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TWO-FRONT SOLUTIONS OF
THE SQG EQUATION AND ITS GENERALIZATIONS*

JOHN K. HUNTER', JINGYANG SHU#, AND QINGTIAN ZHANG?

Abstract. The generalized surface quasi-geostrophic (GSQG) equations are transport equations
for an active scalar that depend on a parameter 0 <a<2. Special cases are the two-dimensional
incompressible Euler equations (aw=2) and the surface quasi-geostrophic (SQG) equations (a=1). We
derive contour-dynamics equations for a class of two-front solutions of the GSQG equations when
the fronts are a graph. Scalar reductions of these equations include ones that describe a single front
in the presence of a rigid, flat boundary. We use the contour dynamics equations to determine the
linearized stability of the GSQG shear flows that correspond to two flat fronts. We also prove local-in-
time existence and uniqueness for large, smooth solutions of the two-front equations in the parameter
regime 1 < a <2, and small, smooth solutions in the parameter regime 0 < a<1.

Keywords. Surface quasi-geostrophic equation; contour dynamics; fronts; stability; well-
posedness.
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1. Introduction

In this paper, we derive contour dynamics equations for the motion of two fronts
in a class of piecewise constant solutions of the incompressible Euler, surface quasi-
geostrophic (SQG), and generalized surface quasi-geostropic (GSQG) equations; these
two-front solutions are described in more detail in Section 1.1.3 below. We also prove
local existence and uniqueness theorems for the resulting front-equations.

The GSQG equations are a family of active scalar equations in two spatial dimen-
sions, depending on a parameter 0 < a <2, which arise naturally from fluid dynamics.
They consist of a transport equation for a scalar function 6: R? x R — R that is trans-
ported by a divergence-free velocity field u: R? x R —R? which depends non-locally on
0:

0, +u-Vo=0, (-A)*2u=v1e. (1.1)

Here, x=(z,y) is the spatial variable, V+=(-09,,0,) is the perpendicular gradient,
and (—A)®/2 is the Fourier multiplier with symbol (£2 +7?)*/2. Alternatively, one can
introduce a stream function ¢ : R? x R —R, and write

u=Vty,  (=A)*p=0.

When a =2, Equation (1.1) is the vorticity-stream function formulation of the two-
dimensional, incompressible Euler equation for an inviscid fluid, and the scalar 6 is the
negative of the vorticity [54]. It has long been established that the 2D Euler equation
has global smooth solutions [42,70]. Further results on the 2D Euler equation can be
found in [54,56] and the references therein.

When a=1, Equation (1.1) is the (inviscid) SQG equation. This equation describes
the motion of quasi-geostrophic flows confined near a surface [38,52,53,58], and 6 is
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1686 TWO-FRONT GSQG EQUATIONS

usually referred to as the potential temperature or the surface buoyancy. From an
analytical point of view, the SQG equation has many similar features to the 3D incom-
pressible Euler equation [16,17]. In particular, the scalar 6 has the same dimensions as
the velocity field u that transports it.

The SQG equation has global weak solutions in LP-spaces (p>4/3) [55,60], and
convex integration shows that low-regularity weak solutions need not be unique [7]. A
class of nontrivial global smooth solutions is constructed in [11], but — as for the 3D
incompressible Euler equation — the question of whether general smooth solutions of
the SQG equation remain smooth for all time or form singularities in finite time is open.

The other cases in the family, with 0 <a <1 or 1 <a <2, correspond to a natural
generalization of the Euler and SQG equations. Local existence of smooth solutions
of these equations is proved in [12], but the global existence of smooth solutions with
general initial data is not known for any 0 <a < 2.

1.1. Patch and front solutions. Equation (1.1) has a class of piecewise
constant solutions of the form

N
0(x,t) = Ol 1)(x), (1.2)
k=1

where N >2 is a positive integer, 61,...,0 5 €R are constants, and Q(t),...,Qn(t) CR?
are disjoint domains such that

and their boundaries 9 (¢),...,0QxN(t) are smooth curves, whose components either
coincide or are a positive distance apart. In (1.2), 1q, ;) denotes the indicator function
of Q(t). The transport Equation (1.1) preserves the form of these weak solutions,
at least locally in time, and to study their evolution, we only need to understand the
dynamics of the boundaries 9 (t).

Depending on the number of regions and the boundedness of each region, we dis-
tinguish the following three different types of solutions (see Figure 1.1). In this paper,
we will be concerned with the third type, which we call two-front solutions.

1.1.1. Patches.  Equation (1.2) is a patch solution if it satisfies the following
assumptions:

(1) N>2;
(2) 5 =0, but 0, e R\ {0} for each 1<kE<N—1;

(3) for each 1 <k< N —1, the region Q(t) is bounded, and its boundary 9€(t) is a
smooth, simple, closed curve that is diffeomorphic to the circle T;

(4) the region Qx(¢) is unbounded.

Under these assumptions, 6 has compact support and contour dynamics equations
for the motion of the patches are straightforward to derive, as was first done by Zabusky
et. al. [72] for vortex-patch solutions of the Euler equation. The 2D Euler equation has
global weak solutions with vorticity in L'(R?)NL>(R?) [54,71], and smooth vortex
patch boundaries remain smooth and non-self-intersecting for all times [3,13,14]. Some
special types of nontrivial global-in-time smooth vortex patch solutions are constructed
in [8,10,23,39-41].

Local well-posedness of the contour dynamics equations for SQG and GSQG patches
is proved in [12,18,33,34]. The question of whether finite-time singularities can form
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Q(t)
-0
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9=6
(a) Patch problem with N =2. (b) Spatially periodic front problem.
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()
0=0, Q.(t)
9=0,
W_\_/ y=hy+ o(z,t)
0)
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y=p(z.t) \—/\f‘\/_\
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(1) o
=0 9=0_
(¢) Non-periodic front problem. (d) Two-front problem.

Fig. 1.1: Different types of patch and front problems.

in smooth boundaries of SQG or GSQG patches remains open, but it is proved in [35]
that splash singularities cannot form, and some particular classes of nontrivial global
solutions for SQG and GSQG patches have been shown to exist [9,22,36,37,40].

The local existence of smooth GSQG patches in the presence of a rigid boundary is
shown in [34,50] for a range of a, and the formation of finite-time singularities is proved
for a range of « close to 2. By contrast, vortex patches in this setting (with o =2) have
global regularity [49].

Numerical solutions for vortex patches show that, although their boundaries remain
smooth globally in time, they form extraordinarily thin, high-curvature filaments [25,26].
On the other hand, numerical solutions for SQG patches suggest that complex, self-
similar singularities can form in the boundary of a single patch [62] and provide evidence
that two separated SQG patches can touch in finite time [20].

1.1.2. Fronts. Equation (1.2) is a front solution if it satisfies the following
assumptions:

(1) N=2;
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(2) 601,02 €R are distinct constants;

(3) both Q;(t) and Q4(¢) are unbounded and they share a boundary which is a simple,
smooth curve diffeomorphic to R.

When 1<a<2, the kernel of the (generalized) Biot-Savart law that recovers the
velocity field u from the scalar 6 decays too slowly at infinity for the standard potential
representation of u to converge. This differentiates the patch problems and the front
problems, since there are no convergence issues at infinity in the case of patches with
compactly supported 6. A procedure to derive regularized equations for a single front
that is a graph located at y = p(z,¢) was introduced in [44]. As shown in [46] for the SQG
equation, the regularized one-front equation also follows by decomposing the velocity
field into an unbounded shear flow and a velocity perturbation that has a standard
potential representation, and applying contour dynamics to the velocity perturbation.

The front problem for vorticity discontinuities in the Euler equation is studied
in [4,59]. Local existence and uniqueness for spatially periodic SQG fronts is proved for
C*° solutions in [61] and analytic solutions in [29], while local well-posedness in Sobolev
spaces for spatially periodic solutions of a cubically nonlinear approximation of the SQG
front equation is proved in [45]. Almost sharp SQG fronts are studied in [19,28,30,31],
and smooth C* solutions for spatially periodic GSQG fronts with 1 <a <2 also exist
locally in time [20].

In the non-periodic setting, smooth solutions to the GSQG front equations with
0<a<1onR are shown to exist globally in time for small initial data in [21], and an
analogous result for the SQG front equation with a=1 is proved in [47].

1.1.3. Two-fronts. Equation (1.2) is a two-front solution if it satisfies the
following assumptions:
(1) N=3;

(2) 91,92,93 € R with 64 7592 and 6y 756‘3;
(3) there is a diffeomorphism W;: R? -R? satisfying ¥, (Q;1(¢))=Rx (1,00),

U (Qa(t)) =R x (—1,1), and ¥, (Q23(¢t)) =R x (—00,—1).

This case is the one we study here. We derive equations for the locations of the
two fronts and prove well-posedness results for the resulting systems. From now on,
we write Q4 (1) =Q1(t), Qo(t) =Qa(t), Q_(t) =Q3(t), with the same subscript changes
applying to 0, 6y, 6_. We also define the jumps in 6 across the fronts, scaled by a
convenient factor g, given in (3.2), by

O+ =ga (0+—00), O_=ga(fo—0-). (1.3)

Numerical solutions of the contour dynamics equations for spatially-periodic two-front
solutions of the Euler equation and a study of the approximation of vortex sheets by a
thin vortex layer are given in [2].

1.2. Main results. We consider two-front solutions whose fronts are graphs
located at

y=hy+op(,t), y=h_+¢(x,t),

where ¢,19: RxRy —R denote the perturbations from the flat fronts y=hy, y=h_,
and hy >h_. We also write

hy—h_
=

h (1.4)
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Since the fronts are graphs, they cannot self-intersect, but we also need to require
that the fronts do not intersect each other, which is the case if ¢(-,t),9(-,t) € L?(R)
satisfy the pointwise condition

2h —(z,t) +¢(z,t) >0 for all zeR. (1.5)

This condition corresponds to the chord-arc condition for patches [33].

As we will see, there are different features for 0<a <1, a=1, and 1 < a <2, which
are a consequence of a loss of local integrability in the restriction of the Riesz poten-
tial [64, 65] for (—A)~®/2 to the front for 0 <a <1, leading to an infinite tangential
velocity on the front, and a loss of global integrability for 1 <« <2, leading to an un-
bounded velocity far from the front. The nonlinear terms in the front equations also
behave differently, losing derivatives if 0 <a <1, and having good, hyperbolic-type en-
ergy estimates if 1 <a <2 (see Table 1.1).

o Far-Field Velocity | Tangential Velocity | Derivative Loss
(0,1) Bounded Unbounded Yes

1 Unbounded?! Unbounded Yes
(1,2 Unbounded! Bounded No

Table 1.1: Behavior of front solutions in different a-regimes

The equations describing the dynamics of the fronts are given by (3.15) for Euler,
(3.16) for SQG, and (3.17) for GSQG. Symmetric (with ©, =0_) and anti-symmetric
(with ©4 =—0_) scalar reductions of these equations are given in (3.18) and (3.19),
respectively.

1.2.1. Local well-posedness. = We briefly summarize our local well-posedness
results for the front equations. As explained further in Section 2, we use T}, to denote
a Weyl para-product with symbol b. In the following, we assume © and ©_ are two
nonzero numbers fixed beforehand, and we denote by H* and WP the standard Sobolev
spaces of functions with s weak-L? and k weak-L” derivatives, respectively.

Our results for 0 < a <1 are restricted to small data.

THEOREM 1.1 (a€(0,1)). Let s>5 be an integer, and suppose that g, € H*(R)
satisfy: (1)

H'ﬂ—TBlfa >mg, ||19—T317a[¢0 mo,

[%’0]||L2HL2 = ]Hpﬂp 2
I Totoaillzocsre 2mo [ Totwolllpas, o = my

for some constants mg,m{ >0, where the constant ¥ is defined in (5.19), the symbol
B[f] is defined in (5.20), and the symbol B1=%[f] is defined in (5.1); (ii)

co n 2n—4

SN (1 ht e g 2 o e < 00,

n=0/¢=0 m=0

where h is defined in (1.4), and C>1 is the constant depending only on s and h in
Proposition 5.4. Then there exists T >0, depending only on ||wol|lms, ||Yollms, mo,

I The far-field velocity of the two-front solutions is bounded if © 4 = -0 _.
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myy, and C, such that the initial value problem for (3.17) with 0<a <1, ¢(x,0)=p(z),
P(x,0)=1o(x) has a unique solution with p,1p € C([0,T); H*(R)).

THEOREM 1.2 (a=1). Let s>5 be an integer, and suppose that pg,1po € H*(R) satisfy:

()
|TBrosfpo)llL2 22 <Cy | Tprosygill 22 <C

for some constant 0 < C <2, where the symbol B'°8|f] is defined in (6.1); (ii)
>~ Ceal (lollfa + I Lollfan ) <00, > Cenl (ol + I Lol ) < oo,
n=1 n=1

where L =10g|0y| is the Fourier multiplier with symbol log||, ¢y, is given by (3.20),
and C>1 is the constant depending only on s and h in Proposition 6.2. Then there
exists T >0, depending only on ||volla=, ||Yollms, C, and C, such that the initial value
problem for (3.16) with p(x,0)=(z), ¥(x,0)=1o(x) has a unique solution with @, €
C((0,T); H* (R)).

REMARK 1.1. The smallness conditions in Theorems 1.1-1.2 arise from the fact that
the nonlinear terms in the front equations lose derivatives, and we use a multilinear
expansion of the nonlinearity to extract the terms responsible for the loss of derivatives.
This expansion can only be done when the solutions are sufficiently small and requires
Condition (ii). We then use the linear terms to control these nonlinear terms in a
weighted energy space, but our weight may degenerate if Condition (i) fails.

Condition (ii) also implies that the initial data satisfies the non-intersection condi-
tion (1.5), since it guarantees that |1o(x) — o (z)| < 2h for all z €R.

The case 1 <a <2 is simpler than 0 <« <1, since the nonlinear terms do not lose
derivatives, and we have the following large data result.

THEOREM 1.3 (€ (1,2]). Let s>3 be an integer, and suppose that ¢o,1o€ H*(R)
satisfy the non-intersection condition (1.5). Then there exists T >0, depending only on
lloll s, [1tboll s, and |[2h =)o+ @o| Lo (r), such that the initial value problem for the
system (3.17) with 1 <a <2, p(x,0)=¢(z), ¥(x,0)=1o(z) has a unique solution with
¢ € C([0,T); H*(R)).

Theorems 1.1-1.3 follow from a priori estimates and standard local existence theory
for quasilinear equations (see e.g. [48]). Therefore, in the following we only derive the
a priori estimates for the corresponding Cauchy problems. The same results also hold
backwards in time.

1.3. Outline of the paper. In Section 2, we provide the definitions and some
properties of fractional Laplacians, the Weyl para-differential calculus, and modified
Bessel functions of the second kind. In Section 3, we derive the two-front equations. In
Section 4, we analyze the linearized stability of the unperturbed, flat two-front solutions,
which is a particular example of a GSQG shear flow, and in Sections 57, we prove the
a priori estimates for the front equations. Section 5 treats the GSQG equation with
0<a<1, Section 6 treats the SQG equation, and Section 7 treats the GSQG equation
with 1 <a<2.
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2. Preliminaries

2.1. Fractional Laplacians. = We interpret the fractional Laplacian (—A)O‘/ 2in
(1.1) in a distributional sense, and we summarize its definition here.
Let 0 <a<2. We denote by Ll (R™) the space of measurable functions f: R" —R

such that
|f(x)]
———d .
/Rn 14 |x|nte X <00

Then (—A)*/2: L (R™") —D'(R™) can be defined by [5]

(=8)21,6) = | J(x)-(~A)2(x)dx  for all e CZ(R"),

R~

where (—A)O‘/ 2 acts on test functions ¢ as, for example, a Fourier multiplier or a singular
integral [51]. For every compact set K C R", there exists a constant C'(K,«) such that

sup
x€eR"™

(1+]x["F) (—A)O‘/ng(x)‘ <CO(K,a)||9llc2@rny, Vo€ CZ(R™) with suppé C K,

so (—A)*/?f is a distribution of order at most 2 for f € LL(R™).

As can be seen for the shear-flow solutions (4.1), the front velocity-fields u belong to
LL(R?) for 0<a<2,s0 (~A)*?u in (1.1) is well-defined as a distribution. Moreover,
the only a-harmonic solutions f € LL(R") of (—=A)*/2f=0 are constant functions for
0 < a <1 or affine functions for 1 <« < 2 [15,27]. Thus, if we require that u has sublinear
growth in x, then u is determined from 6 up to a spatially uniform constant (which
may depend upon t), and velocity fields that differ by C(t) give equivalent dynamics by
transforming into a reference frame moving with velocity C(t).

2.2. Para-differential calculus. In this section, we recall the definition of
Weyl para-products and state two lemmas. Further discussion of the Weyl calculus and
para-products can be found in [1,43, 66].

We denote the Fourier transform of f: R— C by f: R — C, where f:]-"f is given
by

f(x)Z/Rf(g)eigmdg, f(g):%‘/ﬂ{f(x)e—iﬁmdx'

For s € R, we denote by H*(R) the space of Schwartz distributions f with || f]| g <
00, where

£l s = [/R(Héz)slf(&)lzdé} "

Throughout this paper, we use A< DB to mean there is a constant C such that
A<CB, and A2 B to mean there is a constant C' such that A>CB. We use A~ B to
mean that A< B and B < A.

Let x: R—R be a smooth function supported in the interval {£€R||¢|<1/10} and
equal to 1 on {£€R||£] <3/40}. If a: RxR—C is a symbol, then we define the Weyl
para-product operator T, by

FIA©= [x (58 )a(e-n 50 fman (21)
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where
~ 1 —i€x
a(€,n)=5= [ a(z,n)e”“"dz (2.2)
27T R

denotes the partial Fourier transform of a(x,n) with respect to x. For ri,r9 € Ny, we
define a normed symbol space by

M(T17T2) = {a: RxR—=C: HUJHM(H’W) < OO}7

1 T2

lallae,, .= sup D> (1+nl*)|0)0sa(x,n)|

(z,m)ER? a=08—=0
If a€ My,1) and f€L? then T,f € L? and [6]

I Tafllz2 S Nallavte o 1F1 22

In particular, if a € My 1) is real-valued, then Tj, is a self-adjoint, bounded linear oper-
ator on L2.

Next, we state a lemma on composition for Weyl para-products proved in [47] (see
also [21,24]).

LEMMA 2.1. Ifa,b€ M35y and f€ H*(R), then

1
Tabe:Tabf'i_ZT{a,b}f"i_m/u

where {a,b} =0,a-0;b—0,b-0ya is the Poisson bracket of a and b, and the remainder
term R’ satisfies the estimate

fllas. (2.3)

”'{){/HHSJr2 S HGHM(s,:s) ||b||M(3,5)
As a consequence,
(To, Ty f = —iTiap f+R,

where R also satisfies (2.3).

Finally, we state an expansion for the action the Fourier multiplier |D|* with symbol
|€]* on para-products, whose proof can be found in [47].

LEMMA 2.2. If a€ M(31y and f € H*(R), then
|D|*Tof =Tu|DI* f +$Tpa| DI* 2D f +R,
where
RN 2®) S 1 Tipj2al DI~ fll 22 S lall ey 1 | o2

and Da means that the differential operator D acts on the function x+— a(x,&) for fized
&, and similarly for |D|?a.
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2.3. Modified Bessel function of the second kind. In this section, we
summarize some definitions and properties of modified Bessel functions, which can be
found in [57,69]. The modified Bessel function I, of the first kind is defined for v €R
by

o0

L= et (5)

m=0

The modified Bessel function K, of the second kind is defined for v ¢ Z by

T I_,(x)—1,(x)

2 sinvm

K, (x)

and K, (z)=lim,_, K,(x) for n€Z. When v>—1/2 and = >0, we can also write K,
as

v+ Ly@x)y [ cosy
K, (x)= \;E /0 P12 dy. (2.4)

In (2.4), and throughout this paper, I'(z) denotes the Gamma function.
The following lemma collects the properties of modified Bessel functions of the
second kind that we need. Properties (i)—(iv) can be found in [57].

LEMMA 2.3. The modified Bessel functions of the second kind have following properties:

(i) For each v>0, K,(x) is a real-valued, analytic, strictly decreasing function on
(0,00).
(ii) For each fized x,v>0, K,(z)=K_,(z).
(it1) If v>0, then

(i) If v>0, then

Kl,(a:)NH%e*x as T — oo.

(v) Let m>0 be an integer, and define fr: Rx (3,00) =R by
Fn () =2 ([)).

Then fm(-,v) attains its maximum, and if the mazimum is attained at some xg €R,
then

(m?+ (2v— l)m)m/2f(1/)

[zol < Vm?+Q2v—1)m,  0< fi(zo,v) < e . (2.5)

Proof. (Proof of (v).) It follows from (ii) that we only need to consider x> 0.
We use the identities (see [57])

KI//(I) _ _KV—l(x)—;KV'Fl(‘T)’
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2Ky () — 2K, (z) =2vK,(z),

to obtain

0

5 @) = () K () = 50 (01 (@) + Ko (0)

=" N (K, () — 2K, (x)).

When m=0 and v>1/2, we have 9, fo(z,r) <0. Thus fy is decreasing in x, and
its maximum is attained at xg=0 with

fO(OvV) = ;‘V(iz :

When m >0, it is clear that f,, is smooth in z € (0,00) with

fm(0,v) = zlim fm(z,v)=0,

— 00
so the maximum is attained at its critical points. Therefore, xg must satisfy

m Ky i(xo)
o Ky(zo)

For v> 3 and x>0, we have that [63]

Ku—l(ﬂ@) x
K, () 2+ (v—1/22+v—1/2’

which leads to the estimate of |zg| in (2.5). Then, using

I'(v)
2v+1 )

Fm(@o,v) = |zo|" T K, (20) = |20]™ fo(m0,v) < |20|™ fo0(0,1) = |20|™

we obtain the upper bound for f,,. |
3. Two-front GSQG systems

3.1. Contour dynamics. In this section, we derive contour dynamics equations
for two-front solutions of the Euler, SQG, and GSQG equations. For 1<« <2, the
formal contour dynamics equations diverge at infinity, and we use the regularization
procedure developed in [44] to obtain convergent front equations. Equivalent results
could be obtained by decomposing the velocity field into a two-front shear flow of the
type discussed in Section 4 and a velocity perturbation due to the motion of the fronts,
as is done in [46] for one-front SQG solutions, but we find it more convenient to compute
the front equations by use of the regularization procedure.

Using the GSQG Equation (1.1) and Green’s theorem, we find that the velocity
field of the two-front solution illustrated in Figure 1.1(d) is given formally by

u(x,t) =V=+Gxo(x,t)

—0, / G (jx—x)n* (') ds () +O_ / G (jx—x|)n’ (x ) ds_(x'),
904 (1) 9Q_(t)
(3.1)
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where the jumps O are defined in (1.3), the Green’s function for the operator (—A)®/2
on R? is given by g,G(|x|) with

@ —5loglz| if a=2, 1 if a=2, (3.2)
G(x)= Jo = s ) 3.2
|~ ifo<a<2, ;(;Fi(cff;) if0<a<?2,

n=(m,n) is the upward unit normal to 9Q (t), nt = (—n,m), and s (x’) is arc-length

on 004 (t).

The integrals in (3.1) converge at infinity when 0 < o < 1, but diverge when 1 <« <2.
To obtain the front equations, we first cut-off the integration region to a A-interval
about some point z € R and consider the limit A —oco. If 1 <a<2and O4+060_#0, we
also make a Galilean transformation x— z—wv(A)t, where v()) is chosen to give well-
defined limiting front equations and |v(A)| — oo as A— oo [44]. We assume that the
top and bottom fronts are smooth, approach y=h, and y=h_ sufficiently rapidly as
[s4(x")] = o0 and |s—(x")] = oo, respectively, and do not self-intersect or intersect each
other.

Let the top and bottom fronts have parametric equations x=X;((,t) and x=
Xa((,t), where

Xl(',t),XQ(',t)l R—)R2
Since 6 is transported by the velocity field, the fronts move with normal velocity
;X1 n=u-n, 0;Xo-n=u-n,

so the cut-off equations for X; and X5 are

CHA
DX (C,1) =1 (¢ )X () — O /< IRCICSIEDES SUMHLIS AL
C+A
—O- o G (1X2(¢",t) = X1 (¢, 1)]) 9 Xa(¢t) AL,
C+A
(915X2(<,t)—CQ(C,t)agXQ(C,t)—OJFL)\ K¢ )= Ka €58 K (¢
CHA
—O- o G (1X2(¢",t) = X2(¢,1)]) O Xa(¢ 1) AL,

where ¢;1(¢,t) and co((,t) are arbitrary functions corresponding to time-dependent
reparametrizations of the fronts.

If the fronts are given by graphs that are perturbations of y=h, and y=~h_, then
the top front is located at y=h 4+ (z,t) and the bottom front at y=h_ +(z,t), and
we can solve for ¢; and ¢y to get

c1(z,t) =0, /1G <\/<2+ (gp(x+<,t)—<p(x,t))2) ¢

—i—@_/:\G (\/<2+ (—2h+1/1(x+§,t)—g0(:v,t))2> de,

CQ((E,t):@+/)\ G (\/§2+ (2h+<p(x+§,t)—z/1(x,t))2> d¢

-2

+@/1G (\/<2+ (1/1(x+<,t)—1/1(:c,t))2) ac.
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We then obtain a coupled system for ¢ and ¢

th(.fL',t)-i-@.;_/)\ [%(iﬁLC t ‘P:E €, t (\/<2 £C+C t (CL' t))2) d¢

+®/ [z (x4 C,t) — pr(2,1) G(\/C2 —2h+(z+(,t) —p(z, ))2>dC:O,

A
ie)+0s [ Tpalor e unle] (Ve hrperco-vwn)’ ) ac

—I—@/i\[wx(x—l-Ct — by (z,8)] (\/<2 bl +Ct) — (xt))2)dc_().
(3.3)

3.2. Cut-off regularization. As in [44], we consider separately the cases
0<a<l,a=1, and 1 <a <2, since the Green’s functions in (3.2) have different rates
of growth or decay as x — 0 and |z| — co. We rewrite the system (3.3) as

o2, t)+@+8/ Hy(Cp@tCt)—pla,t)) dC
+®+8/ (z+¢,t) —p(x,1)] d¢

100, / Ha (¢, —2h+ (a4 (o) — o)) dC

+6_ a/ )[w(:c+ct) o(z,t)] d¢ =0,
(3.4)
Yol t) +0_0, / H, (¢ +,t) — ) dC
+0O_ 8/ Y(x+¢,t) =Y (x,t)] dC
+®+8I/ Ha (¢, 2h+p(z+C,t) —(x,t)) d¢
+®+8/ VTR [+ ) va.0)] dC =0,
where
Hl(a:,y):—G(I)y+/yG(\/x2+52) ds,
0 (3.5)

y
Hy(z,y)= —G( 2+ (2h)2) y+/ G(\/ x? +S2) ds.
0
When G is given by (3.2) we have for j=1,2 and fixed y that
Hj(z,y)=0 L as || — oo
i\EY)= z[i—a :

It follows that the nonlinear terms in (3.4) converge as A — 00, so it suffices to consider
linear terms in (3.4).



JOHN K. HUNTER, JINGYANG SHU, AND QINGTIAN ZHANG 1697

We only write out the computation for the first equation; the computation for the
second equation is similar. The linear term

A
Lyag(e,t) = / G(O) [pla+C.t) — ol )] dC

-

can be written as [44]

Ll)\(/)(xvt) =Uu ()‘)w(xvt) +LI7)\</7($,15),

where
0 if0<a<l,
A
v = —2/1 G(¢)d¢ if a=1, (3.6)
A
—2/ G(¢)d¢ ifl<a<?2,
0

and L] y¢—Lip as A— oo, where L; is the Fourier multiplier with symbol

/G 1—e™) d¢ ifo<a<l,
b (&)= G(¢)ecd¢ — G(Q) (1—e*) d¢ if =1,
[¢I>1 [¢l<1
/G e’ d¢ ifl<a<?2,

251n(?>1"(a—1)|§|1°‘ if a€(0,2)\{1},
={ —2y—2logl¢] ifa=1, (3.7)

1 .1
08 +=pf.— if a=2.
Y6 (&) 5P B

Here, ~ is the Euler-Mascheroni constant [68].
As for the second linear term, we have

A
Loalplz0) = [ G (VEFERR) [p(+¢0) —plw0)] d¢
= ’U2()‘)90(‘T7t) +us3 ()\)gp(x,t) —I—L;))\’Q/J(.’L',t),

where v3(A) is a divergent part (or zero if Lo » converges) and v3(\) is a convergent part

if0<a<l,
A
—2/1 G(\/W)dc if a=1, 58)
_2/?;(@)@ f1<a<o,
0
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A
_2/0 G(\/m)dc if0<a<l,
_2/1G(\/W) a  ifa=1, (3.9)
0

0 ifl<a<?2,

and L3 \v— Loy as A — 00, where Ly is the Fourier multiplier with symbol
bz(S)Z/G(x/CQ—i—@h)?)ei“dg
R

2y/m i-a :
2 K14 (2h f
F(1_%)(4h)1%x|€| e (20f])  ifO<a<2 (3.10)

o—2hle|
2/¢|

In (3.10), we use the definition of K, in (2.4) for 0 <« <2, and for =2, we use the
fact that

if «=2.

de ORI

for any ¢ >0, which gives

e Plog-+ hO = [ e T s
We denote by v4 the limit
—B(1/2,(1—a)/2)(2n)*"! if0<a<l,
o1 = lim v3()) = { 2log(2h) —2log (1+ W) ifa=1,
0 ifl<a<?,

where v3()\) is given in (3.9), with G given by (3.2), and B is the Beta function

Bla)— L@

= Tlatb) (3.11)

The cut-off system (3.4) can then be written as

0u(x,t) + [O1v1(AN) +O_va(A) +O_v3(N)] pu(,t)
+®+L>{,)\901 (.’L’,t) +®—L;,)\ww (,T,lf)

A
+®+6I/_/\H1(C,go(:v—i—(,t)—cp(x,t)) dC

A
—i-@_@m//\Hg(g“,—2h+w(:v+§,t)—cp(x,t))dg“zo,

i (2,8) +F[O_v1(A) + O1v2(N) + Orvs(N)] )y (x,t)
+O_L] (Y2 (2,) + O L L3 \ o (2,1)
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A
+@,az/ Hy (Gt — (a8)) dC
Y
A
+@+ax/ Hj (¢, 2h+ (x4, t) —p(z,t)) d(=0.
DY

In the limit A— oo, the possibly problematic terms in these equations are
[O1v1(A)+O_v2(N)]px(z,t) and [O_v1(N)+0O 1 va(N)]Ys(x,t). The only case when
these two terms converge to finite limits are when © L =—-0_ or 0 <a < 1. Otherwise,
we regularize the equations by choosing a suitable Galilean transformation. Indeed, if
we choose

o) = 20 (0 () 40 () (1),

and make a Galilean transformation x— 2 —v(\)t, then the system becomes

0,.-6_
2

O L1 xpa(2,8) + 0L \¥u (1)

pi(w,t)+ (01(A) =v2(A) —v3(A)) (1)

A
10,0, / (Gl + ) — ol ) dC

A
+e_am/AH2(<,—2h+w<:c+<,t>—so(w,w)dc:o,

Q/Jt(%t) - %

+O_Li \Y2(2,) + O 1 L3 @ (2,1)

A
+e_am[AH1(<,w<w+<,t>—w<x,t))d<

(v1(A) —v2(A) —v3(N)) Pu(2,1)

A
+6,0, | o (G20 oo+ () = V() dC=0,

The asymptotic behavior of G(¢) and G( 2+ (2h)2) as ( — oo is given by

o if1<a<?2,
G(Q)~ .
——1log( if a=2,
27
@%+O<C4—h—c> if1<a<?2,
G (VE+En?) ~ 1 .

Therefore, from (3.6) and (3.8), we see that v1(\) —va(A\) converges as A — oo, and
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we define
0 if0<a<l,
2log2—2log (14 /14 (2h)2 if a=1,
vy = hm [v1(A) —v2(N)] = o8 Og( (2h) ) s
Areo B(1/2,(1—a)/2)(2h)*! ifl<a<?2,
—h if a=2.

Putting everything together and letting A — oo, we get the regularized system in
conservative form

or(z, 1) Fveg (x,t) + O Ly (2,t) + O _ Loty (z,1)
0,0, [ i (Cpla+ ()= plo) e
+®,81/RH2(<,—2h+w(a:+<,t)—<p(x,t))dg:(), -
Pu(,t) — vty (,) + O _Lathy (2,t) + 0.4 Lo, (z,t)
+®,8I/RH1(c,w(a:+<,t)—¢(x,t))dg
+®+8I/RH2(C,2h+<p(x+C,t)—w(x,t))dQ“:O,

where Hy, Hy are given in (3.5), the symbols of Ly, Lo are given in (3.7)—(3.10), and

6. 6 B(1/2,(1—a)/2)(2h)>"1 if a € (0,1)U(1,2),
V=" 5 —(vs —v4), vs—v4=1< —2logh if a=1,
—h if «=2.

(3.13)
One can also take the derivatives inside the integrals to obtain the non-conservative
form

<Pt($7t) —|—’Ug01 (xvt) +®+Ll¢x(xvt) +®7L2¢x(xvt)

+0 [ lpalo )= pula) {G (VEFRF G = 2@ P) ~6(O} &¢
+0- [ alo+ 0= pu(oit)
{e(VEFT2h 0T G0 —o@ 0P ) - G (VP +@h)?) fac =0,

U (a,t) —vhe (2,8) + O _Lnth, (2,t) + O 4 Lo, (x,t)

+0_ [ alo+ =) {6 (VOTREFCO—IEDP) GO de
0 [ [prla+Ct) = s w.0)

{ (\/4‘2 2h+o(z+Ct)— w(:v,t)P)—G( <2+(2h)2)}d<=0.
(3.14)
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The system (3.12) has the Hamiltonian form

OH OH
<Pt+J+%—O, 1/}t+J7w—O,

1 1
r=5.% J-=g %

with the Hamiltonian

1
¢a¢40=7i/{ve+¢2—v@_¢2+91¢Lyp+2@+@_¢Lyp+@2¢1q¢}dx

R

1
+§/ {GiFl(iC—iUIaSD_‘PI)
R2

+2®+@Fg(x—x',2h+<p—1//)+@2Fl(:zr—:zr',1/)—1/)')}d:17d:17',

where p=p(z,t), o' =p(a',t), w=1v(x,t), v =1(2',t), and the functions Fy, F; satisfy
Fly(xuy):Hl(xuy)u ng(:lc,y)zHg(x,y)

3.3. Regularized systems. We write out specific expressions for the non-
conservative two-front systems (3.14) in the cases «=2 (Euler), a=1 (SQG), and 0<
a<lorl<a<2 (GSQG).

3.3.1. Euler equations (a=2). In the case of Euler equations, the Green’s
function is G(z) = —log|z|/2m, and the two-front Euler system is

0, —-6_ O o_ _
<pt(x,t)—+Th<px(x,t)—%an(:z:,t)—78 2h|81|H1/)(:17,t)

2
_%/R[%(x-i-é,t)—gom(x,t)] log (\/1_,’_ [‘p($+<,tg—¢($,t):| ) a

o
__/R[¢x(x+<,t)—wz(%t)]

27
.1og< \/1_4h<w<x+<,t>—w<x,t>> <w<x+<,t>—<p<x,t»2> o

2+ (2h)? 2+ (2h)2
(3.15)
0,-6_
2

2
_%/R[%(Hc,t)—wz(x,t)] log (\/1+ V(HC’?_WW )dC

Ot [ fpelat )~ (1)
R
.log<\/1+ % 2h) 2+ 2h) )dC—O.

Yy, t) + h#@(zﬂj——ggiliﬁﬂx,ﬂ<—S%te‘ah“%|II¢(x,ﬂ

Here, H is the Hilbert transform with symbol —isgn&.
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3.3.2. SQG equations (a«=1). In the case of SQG equation, the Green’s func-
tion is G(z)=1/|z|, and (with an additional Galilean transformation x+— z+~y(0©4+
©_)t) the two-front SQG system is

pi(2,t) = (O4 —O-)(v+logh)pq (1)
—20410g|03 s (2,1) +20_Ko(2h|03|)bs (2,1)

1 1
+9+/R[901($+Ct) ‘wat]{\/gg o(x+C,t)— (xt))Q_m}dC

+9_/R (Vo (24, ) — 0 (,1)]

1 1
{ VT (2ht 9@+ D — @ h)2  /Ct (2h)? }dc_()’
¢t(f€at)+(9+—9—)(7+10gh)¢m($7t)
~ 9010810, i (1) + 20+ Ko (2010, ipu )

1 1

+@+/R[%(x+c,t)—wm(:v,t)]

1 1
e e e A L
(3.16)

3.3.3. GSQG equations. In this case, the Green’s function is G(x) =1/|x[*~,
a€(0,1)U(1,2), the two-front GSQG system is

@t(x,t)+®+;@13<;,120‘>(2h) )

—20,sin <?) D(a—1)|0.* “He(x,t)

27
HO- St ol K G 1)
1 1
+01 [ lonte+ 1= entet | e —srmas i

1o /R Yo+ (1) — (1))

1 1
'{<<2 (20 CD) o@D 3 ([t @h)?) %}dc "

®+—6_ 11—« a—1
325305 ) e )

—20_sin (%) T(a—1)0.]* *Hy(,t)

’(/Jt(l',t)—

2/
O T O T K e (2o
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1 1
vo- [l -sctet e s - e X

+@+/R [ (@ 4C 1) =t (,1)]

1 1

'{<<2+<2h+@<x+<,t)_1/,@;,0)2)1—% T E }dc‘o'
(3.17)

3.4. Scalar reductions of the equations. In this subsection, we write out
two scalar equations that arise as reductions of the system (3.14) when the jumps are
symmetric or anti-symmetric.

3.4.1. Symmetric reduction. If ©,=0_, then v=0 from (3.13), and the
system (3.14) is compatible with solutions of the form ¢ (z,t) = —¢(x,t), when it reduces
to a scalar equation for ¢. Writing © =0, =0_, we find that the equation becomes

pi(2,6)+ 0 (Lo — L) pa(2,t)

+0 [ [palo+ ()=o) {6 (VEFTar GO =@t ) ~G(O) } &6
+0 [ [pa(o+ () +or(at)
{ (\/g‘z 2h+<px+(t)+<p(:z:t)]) ( <2+(2h)2)}d<:0. (3.18)

0=0/ga y=h+e1) 0=0/ga

(a) Symmetric GSQG fronts. (b) GSQG front with a rigid flat bottom.

Fig. 3.1: Symmetric reduction of GSQG system.

For the GSQG Equations (1.1) in the spatial upper half-plane R x R} with no-flow
boundary conditions on a rigid boundary y =0 (see Figure 3.1 and [34,49,50]), we find
by the method of images that

utxt) =g [ XM{vieux—x'w—v¢G<|x—x'|>}o<x,t>dx',
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where X' = (2/,—y') if X' = (2/,y'). In this setting, if a front is located at y =h+ p(z,t) >
0, and

bz.y.) ©/ga if y>h+o(z,t),
‘/L. b) = .
Y 0 if 0<y<h+ep(x,t),

then the regularized contour dynamics equation for a front in the half-plane coincides
with (3.18).

3.4.2. Anti-symmetric reduction. If ©,=—06_, then (3.14) is compatible
with solutions of the form

w(xvt):%)(xvt)v 1/)($,t):—(p(—x,t),

and it reduces to a scalar equation for ¢ (see Figure 3.2). Writing © =0, =-0_ and
making a Galilean transformation x+ x —vt, we find that the equation becomes

oi(w,t) +OLypy (2,t) — OLap, (—,t)
+0 [ [palo+ ) =pale. {6 (VE T+l = 2@ 0P) ~ GO} de
-0 [ [pal-2-Ct) - pa(a,t)
R
{ (\/g2 2h+o( :C—C,t)—i—cp(x,t)]?)—G( c2+(2h)2)}dg=o. (3.19)

Fig. 3.2: Anti-symmetric reduction of GSQG system.

3.5. Expanded systems.  We consider fronts with small amplitude and small
slope, i.e., ||, |¥| < h and |pz]|, || < 1, and carry out a multilinear expansion of the
nonlinearities in the systems derived in the previous subsection. We will use the ex-
panded system in the local existence proof for 0 < a <1, and the smallness condition (ii)
in Theorems 1.1-1.2 is sufficient to justify the expansion.
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(1) When 0 < a <2, we have the Taylor expansion

(1+x)71+°‘/2:1+20nx", Cnf(n—l—l;)(F%()——n) (3.20)

n=1

Taking Fourier transforms and letting n,, = (11,72, .-,M2n+1), we find that the first non-
linear term in the first equation of the systems (3.16)—(3.17) can be written as

1 1
z\T ) — P2\, B ) o d
[ ettt = put tﬂ{(C2+(<P(x+é“)—90($af))2) g } C

G p(z,t) —p(z+C )" L

:_Zc—naz/ T (11,)P (01, 1) (12, 1) -+ @2 1, 8)e’ (MMt Fmns) 4y
—_ 2n+1 R2n+1

[N

where

/ H2n+l ¢imi€)

C2n+l ¢|*~ sgn¢dc. (3.21)

Replacing ¢ by 1 gives the first nonlinear term in the second equation of the systems
(3.16)—(3.17).

For the second nonlinear term of the first equation of these systems, we take Fourier
transforms and use (2.4) to get

(U(z+¢.8)"
|

I
B(i,n—i-Ta)@h)a_%_l if m=0,

2/
U (n+1-2)@dh)nt"

1—a m .
- a| z|"+TKn+lfTa(2h|3x|)(1/1($7t)) ifm>1.

Then, using (3.20), we get

R

! 1
.{(<2+(_2h+¢($+C,t)—go(:v,t))2)13 B (C2+(2n)2)1—% }dC

Yo (2 + 1) — pu(a,t)
ZC" (<2 + (2h)2)n+17%

- [—4h(¢<x+<,t>—w<x,t>) + (40— plr,0)?] a¢

x—}—Ct ( t) 2n—4+1

n=1/0=0

n=1

oo n 2n—f0+1

2n—l+1—m P(z+Ct)"
Py d”’f’ma””{(@(z’t)) : /R(c2(+((zh>2)’21—% dc}

n=1¢=0 m=0
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= i zn:dn,e,o,laz { (@(I’t))QnJH}

n=140=0
co n 2n—40+1

DY dnema®e{ (o) T T 0, K e (2010]) ((@,0) ™ D,

n=1¢=0 m=1

where
g I'(2)(—4h)
T 2n— L+ DI+ D) (n+1-0T (2 —n)’
g (—1)2n+1=mT (2) D (2n+2—£)(4h)°
O o+ )T+ D (n+ 1= OT (2 —n)T(m+ 1T 2n+2—m—1)’
20/l 1—a
d s VT £”+ 2 )IJ i =0,
p T(n+1-2)4h)+i-3
n,l,m,l —
n,d,m " 2ﬁ 1fm21

(n+1-g)4h) =

The computation for the second nonlinear term in the second equation of the systems
(3.16)—(3.17) is similar. We only need to replace ¢ by 1, multiply d, ¢ and dy ¢m by
(—=1)¢, and replace dp, ¢.m.1 by dn.¢.m.2 Where

dn,é,m,2 = (—1)€dn747m)1-

All of these constants grow at most exponentially in n, so the series in the expanded
equations converge when ¢, 9 are sufficiently small.

(2) When o =2, we use Taylor’s expansion and Fourier transform to find that the first
nonlinear term in the first equation of the system (3.15) can be written as

¢
1 1 )™ Jp(z,t)—p(z+(,t el
MRS Y ) LCUEFER D)
T 24~ Jgn(2n+1) ¢
1 s - ~ ~ ~ '3 x
= _2_207161 Tn(nn)(p(nlut)(p(n%t)(p(n2n+lut)e (A2t n2n) d’l’]n,
7Tn:1 R2n+1

where T, also lies in the family (3.21) for =2 and

(=n"
2n(2n+1)"

Cn =

Substituting ¢ by 1 gives the first nonlinear term in the second equation of the system
(3.15).

For the second nonlinear term in the first equation of this system, by Taylor expan-
sion and Fourier transform, we have

_ %‘/R [wm(:ﬂ—l—C,t)—(Pz(%tﬂ



JOHN K. HUNTER, JINGYANG SHU, AND QINGTIAN ZHANG 1707

Ah((z+Gt) —p(@,t) | (W(z+Gt) —p(x,t))?
-log <\/1— 2 (2h) + &1 (2h) )dC

)) 2n—0+4+1

a:—l—(t o(x,t
e
co n 2n—40+1

= gD 3 e z{ ot [ o)

2\n
nlmeO 2h))

= % i idn,eyo_;az{ (<P($,t)) 2nf£+1}

n=0/¢=0

1 © n o . . . .
+%ZZZdn,f,m,lam{(sp(‘rut))2 . |61|n iKn—%(2h|alE|)(w(x7t)) }7

n=1/=0m=1

where

S ()T

22n— 0+ 1)+ 1) (n+1-¢)
;o (=1)" T (n) (4h) T (2n+2—4)

An.t.m )
b @ —+ DD+ )T (n+1—O)T (m+ )T (2n+2—m—¢)
B T — 1 2on 1-2n
d/néO'ﬁ (n—3)2h) if m=0,
d 7 ['(n)
n,l,m,1 —
~n,é,nL 2\/E if m > 1.

The calculation for the second nonlinear term in the second equation of the system
(3.15) is similar; we only need to exchange ¢ and +, multiply d,, ¢ and dn o.m by (=1)%,
and replace dn ¢,m,1 by dn ¢,m,2 Where

dn,é,m,2 = (_1)£dn,€,m,l-
Finally, we summarize the expanded systems for 0 < <1. Similar expansions apply

for 1 < a <2, but, since we do not need them, we will not write them out explicitly here.
When 0 < a <1, the expanded two-front GSQG system is

0,.-06_ 11—« 1
cpt(x,t)—i-"’TB(— —)Wgom(:v,t)

2" 2 )
+20, sin <?> T(a— 1[0 pu (2, 1)
2y
+o- F“__)Mmla|u *K1e (2010, ()

c .
-0 o aLE Tn D t)Q t)--- O " t i(n1 +n2+”'+"72n+1)$d
+nZ:12n+1 /R%H (M) (M, )@(12,8) -+ G(2n41,t)e -

+6_ i zn:dn,e,o,lax { (‘/’(‘T’t)) MJH}

n=1¢=0
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oo n 2n—f¢+1

+6- Z Z Z dn,f,m,l

n=1¢=0 m=1
0 (pla, )T 0T K, e (2RO (4 0) " | =0,

0,-6_ <1 1-a

1
1/)t(17at)— 2 277) 71/)x($,t)

(Qh)l—a
+20_sin (%) T(a—1)|0,' ¥y (2,t)

2\ l1-o
+O4 a\/— 177a|81| 2 K%(2h|aw|)@w($at)
F(l—f) (4h) =

= C ~ ~ ~ .
—-0_ ——0, T, t t)--- i1, t)etmtmt tnniz g
7;1 In+1 w/]R2"+1 (nn)w(nla )1/1(7727 ) ’(/1(772 +1, )e .,

+ ®+ Z Zdn,é,ogam { (w(l',t)) 2n—~0+1 }

n=1¢=0
oo n 2n—4+1

+ ®+ Z Z Z dn,é,m,2

n=1/=0 m=1

O (W) T 0 K 1 (2R10.]) (p(,1) " | =0,
(3.22)

When a=1, the expanded regularized two-front SQG system is

th(LL',t) - (6-‘1- —9—)(7+10gh)%0z($7t) _2®+10g|aw|(pm(x7t)+2®—K0(2h|6m|)ww(x7t)

2n+1

+0O_ izn:dn,e,o,laz { (@(I’t))mli”l}

n=14=0
oo n 2n—f¢+1

FO-3 D Y duemade{ ()0 K (2000, ]) (vl 1) "} =0,

n=1¢=0 m=1

00 c .
-0 — 0, T, 5 ) 1)+ B(Nopst,t)elmmt tnnie g
+;2n+1 /R (1)@ (1, 1)@(n2,t) - G(M2nt1,t)e n,

wt(xvt) + (6-‘1- - 6—)(7+10gh)¢m(xat) —20_ 10g|81|¢w(x,t) +2®+K0(2h|81|)<pw(x,t)

C ~ ~ ~ .
—O_ — 9, T, t £)--- o p, b)etmtnz e tnm T g
> T / ()P (02,8) -+ D (a1, )e m

n=1

+0, Z Zdn,e,o,gam { (w(%t))%_gﬂ}

n=14=0
oo n 2n—4L+1

0L Y duemade{ ()T 0 K (201021 (gl 1) " } 0.

n=1¢=0 m=1
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4. Linearized stability
The GSQG Equation (1.1) has steady shear-flow solutions in which

_ o = 1/2
0=0(y), u=(U(y),0), 19,|°U=~0,, [9,]=(-02)"".

Functions 6 that differ by a constant give the same solutions for U, and distributional
solutions for U € L) (R) are unique up to an additive constant C' for 0 <a <1, or an
additive linear function Ay+C for 1 <a<2. We set these homogeneous solutions to
zero for definiteness.

A particular example of a shear flow is the unperturbed two-front solution given by
w=1=0 and

9+ lf y>h+,
é(y)z Oy ifh_<y<hyg,
0 y<h_.
Then
a © O_
|0y | U:—g—+6(y—h+)—g—(5(y—h_),

where the jumps O are defined in (1.3). The solution is
B(1/2,(1-0)/2) [04 ly— R[> +0_y—h_[*1] ifae(0,1)U(1,2)
Uy)={ 264 1ogly —hy|+20_logly —h_| if a=1,

%®+|y—h+|+%®,|y—h,| ifa=2,
(4.1)
where B is the Beta-function (3.11).

For 0 < a< 2, this shear-flow solution is the SQG or GSQG analog of the piecewise
linear shear flow that is often considered for the Euler equation with a=2 (see Fig-
ure 4.1). The tangential velocity of the shear flow on the fronts is finite if 1 <a <2,
but diverges to infinity if 0 <a<1. In addition, U(y) =0 as |y| o0 if 0<a<1 or
©4 +0_ =0; otherwise |U(y)| — o0 as |y| — oo.

There do not appear to be many studies of the stability of SQG and GSQG shear
flows u=(U(y),0). However, as noted by Friedlander and Shvydkoy [32] for SQG shear
flows, the classical necessary conditions for the linearized instability of Euler shear flows
— the Rayleigh and Fjgrtoft criteria — carry over directly to sufficiently smooth flows:
If there are linear modes with exponential growth in time, then |9,|U must change
sign, and for any constant U,, the function (U —U,)-|9,|* U must be strictly positive
for some values of y. Conversely, Friedlander and Shvydkoy [32] prove that the SQG
shear flow with U(y)=siny is linearly unstable.

To study the stability of the two-front GSQG shear flows (4.1) by contour dynamics,
we linearize the system (3.14) about ¢ =1 =0 to get

01+ 00, +0 1 Lip, +0 _Lat, =0, Ve — 0 + O _Lith, + 0 Lop, =0. (4.2)

Taking the Fourier transform of (4.2) with respect to z, we get the system

(3 (NS L SeNe) (5) @
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Y
0. =1 9. =0
0=0 U 0o =1 U
9 =1 0-=0
(a) Symmetric Euler shear flow. (b) Anti-symmetric Euler shear flow.
-/ n -/ ne
b=0 U =21 U
\ P—— /e—o’-
(c¢) Symmetric SQG shear flow. (d) Anti-symmetric SQG shear flow.

Fig. 4.1: Euler and SQG shear flows. The symmetric flows have scaled jumps O+ =0_ =1, and the
anti-symmetric flows have O =—-0_=1.

where the symbols by, by of Ly, Lo are defined in (3.7)—(3.10). The characteristic
polynomial (in i) of the coefficient matrix in (4.3) is

12 +ib1(6)[04 + 0 Ju—E*[0_b1 () —v] [0, b1(§) + 0]+ 01O _£2b3(¢),
with roots
pa(€)= 5 {~ib1(€) (0, +0 )£ VAD ), (4.9

where the discriminant A is given by

A(@——[mwlwm—@>+2v|s|] 10,0 €3(e).

If ©,0_>0, then A(£) <0 for all £€R, so the roots of the characteristic polynomial
are imaginary and the GSQG shear flow is linearly stable. In particular, the symmetric
Euler and SQG shear flows shown in Figure 4.1(a) and Figure 4.1(c) are linearly stable.
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On the other hand, if A(£) >0 for some £ €R, then there is a mode with positive
growth rate, and the shear flow is linearly unstable. For the anti-symmetric Euler shear
flow (a=2) shown in Figure 4.1(b), with [£]by (&) =1/2, |£]b2(€) = e~ 2"El /2, and v=—h
from (3.13), we get that

A() =e MMl —(1—-2hl¢)?,

in agreement with the standard result obtained directly from the Euler equation [67],
and there are unstable modes for 0 < h|€| <0.63923.
For the anti-symmetric SQG shear flow (a=1) shown in Figure 4.1(d), we find that

A(€) = 1682 K2 (2h[¢]) —16¢2 log(hI€]) +]7, (4.5)

where 7 is the Euler-Mascheroni constant. A numerical plot of the corresponding growth
rates and wave speeds is shown in Figure 4.2. These plots are qualitatively similar to
the ones for the Euler equation. In both cases, the instability results from an interaction
between negative and positive energy waves on the fronts that leads to an exponential
growth in time when the horizontal wavelengths of the waves are sufficiently large in
comparison with the distance between the fronts.

Growth Rate
Wave Speed
-

0 01 02 03 04 05 06 07 08 09 1 o 01 02 03 04 05 06 07 08 09 1
Wavenumber Wavenumber

Fig. 4.2: Left: Growth rate Su for anti-symmetric SQG flow in Figure 4.1 with © 4+ =1, ©_ =—1, and
h=1, calculated from (4.4) and (4.5). Right: Real (dashed) and imaginary (solid) wave speeds c=p/§.
The flow is unstable for 0 < h|€| <0.71129, with the mazimum growth rate occurring at h|&|~0.51756.

5. A priori estimates for the two-front GSQG (0<a < 1) systems

5.1. Para-differential reduction. = Throughout this section and the following
ones, we fix h>0 in (1.4) and use C(n,s) to denote a generic constant, which might
change from line to line in the proof, depending only on n, s, and h that grows no faster
than exponentially in n.

First, we state an estimate which shows that we can distribute derivatives on each
factor of ¢ in the multilinear terms in the front equations. This estimate is not sharp,
but it is sufficient for our needs below.

LEMMA 5.1.  Let T, be defined by (3.21) for n€N. Then

gl+a 2ntl 9l+a -
o H|77j|+3_a for all m,, e R,
j=1

T (m,,)] <
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Proof. Splitting up the integral and using a Taylor expansion, we have

2n+ 1 ”7] ¢ |

I1;Z
n (M, |—/ |<|2n+2 o~ dC

/ 2ﬁ1 22n+1

n / Tona—a 4
I¢<2 ; il |C|1 @ Jigps2 I¢]2n e
21+0¢ 2n+1

H |773|+

0

We prove the following propositions which allows us to write (3.22) in a form that
is suitable for constructing weighted energies without a loss of derivatives.

PROPOSITION 5.1. For 0<a<1, suppose that ¢(-,t),(-,t)€ H*(R) with s>5 and
lollwace +||0|lwaee is sufficiently small. Then

=Y 50 / T, (0,) G0 0)@ (2.£) -+ P12 £)ei P H s 4y
1 2n+1 R2n+1

= 8x|8x|17a{TBlfa[Lp]g0(I,t) +D71T37a[¢]<p(x,t)} +81TBo[¥,]<p(x,t) +Rq,

where the symbols B'=%[p], B%[¢], and B~%[p] are defined by

11—«
21

9:B'*[¢](-,€),

n

Bl 6) =Y By el(+6), BYll(-&) = Bulel(-,¢
-3 )=

with

B ] (+,€) = —2¢n(ar— 1) sin (?)
e B )]
B =20 (- Dsin (G )7 sz(“im)

f[l (im@(m)x(%))/{) . ansj _adéndﬁn],
B ol = 2,1 - a)r(a - sin () 7 l L.l Zm)

2n

11 (injsﬁ(nj)x((?%%)) /[0 o & ims] ds"d”"]

Jj=1
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1—«

=5 0By [2)(,9)-

Here x is the cutoff function in (2.1), 11,,= (N1,M2,...,N2n) and 8, = (s1,82,...,52n). The
operators Tgi-aj, and Tgoy) are self-adjoint and they satisfy the estimates

8

IB* el Mgy S D C(n,8)enlll@llia.ce

n=t (5.2)
”B ||M('a 5) Z (n,s |C7l|||s0||W4v°°'
while the remainder term Ry satisfies
[Rullzs Sllelas > Cns)leal ol fa- (5.3)
n=1

Similar conclusions hold for 1.

Proof. In this proof, we suppress the time variable for simplicity.
By symmetry, we may assume that |n9,1] is the largest frequency. Then

Cn

- —8:6 Tn b b e D n i(771+7]2+"'+772n+1):6d
et B OB CIURE SIS .

S R B AURETAETARETN
R
(5 1<|n2n41]
for all j=1,2,..., 2n

i(m +n2+-+n2n PN iN2n
L etm+n2 72 )””dnncp(n2n+1)em2 12 ANan i1

=1
[751< 02041 J
for all j=1,2,....2n

M T Ay G (g 1) e BT A

(5.4)

We expand the product in (5.4) into terms of the form 2" ~*(1—x)¢ and consider two
cases.

Case I. When we take only factors of x in the expansion of the product, we get
the term

o[ Tnmn)ﬁx(m)@(m)

=t N e (5.5)

[7;1<|n2n+1]
for all 7=1,2,....2n

el Fmn)T Agy, G120 -1)e" ™ 1 Ay 1.
In the following, we write s, = (s1,82,...,82,+1)-
By (3.21), we can write

2n+1
T, (n,) = / [¢[* " sgn¢ H in;e™i*5¢ ds,, d¢
[0 1]2n+1
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— 2T (a)sin <%> 2ﬁl(im /

=1 [0,1]2n+1

2n+1 e 2n+1
Z 154 sgn( Z njsj) ds,

j=1

. (T« o
=—2I'(—1)sin <7> 1M2ng 1]

2n n; 11—« n; 11—«
N Gin; / 1+ / s ds,,.
]1;[1 ! 0,1]2n Zl 772n+1 Z 772n+1 "

Substitution of this expression into (5.5) yields the following terms

2n
s (2n+1)n; \ .
w0 [ [ e I o)
1 M2n+1
m|<|n2n+1\ ’
for all j=1,2,..., 2n

ei(mtmat - tnzn)z dﬁnsﬁ(n2n+1)ein2"+1xd772n+1 , (5.6)

—cn@m/]R / T%(nn)ﬁx(m)ﬂm)

j=1 TR2n+1
[7;1<|n2n+1]
for all 7=1,2,....2n

ellmtnattnzn)e qn oy, )e 2t T dny, 0 (5.7)

—cn@m/]R / Tna(nn)ﬁx<m)¢(m)

j=1 T2n+1
\m|<|nzn+1\
for all 7=1,2,....2n

e/ Fmt FRn)T 4y, B 41)€ P A1, (5.8)
2n
-~ 2n+1)n; \ .
R =1 T2n+1

175 1<In2n41]
for all j=1,2,..., 2n

ei(m+mat-tnzn )z dﬁn¢(n2n+l)eiﬁ2n+lw dnani1, (5.9)

where
T 2n
T (n,) = 2T (a— 1>sm( )|n2n+1| T Gn),
Jj=1

11—«

ds,,

T (n,,) =20 (a—1)sin (%) ﬁl g /0

2n 2n
_a TQ o ) .
T, %(n,)=-2I(a )Sln(7)|n2n+l| (Sgnﬁ2n+1)H(mj)/[ . andeSn,
j=1 015 j=1

ZnJSJ

1]2n

2n

T3 ) =20~ Dsin (5 )l [T i)

Jj=1
2n ;i 11—« 2n n;
: 1+ I s —1-(1-a) . s}dén.
/[0,1]2"{‘ ;772n+1 ! ;nznﬂ ’



JOHN K. HUNTER, JINGYANG SHU, AND QINGTIAN ZHANG 1715
We claim that (5.6), (5.7), and (5.8) can be written as
8x|8z|1_aTBl—a[¢]<p+R171, 8ITBO[¢]</7—I—R172, and (%CTB—a[g,]gD-l-RLg, (5.10)

where R 1, Ri2, and R 3 satisfy the estimate (5.3). Indeed,

F [amTB;;a[g,] (1.1"9)] (©)

s (Z)e ()

2n

'/Rm (5 n- an)l:[<“7]90 1j)X (%))dmﬂn)dn,

while the Fourier transform of (5.6) is

2n+1
—C?"I‘( a—1) s1n< >z§/ / 5<§— Z nj)|772n+1|1a

Iy |<Im2n 411 =t
for all j=1,2,..., 2n
2n
(2n+1)n ) L
11 (X(ij)(%)@(ﬁj) A7, ¢ (2n+1) 21
j=1 Mon+1
The difference of the above two integrals is
c o 2n+1
—T(a—1)sin| — )i 5 €— ) moni] T
erte- (5 Jie [, (6= 30w Yo
2n
|§—772n+1|> ( A 2(2n+1)n;
X\ m«p(n-)x(i) 5.11
(|§+772n+1| U T §+nant1 (5:11)

(2n+1)n; > L
—H 1 ( ) d n n d n )
H ( mp(m)x ("= —— 7P (M2n 1) dj2n 41
where I, is the function which is equal to 1 on {|n;| <|n2n41], for all 1,...,2n} and equal
to zero otherwise.

When n),, satisfies

1 1 .
|77]|§4—0m|772n+1| for 3.11]:1,2,...72n, (512)

we have I,, =1 and y (%) =1. In addition, since & = Zjnirln], we have

2n
|§_n2n+l| _ ‘Ej:l j %|772n+1| _ i 3
|§+772n+1| }Z?Zl nj +2772n+1} - (2— %)|T]Qn+1| 79 40

2(2n+1)|77j|< 25 |M2n41] 2 3

> = < .
€4+ n2nt1] ~ (2= 55)|m2ngr] 79 40
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Therefore, the integrand of (5.11) is supported outside of the set (5.12), and there
exists j1 €{1,...,2n}, such that |9, 1| > |n;, | > %ﬁmmﬂrﬂ. It follows from this com-
parability of |n;, | and [n2,+1| that the H*-norm of the error term (5.11) can be bounded
by

el C(n,8)lenl 3.0
so (5.6) can be written as in (5.10). Similar calculations apply to (5.7) and (5.8).

The symbols B),~“[¢] and Bp[p] are real, so that Tpi-a, and Tgof,) are self-
adjoint. On the contrary, the symbol B~%[p] is purely imaginary. Again, without loss
of generality, we assume |12,| =maxi<j<an|7;| and observe that there exists a generic
constant C' >0 such that

/[011]271

Thus, using Young’s inequality, we obtain the symbol estimates (5.2).

11—«

dén - |772n|17a S C.

2n
E Njsj
=1

To estimate (5.9), we observe that on the support of the functions x (%), we

have

mil 1
[M2ns1| ~ 10(2n+1)

Since s; €[0,1], a Taylor expansion gives

(T2 gl [323

}Tr%il(nn)|< |1+a

~

|772n+1

Therefore, the H*-norm of (5.9) is bounded by C(n,s)|cy ||| a:||¢|l 5. -
Case II. When there is at least one factor of the form 1 —y in the expansion of the
product in the integral (5.4), we get a term like

wo.[ [ mm]l [1_X(<2n+1>njk>hﬁ X((%H)m)

- T2n+1 = T2n+1
Iy | <inan 1] h=1 =t
for all 7=1,2,....2n
2n
JTe@mertm et tmnr an, g(nan ) ™1 dipop 41,
j=1

(5.13)

where 1</ <2n is an integer, and {jx:k=1,...,2n} is a permutation of {1,...,2n}.
The function 1—x (M) is compactly supported on

M2n+1

|77j1| > 3
|’I72n+1| - 40(2n+1)

By assumption, 12,41 has the largest absolute value, so

3
Y7 < <
40(2n+1) m2n+1| < 105, < [n2n1l,
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meaning that the frequencies |n;,| and |72n41] are comparable. Using Lemma 5.1, we
can bound the H*-norm of (5.13) by

ol (Zcm,sncuwmm),

n=1
and the proposition follows. a

PROPOSITION 5.2. For 0<a<1, suppose that o(-,t),¥(-,t)€ H*(R) with s>5 and
llollw .00 + [|0]|waee is sufficiently small. Then we can write

co n 2n—~+1
SN dnemada { (o) T T 0 K e (2010 (0(26) "
n=14=0 m=1

T (@ ) Po T Ry

where

oo n 2n—¢

B o] =33 dupma 20—+ 1-m)B) o),
n=1¢=0m=1 (5.14)

« n—~{—m nt iz m
B o= 970K (200,

The symbol %ga) [p,9] and remainder Ro satisfy symbol estimates

o n 2n—{

1B [0 My S DD Y Cln,s)ht =200 g 2nromy o,

n=14=0m=1

o n 2n—¢

IRl Sllllzr= YD D Cln )b 20Dy lll ™

n=1/=0m=1

oo n 2n—{

Il 3230 30 Ol sl el et

n=1¢=0m=1

— - —zn oz—é n—
el YD Cln,s)ht =23 ||l

n=1/=0
(5.15)

A similar result holds with ¢ and 1 exchanged.

Proof. We suppress the dependence of variables of ¢ and v for simplicity. By the
product rule and Bony’s decomposition, we see that for m <2n—/¢+1,

00 {1 0L K 1n (20100 }

——m n4ize m
[(2n =41 =m) g = 0T K e (2RI 0 (2,1)
— —-m nize "
+ 2|0, FUK,  1ma (200, )0

= (2n—€+1—m)T%(a) [%w]%’m‘FRZ,n,Lma

1,n,6,m
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where B

1,n,4,m

[p,1] is defined as in (5.14), and, by Lemma 2.3,

l—a —n—15e m n—~_—m
IRl < Ol (252 )15 el 1 Il

1— —a
O (e L 1

Dl fpace lle st
When m=2n—/{+1, again, by Lemma 2.3, we have

1—a
R2,n,€,2n7€+1 - 8x|8m |n+T Kn+1*T°‘ (2h’|az |)1/)2n72+17

11—« _p_3za n—
R san-esallne < Clns)T (4 252 )= ol [t

The estimates (5.15) for B! [,] and

co n 2n—~0+1

RQZZZ Z RQ,n,Z,mv

n=1¢=0 m=1

then follow from the above estimates and Stirling’s formula applied to the I'-function
coefficients. a

PROPOSITION 5.3. The first equation of system (3.22) can be written as

or(x,t) + v, (,t)+20 4 sin <?> NGRS 1)|az|1fa%ﬁ (z,1)

+8xT‘B(+°‘)[<p,w]g0(I’t) + ®+8m|az|lia{T31*a[@]¢(xvt) +D71TB*°‘[¢]@(I¢)} +R=0,
(5.16)

where Ty is self-adjoint and its symbol and the remainder term R satisfy the

NRRY
estimates

B o] =0-3" 3 @n— L+ 1)dn 019> +01 B +O_B{ ),
n=1¢=0

1B [0, ¢l sy S D D Cn )R o3l + 37 Cln,s) e [0l
n=1/4=0 n=1

oo n 2n—{

+0 0D Clas)h =l ™ [l e, (5.17)

n=14=0m=1

RN e SB™O Nl +llllzr Y Cln,s)lenlllolia

n=1

Hllella D Clnys)h " ||
n=10=0

o n 2n—¢

el DD Y Clns)h' =2 Ol B | o

n=1/¢=0m=1
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co n 2n—¢

gl YD D Clnys)h = Cm |l fyl| i L

n=14=0m=1

Hllae YD Cln,s)h 2o ||yl (5.18)

n=1¢=0

Proof. We first use Bony’s decomposition to write the nonlinear terms as

dn,E,O,laz {(‘P(xvt))2nie+1 } = dn,E,O,l (2n —{+ 1)T(<p(m,t))2n7£¢90 (‘Tvt) +Rs3,

where

2n—~

IRsllzz= S Cn,s)n "= % gl o i

Using Lemma 2.3, we obtain

Her 005 Ky (2010,
(1——)(4h)

Therefore, by Proposition 5.1, Proposition 5.2, and Kato-Ponce-type commutator es-
timates, we obtain (5.16) and the estimates (5.17) and (5.18). The self-adjointness of
Tos [,y follows from the fact that the symbol B[, 1] is real-valued. O

Shm || e
HS

5.2. Energy estimates and local existence. In this subsection, we omit the
dependence of ¢ or 1 in the symbols B[], B'~*[p], B~%[¢], and B(¥)[p,1)] when there
is no ambiguity.

Writing

ﬁ:2sin(ﬂ)m:—2sin(%)F(o¢—1), (5.19)

we define S[y](z,n) as

e =(1- 55 lwn) " (5.20)

which, thanks to (5.1), is a solution to the first order variable coefficient PDE
n0yB' 0,8+ [V (2—a)—ndyB'~*—(2—a)B'~*]9,8+iB~*B=0.

Since B'~*[p] € M(35) with estimates (5.2), we derive that S[p]€ M35 with es-
timates

oo

181e] = Ul s sy T 0Bl M1y + 192 B[] LMz, S Z (n,8)lenl|@lfame.  (5.21)

According to the decomposition of the nonlinear terms in last subsection, we con-
struct a weighted energy as follows.

i i 2j+1
Eg)(t)z/|D|JT5[@]<p(x,t)-(19—T317a[¥,) T DY T () d,

(5.22)
EQ (1) =lll72 +ZE
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Now we are ready to derive a priori estimates for the system.

PROPOSITION 5.4. Let s>5 be an integer and (p,1) a smooth solution of (3.22), with
(p0,%0) € H5(R) x H*(R). There exists a constant C > 1, depending only on s, such that
if (po,%0) satisfies

[0 =Tpi-aipolll oy g2 2m0. [[9=Tr1-ayqll 2, 12 =m0,
[ Tste0lll 12, 12 2 ™0, 1 Totwall 2, 2 =m0, (5.23)
oo n 2n—/{
SO0 O (1R R ) ol o . < 00,
n=0£=0 m=0
for some constants mg,my >0, then there exists a time T >0 such that
1 1
Hﬂ_TBlf‘*{w]HN_)N > §m0, Hﬂ_TBlf‘*[w]Hm_)N > §m0,
1 1
1 Tstlll 22 >5m00 [ Towill g2 > 500
oo n 2n—{
SN O (1R TR ) el e < o0,
n=0¢=0 m=0
for all t€[0,T], and
d I (s
B O+EL O} < (ol +101%:) - F (lllwsoe, [ llwae) (5.24)

where E’g) (t) is defined in (5.22) and E~1(;) (t) can be defined analogously, and F': R x
R4+ — R is a continuous, real-valued function that is monotone-increasing in either vari-
ables, such that

co n 2n—{

~mn —2nta—32 n——{—m m
F(lpllwss, [$llwee) 330 D7 € (14nE24e8 ) o 2y . (5.25)

n=0/¢=0 m=0

Before proving this proposition, we first state a lemma, whose proof follows directly
from definition of Weyl para-product and Kato-Ponce-type commutator estimates, and
is similar to the proof of Lemma 4.2 in [47].

LEMMA 5.2. For any positive integer k, if (p,1) is a smooth solution of (3.22) and
feCLL?, then

O (0 —Tp1aw)* f =04 —Tpr-ae) fr = k(4 — Tpi-ate)* T, pr-afo) f + R1(f),

where the remainder term satisfies

[Ra)[, 1712 Clplhscm [l

Proof. (Proof of Proposition 5.4.) We first observe that ||¢||z2(r) is conserved
by the system, so we only need to estimate the higher-order energies. By assumption
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(5.23) on the initial data and continuity in time, there exists T'>0 such that for all
0<t<T,

co n 2n—¢

SN O (1 B e < 00,

n=1¢=0 m=0

and
||T/3[sa]90HHs =l a-
We first apply T, to Equation (5.16) to obtain
0T 0 — O+0u]0a|'=* (0 = Tpr-afy)) Tpie) @ + 10 Tpie) 0+ Oa T o o) L)
= 0440 7300010, 17) = [Tyt 010~ Tin-et] 00D 0~ T-< Tt
— [To11:0x Toner 1] = O+ [Tpp), 0x D™ 0| Tp-ai)] 0= [Tp(, 0]
+ [Tp(), 0] 0 = T R- (5.26)

We start with the first commutator term in the curly bracket on the right-hand side
of the equation. Using a Taylor expansion, we obtain that

]:

O [Tp107,0210: %] SD] ()

=0 [ (5236 S0 Yitulal =~ i) pma

—oz-a) [ e ([0 e (6= S50 )eman+ R,

where @ denotes the partial Fourier transform of a symbol a defined in (2.2), and R4 is
a remainder term satisfying

o0
IRl SNz Y Clns)lenlliolfa.

n=1

For the second commutator term in the curly bracket in (5.26), we use a Taylor
expansion and Lemma 2.1 to obtain

f{[Tﬂ[w]vazWrPaTBlam] 4 ()

_ |§—77|> <|n—<l> { 1—a < £+ ) a( B 77+<>
/sz<|§+nl =<l B € m 2 ) B ¢

g “ﬁ(n c,”“)ﬁ—?(g—n,“—”ﬂ@(odndc

2

[ e |€—77|> (In—CI),[(_ §+n) = a( ﬂ)
Ligerx(Sm (155 [3(s-n 505 (10—

—B( —a”“)ﬁﬁ(s—n,“—”)]@(c)dndc

2
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= [ (e e

B0 B (-0 50 ) ot0)anac 4 R,
- fer (e [5G ()
~(2-0) (2.9 B" “(5 naggnﬂ@(n)dnﬂ%,

where
00 2
[R5l s + 1R 122 S M1l 122 (ZC(nvs)lcnlllwll%m) :
n=1
For last term in the curly bracket in (5.26), we use Lemma 2.1 again to get

F[0:D7 02" “Tp-a(Tsi4)#] (€)
o (€= £ .
/|§|1 (§+ |>lﬁB (f— 7T)W(W)d77+7377

where

00 2
IRzl e Sl are (ZC(”75)|Cn|||<P||12/I7}4~°°> :

n=1

Therefore, by invoking the choice of 5[¢], we conclude that the operator in the curly
bracket in (5.26) is of order 0 and the whole term is an error term that satisfies

H{m (Ts101: 02102 =] = [T1): 02l 00| '~ T1 )] = 0 D10, |' T a[w]Tﬂ[s&]} H

') 2
s||so||Hs(Zc<n,s>|cn|||so||%,m) |

n=1

Hs

By Kato-Ponce-type estimates, (5.2), (5.21), (5.17), and (5.18), we also find that

H [Ts101, 0 T 1] SDHH + H [Ta11,0: D 0w Ty} SDHH\

+ H [Ta1,),0%] <PH + H (Ts14), Ox] <PHHS | TR | .

SUellas +l1las) - F(llellwoe, [19]lwao).

Hs

We conclude that Equation (5.26) can be rewritten as
0 T11p — ©+0010: '~ (0 = Tpr-ay)) Tppe)p + 105 Tig)p + 0 T [ 4y Tl 0 = R
where

IR7llms S (lellrs + 1l ers) - Fllpllwace s 19 llwraoe ).
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Applying the operator |D|® to this equation and using Lemma 2.2, we get that

| DI* 0T ) p = ©+.02[0: ]~ (9 = Tpr-afy) ) D] )0

. K (5.27)
+ 00z | DI*T311 + Ox | D" Tog (o) (0,01 T 311 = R

where

IRsll2 < (lpllers + 19l ) - Elllllwaee s [9]lwas)-

Applying (0 —Tpgi-af,))*® to (5.27) and commuting ( —Tgi-a(y))® with 9|0, |'~*
up to remainder terms, we obtain that

(9=Tg1-apn) |DI* O Tapo1 0 — O 10,100~ (9 =Ti1-a) " DI Ty

—|—’U(19—T317a[¥,]) 8I|D| Tﬂ[¢]<p+(19—TB1fa[¢]) 8I|D| T‘B(ﬂ)[ga,w]TB[cp]@:R%
(5.28)

where

IRollL2 S (lll s + 19 llers) - F(llellwace s [9llwa.e)- (5.29)

By Lemma 5.2, with k=2s+1 and f = |D|* T, the time derivative of ES(¢) in
(5.22) is

d

s 2s s
th< ()= —(28+1)/R|D| T2 (9= Tpi-aiy))” To, pi-a(p)| DI Tpjp pda

+2/}R|D|ST5[S@]9"' (V= Tpi-ay) )2S+1 | DI*0r (Tpip) ) doo
+/R7~31(lDISTmsolsO)-|D|ST5[w]<Pdw- (5.30)
Equation (3.22) implies that
10zl Lo SE([[@llwaee s [9]lwaee),
so the first term on the right-hand side of (5.30) can be estimated by
‘/RlDlsTﬁ[ga]@(ﬁ—TBlQM)%T&BIa[«:}|D|STm¢]¢dx

< Nellzr F(lellwase, [$llws).

Using Lemma 5.2, we can estimate the third term on the right-hand side of (5.30)
by

‘/Rl |DI*Tg1p19) - IDI* Tigppda| S (Iollzrs + ol m 19l ms) F (llllwae, [¢llwaes).

To estimate the second term on the right-hand side of (5.30), we multiply (5.28) by

(0 —Tpi- ol ) |D| T30,
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integrate the result with respect to x, and use the self-adjointness of (19+ — TBPQM)SH
to obtain

)QSJrl

/|D|5TB[¢]¢-(19—TBH[@ |DI*8y (Tp1p)p) do =T+ +I+1V,
R

where

2s5+1
I /|D| Tg[@ (19 T31 a[@) |D| (9 T%(a)[@ MTﬁ[ﬂQOd!E
s+1 o s+1 s
/R(ﬁ Tpi-aly)” DI Ty 0ul0ul' ™ (9= Tpr-apy)™ [DI* Ty da,

111:/(19 Tpiai)’ D Thp-Roda,
R

s 2s+1 s
IV:—’U/R|D| Tﬂ[w]gﬁ'(ﬁ—TBlfa[w]) |D| 8mTlg[¥,]<pdiE.

The last three terms are straightforward to estimate, but the first term requires more
work.
Since 0,0, ~¢ is skew-adjoint, we have

II=0.

By (5.29) and the boundedness of

s+1
(0+ = Tpi-afy)
on L?, we have that

1L S (el + lellas [l ) - F Qlellwase, [ llwas).

2s+1

Since (19+ —TBFQM) is self-adjoint, we can integrate by parts to obtain

2s+1

V= —IV—U/]R DI Tyggro- | (91 = Tpraip) ™00 ID Ty de.

Using commutator estimates, we have

s 2s+1 s
|10 T[22 = Tireei) ™ 0] IDF Tatgioas] < ol F s [olhwecs).

and we conclude that

VI S el F (lpllwaoe, [19] ).
Term I estimate. We write [=—1, 4+1;, where

)25+1

Ia:/R|D|STB[¢]g0~ (’l9+—TBlfo<[S(J 8 T;B(a) 4/7 w]|D| TB ¢]<pdx

s 2s+1 s
Ib:/R|D| Tae)p- (04 =Tpiei)) " O [T o, [DI°] T pda
By commutator estimates and (5.17), the second integral satisfies

1 S Nellzre - F (llellwase, 19 llwaes).
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To estimate the integral I,, we write it as
Ia = Ia1 - Iaz P

where
s 2s+1 s
Ln:/RlDl Tpip) e {(19+—T817am) ﬁm] (Top @ [, | DI Thpg)0) da,

s 2s5+1 s
1a2=/Raw|D| Toterp- (94 = Tpiage)) " (Tw o0 DI Toerp) da
Term I,, estimate. A Kato-Ponce commutator estimate and (5.17) gives

Las| SlllZrs - F (lellwaee, [$llwss).

Term I,, estimate. We have

s 2s+1 s
Iaz:/R(Tww«:,me T p) - (94 —Tpiapy))” 8u| DI*Tppppda

= —/R@z (T 0,0 DI Tpi)0) - (94 = Tpr-ae)
—/R(T%wwsa,w}ll?lsTmmw)' (00 (04 = Tpr-agp)

- _/R (Tos (1,102 I DI T 0 + [0y T o, ] D1 T )
SO )

—A(T%<a>[w,w}|DlsTﬂ[w}¢)'{3zv(ﬁ+—TBlfa[w1)28+l}|D|5Tﬂm<ﬂdl‘- (5-31)

2s+1 s
|D|* T, pd

2s5+1 s
| 1DI 101002

|D[* T, dz

Using commutator estimates and (5.2), (5.17), and (5.21), we get that
2s+1 s s
1102, (94 = Tr-afe))* ] IDI Taig)¢| 1o + || [0z Ton o .1 1D T2 .2
S lelles - F(llellwsee, [[lwae),
and
(102 [(94 = Tp1-aie)* ™ T jp,0] DI Topa10]| o S Nllers - F (w19l waes ) -
Since Tig (o) (e, 18 self-adjoint, we can rewrite (5.31) as
Iag — _Ia2 +R107

with

[Raol S el - F (lollwse, [¢llwae),
and we conclude that

Lo SlllZ - F (lpllwace, [$llwas).

This completes the estimate of the terms on the right-hand side of (5.30). Collecting
the above estimates and using the interpolation inequalities, we obtain that

t
EQ(t) < &5)(0)+/0 (lellzrs +Nellzzs 1l ) - F (lpllwase [ llwaee) 2,
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with
co n 2n—¢

Fllgllwse [llw=) 33" 5™ €, s) (14 A28 ) gl 20 ™ [ e

n=0/¢=0 m=0

We observe that there exists a constant C(s)> 0 such that C(n,s) SC(s)®. The
series in (5.25) then converges whenever ||¢||ya.0 + ||¢0||2. is sufficiently small, and
we can choose F' to be an increasing, continuous, real-valued function that satisfies
(5.25).

Finally, since H19+ —Tgi-afy, >mg and

]HL2—>L2—
1Bl Oy Wottllzaszss F(lellws + 6 ]we)

are continuous in time, there exist 7'>0 and m;,ms >0, depending only on the initial
data, such that

millelfs <ES <mollell.
Similar estimates hold for the second equation of the system with an analogously defined
energy El(;), which concludes the proof of (5.24). O
6. A priori estimates for the two-front SQG (a=1) systems

6.1. Para-differential reduction.  The following result, from Proposition 3.2
in [47], enables us to simplify the system. We recall that L =1log|d,.| denotes the Fourier
multiplier with symbol log €|, and we use C(n,s) to denote a generic constant depending
only on n, s, and h that grows at most exponentially in n.

PROPOSITION 6.1.  For a=1, suppose that ¢(-,t),0(-,t)€ H*(R) with s>5 and
lellwa.ee + || Lollwae and ||| + || LY |las are sufficiently small. Then we can
write

o) Cn A A i )
_Zﬁaﬂﬂ/ T (10,)8 (01, 8) (12, ) -+ P11, ) MR s )z gy
1 n+ R2n+1

= 0:108]0: || Tpros 10 (w.)| + 0 [ Toi ol )] + R,

- n h n D i 2
o Z ﬁam/ Tn(rln)?/’(nl 7t)2/](7727t) o 'w(nQn—i-l 7t)e (771+772+ +n2"+1) d’l’]n
1 n+ R2n+1

0. log |0, ||:TBlog w(,t ] + 0y [ o) (.t ] +Ra,
f]

where the symbols B'°8[f] and B°[f

o0

BY8[£](-.&)=>_ BiE[£1(-,¢), BO[f](-,@:ZBS[f](g

n=1

ByE([f](-,6) = —2¢nF ! URQ ( Zm)H(Zm m)x(@»dm],
o[ oo o) an(22)

2n
. / log
[0) 1]271

> njs;

Jj=1

are defined by

(6.1)
Blf1(,

ds, dﬁn} .
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Here x is the cutoff function in the Weyl para-product (2.1), 1,,= (n1,m2,---,M2,), and
Sn=(51,82,..,82n). The operators Tpis[s) and Tpofs] are self-adjoint and their symbols
satisfy the estimates

o0

1B [l ;s ) < Z (s 8)lenllLf 113,

8”

1Bl S 3-C (m$)leal (1L + 1 130 )

while the remainder term Ry satisfies

IRl < Nl {Zo<n,s>|cn|(||w||%3m+||L<p|%&z,m)},

n=1

1Ra - < Nl {Zc<n,s>|cn|(||¢|%34,m+|f:w|%$4,m)},
n=1

where the constants C(n,s) have at most exponential growth in n.

By Proposition 5.2 and Proposition 6.1, we can write (3.23) in the following para-
linearized form

— (04 =0 )(v+logh)ps + Ty o+ R +20 - Ko(2h|0x| )bz
=0+ L[(2=Tpos(y))9]

Y+ (04 —0_)(y+logh)i, +T%$>% +Ra2+204 Ko(2h]0:]) ¢
=0 L[(2—Tpus))¥]

(6.3)

where

BY=0_3" 20—+ 1)dy010™" " +0_B [0,0]+ 0, By,

n=1/4=0
B =033 @n—+1)dne010*  + 0,8 [, 0] + O B[y,
n=1¢=0

and R1 and Rq are bounded by

[Rillers < (el e + 1@l e ) E(l[llwaoe + I Lpllwace + 19 llwsoe + [ Lipllwace), i=(1a2=)
6.4

where F'is a positive polynomial.

6.2. Energy estimates and local existence. = We can therefore define homo-
geneous and nonhomogeneous weighted energies that are equivalent to the H®-energies
by

2j+1

O )= [ 041D ¢(a.t): (2~ Taue) 1D ()

. 25+1 .
+O-IDPw(w,t) (2= Tpeeryy)  IDPw(z,t)de
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E@ @) =@+ 1¢13:m+ Y B9 )
j=1

For simplicity, we consider only integer norms with s & N.
We now are ready to prove the following a priori estimates.

PROPOSITION 6.2. Let s>5 be an integer and ¢, 1 a smooth solution of (6.3) with
©v0,%0 € H*(R). There exists a constant C > 1, depending only on s, such that if ©o,10
satisfies

(oo}
[Tsocipotlzasrz <€, 2 Ceal (IollEam + Lol ) <o,

Toesigollzz sz <C 30 C el (ol Fme + L0 )3 ) <oo,

for some constant 0 < C <2, then there exists a time T >0 such that

[Torsoolliamsa <2 32 Clenl (IO + 1O ) <o,

| Toresgyenllzare <2 ch|cn|(||w s+ 1L (). ) <0,

for all t€[0,T], and

d - ~
&E(S) (&) < F(lellwaos + I Lellwase + [[9llwase + | Lllwa<) EO (1), (6.5)

where F(-) is an increasing, continuous, real-valued function.

Proof. Observe that ||<p||%2(R) + ||1/1||%2(R) is conserved by the system. So we only
need to estimate the higher-order energy. By direct calculation, for f=¢ or v,

6t(2 — TBlog[f])Sf — (2 _TBlog{f])Sft — 8(2 _TBlog[f])S_lTatBlog[j']¢+R(f)7 (6.6)

where the remainder term R is bounded by (6.4).
By continuity in time, there exists T'> 0 such that

Zc"|cn|(||so e+ ZO) e + 160 3 + IO Frc ) <00, YOS EST.

We apply the operator |D|® to the first equation of (6.3) to get
[ D¢ — (04 —9—)(7+logh)|D|S%+|D|ST%5})%
+ |D|SR1 +20_ |D|SK0(2h|6m|)’lbm(£L‘,t) = |D|S(91L [(2 — TBlog[w])SD} . (67)
Using Lemma 2.2, we find that

IDI* [(2 = Tpros(g)) ] =2|D|*0 | DI* (Tros()9)
:2|D| SD_TBlog[w]|D|SQO+STaxBlog[@]|D|S_2g0m+R3,
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where
[0:Rs||L2 < (ZC(nas)lcnl IIwII%ﬁ,w) |l £rs-2.
n=1

Thus, we can write the right-hand side of (6.7) as
81L|D|S [(2_TBlog[¢])S0}
=0, L [(2—Tpuoe(p))| DI* o+ 5T, pros() | D|* > a] + Ra
= L{(2—Tpuoe(,)) D> 0 — T, pros (] D> — 5T, pros (]| DI° ¢} + R
= L{(2 _TBlog[w])|D|sg0m — (S+ 1)TazBlog[Lp] |D|sg0} +Ry4,

where
IRallz (Zc<n,s>|cn|(||so||%oo + IILwII%Z,m)) ol
n=1

Applying (2—Tpues,))® to (6.7), and commuting (2—Tgos[,))® with L up to re-
mainder terms, we obtain that

(2= Tpros(y))*| PPt — (04 = O_) (v +1ogh) (2 — T'gios[,))* | D|* o
+ (2 — TBlog[@])samlDlsT%fpl) g0+2®_ (2 _TBlog[LP])S|D|SKO(2h|6m|)wm (,T,t)
= L{(2—Tpuos(y))* ' D|° 00 — (s +1)(2 — Tpios(y)) " To, pres(y] [DI°0} + R
= 0. L{(2—Tpue(,)* ' |DI*0} +Rs5, (6.8)

where ||R5|| 12 is bounded by the right-hand side of (6.4).
By (6.6), the time derivative of E(*)(t) is

d
EE(S)(f) = /R(QSJF D)|D*¢- (2= Tpios(y))** To, prosi) | D" dz

2 / DI+ (2 = Tioe )| Doy dar + / R(DI*9)|Dl*pdz.  (6.9)

We will estimate each of the terms on the right-hand side of (6.9).
Equation (6.3) implies that

Iatllze 3 Clms)lenl (IolFnoe + Lol Fuoe + 16130 + 1L 3 ).
n=1

so the first term on the right-hand side of (6.9) can be estimated by

[ @5 DIDI G- (2= T T, | Dl

S( X el (Il + Nl + 10 +ILOIR ) ) Bl
n=1
We can estimate the third term on the right-hand side of (6.9) by

/R R(DJ*9)|D|*odz



1730 TWO-FRONT GSQG EQUATIONS

oo
S X el (Il + Nl + 101 +IEOIRE ) ) el el
n=1

To estimate the second term on the right-hand side (6.9), we multiply (6.8) by
(2—Tpiox[p)) "' |D|*, integrate the result with respect to z, and use the self-adjointness
of (2—Tpuoef,))**", which gives

/R|D|Sgp-(2—TBlogM)25+1|D|S<ptdx:I+H+HI+IV,
where
1= [ 11 (2= T D0, Ty o
11:/R(2—TBlogM)S+1|D|S<p-amL(2—Tglogm)s+1|D|S¢dx,
M= [ (2= Ty DI+ (Ra 20 Ko(2h(0.1) 1) d
V== [ IDI*¢+(814 ~0-)(1 +1ogh) (2~ T D'
We have I1=0, since 0, L is skew-symmetric, and
I < (el s+ 1903
: [ZO(H,S)I%I (II@II%’VZ,OO Lol +9][57a,00 + IILwII%’VZ,wﬂ :
n=0
Because (2 —Thpuos[,]) is self-adjoint,
V= =0, =0 )(1 +logh) [ (2= T | DI*- Dl da
= (04 =©-)(y+10gh) [ 0.(2= Ty DI Do
= IV-+ (04 —©-)(r-+108h) [ (01 (2 Tpeio* I DI D

By a commutator estimate,

Slellzs F(llellwa= +1I Lellwa).

/R (001 (2~ Tgos))** 1 DI %0 D pda
Therefore

VIS ol F(llellwae +IILellwa).

Term I estimate. We write [=—1, +1;, where
Ia = ‘/R |D|Sg0 . (2 - TBlog[@])28+lazT%Ep1) |D|Sg0d:t,

Ib :/ |D|Ssp . (2 — TBlog[@])zs-’_law [T%EPI) ) |D|s]g0d$
R
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By a commutator estimate and (6.2), the second integral satisfies

1615 3 Ctmleal (el +IZoARE« + 11 +IZOIRE ) ) ol
n=1

To estimate the first integral, we write it as
Ia = Ia1 - Iaz P

where
I,,= | [DI*p-[(2—T, 2L 9.1 ( Ty | D) d
ay — | | ¥ [( Blc’g[cp]) ) 1‘] ‘B(l)| | ¥ ) az,
]R w
Iazz/|D|S<pm-(2—TBlogM)25+1 (T%<1>|D|Sgp) dz.
]R ¥

Term I,, estimate. A Kato-Ponce commutator estimate and (6.2) gives

£ (3500 (el + 1L+ 11+ NI ) Yl

n=1

Term I,, estimate. We have
s = /]R (Tropg)| DI @) - (2 = Tposy) ) D)0 d
:/R(TBO[@HDW) {00 (2= Tpios ) * " D[") = (02, (2= Tpiony)) ] [D["} dov
:-/Ram (Tog|DI*9) - (2= Tion ) ** | DI
_/]R(TBO[</’]|D|S<P) 00,2 Tpios())* '] D" pda
- _/R(TBDWDW’H (02, Toj)] IDI*0) - (2= Tros))** ! |DI* pda
—/R(TBOWDP@ [0, (2= Tioey)) ] | D[P da. (6.10)

Using commutator estimates and (6.2), we get that

1[0, Tporel] IDIP¢| 2 S (Zc(nas)lcnl (lellfaee + ||LSD||12/V41°°)> el e

n=1

100 (2= Taesi)** ] DIl S (- Clnslenl (liace + 12l el

n=1

and
102 [(2 = Tgio())**** Tporg)] DI .

oo
S (S cmsenl (Il + 1ol ) Il
n=1
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Since T'goy, is self-adjoint, we can rewrite (6.10) as
Iag = _Iag +R67

with

Ral S (30 Clnslenl (olce + 1ol +101 e + L1 ) )l

n=1

and we conclude that
ol £ (35000 (el + 1L + 1+ D01 ) Vel
n=1

By a similar procedure, we can obtain the estimate for . This completes the
estimate of the terms on the right-hand side of (6.9). Collecting the above estimates
and using the interpolation inequalities, we obtain that

t
EG ()< B (0)+/0 F(llpllwace + I Lollwace + 19 lwace 4[| Lipllwace) o]l 7 2,
(6.11)

where F' is a positive, increasing, continuous, real-valued function.

We observe that there exists a constant C(s)>0 such that C(n,s) <C(s)”. The
series in F' then converges whenever [|¢||wa.0 + || Lollwa.ce +[[¢||30 o + | LY 3 o s
sufficiently small, and we can choose F' to be an increasing, continuous, real-valued
function.

Finally, since [2—Tpuos(py)ll2r2>2—C, and [|B8[g](-,t)|my, —and
F(|ellwa + | Lellwa.~) are continuous in time, there exist T'>0 and m>0,
depending only on the initial data, such that

H2—TBlog[¢(t)]HL2_,L2 Zm for OStST
We therefore obtain that
m> (|l 3 + el ) < B <2 (ol e + 1 ellre ),

so (6.11) implies (6.5). O

7. A priori estimates for the two-front GSQG (1< a<2) systems
When 1< a <2, we write the two-front GSQG systems (3.15) and (3.17) in the form
(3.14), and define the energy

E@ (@)=l Fr- + 190 7
PROPOSITION 7.1. Let s >3 be an integer. Suppose pg,v € H*(R) and
2h—o(z)+@o(x) >0 for all z€R.

Then for the smooth solutions to the initial value problem (3.14),

()< PEO W),
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where P is a positive polynomial.

Proof. 1t is clear that under the assumption g, € H*(R), the pointwise condition
2h —1o(z) +@o(x) >0 implies that there exists some ¢>0 and ¢ >0 such that for any
x€R and —c < (<c¢, we have |2h —g(x+ () +¢(x)| >e. Without loss of generality, we

fix c=1 in the rest of the proof.
Observe that E(©)(t) is conserved by the system. In the following, we fix 1 <k <s.

We directly estimate the H* norm of ¢ and . We apply OF to (3.14),
0y r(w,t) + 00y pu (2,1) + O+ Oy La o (w,t) + O 9y Loty (1)

+0,04 | [G(/OFla+ GO = p(@) = GCD)] ool + )= oot 4G

+0_0; / G/ H 2+ b+ G = p(,0)2) — G/ + (2h)?)]
(e (4t — (1)) AC=0,
Oy (x,t) =00 (2,8) + ©_0FLithy (2,8) + ©4 05 Lo, (w,t)
+0-0 [ [G(/CFF =00 = GCD] [ela-+C.t) = el ] 4C

+0,04 | [G(/CF o+ GO = 0im.0)) — G/ T+ @)
'[(pm($+<,t)—l/1w($,t)]dC:O,

multiply the first equation by 9%¢ and the second equation by 9%, take the sum and
integrate with respect to x. The terms involving

¥, (2,t) + 0,0 Ly (x,t) and  —wdFeh,(x,t) + O _O Ly, (x,t)
vanish. Therefore, letting C}. denote the binomial coefficients, we obtain

d
dt

- / O_LydF T ap(z,0)0F p(x,t) + O LodF (2, 1) 0% (2, 1) da

Iak I+ |a§:w|2

—chedfazwt Oypula+ 1) = Byipu(a,t)]

08 G/ F (e +C0) — ol@,6)2) ~ G(Q)] d¢da

—che jj (1) [0 (-G, 1) — Dy pa ()]

b [G (VCF (—2h+ Pz +C.b) —p(x,1)%) — G( <2+(2h)2)] dode

—che Ham:t 0ty (+C,t) — iy (2, 1) ]

=0

0k~ |GV H W+ =@ 0)?) - G(I¢])| deda

k
=GO [[ Ok, t) [Ohpn (14 C,t) — Ot (a,1)]
i=0 R2
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.351{ (V4 Ch+o(x+Ct) —(x,1)2) — G( C2+(2h)2)}déd$- (7.1)

Then we estimate each term on the right-hand side.
(1) By Lemma 2.3, the first integral on the right-hand side is bounded by

0y M (2,0)05(2,t) + O Lo (@, 1) 05 (2, 1) da

< (104 +10-D05v |2 (05l 2.

(2) A term in sum of the second integral on the right-hand side of (7.1) is

ﬂa’“w 2,8)[0hpw (v +C,1) = 0y (w,1)]

Ok G/ F o+ O~ w(@ 0)) - G(()] d¢dz
=[] Okl t) [Ohipu(w+Ct) — Dhipn ()] O~ [G’<¢<2+<<p<x+<,t> — (@)
RZ

e+t — ()
\/<2+(@(I+<7t)_¢(xvt))2
(a) For i=0,---,k—1, we have

(pz(r+(,t) —pu (:v,t))] d¢dz.

Y o(2,t) [0hpn (x4 1) — O pu(w,1)]

O [/ T G o) - Gl0)] o
slosens [ [ {[a;%<x+<,t>—a;%<x,t>]

ki [G’ VCH(o(x+C,t)—p(z,t))2)

(x—i—(t) o(z,t)
V(e + b — p(aiD))?

We divide the above integral into two parts: |[¢|>1 and |¢| <1, and write

Orpl+ 1)~ xsa(xt»]}zdx)l/zdc.

C,
()= —2 2
G/ ()= Tt (72)
where Cy =—1/2m and C, =a—2 when a € (1,2).
For || >1, we observe that the term
[0hpw (2 +C.1) = 000 (,1)] 0771 G (V2 (e + 1) — p(x,1))?)
(p($+<,t)-§0($,t)
: (Ozip(x+(,t) = Oup(w,t))
\/CQ—I—((,D(I—I—C,t)—(p(.I,t))Q
contains at most k-th order derivatives, and
G’ 2 t t))? o
wc P+ —e(@t)?) _ C (7.3)

Ve “47” Aet)? [+ (ol G —p(@ )]
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Using Holder’s inequality, with L2-norms for the highest derivatives and L>°-norms
for the other terms, we get that

] /<>1 [ ket Phinta )~ Dhatrt)
o [T GO Al - Gl na]

L@l @l P (el |5)0ne)- /Idﬂﬁ“

where P is a positive polynomial.
For |¢| <1, letting ¢;,i,i, denote multilinear coefficients, we can expand the higher-
order derivatives as

/C<1 </R{[6;%(x+<’t) Otpn (2, t)]ak o {GI (VC+(plz+C,t) —p(x,1))2)

. @(I+<7t)_¢(xvt)
VE+(plz+(,t) —o(,1))?

:/<<1 (/R{[5i<pm(x+<,t)—ai<pm(:vaf)]' > Cirizis

i1+io+izg=k—i—1
{3 ¢ \/42 pe+C ) —p@, 1)) |
Ve w+< t) = ¢(x,1))?

0 (D4 (1) —awso@c,t))] }d) "a

(Orpl+C.1) —amsc,t))} }d) "

0, (p(a+(,t) — (1))

When i3#k—1, the above integral is bounded approximately by |lo(t)| gn -

P(HcpH 5] oo), where P is a positive polynomial, and we get i3=k—1 only
W ,

when ¢ =i; =iy =0. By using (7.3), the integral is

o [T A w0
/|<|<1(/R{[*"w(””+<’” #2(@)] [ VT @il o@Dy

2 1/2
(o4 Ct) — ol 1)) -0 (Duipla+C.t) — Byl t»]} dx) ac

:/ (/{901($+C,t)—(pm($,t).|: Ca
I¢l<1 \JR ¢ CQ*Q[1+(M)2]%

QD(,T—I—C,t)—(p
¢

Since 1/¢?>“ is integrable on |[¢| <1, the above integral is bounded by ||¢(¢)|| g -

S ot + )~ dup(ot)] }2dw)1/2d<-

P(H<p|\ LEJ“’“’)’ where P is a positive polynomial.
WwiL2

(b) For i =k, after integrating by parts, we can put one derivative on G,

ffazwt[axmmw Oipa(w,t)]

e/ F W+ D= e@0)P) - G()] acax
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= Hamthacafwxﬂt[ (VP +(pl+ GO —p@,0)?) ~ G(Q)| dde

—jja%wta%xt[ (VP + (oGO —p@,0)%) ~ G(O)| dda

——jja’;w (2:)0% p(a+ 00 |GV + (el + () — (@, 0)?) - G(0)] dcda

+5 ja% 2,00k o), |G/ + (o2 + (0 —p(@:0)?) - G(C)] d¢da

= [[ Skl )0k p(a+Ct) [G’mu(w<x+<,t>—<p<x,t>>2>
]RZ
e+ —pl@ o pla+¢t)]
Ve +CH—p(@ D)
%ﬂ Ople (e )G (VP + (ple+ D) —pl.0)?)

. @(I+<7t)_¢(xvt)
VE+(pla+(t) —¢(a,1))?

By using (7.2) again, we get

6'(0)| acas

(Oup(z+(,t) = Opp(,t)) dCda. (7.4)

S— o Gl )~ pln el + 1)
R Y e e o
o Gl ) — (a0 o+ 1) !

(Gt ¢ ()= P
We divide the integral into |[¢|>1 and |¢| < 1. For |¢]|>1,

-G'(Q)

// (’“)kcp x,t) (’“)kgom (x+¢t)— Bfgom(ac,t)]
[¢I>1

[e/EF G+ D= e@n)P) - G()] acax

< logelzallelzllelw.

For |¢| <1, by (7.4), we obtain

81;‘/7('%715) [85@1 (I+<7t) - 85901 (Iat)]

RJ|¢]<1

e/ F =@ D)) - G(¢)] dedx

< logelzallellwzell@llwe.

(3) To estimate the third integral on the right-hand side of (7.1), it suffices to estimate

ﬂa’;wt e (74 C,) = Db (a,1)]

i [ (VO (—2h+o(z+C ) — G/~ }dgdx (7.5)
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Since h >0, the above integrand does not have singularity at (=0, and we only
need to take care of large |¢|> 1.

(a) When i =k, direct calculation yields

{[ ok ot [0k a(w+¢,t) — pu(a,)]
]RQ

G/ ERT B+ D = p(2.0)2) — G/ + 2R))] d¢da

. ﬂ[ (00050 + )~ 300 )|

eV D= e@ D)) - G+ @) dda
—jj —0%p(x,t)0Fp(z+(,t)

0; [G(VTH 2R T 0T C O — 0w 0)P) — G(/TF E0R) | + 5 (Ohp(a)?)
0, |G+ (=2hF 6o+ () — (@, ))?) - G(v/C+ (2h)2)] d¢ da.

By (7.2), we have

0 [G(V T+ (=2h+ 0w+ (1) —w(@,0)2) — G(V/ T+ (2h)?)]
—C(VTT 2 @t D — @ 0))
2R+ e+ Gl — (@) A (e + )
VCH (2R (a+(t) — (1))
/ ¢
G (VT s
o SRR @) —p@ )+ Gl ¢
(2 + (=2h (e +(1) —p(w,1)2] ="

When [¢|> 1, the above fractions are bounded by

4

T+ 2n)2) S

|0c [G(V/ P+ =2+ — (@ 1))~ G/ + (2P|
SA+llellwrs + 19w )21+ (=2h+9(@+ (1) — p(w,8) 277,

and when || <1 by

0 [G(VEH 2R+ 9+ G0 — ple,0)?) - G+ 2hP) |
Lt (ol +le) (w9 ]wrs)

a

[+ (2h— (Y (@ +C,t) — p(a,1)))2] =

Similarly, when |¢|>1

0, |G/ + (=2h+ 0+ () — (e, )?) - G/ + (2h)2)] |
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=|G'(V/C+ (—2h+(x+(,t) — p(z,1))?)

. (—2h+1/)(il?+<,t)—(p(x,t))(1/}z (x+<at) _@z(xvt)) ‘
[(2+ (=2h+(z+(,t) — p(x,t))2] /2
Co(=2h+9(z+(,t) —(2,1) (Va (2 + (1) — @u (2,1))
(C2+(=2h+9p(z+C ) — (1)) 2
S(h+ [l + el ) [l (24 (=2h+ e+ ) —pla,t)?) 7,

and when || <1

0, |G+ (=2h+ b+ D) — p(@,)?) - G(/ P+ (20|
o (th+llploe + 9l lellws
Y[+ (2h - ($r+ (1) — p(@,t))?]

By the above calculations, the decay rate for large |(| is at least |¢|~2, which is
integrable. Then

Ho(a,t) [OF e (24 (1) — Oy (1))

e EFERT D = o 0)2) ~ G/ + (2R d¢da
S Hsonmnwnm+Hso|\m><1+||so||wm+||w|\wm>2

(2R = @+t — o@D 7 e )

z TI¢l<1

=4

(b) When i=0,---,k—1, we can expand the higher order derivatives in (7.5), and
then

1(7.5)

85‘%’ (z,1) [817/11(5174'( t)— m%ﬁz(fp t)]

i1 22h— (e ¢ t) — ol 1)) [dap (1) Cdx‘
o (CH2h— (WGt —p(z,1)]2) T
§H<P(t)|\Hk|W(t)||Hk'P(H<PHWL2J+1OO+|W|| Lghm)

(2R = (P + ) = (@,0)) 27 [z, ),

z TI¢I<1

where P is a positive polynomial.

(4) The last two integrals in (7.1) can be estimated in a similar way. Since

4—a

L[l — (@ +¢.6) = el 0))2) 7"

<M
LeL

)
z TI¢I<1

at the initial time for some constant M, by a continuity argument there is a time
T1 >0, such that

4—a

L |[2h = (b (@+¢.6) - ple, 1)) <2M

Lg"LfE"<1
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for te [O,Tl),
Therefore, we obtain that

SO+ 19O SMP(Il | w1 o)

(e @l + o @)1

and by Sobolev embedding, we get that

% (leOlFr + 1@ 1:) S M Pl =+ |9 (8) | ).

Therefore, we have a local-in-time energy estimate: there exists T» >0 such that
o3 + 111 (t) || % < +oo for t€[0,T). Taking T'=min{7},T2}, we obtain the a
priori energy estimate in the time interval [0,7T").

d
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