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ON THE WORK OF RODRIGUEZ HERTZ ON RIGIDITY IN DYNAMICS

RALF SPATZIER
(Communicated by Giovanni Forni)

ABSTRACT. This paper is a survey about recent progress in measure rigidity
and global rigidity of Anosov actions, and celebrates the profound contribu-
tions by Federico Rodriguez Hertz to rigidity in dynamical systems.

1. INTRODUCTION

Federico Rodriguez Hertz is the winner of the fifth Brin Prize in Dynamical
Systems. He has made terrific contributions to smooth dynamics in general and
rigidity properties of actions by higher rank abelian groups in particular. I will
discuss recent progress on rigidity in this brief survey with particular attention
on the work of Rodriguez Hertz. Two main themes will be measure rigidity
for certain non-trivially commuting non-uniformly hyperbolic diffeomorphisms
and global rigidity of Anosov diffeomorphisms with nontrivial centralizers on
nilmanifolds.

It gives me great pleasure to discuss and celebrate Rodriguez Hertz’ amazing
contributions. The Brin Prize mentions four papers by F. Rodriguez Hertz in
their award. Two of these concern the topic of this survey, the papers [32] on
non-uniform measure rigidity and [54] on global rigidity of Anosov actions. We
also mention several others, in particular [55] joint with Z. Wang and [5] joint
with A. Brown and Z. Wang. These are the crowning achievements in the work
on global rigidity of Anosov actions on tori and nilmanifolds.

2. PREHISTORY

Let us set the scenery by recalling some basic facts and definitions about
Anosov (also called uniformly hyperbolic) diffeomorphisms (cf., e.g., [31]).

DEFINITION 2.1. Let M be a compact manifold with some ambient Riemannian
metric k · k. Then, a diffeomorphism f : M ! M is called Anosov if there is a
continuous splitting of the tangent bundle T M = E

s ©E
u and constants C > 0

and ∏> 0 such that for all n > 0, v 2 E
s and w 2 E

u ,

kd f
n(v)k ∑Ce

°n∏kvk and kd f
°n(w)k ∑Ce

°n∏kwk.

Received March 2, 2016.
2010 Mathematics Subject Classification: Primary: 37C15, 37C85, 37D20, 53C24; Secondary:

42B05.
Key words and phrases: Brin prize, Rodriguez Hertz.

IN THE PUBLIC DOMAIN AFTER 2044 191 ©2016 AIMSCIENCES

http://dx.doi.org/10.3934/jmd.2016.10.191


192 RALF SPATZIER

Anosov diffeomorphisms are plentiful once they exist thanks to the

THEOREM 2.2 (Structural stability). If f : M ! M is Anosov, so is any g : M ! M

sufficiently close to f in the C
1
-topology. Moreover, there is a Hölder homeo-

morphism ¡ homotopic and C
0

close to i dM such that g is Hölder conjugate

to f : g =¡± f ±¡°1
.

We call this simplest kind of rigidity structural stability or C
0

local rigidity.
The conjugacy is not differentiable in general. Indeed, as is well known, any
Anosov diffeomorphism f has many periodic points. Now it is easy to construct
a local perturbation g around a given periodic point p that changes the deriva-
tive at p.

Examples of Anosov diffeomorphisms exist on tori T
n =Rn/Zn , more gener-

ally on certain nilmanifolds N /§ and infra-nilmanifolds, i.e. manifolds finitely
covered by a nilmanifold. Here N is a simply connected nilpotent group and
§Ω N a discrete cocompact group. Examples can be explicitly constructed as
automorphisms of the nilpotent group N which preserve §, and are number
theoretic in nature. Much work has been done understanding which nilpotent
groups admit such lattices and automorphisms. Classification is possible in low
dimensions. More generally, one can consider affine diffeomorphisms of infra-
nilmanifolds. These are simply Anosov diffeomorphisms which lift to affine
maps on the nilpotent Lie group N . Here we call a map f̃ : N ! N affine if
f̃ = A ±Lg is the composition of an automorphism A of N with a left translation
Lg of N .

Smale asked in 1967, acknowledging Anosov [59]:

CONJECTURE 2.3. Is every Anosov diffeomorphism f of a compact manifold M

topologically conjugate to an affine Anosov map of an infra-nilmanifold?

Franks and later Manning made major advances to this problem in [22, 48].
In particular, they showed that the conjecture holds for Anosov automorphisms
of infra-nilmanifolds. The resulting conjugacy is often called a Franks-Manning

conjugacy.

THEOREM 2.4. Let f : N ! M be an Anosov diffeomorphism of an infra-nilmani-

fold M. Then there is a Hölder conjugacy ¡ : M ! M between f and an affine

automorphism g : M ! M. Moreover, ¡ can be chosen homotopic to the identity

and is unique in its homotopy class.

This conjugacy will play a special role in the global rigidity results for higher
rank Anosov actions on infra-nilmanifolds. For expanding maps, Gromov proved
the corresponding conjecture using his work on polynomial growth and earlier
work of Shub [26, 58].

We mention that there is a corresponding theory for Anosov flows, with sim-
ilar basic structural results, albeit time changes complicate structural stability.
However, there are now many examples of Anosov flows, and there is little hope
of any classification.
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3. SYMMETRY

As we have just seen, once there is one Anosov diffeomorphisms on a com-
pact manifold M , there are many. In fact, by structural stability the set of Anosov
diffeomorphisms is open in the C

1 topology. Thus classification up to more than
C

0 conjugacy is impossible. However, as in many mathematical theories, the
presence of symmetries may cause further rigidity. For example in geometry, if
a closed manifold has non-positive curvature or is aspherical, non-discreteness
of the isometry group of the universal covering of a compact manifold forces
the metric to be locally symmetric [10, 11, 24, 62, 63].

What is a symmetry of a smooth dynamical system? The simplest answer is
a smooth map which commutes with the given dynamics. Smale already posed
the problem how generic diffeomorphisms f : M ! M with “non-trivial” cen-
tralizers in Diff(M) are. Here we say that f has trivial centralizer if Z ( f ) = { f

n |
n 2Z}. Smale then conjectured that generic diffeomorphisms have “trivial” cen-
tralizers [59], say with respect to the C

1-topology on Diff(M). First results were
obtained by Kopell for maps on S

1 or R [36]. Amazingly her basic approach is
still used in modification. Later Palis and Yoccoz showed triviality of centralizers
for an open dense set of Anosov diffeomorphisms, for example [52, 53]. Since,
Smale’s conjecture has continued to attract a lot of attention. On the one hand,
at least for the C

1-topology, we now have a completely general solution [4]:

THEOREM 3.1 (Bonatti-Crovisier-Wilkinson, 2009). Let M be a closed manifold.

Then there is a residual set of diffeomorphisms in Diff
1(M) with trivial central-

izer.

On the other hand, one cannot hope for more than residual results thanks
to [3]:

THEOREM 3.2 (Bonatti-Crovisier-Vago-Wilkinson, 2008). Let M be any closed

manifold. Then there exist a nonempty open set O Ω Diff
1(M) and a dense set

of C
1

diffeomorphisms f in O with uncountably many C
1

diffeomorphisms in

Z ( f ).

One can hope to do better, and actually classify diffeomorphisms with non-
trivial centralizers. The last result however makes it clear that classification of
such diffeomorphisms is impossible. However, one can pursue this under more
special conditions on the diffeomorphisms, such as uniform hyperbolicity. We
will take this up in Section 6.

Finally, one can try to understand more general types of symmetries. For
example, if a diffeomorphism is an element of a C

1 action of a group with
non-trivial relations, one could think of the other group elements as hidden
symmetries. Case in point is the theory of smooth actions of higher rank Lie
groups and their lattices which are strongly restricted. We will not pursue this
here.
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4. HISTORY

There is by now a long history of rigidity results for actions of higher rank
abelian groups, i.e., by Zk or Rk for k ∏ 2. This goes all the way back to Margulis’
superrigidity theorems in the early 1970s [50, 51] which essentially classified
finite dimensional representations of lattices ° in higher rank semisimple Lie
groups of the non-compact type, e.g. SL(n,R) for n ∏ 3. Amazingly, the proof
of this seemingly algebraic fact uses ideas from dynamics and ergodic theory.
The presence of higher rank abelian subgroups in ° consisting of semisimple
elements is key.

Later, R. J. Zimmer formulated the program of analyzing smooth actions of
higher rank semisimple Lie groups and their lattices on manifolds [67]. We refer
to [19] for an excellent survey. A key tool in these investigations was Zimmer’s
superrigidity theorem for measurable cocycles for finite measure preserving ac-
tions of these groups [66]. It generalizes Margulis’ theorem. For smooth volume
preserving actions, it gives a measurable framing for the manifold which trans-
forms under the group according to a linear representation (and possibly some
commuting cocycle taking values in a compact group—“compact noise”). More
generally, cocycles over finite measure preserving actions are measurably coho-
mologous to a linear representation— up to compact noise. Again, the presence
of higher rank abelian groups is crucial, and has led to a separate program for
understanding actions of higher rank abelian groups.

Different motivation came from geometry, from the classification of Riemann-
ian manifolds of nonpositive curvature and higher rank: every geodesic in such
a space is contained in a totally geodesic flat strip. This was accomplished in the
early 1980s in a series of papers by Ballmann, Brin, Burns, Eberlein and Spatzier
[1, 7, 2]. The flat strip condition is the geometric equivalent to commutativity
and explicitly led to questions about commuting Anosov actions ([6, 2.4], [60]).

Next came the investigation of local rigidity properties of algebraic actions
of lattices ° in higher rank groups starting in the late 1980s. Typical examples
are the standard linear action of SL(n,Z) on the n-torus T

n . J. Lewis [45] and
S. Hurder [28, 29] proved infinitesimal and deformation rigidity, respectively,
of these actions, Hurder by analyzing higher rank abelian subgroups and their
dynamical properties. These results were just shy of local rigidity. Let us first
coin the relevant notions.

We let ° be a finitely generated group, and Ω : °! Diff1M an action of °.
Let S be a finite set of generators.

DEFINITION 4.1. We call Ω locally rigid if any other action Ω§ : °! Diff1M

is C
1-conjugate to Ω provided that for all s 2 S, Ω(s) and Ω§(s) are sufficiently

close to Ω in the C
1-topology. More precisely, there will be a C

1 diffeomorphism
¡ : M ! M such that ¡±Ω§(∞) = Ω(∞)±¡ for all ∞ 2 °.

One can consider variations of this definition, for example if the actions are
only C

k , or if one requires the perturbation to be close in the C
l topology. For

simplicity, we will not consider these variants. Local rigidity of algebraic actions
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of higher rank abelian groups was established under weaker and weaker hyper-
bolicity assumptions on the action by a number of teams: A. Katok, J. Lewis,
R. Zimmer [33, 35, 34], M. Einsiedler and T. Fisher [12], A. Katok and R. Spatzier
[41], D. Damjanovic and A. Katok [8, 9]. Most recently K. Vinhage by himself
and then with J. Wang proved the crown jewel in this program, local rigidity of
quite general algebraic partially hyperbolic higher rank abelian actions [61, 64].

For actions of lattices in higher rank semisimple Lie groups, local rigidity for
algebraic actions was proved in full in a series of papers by D. Fisher, G. Mar-
gulis, and N. Qian, cf. [21] for the most general results. They combined dynami-
cal methods for higher rank abelian subgroups with cocycle superrigidity, and
Kazhdan’s property. This followed earlier work by S. Hurder, A. Katok, J. Lewis,
R. Spatzier, and R. Zimmer who applied their above mentioned local rigidity
results for higher rank abelian groups to get local rigidity for higher rank lattices
[28, 29, 33, 35, 34, 41].

We remark that none of the rigidity and local rigidity results above hold when
the action is a product of two Anosov diffeomorphisms ¡i : Mi ! Mi , i = 1,2 on
M1 £M2. Indeed we can perturb the ¡i even locally. More generally, one has
to exclude the existence of a C

1 rank 1 factor, and finite quotients of such. We
call such actions “irreducible”.

Finally we coin similar notions, Anosov and irreducibility, for Rk actions. In
particular, such actions contain a diffeomorphism a which acts normally hyper-
bolically with respect to the orbit foliation, i.e. there is a continuous splitting
of T M into subbundles E

s , E
u and E

0 such that E
s and E

u get uniformly con-
tracted by a in forward, respectively, backward time, and where E

0 is tangent to
the Rk orbits.

CONJECTURE 4.2 (A. Katok, R. Spatzier). Let Zk
, k ∏ 2, act irreducibly on a com-

pact manifold M. Suppose that some a 2Zk
acts by an Anosov diffeomorphism.

Then the action is C
1

conjugate to a Zk
action by infra-nil endomorphisms on

an infra-nilmanifold.

Similarly, irreducible Anosov Rk
actions are C

1
conjugate to Rk

actions on

M\G/° by left translations, where ° is a lattice in a Lie group G and M is a

maximal compact group which commutes with the Rk
action.

A typical example of an Rk Anosov action is the left action of the diagonal
group on SL(k +1,R)/°, where ° is a cocompact lattice in SL(k +1,R). This fol-
lows easily from the basic structure theory of semisimple Lie groups. The roots
are actually the Lyapunov functionals, and the expansion is totally uniform.

We remark that the conjecture for Rk actions is very strong as topological
classification of Anosov flows seems impossible, and there certainly are Anosov
flows on more general spaces than the M\G/°. Still, some progress has been
made, under more stringent technical assumptions: assume that maximal non-
trivial intersections of stable manifolds of different elements in Rk are all one-
dimensional. These are the so-called Cartan actions treated by B. Kalinin and
V. Sadovskaya in [42, 43] and B. Kalinin and R. Spatzier in [44]. One con-
structs equivariant geometric structures on these maximal intersections and
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uses higher rank to combine these structures between different leaves. We will
return to Conjecture 4.2 later in Section 6.

Actions by higher rank abelian groups also enjoy measure rigidity properties.
For algebraic higher rank hyperbolic actions, these investigations started with
H. Furstenberg’s celebrated conjecture in the late 1960s about the classification
of measures on [0,1] jointly invariant under £2 and £3 [23], following his classi-
fication of minimal sets for the semi-group action. After intermediate work by
R. Lyons [47], D. Rudolph showed that a jointly invariant probability measure
µ has to be Lebesgue if µ has positive measure theoretic entropy for at least
one of the two maps [56]. For homogeneous higher rank abelian hyperbolic ac-
tions this work has been vastly generalized, first by Katok and Spatzier to higher
dimensional systems [40], then Einsiedler, Katok, Lindenstrauss in various pa-
pers [13, 14, 15, 17, 16]. This culminated in the recent paper by Einsiedler and
Lindenstrauss about invariant measures for higher rank subgroups acting on
quotients of S-algebraic semisimple groups [18].

5. NON-UNIFORM MEASURE RIGIDITY

Remarkably, hyperbolic actions by higher rank abelian groups on a compact
manifold M exhibit rigidity properties even when the action is not algebraic.
Naturally, the measure needs not be Haar as the action is not algebraic. Yet
one can ask if the invariant measure is absolutely continuous on M. This turns
out to be correct, at least in low dimensions relative to the rank, and under a
genericity assumption. To discuss the details, we first have to introduce some
technical information.

Let f : M ! M be a C
1,µ diffeomorphism, i.e., a diffeomorphism whose deriva-

tives are µ-Hölder . If µ is an f -invariant probability measure, we have the (mea-
surable) Oseledets decomposition of T M into Lyapunov subspaces of f for µ.
For a Zk action, we have a refined partition: we get linear functionals ¬ :Rk !R

such that ¬(a) are the Lyapunov exponents of a 2Zk w.r.t. µ. In addition, we get
a measurable decomposition T M = ©E

¬i into coarse Lyapunov subspaces E
¬i ,

such that a.e. w.r.t. µ, v 2 E
¬i has Lyapunov exponent ¬i (a) for all a 2Zk .

Furthermore, we call the kernel of a Lyapunov exponent a Weyl chamber wall

and a connected component of the complement of the union of the Weyl cham-
ber walls a Weyl chamber of the action. It is easy to see that Weyl chambers are
convex open subsets of Rk .

Call m hyperplanes (containing 0) in Rk
in general position if the dimension

of the intersection of any l of them is the minimal possible, i.e., is equal to
max(k ° l ,0). Call linear functionals in general position if their kernels are.

We can now report on the first measure rigidity results for non-algebraic ac-
tions, by B. Kalinin, A. Katok and F. Rodriguez Hertz. This was executed over
several difficult technical papers. Here is the main result from [32]:

THEOREM 5.1 (B. Kalinin, A. Katok and F. Rodriguez Hertz, 2011). Let Zk
, k ∏ 2,

act on a k +1 dimensional compact manifold by C
1,µ

diffeomorphisms. Let µ be

an invariant measure such that the measure theoretic entropy hµ(a) > 0 for some
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element a 2Zk
. Assume that the Lyapunov exponents of Zk

w.r.t. µ are in general

position. Then µ is absolutely continuous.

A similar result holds for Rk
actions on a compact manifold of dimension

2k +1.

The assumption on dimension and general position will force the coarse Lya-
punov spaces to have dimension 1, a Cartan like condition. This greatly sim-
plifies the structure of the action. This result was generalized by A. Katok and
F. Rodriguez Hertz in [38] to higher dimensional manifold assuming that coarse
Lyapunov distributions are one dimensional and the action satisfies the full en-
tropy condition, namely elements from each kernel of every Lyapunov exponent
contribute to entropy. Formally one assumes that the entropy functional is not
differentiable at the kernel of each Lyapunov exponent. These results are the
crowning achievement of several papers, for more and more general conditions.
One earlier result for example assumed that the action was on a torus and used
the semi-conjugacy to the action by automorphisms induced on homology. The
result under discussion does not need any semi-conjugacy. This is similar to
the classification results of Cartan Anosov actions by B. Kalinin, V. Sadovskaya
and R. Spatzier respectively which does not require information about the un-
derlying manifolds [44, 42, 43].

We remark that there are natural examples of both higher rank lattice and
abelian actions on tori with one or several fixed points “blown up”, i.e. replaced
by projective spaces. These behave much like the Anosov actions on the given
torus but are on a different manifold, and are not uniformly hyperbolic [34].

5.1. Review of the proof for algebraic actions. We will recall the basic ideas
from the algebraic case. For simplicity we assume that we have an Rk action,
which we can always get by inducing from a Zk to an Rk action. This allows us
to consider elements in the kernels of Lyapunov exponents. Here is an outline
of the argument:

1. The coarse Lyapunov spaces are given by eigenspaces of the automor-
phisms and integrate to 1-dimensional foliations W¬.

2. The measure µ can be decomposed into conditional measures µ¬ with
respect to the W¬.

3. Assume there is a 2Rk which is ergodic w.r.t. µ. By ergodicity, for µ generic
x, suitable translates anl (x) will approximate any point y in the support of
µ¬(x) on W¬(x). One can show that the push forward measures anl

§ (µ¬(x))
are the conditional measures µ¬(ani (x)), and limit onto µ¬(x), by a Lusin
argument. It is crucial that the ani are isometries along W¬(x).

4. One can achieve ergodicity of the special elements a using the º-partition
trick from ergodic theory [40]. Thus one arrives at the

5. Dichotomy: for µ-a.e. x, either the µ¬(x) are atomic or Lebesgue.
6. If any one of the µ¬ are Lebesgue, then µ is invariant under the linear flow

along the W¬i
foliation, and hence is the Lebesgue measure on a subtorus.

By the dimension restriction, the torus has to be the full torus.
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7. Otherwise, all the conditional measures µ¬, for all ¬, are atomic. One then
argues that the conditional measures on stable leaves W

s

b for b 2 Rk are
atomic as well. Now it is well-known that hµ(b) is positive precisely when
the conditional measures on stable leaves are not atomic.

5.2. How to make this work for non-uniform actions. Here are the key com-
ponents that extend fairly easily from algebraic to the non-uniformly hyperbolic
actions:

1. coarse Lyapunov spaces, and the corresponding measurable Oseledets de-
composition;

2. stable manifolds through µ-a.e. x;
3. coarse Lyapunov spaces are tangent to intersections of stable foliations for

different elements in Rk ; this follows as the coarse Lyapunov exponents
are in general position, and the dimension of M is k +1;

4. positive measure theoretic entropy for one element b, hµ(b) > 0, implies
that conditional measures are not atomic.

While all of these arguments generalize, with some difficulty, one now en-
counters a significant problem:

OBSTACLE. The ani are not isometric along the foliation tangent to E
¬ anymore,

and may even grow subexponentially when returning to a generic leaf. Thus
convergence is problematic, and the key engine of the rigidity process is under-
mined.

The solution required great originality and bravado: in short, do a measurable
time change which has good expansion properties. Let us give an outline of the
procedure.

5.2.1. "-Lyapunov metric. First we make a definition, standard in Pesin theory.
We refer to standard texts on Pesin theory for the precise definition of Pesin sets.
Essentially they are compact sets of large measure on which one has uniform
estimates for the relevant derivatives.

Fix a Riemannian metric h·, ·i on M , with induced norm k ·k. We define the
"-Lyapunov metric as follows: Let u, v 2 E¬(x), and fix "> 0. Set

hu, vi" :=
Z

Rk

h(ds)§u, (ds)§wie°2¬(s)°2"ksk
d s.

Note that for a 2Rk :

1. We have the growth estimate for the derivative D
E¬(a) of a along E¬

e
¬(a)°"kak ∑ kD

E¬

x (a)k" ∑ e
¬(a)+"kak.

2. The "-Lyapunov metric is C
1 on Rk orbits.

3. On any Pesin set R
L

" , the "-Lyapunov metric is Hölder continuous with
exponent ∞> l and Hölder constant K = K (l ,") depending only on l and ".
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4. Moreover, we have the following comparisons with the given Riemannian
metric for some constants c and c = c(l ,") depending only on l and ":

ckuk ∑ kukx," ∑ c(l ,")kuk.

5.2.2. Measurable time change. Find a vector w normal to ker¬ such that ¬(w) =
1. Find a function g : M £Rk !R such that

1. | g (x,kak) |∑ 2"kkakk, and
2. the function G(x,kak) := kak+ g (x,kak)w satisfies

kD
E¬

x (G(x,kak))k" = e
¬(kak).

Then, G(x,kak) is a measurable time change function on Rk , continuous, indeed
Hölder on Pesin sets, differentiable on Rk , and with exponent ¬.

Now one can repeat the arguments from the algebraic case.

5.3. Related works. A. Katok and F. Rodriguez Hertz established the following
related result in [39] which they call an arithmeticity theorem.

THEOREM 5.2 (Katok-Rodriguez Hertz, 2016). Suppose k ∏ 2 and that Zk
acts C

r
,

r > 1+µ, for some µ > 0, on a k +1-dimensional closed manifold M, preserving a

probability measure µ. Suppose at least one element has positive entropy w.r.t. µ,

and that the Lyapunov exponents are in general position. Then there are finitely

many disjoint measurable sets Ri whose union has full measure such that: the

stabilizer subgroups of each Ri are measurably conjugate to an action by toral

automorphisms. In fact, the conjugacy is bijective a.e., differentiable on most

stable manifolds, and differentiable in the sense of Whitney on a set of large

measure.

As a corollary they get that entropies are given by logarithms of units in al-
gebraic number fields, simply because µ pushes forward to Lebesgue measure
and entropy of elements in SL(n,Z) acting on tori. Furthermore, they can also
control singularities and get strong topological corollaries.

In [37], A. Katok and F. Rodriguez Hertz obtained the classification of a real
analytic action Æ of SL(n,Z) on the n-torus T

n assuming the induced map on
homology is standard: on the complement of a finite set, there is a real analytic
conjugacy from the linearized action to Æ whose image has full measure. Very
recently, A. Brown, F. Rodriguez Hertz and Z. Wang found a major improve-
ment [5]. We will discuss it below in Section 6.3.

6. GLOBAL RIGIDITY OF HIGHER RANK ANOSOV ACTIONS

We now turn to global rigidity properties of hyperbolic actions of higher rank
abelian groups and lattices.
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6.1. First results. The general classification of higher rank Anosov actions is an
outstanding problem—cf. Conjecture 4.2—with progress only under some fairly
restrictive assumptions. One can ask instead about classification of actions on
manifolds which are known to support algebraic higher rank Anosov actions.
We already know that there are no new actions C

1-close to algebraic actions,
thanks to the local rigidity theorems of Katok and Spatzier [41]. Thus we are
asking the global rigidity problem. If at least one element acts by an Anosov dif-
feomorphism, we now have a complete classification of C

1 irreducible actions
of Zk , k ∏ 2, on infra-nilmanifolds. We will now review the important steps
culminating in the global rigidity result by F. Rodriguez Hertz and Z. Wang,
Theorem 6.2.

There were early results on global rigidity of Zk actions on tori, e.g. by A. Ka-
tok and J. Lewis [33, Theorem 4.12], under stringent assumptions such as one-
dimensionality of the coarse Lyapunov foliations, or the classification of Cartan
and conformal Anosov actions of Rk and Zk on general manifolds, cf. B. Kalinin
and R. Spatzier [44] for k ∏ 3 and B. Kalinin and V. Sadovskaya [42, 43]. Kalinin
and Sadovskaya recently announced a generalization of the classification for
Cartan actions to Z2 and R2. All of these results made the crucial assumption
that there are many Anosov elements.

F. Rodriguez Hertz proved the following result for higher rank actions on tori
in 2007 [54]. It is the first global rigidity result that only assumes that there is just
one Anosov element in the action. This is the second rigidity paper mentioned
explicitly in the Brin prize nomination.

THEOREM 6.1. Suppose A 2 GL(N ,Z), that its characteristic polynomial is irre-

ducible over Z, and that the rank of the centralizer Z (A) in GL(N ,Z) is at least

2. Suppose a C
1

action Æ of Z (A) on T
N

has at least one Anosov element Æ(a),

a 2 Z (A), and that the induced action Ω on homology is the given action Ω of

Z (A) on RN
. Then Æ is C

1
conjugate to Ω.

This result follows from a more general theorem we will not discuss in detail,
namely [54, Theorem 2.1]. The latter makes assumptions about properties of
the linearized action which easily follow for Z (A), A as above.

The main reason global rigidity questions on tori and nilmanifolds are more
approachable than classification on general manifolds is due to the existence
of a Hölder conjugacy. Indeed, since Æ(a) is Anosov, Æ(a) is Hölder conjugate
to an affine Anosov diffeomorphism, necessarily Ω(a), by the Franks-Manning
conjugacy ¡. It is easy to show that ¡ conjugates all of Æ(Z (a)) to Ω(Z (a)).

In consequence, it is good enough to show that the Franks-Manning conju-
gacy ¡ is C

1. Indeeed, once ¡ is C
1, one can approximate ¡ in the C

1-topology
by a C

1 ¡0, conjugate Æ by ¡0 to get a Zk action C
1 close to Ω. The latter will

be C
1 conjugate to Ω by local rigidity, finishing the proof.

The actual proof of Theorem 6.1 is quite complicated and introduced sev-
eral new ideas and tools. Roughly, Rodriguez Hertz analyzes normal forms of
Æ(Z (A)) on stable manifolds and their conjugacies using the linearization Ω.
This yields smoothness of ¡ on an open dense set. He uses holonomies along
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various foliations to get smoothness everywhere. Here is a more detailed out-
line. While many crucial arguments are missing we hope the the reader will get
a sense of the ideas.

Uniform Growth Estimates: First one can relate Lyapunov exponents of any
two Hölder conjugate diffeomorphisms f and g . Let ¡ be the conjugacy and
µ an f -invariant measure. By Pesin theory, µ a.e., the Lyapunov spaces cor-
respond to submanifolds which contract according to the Lyapunov exponent.
Hence the image under ¡ does as well, and gives a Lyapunov exponent for g for
¡§(µ). This new Lyapunov exponent is easily estimated in terms of the Hölder
constant of the ¡. Furthermore, if µ is a hyperbolic measure so is ¡§(µ).

In the situation at hand, this implies that for b 2 Z (A), if Ω(b) is Anosov, then
all Lyapunov exponents are negative. Sometimes this yields uniform exponen-
tial contraction (cf. also [57]):

Suppose f : M ! M is a C
1

diffeomorphism and E a continuous invariant

bundle for f. If all Lyapunov exponents for E for all invariant measures for f on

M are negative, then f uniformly contracts E.

It is important here that E is continuous and all Lyapunov exponent for E

are negative, Indeed, there are C
r diffeomorphisms on tori Hölder conjugate to

linear ones which are not Anosov, for some 1 < r < 3 [25].
In light of uniform exponential contraction by Lyapunov exponents, it is im-

portant to see when Lyapunov exponents are negative. For hyperbolic measures
µ, Lyapunov exponents of µ can be approximated by Lyapunov exponents at
periodic points by work of W. Sun and Z. Wang [65] following [30].

Rodriguez Hertz applies this to show that a continuous splitting of the stable
into slow and fast stable subspaces is C

s along the stable foliation.

Linearization and Conjugacies: Here Rodriguez Hertz plays a subtle variation
of a well-known scheme. First he shows that one can linearize a Zk action at a
fixed point with a contraction. This is a normal forms argument, and yields a
local C

1+" conjugacy. Then he analyzes conjugacies between linear actions at
fixed points assuming one of the linear actions is rich, i.e. that one can separate
each coarse Lyapunov space for one linear action as a stable space for some
element. Richness is easy to show for the linearization Ω(Z (A)). He concludes
that local conjugacies between a linear action and a rich linear action respect
the splittings into coarse Lyapunov spaces.

In addition, the assumptions on the linearization Ω imply that the eigenva-
lues ∏(b),b 2 Z (A) are dense in R for any Lyapunov exponent ∏. If these coarse
Lyapunov spaces are 1-dimensional real of complex eigenspaces, this easily im-
plies that any local conjugacy has to be smooth away from the periodic point.

The idea now is to compare local linearization on stable manifolds at periodic
points with the global linearization Ω.

The finale: Consider a periodic point p. From the above,we see that ¡ is C
1

away from p on coarse Lyapunov subspaces at p away from p. To prove C
1 at

p, lift the action and ¡ to Rn . Consider p + z,0 6= z 2 Zn , different lifts. Then
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¡ is C
1 on a coarse Lyapunov space of p + z away from p + z. Now consider

holonomies along transversal unstable manifolds from the coarse Lyapunov
spaces in question through p+z to that of p, both for Æ and for Ω. The conjugacy
naturally intertwines the holonomies. From dynamics, the holonomy map for
Æ is absolutely continuous with non-zero Jacobian. For Ω is of course just linear.
Moreover, on the linear side, the image of p under the holonomy is never p + z

since the unstable manifold for Ω(b) never has any rational slopes.
From dynamics again, the Lyapunov exponents of Æ and Ω coincide since ¡

now has non-zero Jacobian along the coarse Lyapunov subspace. So suppose
Ω(b) is Anosov. By the above the Lyapunov exponents at periodic points for
Ω(b) and Æ(b) coincide. By approximation of general Lyapunov exponents by
periodic ones, no Lyapunov exponents are 0, and hence Æ(b) is also Anosov.
Then from dynamics, under the special assumptions, stable foliations are C

1,
hence holonomies and then ¡ are C

1 near p.

6.2. Global rigidity on tori and nilmanifolds. The crowning achievement here
is the following result which completely and totally resolves the global rigidity
problem on infra-nilmanifolds [55]:

THEOREM 6.2 (F. Rodriguez Hertz-Z. Wang). Suppose k ∏ 2 and that Æ is a C
1

Zk
action on an infra-nilmanifold manifold M with at least one Anosov element.

Suppose the linearization Ω of Æ does not have rank 1 factors. Then Æ is conjugate

to Ω by a C
1

diffeomorphism.

This follows prior work by D. Fisher, B. Kalinin and R. Spatzier [20] where
this result was proved under the additional assumption that Æ has many Anosov
diffeomorphisms. More precisely, they assume that there is at least one Anosov
element in each Weyl chamber. As we will see, both this result and the methods
used will play an important role in the proof of Theorem 6.2. For one, the basic
strategy of Rodriguez Hertz and Wang is to show that every Weyl chamber has
an Anosov element, thus reducing their result to the earlier one in [20]. However,
much more finesse is needed.

Let us first understand the basic issue. It is not difficult to see that all ele-
ments in an open Weyl chamber C are Anosov provided one of them is. On a
Weyl chamber wall ker ¬ however, ¬ is 0, and thus a wall cannot contain any
Anosov elements. So one needs to prove that there are again Anosov elements
Æ(b) after crossing ker ¬. Note that the stable space for Æ(b) will change for
sure. Indeed, suppose that you are at a point with Oseledets decomposition for
Æ: for a 2C , the stable space decomposes as E

s

Æ(a) = E
ss

Æ(a)+E
¬ where E

ss

Æ(a) is the

sum of Lyapunov spaces E
∏ for suitable ∏ not positively proportional to ¬. Then

E
ss

Æ(a) remains stable and E
¬ becomes unstable when we cross the Weyl cham-

ber wall ker ¬. If °¬ is also a Lyapunov exponent, then E
°¬ will become stable

crossing the wall. Thus it is easy to understand the changes to the stable man-
ifold if Lyapunov theory applies. The difficulty in general is that the Oseledets
decomposition is only measurable and only gives non-uniform estimates.
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In the end, Rodriguez Hertz and Wang use the following criterion of R. Mañe
[49]:

A diffeomorphism f : M ! M of a compact manifold M is Anosov if and only

if the dimensions of the stable manifolds at all periodic points are the same and

for all non-zero tangent vectors v:

sup
i2Z

kd f
i (v)k=1.

Thanks to the Franks-Manning conjugacy ¡, it is easy to verify that all stable
manifolds at periodic points have the same dimension. The second condition
is easily checked for tangent vectors at points with Oseledets decomposition
into Lyapunov subspaces. The difficulty is to show this is true for all non-zero
vectors.

To resolve this, Rodriguez Hertz and Wang study regularity properties of the
Franks-Manning conjugacy ¡. More precisely, consider a 2C close to the Weyl
chamber wall ker ¬, and decompose the target group G into a fast stable g

ss

a ,
slow stable g

0
a and unstable subspaces g

u

a where g
0
a consists of eigenspaces of

weights proportional to ¬. Then they project the conjugacy (or more precisely its
lift to the universal cover) to g

0
a , or more precisely the corresponding subgroup.

LEMMA 6.3. The projection ¡0
a

is smooth when restricted to any stable manifold

W
s

Æ(a), with Hölder transverse dependence.

The point here is that transformation properties for elements close to ker ¬
coming from the algebraic side only produce very slow growth. This has to be
compared with the expansion/contraction on the non-algebraic side. In sum-
mary, we can have small exponential expansion. However, as in [20], Rodriguez
Hertz and Wang use exponential mixing for algebraic Zk actions on nilmani-
folds. The idea is that the exponential mixing of the group action overcomes
slow exponential growth, and allows to conclude that certain sums converge,
at least as distributions dual to Hölder functions. Then ideas from harmonic
analysis, especially analysis of wave front sets, finish the proof. Indeed, distribu-
tions that have partials of all orders dual to Hölder functions along transversal
sets of Hölder foliations are C

1 functions.
More precisely, ¡0

a can be written as a series which will always converge to a
Hölder function. Differentiating term by term, the contributions to the deriva-
tives coming from contracting along and moving back along the stable manifold
W

s

Æ(a) work against each other. In rank 1 in particular, i.e. for a single Anosov
diffeomorphism, we cannot conclude anything as expansion and contraction
roughly cancel each other out, and only yield uncontrollable growth properties.
In higher rank however, derivatives of the summands under elements close to
ker ¬ will only expand with a slow exponential rate. Then one can make the
series of derivatives converge as distributions using exponential decay of matrix
coefficients.

Exponential mixing was established for algebraic Zk actions on nilmanifolds
by A. Gorodnik and R. Spatzier in [27]. For actions on tori, exponential mixing

JOURNAL OF MODERN DYNAMICS VOLUME 10, 2016, 191–207



204 RALF SPATZIER

is much easier, and follows from more standard Fourier series argument and
Katznelson’s lemma. We refer to D. Fisher, B. Kalinin and R. Spatzier [20] who
followed D. Lind’s approach for a single automorphism in [46].

Next, Rodriguez Hertz and Wang show that E
ss

Æ(a) is more than measurable:
For simplicity assume that M is a torus where projections to subgroups are just
linear projections: let V be the coarse Lyapunov, determined by ¬ and as above
project the conjugacy ¡ to V to get a map ¡0

a. Then ¡0
a is C

1 along all stable
manifolds with Hölder transverse dependence by Lemma 6.3.

The next lemma shows that ¡0
a is also everywhere regular. Since the kernel of

¡0
a along W

s

Æ(a) is exactly E
ss

Æ(a), we get the following lemma.

LEMMA 6.4. E
ss

Æ(a) is tangent to a smooth subfoliation of W
s

Æ(a). Moreover, ¡0
a has

constant rank along all stable manifolds.

This lemma allows to verify the second condition of Mañe’s criterion for be-
ing Anosov. Indeed, let b be an element just across the Weyl chamber wall
ker ¬. W.l.o.g. we may assume that v 6= 0 is a stable vector. If v 2 E

ss

Æ(a), Æ(b) ex-
pands v in negative time. Otherwise, the derivative along the stable manifolds
D((¡0

a)W s )(v) 6= 0, and thus grows arbitrarily large under Ω(b). Since

DΩ(bn)
°
D((¡0

Æ(a))W s )(v)
¢
= D((¡0

Æ(a))W s )
°
DÆ(bn)(v)

¢

and the stable derivative D((¡0
Æ(a))W s ) is uniformly bounded over M by the last

lemma, (DÆ(bn)(v)) has to grow arbitrarily large as well. Thus the hypotheses
for Mañe’s criterion are satisfied.

The proof of the lemma itself is difficult, highly original and frankly stunning.
First note that the second claim implies the first as E

ss

Æ(a) is the kernel of D¡0
a. So

assume (¡0
a)W s does not have constant rank. Then the singular set is closed and

Zk -invariant, and hence supports an ergodic Zk -invariant measure ∫ (which
could be a periodic orbit). The idea now is to analyze the Jacobian in two ways.
On the singular set, the ratio of stable volume of small neighborhoods and the
volume of their image under the conjugacy tends to 0. On the other hand, the
pull back measure µ = (¡°1)§(∏) of Haar measure ∏ is absolutely continuous.
Hence where defined, the Jacobian of ¡s is not 0. In fact, there is a positive
lower bound which suffices to yield a contradiction.

6.3. Applications to actions by lattices. A. Brown, F. Rodriguez Hertz and
Z. Wang recently applied Theorem 6.2 to get the following [5]:

THEOREM 6.5 (Brown-Rodriguez Hertz-Wang, 2015). Suppose ° is a lattice in a

semisimple real Lie group all of whose factors have real rank at least 2. Suppose °
acts on a nilmanifold by Æ, that some element acts by an Anosov diffeomorphism,

and that Æ can be lifted to the universal cover. Then Æ is C
1

conjugate to the

linearization on a finite index subgroup.

This is a significant breakthrough in the Zimmer program of studying actions
of higher rank groups and lattices. Strikingly, Theorem 6.5 makes no assump-
tions on invariant measures, unlike in most results in the Zimmer program.
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