η2)ĥ j3(ξ − η1− η2)

·ψk1(η1− ξ1)ψk2(η2− ξ2) dη1 dη2

=
i
2t
(V1+ V2+ V3+ V4),

where

V1(ξ, t)=
∫∫

R2
∂η1

[
T1(η1, η2, ξ − η1− η2)

log |η1| − log |ξ − η1− η2|

]
ei t8(ξ,η1,η2)ĥ j1(η1)ĥ j2(η2)ĥ j3(ξ − η1− η2)

·ψk1(η1− ξ1)ψk2(η2− ξ2) dη1 dη2,

V2(ξ, t)=
∫∫

R2

[
T1(η1, η2, ξ − η1− η2)

log |η1| − log |ξ − η1− η2|

]
ei t8(ξ,η1,η2)∂η1 ĥ j1(η1)ĥ j2(η2)ĥ j3(ξ − η1− η2)

·ψk1(η1− ξ1)ψk2(η2− ξ2) dη1 dη2,



GLOBAL SOLUTIONS OF A SURFACE QUASIGEOSTROPHIC FRONT EQUATION 455

V3(ξ, t)=
∫∫

R2

[
T1(η1, η2, ξ − η1− η2)

log |η1| − log |ξ − η1− η2|

]
ei t8(ξ,η1,η2)ĥ j1(η1)ĥ j2(η2)∂η1 ĥ j3(ξ − η1− η2)

·ψk1(η1− ξ1)ψk2(η2− ξ2) dη1 dη2,

V4(ξ, t)=
∫∫

R2

[
T1(η1, η2, ξ − η1− η2)

log |η1| − log |ξ − η1− η2|

]
ei t8(ξ,η1,η2)ĥ j1(η1)ĥ j2(η2)ĥ j3(ξ − η1− η2)

· ∂η1ψk1(η1− ξ1)ψk2(η2− ξ2) dη1 dη2.

Estimate of V1: We first denote the symbol for V1 as

m(η1, η2, ξ)

=
−2

log |η1| − log |ξ − η1− η2|
·
[
η1 log |η1| − (η1+ η2) log |η1+ η2|

+ (ξ − η1) log |ξ − η1| − (ξ − η1− η2) log |ξ − η1− η2|
]

−
η−1

1 + (ξ − η1− η2)
−1

(log |η1| − log |ξ − η1− η2|)2
·
[
−η2

1 log |η1| − η
2
2 log |η2| − η

2
3 log |η3|

− (η1+ η2+ η3)
2 log |η1+ η2+ η3| + (η1+ η2)

2 log |η1+ η2|

+ (η1+ η3)
2 log |η1+ η3| + (η2+ η3)

2 log |η2+ η3|
]
.

After the change of variables υi = ηi − ξi , i = 1, 2, it suffices to estimate∥∥∥∥∫∫
R2

m(υ1+ ξ1, υ2+ ξ2, ξ)ei t8(ξ,υ1+ξ1,υ2+ξ2)ĥ j1(υ1+ ξ1)ĥ j2(υ2+ ξ2)ĥ j3(ξ3− υ1− υ2)

·ψk1(υ1)ψk2(υ2) dυ1 dυ2

∥∥∥∥
L∞ξ

.

Using Lemma 2.5, we have

‖V1‖L∞ξ . ‖χ
k1,k2
j1, j3 (υ1, υ2, ξ)m(υ1+ ξ1, υ2+ ξ2, ξ)‖S∞υ1,υ2

L∞ξ

· ‖ϕ̂j1(υ1+ ξ1)ψk1(υ1)‖L2
υ1

L∞ξ
‖ϕ̂j2(υ2+ ξ2)ψk2(υ2)‖L2

υ2
L∞ξ
‖ϕ j3‖L∞,

where

χ
k1,k2
j1, j3 (υ1, υ2, ξ)= ψ̃k1(υ1)ψ̃k2(υ2)ψ̃j1(υ1+ ξ1)ψ̃j2(υ2+ ξ2)ψ̃ j3(ξ3− υ1− υ2)χ(ξ).

(i) If (ξ1, ξ2, ξ3) =
( 1

3ξ,
1
3ξ,

1
3ξ
)
, since S∞-norm is rotational and scaling invariant, setting w1 = υ1,

w2 =−2υ1− υ2, and using (2-16), we have

‖χ
k1,k2
j1, j3 (υ1, υ2, ξ)m(υ1+ ξ1, υ2+ ξ2, ξ)‖S∞υ1,υ2

L∞ξ

= ‖χ
k1,k2
j1, j3 (w1,−2w1−w2, ξ)m(w1+ ξ1,−2w1−w2+ ξ2, ξ)‖S∞w1,w2

L∞ξ

. ‖χ k1,k2
j1, j3 (w1,−2w1−w2, ξ)m(w1+ ξ1,−2w1−w2+ ξ2, ξ)‖

1/4
L1
w1w2

L∞ξ

· ‖∂2
w1
[χ

k1,k2
j1, j3 (w1,−2w1−w2, ξ)m(w1+ ξ1,−2w1−w2+ ξ2, ξ)]‖

1/2
L1
w1w2

L∞ξ

· ‖∂2
w1
∂2
w2
[χ

k1,k2
j1, j3 (w1,−2w1−w2, ξ)m(w1+ ξ1,−2w1−w2+ ξ2, ξ)]‖

1/4
L1
w1w2

L∞ξ

. (1+ | j1|)(2 j12 j1)1/4(2− j1−2k12 j1)1/2(2− j1−3k1−k22 j1)1/4

= (1+ | j1|) · 2 j1/2−(7k1+k2)/4 ≤ (1+ | j1|) · 2 j1/2−k1−k2,
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where we have used the estimate∣∣∣∣∣ χ
k1,k2
j1, j3

log
∣∣w1+

1
3ξ
∣∣− log

∣∣ 1
3ξ +w1+w2

∣∣
∣∣∣∣∣. 2 j1−k1,∣∣∣∣∣χ k1,k2

j1, j3 ∂
2
w1

1

log
∣∣w1+

1
3ξ
∣∣− log

∣∣ 1
3ξ +w1+w2

∣∣
∣∣∣∣∣. 23( j1−k1)22(−2 j1+k1) = 2− j1−k1,∣∣∣∣∣χ k1,k2

j1, j3 ∂
2
w1
∂2
w2

1

log
∣∣w1+

1
3ξ
∣∣− log

∣∣ 1
3ξ +w1+w2

∣∣
∣∣∣∣∣. 25( j1−k1)2−2 j122(−2 j1+k1) = 2− j1−3k1 .

Therefore, using (2-14), (6-1), and (8-21), we obtain

‖V1‖L∞ξ

. (1+| j1|)2 j1/2−k1−k2− j3(t+1)−1
‖ϕ̂j1(υ1+ξ1)ψk1(υ1)‖L2

υ1
L∞ξ
‖ϕ̂j2(υ2+ξ2)ψk2(υ2)‖L2

υ2
L∞ξ
‖∂xϕ j3‖L∞

. (1+| j1|)2− j1/2−k1/2−k2/2‖ψk1 ϕ̂j1‖L∞ξ ‖ψk2 ϕ̂j2‖L∞ξ

·{(t+1)−3/2
‖|ξ |3/2ĥk1,k2

j3 ‖L
∞

ξ
+(t+1)−7/4

[‖|∂x |
3/4 Pk1,k2

j3 (x∂x h)‖L2+‖|∂x |
3/4hk1,k2

j3 ‖L2]}. (8-24)

(ii) If (ξ1, ξ2, ξ3)= (ξ, ξ,−ξ), we use (2-16) to obtain

‖χ
k1,k2
j1, j3 (υ1, υ2, ξ)m(υ1+ ξ1, υ2+ ξ2, ξ)‖S∞υ1,υ2

L∞ξ

. ‖χ k1,k2
j1, j3 (υ1, υ2, ξ)m(υ1+ ξ1, υ2+ ξ2, ξ)‖

1/4
L1
υ1υ2
‖∂2
υ1
[χ

k1,k2
j1, j3 (υ1, υ2, ξ)m(υ1+ ξ1, υ2+ ξ2, ξ)]‖

1/2
L1
υ1υ2

· ‖∂2
υ1
∂2
υ2
[χ

k1,k2
j1, j3 (υ1, υ2, ξ)m(υ1+ ξ1, υ2+ ξ2, ξ)]‖

1/4
L1
υ1υ2

. (1+ | j1|)(2 j1+k12 j1)1/4(2− j1−k12 j1)1/2(2− j1−2k1−k22 j1)1/4

= (1+ | j1|) · 2 j1/2−k2,

where we have used the estimates∣∣∣∣ χ
k1,k2
j1, j3

log |υ1+ ξ | − log | − ξ − υ1− υ2|

∣∣∣∣. 2 j1−k2,∣∣∣∣χ k1,k2
j1, j3 ∂

2
υ1

1
log |υ1+ ξ | − log | − ξ − υ1− υ2|

∣∣∣∣. 23( j1−k2)22(−2 j1+k2) = 2− j1−k2,∣∣∣∣χ k1,k2
j1, j3 ∂

2
υ1
∂2
υ2

1
log |υ1+ ξ | − log | − ξ − υ1− υ2|

∣∣∣∣. 25( j1−k2)2−2 j122(−2 j1+k2) = 2− j1−3k2 .

Therefore, using (2-14), (6-1), and (8-21)

‖V1‖L∞ξ . (1+| j1|)2
j1/2− j3−k2(t+1)−1

‖ϕ̂j1(υ1+ξ1)ψk1(υ1)‖L2
υ1

L∞ξ
‖ϕ̂j2(υ2+ξ2)ψk2(υ2)‖L2

υ2
L∞ξ
‖∂xϕ j3‖L∞

. (1+| j1|)2− j1/2+k1/2−k2/2‖ψk1 ϕ̂j1‖L∞ξ ‖ψk2 ϕ̂j2‖L∞ξ

·{(t+1)−3/2
‖|ξ |3/2ĥ j3‖L∞ξ +(t+1)−7/4

[‖|∂x |
3/4 Pj3(x∂x h)‖L2+‖|∂x |

3/4h j3‖L2]}. (8-25)

Estimates of V2–V4: The estimates for V2–V4 are similar to V1. We omit the details here. The resulting
estimates are as follows.
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The symbol for V2–V4 can be estimated as∥∥∥∥χ k1,k2
j1, j3 (υ1, υ2, ξ)

T ′1(ξ1+ υ1, ξ2+ υ2, ξ3− υ1− υ2)

log |ξ1+ υ1| − log |ξ3− υ1− υ2|

∥∥∥∥
S∞υ1υ2

L∞ξ

. (2 j1+k122 j1)1/4(2− j1−k122 j1)1/2(2− j1−2k2−k122 j1)1/4

= (1+ | j1|) · 23 j1/2−k2 .

We then have the following estimates:

‖V2‖L∞ξ . (1+| j1|)2
− j1/2+k1/2−k2‖η1∂η1 ϕ̂j1(η1)‖L2

η1
‖ψk2 ϕ̂j2‖L∞ξ

· {(t+1)−3/2
‖|ξ |3/2ĥ j3‖L∞ξ +(t+1)−7/4

[‖|∂x |
3/4 Pj3(x∂x h)‖L2+‖|∂x |

3/4h j3‖L2]}, (8-26)

‖V3‖L∞ξ . (1+| j1|)2
− j1/2+k1/2−k2‖η3∂η3 ϕ̂ j3(η3)‖L2

η3
‖ψk2 ϕ̂j2‖L∞ξ

· {(t+1)−3/2
‖|ξ |3/2ĥ j1‖L∞ξ +(t+1)−7/4

[‖|∂x |
3/4 Pj1(x∂x h)‖L2+‖|∂x |

3/4h j1‖L2]}, (8-27)

‖V4‖L∞ξ . (1+| j1|)2
j1/2−k2‖ψk1 ϕ̂j1‖L∞ξ ‖ψk2 ϕ̂j2‖L∞ξ

· {(t+1)−3/2
‖|ξ |3/2ĥ j3‖L∞ξ +(t+1)−7/4

[‖|∂x |
3/4 Pj3(x∂x h)‖L2+‖|∂x |

3/4h j3‖L2]}. (8-28)

Finally, we sum over log2[%1(t)] ≤ k1, k2 ≤max{ j1, j3}+ 1, and combine the estimates (8-24)–(8-28)
to get∥∥∥∥ξ(|ξ |+|ξ |r+4)d(ξ, t)

∫∫
R2

T ′1(η1,η2,ξ−η1−η2)ei At8(ξ,η1,η2)ĥ j1(η1)ĥ j2(η2)ĥ j3(ξ−η1−η2)

·

[ max{ j1, j3}+1∑
k1=log2[%1(t)]

ψk1(η1−ξ1)

]
·

[ max{ j2, j3}+1∑
k2=log2[%1(t)]

ψk2(η2−ξ2)

]
dη1 dη2

∥∥∥∥
L∞ξ

. (1+| j1|)[max{ j1, j3}−log2[%1(t)]]2(t+1)(r+4)p1[%1(t)]−1

·[‖|ξ |ψk1 ϕ̂j1‖L∞ξ ‖|ξ |ψk2 ϕ̂j2‖L∞ξ +‖η1∂η1 ϕ̂j1(η1)‖L2
η1
‖|ξ |ψk2 ϕ̂j2‖L∞ξ +‖|ξ |ψk1 ϕ̂j1‖L∞ξ ‖η2∂η2 ϕ̂j2(η2)‖L2

η2
]

·{(t+1)−3/2
‖|ξ |3/2ĥ j3‖L∞ξ +(t+1)−7/4

[‖|∂x |
3/4 Pj3(x∂x h)‖L2+‖|∂x |

3/4h j3‖L2]}.

The right-hand side is summable with respect to j1, j2, j3 under | j3− j2| ≤ 1 and | j3− j1| ≤ 1, since
we can write

‖|ξ |3/2ĥ j‖L∞ξ . (1 j≤02 j/2
+ 1 j>02(−r−3/2) j )‖h j‖Z ,

and the resulting sum is integrable for t ∈ (0,∞) due to (8-23).

8F. Resonant frequencies. In this section, we estimate (8-22) in the region

| j1− j3| ≤ 1, | j2− j3| ≤ 1, k1 < log2[%1(t)], k2 < log2[%1(t)],

after summing over (k1, k2).
If m < log2 %1(t)≤ m+ 1 for m ∈ Z, then −∞< ki ≤ m for i = 1, 2, and

m∑
ki=−∞

ψki (ξ) is supported in
{
ξ ∈ R

∣∣ |ξ |< 8
5 · 2

m}.
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Thus, after summing over (k1, k2), we only need to consider (8-22) with a cutoff function in the integrand
of the form

b(ξ, η1, η2, t)= ψ
(
η1− ξ1

%(t)

)
·ψ

(
η2− ξ2

%(t)

)
, (8-29)

where the function %(t) is defined by

%(t)= 2m if 2m < %1(t)≤ 2m+1.

In particular, from (8-23), we have

1
2(t + 1)−0.49

≤ %(t) < (t + 1)−0.49. (8-30)

The point
(ξ1, ξ2) ∈

{( 1
3ξ,

1
3ξ
)
, (ξ, ξ), (ξ,−ξ), (−ξ, ξ)

}
is one of the resonance points in (8-3)–(8-4). We therefore need to estimate (8-22) with the cutoff function
(8-29) replacing ψk1(η1− ξ1)ψk2(η2− ξ2), in which case the integral is taken over one of the following
four disjoint sets:

A1 =
{
(η1, η2)

∣∣ ∣∣η1−
1
3ξ
∣∣< 8

5%(t),
∣∣η2−

1
3ξ
∣∣< 8

5%(t)
}
,

A2 =
{
(η1, η2)

∣∣ |η1− ξ |<
8
5%(t), |η2− ξ |<

8
5%(t)

}
,

A3 =
{
(η1, η2)

∣∣ |(η1− ξ)|<
8
5%(t), |η2− (−ξ)|<

8
5%(t)

}
,

A4 =
{
(η1, η2)

∣∣ |η1− (−ξ)|<
8
5%(t), |η2− ξ |<

8
5%(t)

}
.

The regions A1, A2, A3, A4 are discs centered at
( 1

3ξ,
1
3ξ
)
, (ξ, ξ), (ξ,−ξ), and (−ξ, ξ), respectively. The

region A1 corresponds to space resonances ξ = 1
3ξ+

1
3ξ+

1
3ξ , while A2, A3, A4 correspond to space-time

resonances ξ = ξ + ξ − ξ .

8F1. Space resonances. When (η1, η2) ∈ A1, we can expand T1/8 around
(
ξ, 1

3ξ,
1
3ξ
)

as

T1(η1, η2, ξ − η1− η2)

8(ξ, η1, η2)
=

(
1
2
−

2 log 2
3 log 3

)
ξ + O

(∣∣∣∣η1−
ξ

3

∣∣∣∣2+ ∣∣∣∣η2−
ξ

3

∣∣∣∣2). (8-31)

For m ∈ Z, let tm = 2−m/0.49
− 1 denote the time such that log2 %1(tm) = m, and for t ∈ [0,∞), let

M(t) ∈ Z be the negative integer such that M(t) < log2 %1(t) ≤ M(t)+ 1. Then %(t) and the cut-off
function b(ξ, η1, η2, t) in (8-29) are discontinuous at t = tm . After writing

eiτ8(ξ,η1,η2) =
1

i8(ξ, η1, η2)
[∂τ eiτ8(ξ,η1,η2)],

and integrating by parts with respect to τ in each time interval between the time discontinuities, we get∫ t

0
iξ
∫∫

R2
T1(η1,η2,ξ−η1−η2)eiτ8(ξ,η1,η2)ĥ j1(η1,τ )ĥ j2(η2,τ )ĥ j3(ξ−η1−η2,τ )b(ξ,η1,η2,τ )dη1 dη2 dτ

= J1−

∫ t

0
J2(τ )dτ,
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where

J1 =

∫∫
R2
ξ

T1(η1, η2, ξ − η1− η2)

8(ξ, η1, η2)
ĥ j1(η1, τ )ĥ j2(η2, τ )ĥ j3(ξ − η1− η2, τ )

· eiτ8(ξ,η1,η2)b(ξ, η1, η2, τ ) dη1 dη2

∣∣∣∣τ=t

τ=tM(t)

+

0∑
m=M(t)+1

∫∫
R2
ξ

T1(η1, η2, ξ − η1− η2)

8(ξ, η1, η2)
ĥ j1(η1, τ )ĥ j2(η2, τ )ĥ j3(ξ − η1− η2, τ )

· eiτ8(ξ,η1,η2)b(ξ, η1, η2, τ ) dη1 dη2

∣∣∣∣τ=tm−1

τ=tm

,

J2(τ )= ξ

∫∫
R2

T1(η1, η2, ξ − η1− η2)

8(ξ, η1, η2)
eiτ8(ξ,η1,η2)

· ∂τ [ĥ j1(η1, τ )ĥ j2(η2, τ )ĥ j3(ξ − η1− η2, τ )]b(ξ, η1, η2, τ ) dη1 dη2.

For J1, we have from (8-31) that∣∣∣∣(|ξ | + |ξ |r+4)

∫∫
R2

b(ξ, η1, η2, t)ξ
T1(η1, η2, ξ − η1− η2)

8(ξ, η1, η2)
ĥ j1(η1, τ )ĥ j2(η2, τ )ĥ j3(ξ − η1− η2, τ )

· eiτ8(ξ,η1,η2) dη1 dη2

∣∣∣∣
.

∣∣∣∣(|ξ | + |ξ |r+4)

∫∫
R2

b(ξ, η1, η2, t)ξ 2ĥ j1(η1, τ )ĥ j2(η2, τ )ĥ j3(ξ − η1− η2, τ )eiτ8(ξ,η1,η2) dη1 dη2

∣∣∣∣
+ (|ξ | + |ξ |r+4)

∫∫
R2

b(ξ, η1, η2, t)[%(τ)]2|ĥ j1(η1, τ )ĥ j2(η2, τ )ĥ j3(ξ − η1− η2, τ )| dη1 dη2

. (τ + 1)2p0+(r+3)p1‖|ξ |ĥ j1‖L∞ξ ‖|ξ |ĥ j2‖L∞ξ ‖|ξ |ĥ j3‖L∞ξ ([%(τ)]
2
+ [%(τ)]4).

Notice that for A1, the number of summations over j1, j2, j3 in J1 and over m are of the order log(t + 1).
Therefore, the right-hand side of this inequality is uniformly bounded for τ ≥ 0 after summing over j1,
j2, j3.

After taking the time derivative, the term J2 can be written as a sum of three terms:

ξ

∫∫
R2

T1(η1,η2,ξ−η1−η2)

8(ξ,η1,η2)
eiτ8(ξ,η1,η2)[∂τ ĥ j1(η1,τ )ĥ j2(η2,τ )ĥ j3(ξ−η1−η2,τ )]b(ξ,η1,η2,τ )dη1 dη2,

ξ

∫∫
R2

T1(η1,η2,ξ−η1−η2)

8(ξ,η1,η2)
eiτ8(ξ,η1,η2)[ĥ j1(η1,τ )∂τ ĥ j2(η2,τ )ĥ j3(τ,ξ−η1−η2)]b(ξ,η1,η2,τ )dη1 dη2,

ξ

∫∫
R2

T1(η1,η2,ξ−η1−η2)

8(ξ,η1,η2)
eiτ8(ξ,η1,η2)[ĥ j1(η1,τ )ĥ j2(η2,τ )∂τ ĥ j3(ξ−η1−η2,τ )]b(ξ,η1,η2,τ )dη1 dη2.

Notice that by (8-8),and the bootstrap assumptions and Lemma 5.3, we have

‖∂t ĥ‖L∞ξ .
∥∥∥∥ξ ∫∫

R2
T1(η1,η2,ξ−η1−η2)ei t8(ξ,η1,η2)ĥ(ξ−η1−η2)ĥ(η1)ĥ(η2)dη1 dη2

∥∥∥∥
L∞ξ

+‖N̂≥5(ϕ)‖L∞ξ

. ‖∂x
{
ϕ2 log |∂x |ϕxx−ϕ log |∂x |(ϕ

2)xx+
1
3 log |∂x |(ϕ

3)xx
}
‖L1+‖N≥5(ϕ)‖L1

. ‖ϕ‖2H s ·

∞∑
j=0

(‖ϕx‖
2 j+1
W 3,∞+‖Lϕx‖

2 j+1
W 3,∞). ε

3
1(t+1)2p0−1/2.



460 JOHN K. HUNTER, JINGYANG SHU AND QINGTIAN ZHANG

Therefore, we obtain

|(|ξ | + |ξ |r+4)J2(τ )|.
∑
‖h`1‖Z‖∂τ ĥ`2‖L∞ξ ‖h`3‖Z [%(τ)]

2

. ε3
1(τ + 1)p0−1/2

[%(τ)]2
∑
‖h`1‖Z‖h`3‖Z ,

where we sum over all permutations (`1, `2, `3) of ( j1, j2, j3) in the space resonance region A1. Again,
we notice that the number of summations is of order log(τ + 1), and the resulting sum is integrable for
τ ∈ (1,∞).

8F2. Space-time resonances. We now use modified scattering to consider the term in (8-11) given by∫∫
A2
⋃

A3
⋃

A4

iξ
6
b(ξ, η1, η2, t)T1(η1, η2, ξ − η1− η2)ei t8(ξ,η1,η2)ĥ(ξ − η1− η2)ĥ(η1)ĥ(η2) dη1 dη2

−
π iξ |ξ |

3(t + 1)
[T1(ξ, ξ,−ξ)+ T1(ξ,−ξ, ξ)+ T1(−ξ, ξ, ξ)]|ĥ(t, ξ)|2ĥ(t, ξ). (8-32)

The estimates for A2, A3, and A4 are similar, so we only present the details for the A2 integral. The
corresponding integral for A2 in (8-32) can be decomposed into

iξ
6

∫∫
A2

ei t8(ξ,η1,η2)b(ξ,η1,η2, t)

·
[
T1(η1,η2,ξ−η1−η2)ĥ j1(η1)ĥ j2(η2)ĥ j3(ξ−η1−η2)−T1(ξ,ξ,−ξ)|ĥ(ξ)|2ĥ(ξ)

]
dη1 dη2 (8-33)

and

iξ
6

T1(ξ, ξ,−ξ)|ĥ(t, ξ)|2ĥ(t, ξ)
[∫∫

A2

ei t8(ξ,η1,η2)ψ

(
η1− ξ

%(t)

)
·ψ

(
η2− ξ

%(t)

)
dη1 dη2−

2π |ξ |
t + 1

]
. (8-34)

The estimates for (8-33) are achieved by a Taylor expansion and (8-14)∣∣∣∣(|ξ |+|ξ |r+4)
iξ
6

∫∫
A2

ei t8(ξ,η1,η2)b(ξ,η1,η2, t)[T1(η1,η2,ξ−η1−η2)ĥ j1(η1)ĥ j2(η2)ĥ j3(ξ−η1−η2)

−T1(ξ,ξ,−ξ)|ĥ(ξ)|2ĥ(ξ)]dη1 dη2

∣∣∣∣
. (|ξ |+|ξ |r+4)|ξ |

∫∫
A2

∣∣∂η1[T1(η1,η2,ξ−η1−η2)ĥ j1(η1)ĥ j2(η2)ĥ j3(ξ−η1−η2)]|η1=η
′

1
(ξ−η1)

∣∣
+
∣∣∂η2[T1(η1,η2,ξ−η1−η2)ĥ j1(η1)ĥ j2(η2)ĥ j3(ξ−η1−η2)]|η2=η

′

2
(ξ−η2)

∣∣dη1 dη2

. (t+1)(r+3)p1‖ξ ϕ̂j1‖L∞ξ ‖ξ ϕ̂j2‖L∞ξ ‖ξ ϕ̂ j3‖L∞ξ [%(t)]
3
+

∑
‖ξ ϕ̂`1‖L∞ξ ‖ξ ϕ̂`2‖L∞ξ ‖Sϕ`3‖H r [%(t)]5/2,

where (η′1, η
′

2) in the first inequality is some point on the line segment connecting (ξ, ξ) and (η1, η2),
and the summation in the second inequality is over permutations (`1, `2, `3) of ( j1, j2, j3). Taking a
summation over j1, j2, j3 and using the estimates in the above subsections together with the time decay
of %(t) in (8-30), we see that this term is integrable in time and is bounded by a constant multiple of ε2

0 .
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As for (8-34), it suffices to estimate∣∣∣∣(|ξ |+|ξ |r+4)
iξ
6

T1(ξ,ξ,−ξ)|ĥ(t,ξ)|2ĥ(t,ξ)
[∫∫

A2

ei t8(ξ,η1,η2)ψ

(
η1−ξ

%(t)

)
·ψ

(
η2−ξ

%(t)

)
dη1 dη2−

2π |ξ |
t

]∣∣∣∣
. ‖(|ξ |+|ξ |r+4)ϕ̂(ξ)‖L∞ξ ‖|ξ |ϕ̂(ξ)‖L

∞

ξ
‖(|ξ |+|ξ |3)ϕ̂(ξ)‖L∞ξ

·

∥∥∥∥∫∫
A2

ei t8(ξ,η1,η2)ψ

(
η1−ξ

%(t)

)
·ψ

(
η2−ξ

%(t)

)
dη1 dη2−

2π |ξ |
t

∥∥∥∥
L∞ξ

. ‖ϕ‖3Z

∥∥∥∥∫∫
A2

ei t8(ξ,η1,η2)ψ

(
η1−ξ

%(t)

)
·ψ

(
η2−ξ

%(t)

)
dη1 dη2−

2π |ξ |
t

∥∥∥∥
L∞ξ

.

Writing (η1, η2)= (ξ + ζ1, ξ + ζ2), we find from (8-2) that

8(ξ, η1, η2)=−
ζ1ζ2

ξ
+ O

(
ζ 3

1 + ζ
3
2

ξ 2

)
=−

ζ1ζ2

ξ
+ O([%(t)]3(t + 1)2p0).

Since p0 = 10−4 and %(t) satisfies (8-30), the error term is integrable in time, so we now only need to
estimate

J3 =

∥∥∥∥∫∫
R2

e−i tζ1ζ2/ξψ

(
ζ1

%(t)

)
·ψ

(
ζ2

%(t)

)
dζ1 dζ2−

2π |ξ |
t

∥∥∥∥
L∞ξ

. (8-35)

Making the change of variables

ζ1 =

√
|ξ |

t
x1, ζ2 =

√
|ξ |

t
x2

in (8-35) and using the fact that |ξ | ≤ (t + 1)p1 , we find that

J3 ≤
(t + 1)p1

t

∥∥∥∥∫∫
R2

e−i x1x2ψ

( √
|ξ |

√
t%(t)

x1

)
·ψ

( √
|ξ |

√
t%(t)

x1

)
dx1 dx2− 2π

∥∥∥∥
L∞ξ

. (8-36)

The integral identity∫
R

e−ax2
−bx dx =

√
π

a
eb2/(4a) for all a, b ∈ C with <a > 0

gives that∫∫
R2

e−i x1x2e−x2
1/B2

e−x2
2/B2

dx1 dx2 =
√
πB

∫
R

e−x2
2/B2

e−B2x2
2/4 dx2 = 2π + O(B−1) as B→∞,

and therefore ∫∫
R2

e−i x1x2ψ

(
x1

B

)
ψ

(
x2

B

)
dx1 dx2 = 2π + O(B−1/2) as B→∞. (8-37)

Using (8-37) with B =
√

t%(t)/
√
|ξ | = O(t0.01−p0/2) in (8-36) then yields

J3 .
(t + 1)5p1/4

t1.005 .
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Since p1= 10−6, the right-hand side decays faster in time than 1/t , which implies that (8-34) is integrable
in time and bounded by a constant multiple of ε3

0 .
Putting all the above estimates together, we conclude that∫

∞

0
‖(|ξ | + |ξ |r+4)U (ξ, t)‖L∞ξ dt . ε0.

8G. Higher-degree terms. In this subsection, we prove that

‖(|ξ | + |ξ |r+4)N̂≥5(ϕ)‖L∞ξ

is integrable in time. We begin by proving an estimate for the symbol Tn . We have

F−1
[Tn(η1,η2, . . . ,η2n+1)ψj1(η1)ψj2(η2) · · ·ψ j2n+1(η2n+1)]

=

∫∫∫
R2n+1

ei(y1η1+y2η2+···+y2n+1η2n+1)

[∫
R

∏2n+1
j=1 (1−eiηj ζ )

|ζ |2n+1 dζ
]
ψj1(η1)ψj2(η2) · · ·ψ j2n+1(η2n+1)dηn

=

∫∫∫
R2n+1

[∫
R

(eiy1η1−eiη1(ζ+y1)) · · ·(eiy2n+1η2n+1−eiη2n+1(ζ+y2n+1))

|ζ |2n+1 dζ
]
ψj1(η1) · · ·ψ j2n+1(η2n+1)dηn

=

∫
R

1
|ζ |2n+1

[
F−1
[ψj1](y1)−F−1

[ψj1](ζ+y1)
]
· · ·
[
F−1
[ψ j2n+1](y2n+1)−F−1

[ψ j2n+1](ζ+y2n+1)
]

dζ,

and it follows that

‖F−1
[Tn(η1, η2, . . . , η2n+1)ψj1(η1)ψj2(η2) · · ·ψ j2n+1(η2n+1)]‖L1

.
∫

R

2 j1+···+ j2n+1
1

|ζ |2n+1 min{2− j1, |ζ |}min{2− j2, |ζ |} · · ·min{2− j2n+1, |ζ |} dζ.

Let `1, `2, . . . , `2n+1 be a permutation of j1, j2, . . . , j2n+1 satisfying 2−`1 ≤ 2−`2 ≤ · · · ≤ 2−`2n+1. Then

‖F−1
[Tn(η1, η2, . . . , η2n+1)ψj1(η1)ψj2(η2) · · ·ψ j2n+1(η2n+1)]‖L1

.
∫
|ζ |>2−`2n+1

1
|ζ |2n+1 dζ +

∫
2−`2n<|ζ |<2−`2n+1

2`1

|ζ |2n dζ

+ · · ·+

∫
2−`1<|ζ |<2−`2

2`1+···+`2n

|ζ |
dζ +

∫
|ζ |<2−`1

2`1+···+`2n+1 dζ

. 2`2+···+`2n+1 .

Therefore, by Lemma 2.5, we have

‖(|ξ | + |ξ |r+4)N̂≥5(ϕ)‖L∞ξ . (t + 1)(r+4)p1‖N≥5(ϕ)‖L1 . ‖ϕ‖2H1

∞∑
n=2

(‖ϕx‖
2n−1
L∞ +‖Lϕx‖

2n−1
L∞ ).

Using the dispersive estimate Lemma 5.3, we see that the right-hand-side is integrable in t , which leads to∫
∞

0
‖(|ξ | + |ξ |r+3)N̂≥5(ϕ)‖L∞ξ dt . ε0.

This completes the proof of Theorem 5.1.



GLOBAL SOLUTIONS OF A SURFACE QUASIGEOSTROPHIC FRONT EQUATION 463

Appendix A: Alternative formulation of the SQG front equation

We first prove an algebraic identity that will be used in deriving (3-6).

Lemma A.1. Let N ≥2 be an integer. Then for any integer 1≤ p≤ N−1 and any ηj ∈R, j =1, 2, . . . , N,
N∑
`=1

∑
1≤m1<m2<···<m`≤N

(−1)`(ηm1 + ηm2 + · · ·+ ηm`
)p
= 0. (A-1)

Proof. A general term in the expansion of left-hand-side of (A-1) is proportional to

η
α1
1 η

α2
2 · · · η

αN
N , (A-2)

where α1, α2, . . . , αN are nonnegative integers such that α1+α2+ · · ·+αN = p. It suffices to show that
the coefficients of the monomials (A-2) are zero. Let 1≤ M ≤ N −1 denote the number of nonzero terms
in the list (α1, α2, . . . , αN ). Using the multinomial theorem, we see that the coefficient of (A-2) is( p

α1, . . . , αN

)
·

N−M∑
j=0

(−1)M+ j
(N−M

j

)
=

( p
α1, . . . , αN

)
· (−1)M(1− 1)N−M

= 0. �

To compute Tn(ηn) in (3-3), we first expand the product

<

2n+1∏
j=1

(1− eiηj ζ )= 1+
2n+1∑
`=1

∑
1≤m1<m2<···<m`≤2n+1

(−1)` cos((ηm1 + ηm2 + · · ·+ ηm`
)ζ )

=

2n+1∑
`=1

∑
1≤m1<m2<···<m`≤2n+1

(−1)`+1
[1− cos((ηm1 + ηm2 + · · ·+ ηm`

)ζ )].

We replace the integral over R in (3-3) by an integral over R \ (−ε, ε), where ε� 1, and decompose
the expression for Tn into a sum of terms of the form∫
ε<|ζ |<∞

1−cos(ηζ )
|ζ |2n+1 dζ =

∫
ε<|ζ |≤1/|η|

1+
∑n

j=1(−1) j (ηζ )2 j/(2 j)!−cos(ηζ )

|ζ |2n+1 dζ+
∫
|ζ |>1/|η|

1−cos(ηζ )
|ζ |2n+1 dζ

−

n∑
j=1

(−1) jη2 j

(2 j)!

∫
ε<|ζ |≤1/|η|

1
|ζ |2n−2 j+1 dζ

=Cn,1η
2n
−

n∑
j=1

(−1) jη2 j

(2 j)!

∫
ε<|ζ |≤1/|η|

1
|ζ |2n−2 j+1 dζ+o(1),

where

Cn,1 =

∫
|θ |≤1

1+
∑n

j=1(−1) j (θ)2 j/(2 j)! − cos(θ)

|θ |2n+1 dθ +
∫
|θ |>1

1− cos(θ)
|θ |2n+1 dθ

is some constant that depends only on n.
We have

n∑
j=1

(−1) jη2 j

(2 j)!

∫
ε<|ζ |≤1/|η|

1
|ζ |2n−2 j+1 dζ = Cε

n,2η
2n
+

n−1∑
j=1

C j,ε
n,3η

2 j
+Cn,4η

2n log |η|,
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where

Cε
n,2 =

n−1∑
j=1

(−1) j+1

(n− j)(2 j)!
+ 2

(−1)n+1 log ε
(2n)!

, C j,ε
n,3 =

(−1) jε2 j−2n

(n− j)(2 j)!
, Cn,4 = 2

(−1)n+1

(2n)!
.

Thus, we conclude that∫
ε<|ζ |≤1/|η|

1− cos(ηζ )
|ζ |2n+1 dζ = (Cn,1−Cε

n,2)η
2n
−

n−1∑
j=1

C j,ε
n,3η

2 j
−Cn,4η

2n log |η|.

We use these results in the expression for Tn and take the limit as ε→ 0+. The singularity at ε = 0 does
not enter into the final result because of the cancellation in Lemma A.1, and we find that

Tn(ηn)=2
(−1)n+1

(2n)!

2n+1∑
`=1

∑
1≤m1<m2<···<m`≤2n+1

(−1)`(ηm1+· · ·+ηm`
)2n log |ηm1+ηm2+· · ·+ηm`

|. (A-3)

It follows that

fn = 2
(−1)n

(2n)!

2n+1∑
`=1

(2n+1
`

)
(−1)`ϕ2n−`+1∂2n log |∂|(ϕ`).

Therefore, we conclude that∫
R

[
ϕx(x, t)−ϕx(x + ζ, t)

|ζ |
−

ϕx(x, t)−ϕx(x + ζ, t)√
ζ 2+ (ϕ(x, t)−ϕ(x + ζ, t))2

]
dζ

=−

∞∑
n=1

2cn(−1)n

0(2n+ 2)
∂x

{2n+1∑
`=1

(2n+1
`

)
(−1)`ϕ2n−`+1(x, t)∂2n

x log |∂x |(ϕ
`(x, t))

}

=

∞∑
n=1

2n+1∑
`=1

(−1)`+1dn,`∂x{ϕ
2n−`+1(x, t)∂2n

x log |∂x |(ϕ
`(x, t))},

where

dn,` =
2
√
π∣∣0( 1

2 − n
)∣∣0(`+ 1)0(2n+ 2− `)0(n+ 1)

> 0. (A-4)

Using this expansion in (3-1), we get (3-6).

Appendix B: Paradifferential calculus

In this appendix, we use the Weyl calculus [Lerner 2010] to prove some estimates for Weyl paraproducts.

B.1. Weyl operators. The Weyl quantization of a symbol a : R×R→ C is the operator aw defined by

(aw f )(x)=
1

2π

∫∫
R2

ei(x−y)ξa
(

x + y
2

, ξ

)
f (y) dy dξ =

∫
R

F−1
2 a

(
x + y

2
, x − y

)
f (y) dy,
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where Fi a denotes the Fourier transform of a(x1, x2) with respect to with the i-th variable (i = 1, 2). The
Fourier transform of aw f can be written as

F(aw f )(ξ)=
1

2π

∫∫∫
R3

ei(x−y)η−i xξa
(

x + y
2

, η

)
f (y) dy dη dx

=

∫
R

F−1
1 a

(
ξ − η,

ξ + η

2

)
f̂ (η) dη. (B-1)

For m ∈ R, we have the symbol class

Sm
1,0 =

{
a(x, ξ) ∈ C∞(R×R)

∣∣ sup
ξ∈R

‖∂αξ ∂
β
x a( · , ξ)‖L∞ ≤ Cαβ(1+ |ξ |)m−|α| for all α, β ∈ N0

}
.

For integers r1, r2 ≥ 0, we define a symbol norm by

Mm
r1,r2

(a)= max
0≤α≤r2

sup
ξ∈R

‖(1+ |ξ |)α−m∂αξ a( · , ξ)‖W r1,∞,

and introduce a class of symbols with finite regularity

0m
r1,r2
= {a : R×R→ C | Mm

r1,r2
(a) <∞}.

We note that if M(r1,r2) is the symbol class defined in (2-3), then

‖(1+ |ξ |)−ma(x, ξ)‖M(r1,r2)
≈ Mm

r1,r2
(a). (B-2)

In particular, M(r1,r2) = 0
0
r1,r2

.

B.2. Paradifferential operators. Recall from Section 2 that χ : R→ R is a smooth function supported
in the interval

{
ξ ∈ R

∣∣ |ξ | ≤ 1
10

}
and equal to 1 on

{
ξ ∈ R

∣∣ |ξ | ≤ 3
40

}
. If f : R→ C and a : R×R→ C

is a symbol, then the Weyl paraproduct Ta f in (2-2) is defined by

F[Ta f ](ξ)=
∫

R

χ

(
|ξ − η|2

1+ |ξ + η|2

)
ã
(
ξ − η,

ξ + η

2

)
f̂ (η) dη.

Introducing the notation

σa( · , ζ2)= F1

[
χ

(
|ζ1|

2

1+ 4|ζ2|2

)
ã(ζ1, ζ2)

]
,

we can also write

F[Ta f ](ξ)=
∫

R

F−1
1 σa

(
ξ − η,

ξ + η

2

)
f̂ (η) dη.

Comparing this result with (B-1), we see that Ta = σ
w
a .

Lemma B.1. If a ∈ 0m
r1,r2

, then σa ∈ 0
m
r1,r2

and Mm
r1,r2

(σa). Mm
r1,r2

(a).

Proof. To prove that σa ∈ 0
m
r1,r2

, we write

∂αζ2
∂βx σa(x, ζ2)=

∑
i1+i2=α

ci1,i2,αFζ1

[
∂

i1
ζ2
χ

(
|ζ1|

2

1+ 4|ζ2|2

)
∂

i2
ζ2
∂̃
β
x a(ζ1, ζ2)

]
,

where the ci1,i2,α are multinomial coefficients.
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For each term, by Young’s inequality,∣∣∣∣(1+ |ζ2|)
αFζ1

[
∂

i1
ζ2
χ

(
|ζ1|

2

1+ 4|ζ2|2

)
∂

i2
ζ2
∂̃
β
x a(ζ1, ζ2)

]∣∣∣∣
=

∣∣∣∣Fζ1

[
(1+ |ζ2|)

i1∂
i1
ζ2
χ

(
|ζ1|

2

1+ 4|ζ2|2

)]
[(1+ |ζ2|)

i2∂
i2
ζ2
∂βx a(−x, ζ2)]

∣∣∣∣
≤

∥∥∥∥Fζ1

[
(1+ |ζ2|)

i1∂
i1
ζ2
χ

(
|ζ1|

2

1+ 4|ζ2|2

)]
(x, ζ2)

∥∥∥∥
L1

x

‖(1+ |ζ2|)
i2∂

i2
ζ2
∂βx a(−x, ζ2)‖L∞x .

Using Faà di Bruno’s formula, a general term of (1+ |ζ2|)
i1∂

i1
ζ2
χ(|ζ1|

2/(1+ 4|ζ2|
2)) is a linear combi-

nation of the terms of the form

(1+ |ζ2|)
i1χ (m1+···+mi1 )

(
|ζ1|

2

1+ 4|ζ2|2

) i1∏
`=1

[
∂`ζ2

(
|ζ1|

2

1+ 4|ζ2|2

)]m`

,

where m` ∈ N0 satisfies
∑i1

`=1 `m` = i1.
Bernstein’s inequality implies that∥∥∥∥Fζ1

[
(1+ |ζ2|)

i1∂
i1
ζ2
χ

(
|ζ1|

2

1+ 4|ζ2|2

)]∥∥∥∥
L1

x

.

∥∥∥∥∫
R

e−i xζ1

(
(1+ 4|ζ2|

2)i1/2∂
i1
ζ2
χ

(
|ζ1|

2

1+ 4|ζ2|2

))
dζ1

∥∥∥∥
L1

x

. 1,

since the middle term in this inequality is supported on the set {(ζ1, ζ2) | |ζ1|.
√

1+ 4|ζ2|2}. Therefore,
we have that∑
α≤r2,β≤r1

‖(1+ |ζ2|)
α∂αζ2

∂βx σa(x, ζ2)‖L∞x .
∑

α≤r2,β≤r1

∑
i≤α

‖(1+ |ζ2|)
i∂ i
ζ2
∂βx a(−x, ζ2)‖L∞x . (1+ |ζ2|)

m,

so Mm
r1,r2

(σa). Mm
r1,r2

(a). �

B.3. H s estimates. The next theorem follows from [Boulkhemair 1999, Theorem 1.2].

Theorem B.2. Let m ∈ R. If a ∈ 0m
1,1, then the Weyl operator aw : H s(R)→ H s−m(R) with symbol a is

bounded and its operator norm is bounded by Mm
1,1(a).

Using Lemma B.1 and the fact that Ta = σ
w
a , we then get the following estimate for Weyl paraproducts.

Theorem B.3. If a ∈ 0m
1,1, then the Weyl paraproduct operator Ta : H s(R)→ H s−m(R) is bounded for

all m, s ∈ R, and

‖Ta f ‖H s−m ≤ υMm
1,1(a)‖ f ‖H s ,

where υ > 0 is a constant independent of a.

In particular, setting m = 0 and using the fact that M0
1,1(a)≈ ‖a‖M(1,1) , we get Lemma 2.1.
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B.4. L∞-L2 estimates. We also need some estimates in which we bound ‖Ta f ‖L2 by ‖ f ‖L∞ .

Theorem B.4. Let p(ξ)= |ξ |k, k ≥ 0 or p(ξ)= |ξ |k log |ξ |, k ≥ 1. Assume f ∈ L∞(R) with p(∂x)∂x f ∈
L∞(R), and a(x, ξ) is a function such that ‖a‖L2

1
<∞, where

‖a‖L2
1
:= sup

ξ

(‖a( · , ξ)‖L2 +‖∂ξa( · , ξ)‖L2).

Then we have
‖p(∂x)Ta f ‖L2 . (‖ f ‖L∞ +‖p(∂x)∂x f ‖L∞)‖a‖L2

1
.

Proof. Recall that

Ta f (x)=σwa f (x)=
∫

R

F−1
2 σa

(
x + y

2
, x− y

)
f (y) dy=

∫
R

χ

(
|ξ − η|2

1+ |ξ + η|2

)
ã
(
ξ−η,

ξ + η

2

)
f̂ (η) dη.

We split Ta f into a low-frequency part∫
R

F−1
2 σa

(
x + y

2
, x − y

)
[ι(i∂y) f (y)] dy =

∫
R

ι(η)χ

(
|ξ − η|2

1+ |ξ + η|2

)
ã
(
ξ − η,

ξ + η

2

)
f̂ (η) dη

and a high-frequency part∫
R

F−1
2 σa

(
x + y

2
, x−y

)
[(1−ι(i∂y)) f (y)] dy=

∫
R

(1−ι(η))χ
(
|ξ − η|2

1+ |ξ + η|2

)
ã
(
ξ−η,

ξ + η

2

)
f̂ (η) dη.

Here, the cutoff function ι is the same as the one defined in the proof of Lemma 2.2.
The integrand in the low-frequency part is supported in |ξ | < 6, |η| < 2. Thus, |ξ + η| < 10 and
|ξ − η| < 10 on its support, so we can put a cutoff function ι

(1
5(ξ + η)

)
ι
( 1

5(ξ − η)
)

into the integral
without changing its value:∫

R

F−1
2 σa

(
x + y

2
, x − y

)
[ι(i∂y) f (y)] dy

=

∫
R

ι(η)χ

(
|ξ − η|2

1+ |ξ + η|2

)
ι

(
ξ + η

5

)
ι

(
ξ − η

5

)
ã
(
ξ − η,

ξ + η

2

)
f̂ (η) dη.

Therefore, defining b(x, ξ)= ι
( 1

5 i∂x
)
ι
( 2

5ξ
)
a(x, ξ), we have∫

R

F−1
2 σa

(
x + y

2
, x − y

)
[ι(i∂y) f (y)] dy =

∫
R

ι(η)χ

(
|ξ − η|2

1+ |ξ + η|2

)
b̃
(
ξ − η,

ξ + η

2

)
f̂ (η) dη

=

∫
R

F−1
2 σb

(
x + y

2
, x − y

)
[ι(i∂y) f (y)] dy.

So we obtain∥∥∥∥p(∂x)

∫
R

F−1
2 σb

(
x + y

2
, x − y

)
[ι(i∂y) f (y)] dy

∥∥∥∥
L2

x

.

∥∥∥∥∫
R

F−1
2 σb

(
x + y

2
, x − y

)
[ι(i∂y) f (y)] dy

∥∥∥∥
L2

x

. ‖ι(i∂y) f (y)‖L∞y

∥∥∥∥F−1
2 σb

(
x + y

2
, x − y

)∥∥∥∥
L1

y L2
x

= ‖ι(i∂y) f (y)‖L∞y

∥∥∥∥F−1
2 σb

(
x −

z
2
, z
)∥∥∥∥

L1
z L2

x

,
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where the last term satisfies∥∥∥∥F−1
2 σb

(
x−

z
2
, z
)∥∥∥∥

L1
z L2

x

=

∥∥∥∥F−1
ξ Fζ1

[
χ

(
|ζ1|

2

1+4|ξ |2

)
b̃(ζ1,ξ)

](
x−

z
2
, z
)∥∥∥∥

L1
z L2

x

=

∥∥∥∥F−1
ξ Fζ1

{
(1−∂2

ξ )
1/2
[
χ

(
|ζ1|

2

1+4|ξ |2

)
b̃(ζ1,ξ)

]}(
x−

z
2
, z
)

1
(1+z2)1/2

∥∥∥∥
L1

z L2
x

.

∥∥∥∥F−1
ξ Fζ1

{
(1−∂2

ξ )
1/2
[
χ

(
|ζ1|

2

1+4|ξ |2

)
b̃(ζ1,ξ)

]}
(x, z)

∥∥∥∥
L2

z L2
x

=

∥∥∥∥(1−∂2
ξ )

1/2
[
χ

(
|ζ1|

2

1+4|ξ |2

)
b̃(ζ1,ξ)

]
(ζ1,ξ)

∥∥∥∥
L2
ξ L2

ζ1

. ‖b‖L2
x H1

ξ
. ‖a‖L2

1
.

For the high-frequency part, we make a dyadic decomposition of f , after which we mainly need to
estimate∫

R

F−1
2 σa

(
x + y

2
, x − y

)
[(1− ι(i∂y))ψk(i∂y) f (y)] dy

=

∫
R

(1− ι(η))χ
(
|ξ − η|2

1+ |ξ + η|2

)
ã
(
ξ − η,

ξ + η

2

)
ψk(η) f̂ (η) dη.

When |η|> 2, we have

1
18 |η| ≤ |ξ | ≤

35
18 |η|,

1
2 |η| ≤ |ξ + η| ≤

40
9 |η|

on the support of the cutoff function χ(|ξ − η|2/(1+ |ξ + η|2)). Therefore |η| ≈ |ξ + η| ≈ |ξ | ≈ 2k on
the support, and, since |η|> 2, we only need to consider k ≥ 0.

By the Hölder inequality and a change of coordinates,∥∥∥∥p(∂x)

∫
R

F−1
2 σa

(
x + y

2
, x − y

)
[(1− ι(i∂y)) fk(y)] dy

∥∥∥∥
L2

x

. 2−k
‖p(∂x)∂x fk‖L∞

∥∥∥∥F−1
ξ Fζ1

[
χ

(
|ζ1|

2

1+ 4|ξ |2

)
ã(ζ1, ξ)ψk(ξ)

](
x + y

2
, x − y

)∥∥∥∥
L1

y L2
x

. 2−k
‖p(∂x)∂x f ‖L∞

∥∥∥∥F−1
ξ Fζ1

[
χ

(
|ζ1|

2

1+ 4|ξ |2

)
ã(ζ1, ξ)ψk(ξ)

](
x +

z
2
, z
)∥∥∥∥

L1
z L2

x

.

The last term satisfies∥∥∥∥F−1
ξ Fζ1

[
χ

(
|ζ1|

2

1+ 4|ξ |2

)
ã(ζ1, ξ)ψk(ξ)

](
x +

z
2
, z
)∥∥∥∥

L1
z L2

x

=

∥∥∥∥F−1
ξ Fζ1

{
(1− ∂2

ξ )
1/2
[
χ

(
|ζ1|

2

1+ 4|ξ |2

)
ã(ζ1, ξ)ψk(ξ)

]}(
x +

z
2
, z
)

1
(1+ z2)1/2

∥∥∥∥
L1

z L2
x

.

∥∥∥∥F−1
ξ Fζ1

{
(1− ∂2

ξ )
1/2
[
χ

(
|ζ1|

2

1+ 4|ξ |2

)
ã(ζ1, ξ)ψk(ξ)

]}
(x, z)

∥∥∥∥
L2

z L2
x
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.

∥∥∥∥∂ξ[χ( |ζ1|
2

1+ 4|ξ |2

)
ã(ζ1, ξ)ψk(ξ)

]∥∥∥∥
L2
ζ1

L2
ξ

+

∥∥∥∥χ( |ζ1|
2

1+ 4|ξ |2

)
ã(ζ1, ξ)ψk(ξ)

∥∥∥∥
L2
ζ1

L2
ξ

.

∥∥∥∥ 8|ξ ||ζ1|
2

(1+ 4|ξ |2)2
χ ′
(
|ζ1|

2

1+ 4|ξ |2

)
ã(ζ1, ξ)ψk(ξ)

∥∥∥∥
L2
ζ1

L2
ξ

+

∥∥∥∥χ( |ζ1|
2

1+ 4|ξ |2

)
∂ξ ã(ζ1, ξ)ψk(ξ)

∥∥∥∥
L2
ζ1

L2
ξ

+

∥∥∥∥χ( |ζ1|
2

1+ 4|ξ |2

)
ã(ζ1, ξ)∂ξψk(ξ)

∥∥∥∥
L2
ζ1

L2
ξ

+

∥∥∥∥χ( |ζ1|
2

1+ 4|ξ |2

)
ã(ζ1, ξ)ψk(ξ)

∥∥∥∥
L2
ζ1

L2
ξ

. 2−k/2
‖a(x, ξ)‖L2

x L∞ξ
+ 2k/2

‖∂ξa(x, ξ)‖L2
x L∞ξ
+ 2−k/2

‖a(x, ξ)‖L2
x L∞ξ
+ 2k/2

‖a(x, ξ)‖L2
x L∞ξ

.

Summing these inequalities over k ≥ 0, we obtain that∥∥∥∥p(∂x)

∫
R

F−1
2 σa

(
x + y

2
, x − y

)
[(1− ι(i∂y)) f (y)] dy

∥∥∥∥
L2

x

. ‖p(∂x)∂x f ‖L∞‖a‖L2
1
.

The theorem then follows by combining the low- and high-frequency estimates. �

B.5. Composition. Finally, we state a commutator estimate for Weyl paraproducts. The composition of
two symbols a and b is defined by

a#b(x, ξ)=
∫∫

R2
e−iyηa(x, ξ + η)b(y+ x, ξ) dy dη.

The following theorem is from [Lerner 2010, Theorem 2.3.7].

Theorem B.5 (composition). Let a1 ∈ Sm1
1,0 and a2 ∈ Sm2

1,0. Then

a1#a2− a1a2−
1
2i
{a1, a2} ∈ Sm1+m2−2

1,0 ,

where {a1, a2} = ∂ξa1∂xa2− ∂ξa2∂xa1 is the Poisson bracket.

Using Theorem B.3, we therefore obtain the following estimate.

Theorem B.6. Let a ∈ 0m1
3,3, b ∈ 0m2

3,3, and f ∈ H s(R). Then

TaTb f = Tab f + 1
2i

T{a,b} f +R,

where {a, b} = ∂2a · ∂1b− ∂2b · ∂1a is the Poisson bracket of a and b, and the remainder R satisfies

‖R‖H s−(m1+m2−2) . Mm1
3,3(a)M

m2
3,3(b)‖ f ‖H s .

In addition,
‖[Ta, Tb]‖H s−(m1+m2−1) . Mm1

2,2(a)M
m2
2,2(b)‖ f ‖H s .

References

[Bahouri et al. 2011] H. Bahouri, J.-Y. Chemin, and R. Danchin, Fourier analysis and nonlinear partial differential equations,
Grundl. Math. Wissen. 343, Springer, 2011. MR Zbl

[Bertozzi and Constantin 1993] A. L. Bertozzi and P. Constantin, “Global regularity for vortex patches”, Comm. Math. Phys.
152:1 (1993), 19–28. MR Zbl

[Boulkhemair 1999] A. Boulkhemair, “L2 estimates for Weyl quantization”, J. Funct. Anal. 165:1 (1999), 173–204. MR Zbl

http://dx.doi.org/10.1007/978-3-642-16830-7
http://msp.org/idx/mr/2768550
http://msp.org/idx/zbl/1227.35004
http://dx.doi.org/10.1007/BF02097055
http://msp.org/idx/mr/1207667
http://msp.org/idx/zbl/0771.76014
http://dx.doi.org/10.1006/jfan.1999.3423
http://msp.org/idx/mr/1696697
http://msp.org/idx/zbl/0934.35217


470 JOHN K. HUNTER, JINGYANG SHU AND QINGTIAN ZHANG

[Buckmaster et al. 2019] T. Buckmaster, S. Shkoller, and V. Vicol, “Nonuniqueness of weak solutions to the SQG equation”,
Comm. Pure Appl. Math. 72:9 (2019), 1809–1874. MR Zbl

[Castro et al. 2016a] A. Castro, D. Córdoba, and J. Gómez-Serrano, “Existence and regularity of rotating global solutions for the
generalized surface quasi-geostrophic equations”, Duke Math. J. 165:5 (2016), 935–984. MR Zbl

[Castro et al. 2016b] A. Castro, D. Córdoba, and J. Gómez-Serrano, “Uniformly rotating analytic global patch solutions for
active scalars”, Ann. PDE 2:1 (2016), art. id. 1. MR Zbl

[Castro et al. 2020] A. Castro, D. Córdoba, and J. Gómez-Serrano, Global smooth solutions for the inviscid SQG equation, Mem.
Amer. Math. Soc. 1292, Amer. Math. Soc., Providence, RI, 2020. MR Zbl

[Chae et al. 2012] D. Chae, P. Constantin, D. Córdoba, F. Gancedo, and J. Wu, “Generalized surface quasi-geostrophic equations
with singular velocities”, Comm. Pure Appl. Math. 65:8 (2012), 1037–1066. MR Zbl

[Chemin 1993] J.-Y. Chemin, “Persistance de structures géométriques dans les fluides incompressibles bidimensionnels”, Ann.
Sci. École Norm. Sup. (4) 26:4 (1993), 517–542. MR Zbl

[Chemin 1998] J.-Y. Chemin, Perfect incompressible fluids, Oxford Lecture Series in Mathematics and its Applications 14, The
Clarendon Press, New York, 1998. MR Zbl

[Constantin et al. 1994] P. Constantin, A. J. Majda, and E. G. Tabak, “Singular front formation in a model for quasigeostrophic
flow”, Phys. Fluids 6:1 (1994), 9–11. MR Zbl

[Córdoba et al. 2004] D. Córdoba, C. Fefferman, and J. L. Rodrigo, “Almost sharp fronts for the surface quasi-geostrophic
equation”, Proc. Natl. Acad. Sci. USA 101:9 (2004), 2687–2691. MR Zbl

[Córdoba et al. 2005] D. Córdoba, M. A. Fontelos, A. M. Mancho, and J. L. Rodrigo, “Evidence of singularities for a family of
contour dynamics equations”, Proc. Natl. Acad. Sci. USA 102:17 (2005), 5949–5952. MR Zbl

[Córdoba et al. 2018] A. Córdoba, D. Córdoba, and F. Gancedo, “Uniqueness for SQG patch solutions”, Trans. Amer. Math. Soc.
Ser. B 5 (2018), 1–31. MR Zbl

[Córdoba et al. 2019] D. Córdoba, J. Gómez-Serrano, and A. D. Ionescu, “Global solutions for the generalized SQG patch
equation”, Arch. Ration. Mech. Anal. 233:3 (2019), 1211–1251. MR Zbl

[Deng et al. 2017a] Y. Deng, A. D. Ionescu, and B. Pausader, “The Euler–Maxwell system for electrons: global solutions in 2D”,
Arch. Ration. Mech. Anal. 225:2 (2017), 771–871. MR Zbl

[Deng et al. 2017b] Y. Deng, A. D. Ionescu, B. Pausader, and F. Pusateri, “Global solutions of the gravity-capillary water-wave
system in three dimensions”, Acta Math. 219:2 (2017), 213–402. MR Zbl

[Fefferman and Rodrigo 2011] C. Fefferman and J. L. Rodrigo, “Analytic sharp fronts for the surface quasi-geostrophic equation”,
Comm. Math. Phys. 303:1 (2011), 261–288. MR Zbl

[Fefferman and Rodrigo 2012] C. Fefferman and J. L. Rodrigo, “Almost sharp fronts for SQG: the limit equations”, Comm.
Math. Phys. 313:1 (2012), 131–153. MR Zbl

[Fefferman and Rodrigo 2015] C. L. Fefferman and J. L. Rodrigo, “Construction of almost-sharp fronts for the surface
quasi-geostrophic equation”, Arch. Ration. Mech. Anal. 218:1 (2015), 123–162. MR Zbl

[Fefferman et al. 2012] C. Fefferman, G. Luli, and J. Rodrigo, “The spine of an SQG almost-sharp front”, Nonlinearity 25:2
(2012), 329–342. MR Zbl

[Gancedo 2008] F. Gancedo, “Existence for the α-patch model and the QG sharp front in Sobolev spaces”, Adv. Math. 217:6
(2008), 2569–2598. MR Zbl

[Gancedo and Patel 2021] F. Gancedo and N. Patel, “On the local existence and blow-up for generalized SQG patches”, Ann.
PDE 7:1 (2021), art. id. 4. MR Zbl

[Gancedo and Strain 2014] F. Gancedo and R. M. Strain, “Absence of splash singularities for surface quasi-geostrophic sharp
fronts and the Muskat problem”, Proc. Natl. Acad. Sci. USA 111:2 (2014), 635–639. MR Zbl

[Germain 2010] P. Germain, “Space-time resonances”, Journées équations aux dérivées partielles 8 (2010), art. id. 8.

[Germain et al. 2009] P. Germain, N. Masmoudi, and J. Shatah, “Global solutions for 3D quadratic Schrödinger equations”, Int.
Math. Res. Not. 2009:3 (2009), 414–432. MR Zbl

[Germain et al. 2012] P. Germain, N. Masmoudi, and J. Shatah, “Global solutions for the gravity water waves equation in
dimension 3”, Ann. of Math. (2) 175:2 (2012), 691–754. MR Zbl

http://dx.doi.org/10.1002/cpa.21851
http://msp.org/idx/mr/3987721
http://msp.org/idx/zbl/1427.35200
http://dx.doi.org/10.1215/00127094-3449673
http://dx.doi.org/10.1215/00127094-3449673
http://msp.org/idx/mr/3482335
http://msp.org/idx/zbl/1339.35234
http://dx.doi.org/10.1007/s40818-016-0007-3
http://dx.doi.org/10.1007/s40818-016-0007-3
http://msp.org/idx/mr/3462104
http://msp.org/idx/zbl/1397.35020
http://dx.doi.org/10.1090/memo/1292
http://msp.org/idx/mr/4126257
http://msp.org/idx/zbl/1444.35003
http://dx.doi.org/10.1002/cpa.21390
http://dx.doi.org/10.1002/cpa.21390
http://msp.org/idx/mr/2928091
http://msp.org/idx/zbl/1244.35108
http://dx.doi.org/10.24033/asens.1679
http://msp.org/idx/mr/1235440
http://msp.org/idx/zbl/0779.76011
http://msp.org/idx/mr/1688875
http://msp.org/idx/zbl/0927.76002
http://dx.doi.org/10.1063/1.868050
http://dx.doi.org/10.1063/1.868050
http://msp.org/idx/mr/1252829
http://msp.org/idx/zbl/0826.76014
http://dx.doi.org/10.1073/pnas.0308154101
http://dx.doi.org/10.1073/pnas.0308154101
http://msp.org/idx/mr/2036970
http://msp.org/idx/zbl/1063.76011
http://dx.doi.org/10.1073/pnas.0501977102
http://dx.doi.org/10.1073/pnas.0501977102
http://msp.org/idx/mr/2141918
http://msp.org/idx/zbl/1135.76315
http://dx.doi.org/10.1090/btran/20
http://msp.org/idx/mr/3748149
http://msp.org/idx/zbl/1390.35244
http://dx.doi.org/10.1007/s00205-019-01377-6
http://dx.doi.org/10.1007/s00205-019-01377-6
http://msp.org/idx/mr/3961297
http://msp.org/idx/zbl/1420.35424
http://dx.doi.org/10.1007/s00205-017-1114-3
http://msp.org/idx/mr/3665671
http://msp.org/idx/zbl/1375.35519
http://dx.doi.org/10.4310/ACTA.2017.v219.n2.a1
http://dx.doi.org/10.4310/ACTA.2017.v219.n2.a1
http://msp.org/idx/mr/3784694
http://msp.org/idx/zbl/1397.35190
http://dx.doi.org/10.1007/s00220-011-1190-4
http://msp.org/idx/mr/2775122
http://msp.org/idx/zbl/1228.35010
http://dx.doi.org/10.1007/s00220-012-1486-z
http://msp.org/idx/mr/2928220
http://msp.org/idx/zbl/1272.35006
http://dx.doi.org/10.1007/s00205-015-0857-y
http://dx.doi.org/10.1007/s00205-015-0857-y
http://msp.org/idx/mr/3360736
http://msp.org/idx/zbl/1323.35146
http://dx.doi.org/10.1088/0951-7715/25/2/329
http://msp.org/idx/mr/2876871
http://msp.org/idx/zbl/1235.76019
http://dx.doi.org/10.1016/j.aim.2007.10.010
http://msp.org/idx/mr/2397460
http://msp.org/idx/zbl/1148.35099
http://dx.doi.org/10.1007/s40818-021-00095-1
http://msp.org/idx/mr/4235799
http://msp.org/idx/zbl/07370994
http://dx.doi.org/10.1073/pnas.1320554111
http://dx.doi.org/10.1073/pnas.1320554111
http://msp.org/idx/mr/3181769
http://msp.org/idx/zbl/1355.76065
http://dx.doi.org/10.5802/jedp.65
http://dx.doi.org/10.1093/imrn/rnn135
http://msp.org/idx/mr/2482120
http://msp.org/idx/zbl/1156.35087
http://dx.doi.org/10.4007/annals.2012.175.2.6
http://dx.doi.org/10.4007/annals.2012.175.2.6
http://msp.org/idx/mr/2993751
http://msp.org/idx/zbl/1241.35003


GLOBAL SOLUTIONS OF A SURFACE QUASIGEOSTROPHIC FRONT EQUATION 471

[Gómez-Serrano 2019] J. Gómez-Serrano, “On the existence of stationary patches”, Adv. Math. 343 (2019), 110–140. MR Zbl

[Hörmander 1985] L. Hörmander, The analysis of linear partial differential operators, III: Pseudodifferential operators, Grundl.
Math. Wissen. 274, Springer, 1985. MR Zbl

[Hunter and Shu 2018] J. K. Hunter and J. Shu, “Regularized and approximate equations for sharp fronts in the surface
quasi-geostrophic equation and its generalizations”, Nonlinearity 31:6 (2018), 2480–2517. MR Zbl

[Hunter et al. 2018] J. K. Hunter, J. Shu, and Q. Zhang, “Local well-posedness of an approximate equation for SQG fronts”,
J. Math. Fluid Mech. 20:4 (2018), 1967–1984. MR Zbl

[Hunter et al. 2020] J. K. Hunter, J. Shu, and Q. Zhang, “Contour dynamics for surface quasi-geostrophic fronts”, Nonlinearity
33:9 (2020), 4699–4714. MR Zbl

[Ifrim and Tataru 2015] M. Ifrim and D. Tataru, “Global bounds for the cubic nonlinear Schrödinger equation (NLS) in one
space dimension”, Nonlinearity 28:8 (2015), 2661–2675. MR Zbl

[Ifrim and Tataru 2016] M. Ifrim and D. Tataru, “Two dimensional water waves in holomorphic coordinates, II: Global solutions”,
Bull. Soc. Math. France 144:2 (2016), 369–394. MR Zbl

[Ionescu and Pausader 2013] A. D. Ionescu and B. Pausader, “The Euler–Poisson system in 2D: global stability of the constant
equilibrium solution”, Int. Math. Res. Not. 2013:4 (2013), 761–826. MR Zbl

[Ionescu and Pusateri 2014] A. D. Ionescu and F. Pusateri, “Nonlinear fractional Schrödinger equations in one dimension”,
J. Funct. Anal. 266:1 (2014), 139–176. MR Zbl

[Ionescu and Pusateri 2015] A. D. Ionescu and F. Pusateri, “Global solutions for the gravity water waves system in 2d”, Invent.
Math. 199:3 (2015), 653–804. MR Zbl

[Ionescu and Pusateri 2016] A. D. Ionescu and F. Pusateri, “Global analysis of a model for capillary water waves in two
dimensions”, Comm. Pure Appl. Math. 69:11 (2016), 2015–2071. MR Zbl

[Ionescu and Pusateri 2018] A. D. Ionescu and F. Pusateri, Global regularity for 2D water waves with surface tension, Mem.
Amer. Math. Soc. 1227, Amer. Math. Soc., Providence, RI, 2018. MR Zbl

[Isett and Ma 2021] P. Isett and A. Ma, “A direct approach to nonuniqueness and failure of compactness for the SQG equation”,
Nonlinearity 34:5 (2021), 3122–3162. MR Zbl

[Khor and Rodrigo 2021a] C. Khor and J. L. Rodrigo, “Local existence of analytic sharp fronts for singular SQG”, Nonlinear
Anal. 202 (2021), art. id. 112116. MR Zbl

[Khor and Rodrigo 2021b] C. Khor and J. L. Rodrigo, “On sharp fronts and almost-sharp fronts for singular SQG”, J. Differential
Equations 278 (2021), 111–145. MR Zbl

[Kiselev et al. 2016] A. Kiselev, L. Ryzhik, Y. Yao, and A. Zlatoš, “Finite time singularity for the modified SQG patch equation”,
Ann. of Math. (2) 184:3 (2016), 909–948. MR Zbl

[Kiselev et al. 2017] A. Kiselev, Y. Yao, and A. Zlatoš, “Local regularity for the modified SQG patch equation”, Comm. Pure
Appl. Math. 70:7 (2017), 1253–1315. MR Zbl

[Lapeyre 2017] G. Lapeyre, “Surface quasi-geostrophy”, Fluids 2:1 (2017), art. id. 7.

[Lerner 2010] N. Lerner, Metrics on the phase space and non-selfadjoint pseudo-differential operators, Pseudo-Differential
Operators. Theory and Applications 3, Birkhäuser, Basel, 2010. MR Zbl

[Li 2019] D. Li, “On Kato–Ponce and fractional Leibniz”, Rev. Mat. Iberoam. 35:1 (2019), 23–100. MR Zbl

[Majda and Bertozzi 2002] A. J. Majda and A. L. Bertozzi, Vorticity and incompressible flow, Cambridge Texts in Applied
Mathematics 27, Cambridge University Press, 2002. MR Zbl

[Marchand 2008] F. Marchand, “Existence and regularity of weak solutions to the quasi-geostrophic equations in the spaces L p
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