
1. Introduction
Interferometric Synthetic Aperture Radar (InSAR) observations constrain displacement of the Earth’s sur-
face toward or away from the satellite, and are inherently a one-dimensional observation defined by the pro-
jection of the true, 3-dimensional (3-D) ground displacement field onto the orientation of the line-of-sight 
(LOS) vector between the satellite and the ground (e.g., Bürgmann et al., 2000). However, interpretations 
of the deformation within a given region usually benefit from constraints on the full 3-D displacement 
field (e.g., Fialko et al., 2001; Funning et al., 2005; Wright et al., 2004) or require well-characterized phys-
ical models of the processes driving the deformation (e.g., fault source geometry, aquifer characteristics, 
crustal rigidity). These models are not always available or well understood and the Earth is far more com-
plex in reality than its representation in models (e.g., Caricchi et al., 2014; Chester & Chester, 2000; Hearn 
& Bürgmann, 2005). To address this limitation, researchers have combined measurements from multiple 
observation geometries (particularly from ascending and descending satellite paths) as well as other prod-
ucts derived from the Synthetic Aperture Radar (SAR) imagery (described below) to infer the 3-D displace-
ment field and its variations over time (e.g., Fialko, 2004; Froger et al., 2004; Funning et al., 2005; Joughin 
et al., 1998; Lindsey et al., 2014; Samieie-Esfahany et al., 2009). Although these combinations provide some 
separation of east-west and vertical components, the north-south direction often remains poorly resolved 
due to the polar orbits of SAR satellites. The NASA/JPL Uninhabited Aerial Vehicle Synthetic Aperture 
Radar (UAVSAR) (Rosen et  al.,  2006) may be used to improve north-south constraints (e.g., Delbridge 
et  al.,  2016; Handwerger et  al.,  2019), although global data coverage remains sparse both spatially and 
temporally.

Previous studies have shown that constraints on the full 3-D displacement field can be achieved through 
analysis of other aspects of the SAR imagery, including the backscatter amplitude and finite beamwidth 
used in imaging. Cross-correlation of the backscatter amplitude between two different images results in 
constraints on displacement along the direction of the satellite track, and is useful for measuring signals 
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with large offsets greater than a10% of the pixel size (e.g., Fialko et al., 2001, 2005; Grandin et al., 2016; Hu 
et al., 2010; Jiang et al., 2017; Jónsson et al., 2002; Michel et al., 1999; Simons et al., 2002). Split-beam meth-
ods, known as multiple aperture radar (MAI) or “burst overlap interferometry” for Sentinel-1 TOPS mode, 
have been employed to constrain along-track displacements (Bechor & Zebker, 2006; Grandin et al., 2016; 
Gray, 2011; J. Hu et al., 2012; Jung et al., 2012). This method uses subaperture processing in the azimuth di-
rection to separate an interferogram into forward- and backward-looking components. MAI and burst-over-
lap approaches improve precision relative to amplitude cross-correlation, but still can only constrain rela-
tively large signals (typically !a5 cm) (e.g., Grandin et al., 2016; Jiang et al., 2017). Moreover, burst overlap 
interferometry can only be done in the areas where bursts or swaths overlap.

Given the limited viewing geometries available from satellite-based systems and the limitations on ampli-
tude cross-correlation and split-beam methods, how can we best leverage the high precision of LOS-phase 
changes and infer characteristics of the 3-D displacement field? To answer this question we propose a meth-
od that incorporates elastic Green’s functions as constraints on the displacement gradients in each dimen-
sion, an approach that has already been explored for use in interpolating spatially smooth signals in sparse 
GPS data (e.g., Haines et al., 2015; Sandwell & Wessel, 2016). We test our approach on a site of groundwater 
entrainment in the Coachella Valley in southern California.

Both natural and anthropogenic changes in storage and flow of groundwater and other subsurface flu-
ids can impact the effective stress on faults. This can happen through an increase in pore pressure at the 
fault interface and lead to fault slip and elevated seismicity (e.g., Ellsworth,  2013; Keranen & Weingar-
ten, 2018; Ross et al., 2020; Savage et al., 2017; Wetzler et al., 2019), or through stress changes related to 
poroelastic deformation or loading (e.g., González et al., 2012; Johnson et al., 2017; Hu & Bürgmann, 2020; 
Segall, 1989). In some cases, these poroelastic changes in the subsurface can lead to deformation at the 
Earth’s surface which can be measured using geodetic methods such as InSAR. In this study, we use InSAR 
measurements to examine deformation related to anthropogenic groundwater recharge in the Coachella 
Valley in California. We show that the inferred strain along nearby faults depends on the approach used in 
reconstructing the 3-D surface displacements.

In Section 2, we describe the general problem setup for inversions for 3-D displacements from InSAR and in 
Section 3, we describe the data set used in our study. In Section 4, we describe our regularization approach 
and apply it to synthetic case examples. Section 5 includes our results for the Coachella Valley data and 
discussion of the potential implications for faults in the vicinity of the entrainment site, followed by con-
clusions in Section 6.

2. Whitewater Subbasin Case Study
2.1. Study Area

The Whitewater River Subbasin (Figure 1) is an area of active groundwater entrainment in the Coachella 
Valley of southern California. We observe rapid uplift within the sub-basin throughout 2017, which is likely 
in response to pore pressure increases within the aquifer. During the entrainment process, water is imported 
from the Sacramento Bay Delta, Colorado River, and San Gorgonio Mountains and percolated directly into 
the aquifer system as part of an effort to meet demands from domestic and commercial water consumers 
in the Coachella Valley (District, C. V. W., 2019). The greater Coachella Valley Groundwater Basin spans an 
area of a1000 2km  and is bounded by crystalline bedrock of the Peninsular Ranges to the southwest and 
Transverse Ranges to the northeast. The boundary of the Whitewater River sub-basin is delineated by two 
major faults, the Palm Springs blind fault in the southwest and the Garnet Hill fault in the northeast (bold 
black lines in Figure 1). The main aquifer occupies the upper a600 m of the a3,700 m deep sedimentary ba-
sin, and is composed of interbedded layers of gravel, sands, silts, and clays (Coachella Valley Water District, 
C. V. W., 2019). The aquifer is unconfined and water typically flows from the northwest to the southeast 
down the Salton Trough.

The Whitewater River Sub-basin does not contain any significant aquitard layers, leading to conditions of 
high permeability and hydraulic conductivity within the aquifer. Thus, any observed deformation associat-
ed with changes in the aquifer system is likely due to a poroelastic response from changes in pore pressure 
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within the aquifer. In 2017, heavy precipitation relieved a severe 4-year drought in California and resulted in 
decreased dependence on groundwater pumping and increased deliveries of surface water to areas like the 
Whitewater groundwater replenishment facility (e.g., Murray & Lohman, 2018). Deliveries to the Whitewa-
ter facility increased from essentially zero in 2015 to as much as 400 3km  in 2017 (Coachella Valley Water 
District, C. V. W., 2019) and groundwater elevations in nearby wells increased from a150 m to nearly 240 m 
over the same time interval (Figure 2).

2.2. InSAR Data

We used Sentinel-1a/b imagery (e.g., De Zan & Monti Guarnieri, 2006) from four overlapping ground tracks 
as well as observations from the airborne UAVSAR platform to construct displacement time series covering 
the Whitewater River sub-basin and surrounding area. We processed Sentinel-1 SAR imagery using the 
InSAR Scientific Computing Environment (ISCE) (Rosen et al., 2012) stack processing capability (Fattahi 
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Figure 1. Extent of study area. Colored boxes represent the extent of the four Sentinel-1a/b swaths and Uninhabited 
Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data (white box) used in this study. The Whitewater groundwater 
replenishment facility percolation grounds are roughly highlighted with a small red triangle. Faults from the Southern 
California Earthquake Center (SCEC) Community Fault Model are shown as black lines. Palm Springs blind fault and 
Garnet Hill fault are indicated with bold black lines. Long arrows indicate satellite flight direction and shorter arrows 
indicate the look direction.

Figure 2. Groundwater elevation (black line) at United States Geological Survey (USGS) well 03S04E20F01S (https://
waterdata.usgs.gov/nwis/gw) and yearly total water delivered to the Whitewater groundwater replenishment facility 
(Coachella Valley Water District, C. V. W., 2019). The location of the well is shown in Figure 3a.
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et al., 2016). We generated all sets of sequential interferograms between adjacent dates in individual stacks 
and used the Shuttle Radar Topography Mission (SRTM) digital elevation model to remove topographic ef-
fects (Farr & Kobrick, 2000). Time series were formed using a modified persistent scatter method (Murray & 
Lohman, 2018). We acquired UAVSAR interferograms from NASA-JPL (Hensley et al., 2009). We removed 
a long wavelength signal from the UAVSAR interferograms to approximate errors related to flight instabili-
ties. We reference the phase in all interferograms to a relatively stable/coherent location at coordinates 116.

q528 W, 33. q908 N, well north of the area of deformation.

The combination of these InSAR measurements indicate low rates of deformation in 2015 and 2016, rapid 
uplift in 2017, and variable deformation in 2018 and 2019 (Figures 3 and 4). In the area of maximum defor-
mation we measure a12 cm of total LOS shortening in 2017 (Figure 4a). The onset of uplift begins north of 
the entrainment field near the Garnet Hill fault, then progresses outward over the next few months until it 
extends a small distance (a0.5 km) beyond the mapped extent of the basin-bounding faults to the northeast 
(Figure 4b). In the southwest, the limit of the observed deformation is more closely related to the transition 
between the sedimentary basin and bedrock than to the mapped location of the Palm Springs blind fault 
(Figure 4b). The northeastern limit of deformation closely follows a portion of the mapped location of the 
Garnet Hill Fault, but then extends to the north by approximately 0.5 km at the northern end of the deform-
ing region.

For the 3-D inversions we use a subset of the Sentinel interferograms to infer the rates during the prominent 
signal in 2017 (Figure 3) and in the case of UAVSAR we use a single interferogram (04/04/2017–09/28/2017) 
(Figure 4a, blue diamonds) that spans the main time period of deformation (Figure 3). Due to poor temporal 
coverage and strong tropospheric turbulence in data from path 173, we omit this path from the inversion 
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Figure 3. Observed displacement rates during 2017 for the five independent Interferometric Synthetic Aperture Radar (InSAR) datasets. Positive values 
indicate displacement toward the satellite. Decorrelated areas and high elevation areas (!500 m) have been masked out and are not used in our analysis. The 
Whitewater groundwater replenishment facility percolation grounds are roughly outlined in red and the USGS well 03S04E20F01S (https://waterdata.usgs.
gov/nwis/gw) is labeled in panel (a) (black triangle). Faults from the Southern California Earthquake Center (SCEC) Community Fault Model are shown as 
white lines. The approximate extent of each panel is outlined by the white box in Figure 1. Rates are constructed using 18 acquisitions from the date range 
02/26/2017–11/29/2017 (a), 29 acquisitions from 02/21/2017–12/06/2017 (b), 17 acquisitions from 03/04/2017–12/05/2017 (c), 13 acquisitions from 05/10/2017–
12/12/2017 (d), and two acquisitions from 04/04/2017–09/28/2017 (e).
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comparisons. We compare the data from path 173 with the predictions from the inferred 3D models in sup-
plementary Figure S1.

2.3. GPS-Based Correction of Interseismic Motion

The study area is located within the region impacted by interseismic motion associated with the Pacif-
ic-North American plate boundary. We remove a model of regional displacements from our inferred 3-D 
displacement fields (presented in Section 5.2) using the UCERF-3 model (Parsons et al., 2013) derived from 
GPS measurements in the greater region (Figure 5). The magnitude of the correction varies by approxi-
mately 0.3 cm/yr between the northeastern and southwestern corners of our study area. This value is only 
about 3% of the magnitude of maximum horizontal signal related to groundwater entrainment. While not 
critical to the interpretation of our results, the use of this correction removes the approximately linear ramp 
in displacement associated with interseismic motion across our study area and helps to isolate the portion 
of the deformation field associated with hydrology.
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Figure 4. Displacement time series within the Whitewater River Basin and contour map. (a) line-of-sight (LOS) 
observations from each track are plotted in the time series (location indicated by yellow star in map) with the track 
P166 data filtered time series plotted (orange dashed line). (b) Timing of uplift, with contours indicating the region 
where the filtered LOS displacement (from Sentinel-1a/b track P166) exceeds 5 cm (indicated by dashed gray line in 
time series in [a]) on each date (colors). Faults from the Southern California Earthquake Center (SCEC) Community 
Fault Model are shown as white lines.
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3. Inversion Method for 3-D Decomposition
Our case study and synthetic examples involve a nominally well-determined inversion, where we solve for 
3-D displacements based on ! 3N  different LOS displacement measurements. Because of the orientation 
of the LOS vectors, the problem is, in reality, highly unstable, with far less resolution in the N-S direction 
than in the vertical or E-W direction. The approaches explored here (except for the undamped case) would 
all be applicable to scenarios with  2N  different LOS as well. For a given pixel, let  

G [ , , ]x y zu u u u  be the 
actual 3-D displacement vector, with each component corresponding to one of the three orthogonal unit 
basis vectors l l l[ , , ]x y zi i i . We also consider N  unit LOS vectors ljl  corresponding to each of our satellite viewing 
geometries. Each of the N  LOS geometries at each pixel is a function of the satellite azimuth direction \  and 
incidence angle T  (Figure 6) (e.g., Hanssen, 2001):

MURRAY ET AL.

10.1029/2020JB021137

6 of 15

Figure 5. GPS velocities (black vectors) in the NA12 reference frame, available from the Nevada Geodetic Laboratory 
(http://geodesy.unr.edu). Color scale is UCERF-3: interpolated GPS east velocities (a) and north velocities (b) (Parsons 
et al., 2013). These velocities were used to subtract motion associated with the plate boundary from Interferometric 
Synthetic Aperture Radar (InSAR)-derived displacements.

Figure 6. Line-of-sight geometries for the four satellite tracks swaths used in this study in cross section (a) and map 
view (b), with satellite azimuth direction and incidence angle. Solid lines indicate look vectors for ascending (north-
northwest traveling) and descending (south-southwest traveling) tracks (dashed lines). Line colors correspond to colors 
of footprints in Figure 1.
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The forward problem relating the observations made along the satellite LOS to the 3-D displacement or 
velocity vector (Gu) is
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In the case where ! 3N  and the LOS vectors are noncolinear, this problem is not underdetermined and 
the values of Gu can be inferred as the best-fit solution in a linear least squares sense (e.g., Menke, 2018), as 

� 
GG 1( )T Tu A A A d. However, when the LOS vectors are near-parallel or clustered within one plane, as they 

are with most satellite observations, the inverse problem is unstable with respect to small perturbations due 
to noise in the individual measurements.

Below, we present a regularization method that incorporates constraints from elastic solid mechanics. We 
compare results from this method to damped least squares solutions, as well as an undamped inversion that 
incorporates the additional constraints from UAVSAR data.

4. Regularization Approach
4.1. Damped Least Squares Regularization

We implement damped least squares (e.g., Menke, 2018), by augmenting Equation 2 as follows:

O
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« » « »¬ ¼¬ ¼

JJG
GG * ,

0
Ad
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where,

O O

ª º
« »

 « »
« »
¬ ¼

*
0 0 0
0 0
0 0 0

 (5)

which is solved in a least squares sense to recover the model vector u. Increasing values of O will lead to 
smaller values of yu , even if the actual values of yu  are large. We find the optimal value for O through the 
jRi method, which balances the trade-off between perturbation error (noise) and regularization error (over 
damping) (e.g., Barnhart & Lohman, 2010).

4.2. Elastically Coupled Solution

Haines et al. (2015) developed force-balance equations for the vertical derivatives of horizontal stress rates. 
These derivatives do not rely on a priori assumptions about the subsurface source or material properties. 
Arbitrary horizontal subsurface forces, xf  and yf , are related to the horizontal displacement vector  [ , ]x yu u u  
in the following equations:
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where P is the shear modulus and Q  is Poisson’s ratio. Sandwell and Wessel (2016) solved Equations 6 and 7 
through the frequency domain method involving interpolation of known, arbitrarily spaced measurements 
of the horizontal component of displacement (e.g., Global Navigation Satellite System [GNSS] data) to a 
grid of elastically consistent displacement vectors. We modify this approach to regularize our inversion 
of LOS InSAR measurements to recover a set of elastically consistent horizontal displacement or velocity 
vectors on the same grid as the InSAR input data. This can also be easily modified to output to an arbitrarily 
spaced grid. The vertical displacement or velocity vectors are also solved for in this inversion, but without 
explicit coupling to the horizontal components.

To formulate this linear elastically coupled solution, we solve Equations 6 and 7 according to Sandwell and 
Wessel (2016) and rewrite the solution with N  observations of the 3-D displacement field projected into the 
LOS as:

m m m l

n n n l
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where we have N  LOS vectors and the associated set of data vectors, losNu . The Green’s functions (q, p, and w) 
are functions of the vector  

G ( , )x yr r r  which are vectors between each pixel of interest with positions ( , )i ix y  
and neighboring pixels with positions ( , )j jx y .  �xr xi xj and  �y i jr y y , and Gr  has length  �2 2

x yr r r . 
Following the solution from Sandwell and Wessel (2016), the Green’s functions are written as:
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We use a value for Poisson’s ratio, Q , of 0.5, which drives the inversion to favor a solution with strong 
coupling between the horizontal displacements. After inverting Equation 8 for vertical displacements or 
velocities ( zu ) and horizontal forces xf  and yf  in a least squares sense, the forces can be used to recover an 
elastically consistent set of horizontal displacements xu  and yu  in the forward problem:

ª º ª ºª º
« » « » « »
« » « »« »¬ ¼¬ ¼ ¬ ¼

G G
G G

( ) ( )
.( ) ( )

i j
x x
i j
y y

u q r w r f
w r p ru f

 (12)

Rather than inverting the large matrix with every pixel ( , )i ix y  relative to all other pixels ( , )j jx y , we calcu-
lated i

xu  and i
yu  separately at each pixel with a 10 × 10 pixel (500 m) window in order to save computational 

cost.

Just as for the damped least squares solution (Section 4.1), the degree to which we require the material to 
behave like an elastic solid will affect the resulting 3-D displacement field. Here, we append the matrix O* to 
the system matrix in Equation 8, where the optimal value for O is again found using the jRi method (Barn-
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hart & Lohman, 2010). It is also important to note here that displacements associated with discontinuities 
(e.g., faults that creep at the surface would violate the assumptions from Haines et al., 2015 and Sandwell 
& Wessel, 2016), so care should be taken with interpreting the results of this approach in those settings. 
As shown in the results below, there are no sharp discontinuities in the original LOS observations or 3-D 
decompositions that would indicate the presence of shallow creep. However, there are some residuals asso-
ciated with the fit to the original LOS observations using the coupled approach (Figure S1) that indicate that 
this example may approach the limits of this assumption.

4.3. Synthetic Data Tests

In addition to applying these approaches to the data set covering the Whitewater sub-basin, we compared 
the results of each inversion method applied to synthetic data. This enabled us to assess the accuracy of 
the method and compare sensitivities to varying noise levels. We used a synthetic deformation scenario 
with a buried horizontal dislocation embedded in an elastic half space (Okada,  1985). The rectangular 
opening source has dimensions of 60 units in the X direction and 30 units in the Y direction centered in 
a 200-by-200 unit area, where units are arbitrary. We used the 3-D surface velocity associated with tensile 
faulting (opening perpendicular to the dislocation surface), projected along the four LOS vectors available 
for the Whitewater study region, as our synthetic data, with the magnitude of opening chosen so that the 
peak LOS deformation is 10 cm/yr. We added white noise drawn from a normal distribution with a range of 
magnitudes for each LOS observation. Noise levels consisted of a set of 60 increasing values ranging from a 
standard deviation of 0–1 cm/yr (Figures 7 and 8).
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Figure 7. Inversions of synthetic data for 3-D surface velocity for the undamped, damped, and coupled cases. Curves are colored by noise level standard 
deviation (upto V  1) added to the synthetic line-of-sight images. Black dashed lines are the “true” velocities associated with the buried dislocation. Units are 
arbitrary, but are chosen to approximate the a10 cm/yr line-of-sight (LOS) signals observed for the Whitewater basin data. Scales on Y-axis for the Y-velocities 
are allowed to vary between panels to emphasize the magnitude of variability associated with the various approaches.
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We attempt to recover the 3-D velocities from the noisy LOS observa-
tions with three methods: (1) the undamped least squares inversion (Sec-
tion 3), (2) the damped least squares inversion (Section 4.1), and (3) the 
elastically coupled inversion (Section 4.2). We show transects through the 
resulting displacement fields at their peaks to illustrate how the recov-
ered 3-D displacements compare to the true synthetic signals (Figure 7). 
Values for the best-fit choice of O based on the jRi method (Barnhart & 
Lohman, 2010) increase with increasing noise for the damped and cou-
pled cases. The synthetic tests with the largest levels of noise actually 
have the smallest inferred Y-values for the damped case (middle panel, 
Figure 7), due to the larger value of O.

5. Results and Discussion
5.1. Results From Synthetic Tests

If there is zero noise added to the synthetic data, we exactly recover the 
correct 3-D displacements with the undamped least squares inversion, 
as expected. However, due to the poor constraints on the north-south di-
rection, the undamped solution for the Y component is highly unstable 
and gives poor results in the presence of even minimal noise (Figures 7 
and 8). The damped solution results in less variability in the inferred Y 
component. However, the solution is strongly biased toward zero, even 
for low noise levels (Figures 7 and 8). We find the results for the Y com-
ponent are improved in the coupled solution.

We selected this synthetic scenario because of the similarity to the expected deformation above an aquifer. 
However, the relative performance of the coupled versus damped inversions will depend on how closely the 
actual behavior of the material conforms to the assumptions made in design of the coupled problem. Cases 
with significant anelastic behavior, surface rupture, etc., would likely perform less well than the scenario 
shown here.

5.2. Results at Whitewater Sub-Basin

The damped, undamped + UAVSAR and coupled inversions all are similar in terms of the inferred X and Z 
component of deformation (Figure 9). The undamped inversion that includes both UAVSAR and sentinel 
data (left column, Figure 9), has the greatest diversity of LOS directions, and results in a smoothly varying 
inferred Y-component of velocity, with peak magnitudes of around 6 cm/yr. The inferred Y-component is, as 
expected, most noisy for the damped inversion of only Sentinel-1 data (middle column, Figure 9), which has 
little sensitivity to northward displacement. The results for the coupled inversion have similar but slightly 
smaller magnitudes of Y-velocity than the undamped + UAVSAR model.

The profile A–A′, shown in Figure 10, also illustrates the similarity between inferred X and Z components of 
velocity for all models. The coupled model performs slightly better than the damped model in terms of the 
similarity to the inferred Y-component of velocity constrained by UAVSAR observations. Forward predic-
tions of these 3D velocity fields into the LOS for each of the four available Sentinel tracks (including P173, 
which was not used in the analysis) and UAVSAR track can be found in supplemental Figure S1. Small, but 
spatially coherent residuals are associated with the coupled model in the regions with the highest strain 
rate gradients. This suggests that while there are no sharp discontinuities in the vicinity of the Garnet Hill 
fault present in the data, the assumptions about smooth signals used in our approach (Haines et al., 2015; 
Sandwell & Wessel, 2016) may not be entirely valid here. However, also note that this misfit to the Sentinel-1 
observations is accompanied by a corresponding improvement in the fit to the UAVSAR data compared 
to the damped inversion. Because the UAVSAR data has the strongest constraints on the Y-component of 
velocity, the close correspondence of the coupled inversion results to the UAVSAR constraints supports its 
potential utility as an alternative approach to damping for regularization. More drastic improvements were 
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Figure 8. RMS error (computed from 1,000 realizations at each noise 
level) of the inferred north-south velocities from the undamped, damped, 
and coupled synthetic test cases taken from the location of peak velocity. 
The dashed 4 cm/yr line indicates the actual peak value of the input 
Y-velocity, indicating that most of the error in the damped solution comes 
from the over-damping toward zero.
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obtained using the coupled solution for the synthetic tests above (Figure 7) where our elasticity require-
ments were perfectly met.

5.3. Implications for Faults

Both mapped faults bounding the Whitewater sub-basin (the Garnet Hill fault to the north, and the Palm 
Springs blind fault to the south) appear to act as moderate barriers to groundwater flow, but the Garnet Hill 
fault shows a stronger strain gradient (Figures 3 and 4). The Palm Springs blind fault forms the boundary 
between basin sediments in the Coachella Valley, and crystalline basement rocks to the south. The Palm 
Springs blind fault also is located at the edge of the extent of good-quality InSAR data, with data quality 
decreasing rapidly due to the higher topographic relief in the south, so we do not interpret the signals across 
this fault. The Garnet Hill fault runs down the central portion of the valley, offsetting alluvium at shallow 
depths. The peak gradient that we observe in our data does not follow the mapped fault exactly, but diverges 
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Figure 9. Results from inversion of multiple line-of-sight (LOS) values for X, Y, and Z velocity (Rows 1, 2, and 3, respectively). The time period is approximately 
from 02/2017–12/2017. Values are saturated outside of the range −6–+6 cm/yr for horizontal velocities and −9 – +9 cm/yr for vertical velocities. (Column 1) 
Inversion of data from three Sentinel-1 tracks and Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) with no damping. (Column 2) Inversion of 
only Sentinel-1 data with damping of the Y term. (Column 3) Inversion of only Sentinel-1 data with the elastically coupled inversion method. Red line in panel 
(a) indicates location of cross section in Figure 10. UCERF model has been removed from each component prior to each inversion to reduce the contribution 
from large-scale tectonic signals.
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to the northeast near the northwestern portion of our study area (Figures 3 and 4). This may represent the 
location of an unmapped fault that branches from the Garnet Hill fault, or perhaps an inaccuracy in the 
location of the mapped fault. Alternatively, the asymmetrical surface deformation pattern across the fault 
may be related to factors such as an irregularly dipping fault geometry or variations in permeability along 
the fault.

We focus on gradients in velocity across and along the fault rather than 
the absolute magnitudes to avoid any dependence on the method we use 
to determine our reference frame. Strong gradients are concentrated near 
the Garnet Hill fault (Figures  9–12), which can be seen clearly in the 
fault-parallel and fault-perpendicular components of velocity along three 
separate profiles (Figures 11 and 12). Profiles in Figure 12 illustrate how 
these components of strain vary as the profiles cross the fault from the 
southwest to the northeast. The northwestern-most profile (blue) crosses 
the fault in the vicinity of the peak difference in location between the 
mapped fault trace and the strongest gradient in LOS velocity.

The along-fault gradients vary between the northwestern-most profile 
(blue lines, Figures  11 and  12) and southeastern-most profile (green 
lines, Figures 11 and 12). Note that, for all three inversion approaches, 
fault-parallel displacement (top row, Figure  12) along the blue profile 
(northwestern-most profile) shows an increase in the degree of right-lat-
eral strain as the profile crosses the fault, while a slight decrease in 
right-lateral strain is present in the southeast (green line). The largest in-
crease in right-lateral strain along the blue profile occurs to the northeast 
of the Garnet Hill fault, in the vicinity of the potentially unmapped fault 
described in the previous section.

The fault-perpendicular velocity profiles (second row, Figure 12) show 
more similarity between the profiles, all show an overall decrease in 
fault-perpendicular (northeastward) velocity across the profile, suggest-
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Figure 10. Cross sections (from red line in Figure 9a) of inferred 3-D velocities in 2017, with the damped Sentinel-1 
inversion (orange), Sentinel-1 and Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) combined 
inversion (blue), and the coupled inversion of Sentinel-1 data (green).

Figure 11. Average velocities in 2017 from coupled inversion, including 
vertical (gray-scale saturated at 6 cm/yr), and horizontal velocities (black 
vectors) derived from the coupled solution. Colored lines show location of 
profiles shown in Figure 12.
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ing a slight contraction across the fault. In general, all three methods suggest that there is an increase in 
right-lateral strain in the vicinity of the blue profile, and that fault-perpendicular strain associated with the 
2017 event would tend to place the fault under greater compression.

6. Conclusion
We have presented a method for regularizing inversions for 3-D displacements or velocities that includes 
constraints that couple the horizontal components of deformation. This results in an end-member model of 
3D displacements that may be more physically realistic than those resulting from inversions that damp or 
ignore the north-south component of deformation. This end member may not be valid in cases where the 
deformation field includes discontinuities, such as those associated with faults creeping at shallow depth 
or landslides. This method can be particularly useful when data constraining north-south motion (e.g., 
UAVSAR) is noisy or simply does not exist for a particular area or time range. We compare our approach 
against other regularization methods for synthetic data, and find that, as expected, the undamped and 
damped least squares inversion for 3-D deformation fields result in poor resolution of the north-south com-
ponent of deformation. The coupled inversion approach reproduces the input Y-component of deformation 
much more reliably in our synthetic scenarios, at least in this case where the underlying deformation field 
is smooth and is driven by elastic behavior.

While many applications may not require constraints on the N-S component of displacement, we show 
an example for the NW-SE-trending Garnet Hill fault in the Coachella Valley, where the values of the N-S 
component could have significant implications for the inferred state of stress along the shallow portions of 
the fault. For the Whitewater basin, we find that the damped and coupled approaches agree with the joint 
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Figure 12. SW-NE fault-parallel (a–c) and fault-perpendicular (d–f) velocity profiles from Figure 11 relative to the Garnet Hill fault along with their respective 
gradients (g–i, right-lateral sense of strain is positive, (j–l), compression across the fault is negative). Profiles from damped, Uninhabited Aerial Vehicle 
Synthetic Aperture Radar (UAVSAR), and coupled inversions are shown for comparison. Location of the Garnet Hill fault is indicated by vertical black dashed 
lines in each panel. Damped and UAVSAR were filtered with a 6 pixel (a0.25 km) moving average to match the additional smoothing necessary to implement 
the coupled inversion. Interseismic motion has been removed using the UCERF model.
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UAVSAR-Sentinel inversion in terms of the major details in the velocity gradients near the Garnet Hill 
Fault. The agreement between the coupled and UAVSAR-Sentinel inversions suggests that the coupled ap-
proach could be a useful end member to consider in analyses of InSAR data where the underlying physical 
model is poorly understood. If the two solutions differed, then that would suggest that further analysis of 
physical models incorporating anelastic behavior or more careful consideration of the temporal variability 
between tracks was warranted.

Data Availability Statement
Sentinel-1a/b imagery is produced by the European Space Agency (ESA) and can be downloaded from the 
Alaska Satellite Facility (ASF) through the NASA Earth Science Data and Information System (ESDIS) pro-
ject. Shuttle Radar Topography Mission (SRTM) digital elevation models can be downloaded through the 
United States Geological Survey (USGS). The authors acquired UAVSAR interferograms from NASA-JPL 
(Hensley et al., 2009). Data products discussed in this study, including LOS rates and the inversion results 
are included as supplemental files with this manuscript. Sentinel-1 data from Alaska Satellite Facility (ASF; 
vertex.daac.asf.alaska.edu), Sentinel-1 data, groundwater delivery data from the Coachella Valley Water 
District (CVWD; http://www.cvwd.org/), and well-based measurements of groundwater elevations from 
the United States Geological Survey (USGS; https://waterdata.usgs.gov).
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