
Ergod. Th. & Dynam. Sys. (2018), 38, 1154–1167
doi:10.1017/etds.2016.62

c� Cambridge University Press, 2016

Equilibrium measures for certain isometric
extensions of Anosov systems

RALF SPATZIER and DANIEL VISSCHER

University of Michigan, Department of Mathematics, 530 Church Street, Ann Arbor,

Michigan 48109, USA

(e-mail: spatzier@umich.edu, davissch@umich.edu)

(Received 10 September 2015 and accepted in revised form 10 June 2016)

Abstract. We prove that for the frame flow on a negatively curved, closed manifold of
odd dimension other than 7, and a Hölder continuous potential that is constant on fibers,
there is a unique equilibrium measure. Brin and Gromov’s theorem on the ergodicity
of frame flows follows as a corollary. Our methods also give a corresponding result for
automorphisms of the Heisenberg manifold fibering over the torus.

1. Introduction

Topological entropy is a measure of the complexity of a dynamical system on a compact
topological space. It records the exponential growth rate of the amount of information
needed to capture the system for time t at a fine resolution ✏, as t ! 1 and ✏ ! 0.
As a topological invariant, it can be used to distinguish between topologically different
dynamical systems. Positive topological entropy is also used as an indicator of chaos.
One may wish to be selective of the information in the system to include, however; such a
selection can be encoded by a probability measure. Given an invariant probability measure,
measure-theoretic entropy computes the complexity of the dynamical system as seen by the
measure. This, of course, depends on the measure chosen. These two ways of computing
entropy are related by the variational principle, which states that the topological entropy
is the supremum of measure-theoretic entropies over the set of f -invariant measures.
The variational principle provides a tool for picking out distinguished measures—namely,
those that maximize the measure-theoretic entropy. Such measures (if they exist) are called
measures of maximal entropy.

Pressure is a generalization of entropy which takes into account a weighting of the
contribution of each orbit to the entropy by a Hölder continuous potential function. In the
case that the potential is identically zero, the pressure is just the entropy of the system. The
variational principle also applies to topological and measure-theoretic pressure and implies
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that for a given dynamical system, any Hölder continuous potential function determines a
set (possibly empty) of invariant measures that maximize the measure-theoretic pressure.
Such measures are called equilibrium measures. As is well known, work of Newhouse
and Yomdin showed that equilibrium measures for continuous potential functions and C

1

dynamics always exist [25].
In the 1970s, Bowen and Ruelle produced a set of results considering entropy, pressure,

and equilibrium measures for Axiom A and, in particular, Anosov diffeomorphisms and
flows [4, 5]. A central result is the following: given a transitive Anosov diffeomorphism
or flow of a compact manifold and a Hölder continuous potential function, there exists
an equilibrium measure and it is unique. Moreover, this measure is ergodic and has
full support. While this theorem applies broadly to Anosov dynamics, there is no
general theory for partially hyperbolic systems. Results are limited to specific sets of
diffeomorphisms and potentials (quite often only the zero potential). In the main part of
this paper, we study equilibrium measures for the (full) frame flow F

t on a negatively
curved, closed manifold M and a particular class of potentials. Recall that F

t is a flow on
the positively oriented orthonormal frame bundle FM, which factors over the unit tangent
bundle SM (see §2 for definitions). When the dimension of the underlying manifold M

is at least 3, such frame flows are (non-Anosov) partially hyperbolic flows. Indeed, the
orthonormal frame bundle fibers non-trivially over the unit tangent bundle if dim(M) � 3,
and the frame flow is isometric along the fibers. This isometric behavior along a foliation
plays an important role in proving the following result.

THEOREM 1. Let M be a closed, oriented, negatively curved n-manifold, with n odd and

not equal to 7. For any Hölder continuous potential ' : FM ! R that is constant on the

fibers of the bundle FM ! SM, there is a unique equilibrium measure for (F
t , '). It is

ergodic and has full support.

Let us make a couple of comments on the assumptions of this theorem. First, the
restriction on the dimension of the manifold in this theorem is due to a topological
argument using the non-existence of certain transitive actions on spheres. Second, while
the condition that the potential function is constant on the fibers is highly restrictive, it
does apply to any Hölder function pulled back from a function on the unit tangent bundle.
In particular, the theorem applies to the constant potential, whose equilibrium measure
is the measure of maximal entropy. It also applies to the unstable Jacobian potential,
whose equilibrium measure for the geodesic flow is Liouville measure. This assumption
on the potential makes the measure amenable to the methods used in the proof (namely, the
projected measure has local product structure). We believe that the theorem should hold
for a more general class of functions, but the problem becomes much more difficult.

The methods of the proof also apply in other situations, for instance to certain
automorphisms of nilmanifolds that factor over an Anosov map. Here is one such example;
we hope to pursue these matters in greater detail in the future. Let Heis be the three-
dimensional Heisenberg group, and Heis(Z) its integer lattice. Let M = Heis/Heis(Z) be
the Heisenberg manifold. Note that M naturally fibers over the 2-torus T2 by factoring by
the center of Heis.
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THEOREM 2. Let M be the Heisenberg manifold, and f a partially hyperbolic

automorphism of M such that the induced action on the base torus is Anosov and the

action on the fibers is isometric. Then, for any Hölder continuous potential ' : M ! R
that is constant on the fibers of the canonical projection map M ! T2

, there is a unique

equilibrium measure for ( f, '). It is ergodic and has full support.

We remark that the equilibrium states of Theorems 1 or 2 are in one-to-one
correspondence with cohomology classes in the set of potential functions constant on
fibers. Indeed, the equilibrium measure is uniquely determined by an equilibrium measure
for the Anosov base dynamics, where this is a classical result.

Recent study of the existence and uniqueness of equilibrium measures for partially
hyperbolic diffeomorphisms and flows focuses on examples. The following is a list of
results most pertinent to the present paper. For partially hyperbolic automorphisms of
tori, it is a classical result of Berg that Haar measure is the unique measure of maximal
entropy [2, 14]. The existence and uniqueness of a measure of maximal entropy for
diffeomorphisms of the 3-torus homotopic to a hyperbolic automorphism was shown by
Ures in [28]. Rodriguez Hertz, Rodriguez Hertz, Tahzibi, and Ures proved existence and
uniqueness of the measure of maximal entropy for three-dimensional partially hyperbolic
diffeomorphisms with compact center leaves when the central Lyapunov exponent is
zero, and multiple measures of maximal entropy when the central Lyapunov exponent
is non-zero [27]. Climenhaga, Fisher, and Thompson showed existence and uniqueness of
equilibrium measures under conditions on the potential function for certain derived-from-
Anosov diffeomorphisms of tori [10]. Finally, Knieper proved for geodesic flows in higher
rank symmetric spaces that the measure of maximal entropy is again unique [20] with
support a submanifold of the unit tangent bundle on which the geodesic flow is partially
hyperbolic. We note that he also proved uniqueness of the measure of maximal entropy
for the geodesic flow on closed rank 1 manifolds of non-positive curvature [19]. This was
recently generalized by Burns, Climenhaga, Fisher, and Thompson to equilibrium states
for potential functions satisfying a bounded range hypothesis [8]. These flows are non-
uniformly hyperbolic but not usually partially hyperbolic.

Bowen and Ruelle studied equilibrium measures for uniformly hyperbolic diffeo-
morphisms and flows via expansivity and specification. These results have been extended
to weak versions of expansivity and specification by Climenhaga and Thompson in [11],
and used by them and Fisher in [10]. To our knowledge, outside of measures of maximal
entropy, Theorems 1 and 2 are the first results about the uniqueness of equilibrium
measures for partially hyperbolic systems which have no regions of uniform hyperbolicity.

The main method of proof is to combine ideas from measure rigidity of higher rank
abelian actions with ideas from the proof of Livšic’ theorem on measurable cohomology of
Hölder cocycles [24]. More precisely, we disintegrate an equilibrium state into conditional
measures along the central foliation. The support of a conditional measure generates limits
of isometries along central leaves, which act transitively on this support. Thus, for frame
flows, one arrives at a dichotomy for conditional measures: they are either invariant under
the action of SO(n � 1) and hence a scalar multiple of Haar measure or else they are
invariant under a proper subgroup of SO(n � 1). In the first case, we reduce the problem
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to understanding the equilibrium state projected to the unit tangent bundle. There, the
projected flow is Anosov and classical methods apply to prove uniqueness and ergodicity
of the projected measure. This in turn implies that the conditional measures are a constant
multiple of Haar measure, as desired. In the second case, we get an invariant measurable
section of an associated bundle. As discussed in [16], the ideas of Livšic then show that
such sections have to be continuous and even smooth, giving us a reduction of structure
group of the frame bundle. In the case that n is odd and not 7, this is a contradiction, as
shown by Brin and Gromov. Similar considerations and topological restrictions apply in
the case of the Heisenberg manifold in Theorem 2.

The idea to study invariant measures via their conditional measures along isometric
foliations was introduced in [18], and used repeatedly in other works (e.g. [1, 12, 13,
23]). In particular, Lindenstrauss and Schmidt analyzed invariant measures for partially
hyperbolic automorphisms of tori and more general compact abelian groups in [23]. They
showed that for ergodic measures singular with respect to Haar measure, the conditional
measures along central foliations must be finite. We note, however, that there are many
such measures. Indeed, every number in the interval [0, htop( f )] is the measure-theoretic
entropy for some invariant measure, by the universality theorem of Quas and Soo for
automorphisms of tori [26]. Equilibrium measures are of course much more special.
While the situation is classical and well understood for hyperbolic toral automorphisms,
the non-expansive case is unclear: are equilibrium states unique for a given potential
function? How many equilibrium states are there in total? Measure rigidity techniques
only give limited information. In contrast with general invariant measures for partially
hyperbolic toral automorphisms, we find for the Heisenberg manifold and a specific family
of potential functions that equilibrium measures are unique and are uniquely determined
by the cohomology class of the potential function. We also remark that Avila, Viana, and
Wilkinson studied conditional measures on center leaves and their invariance under stable
and unstable holonomy in their work on measure rigidity of perturbations of the time 1
map of the geodesic flow of a hyperbolic surface [1].

Finally, the following classical result by Brin and Gromov on the ergodicity of certain
frame flows follows as a corollary to Theorem 1.

THEOREM 3. (Brin and Gromov [6]) Let M be an odd-dimensional closed, oriented

manifold of negative sectional curvature and dimension n 6= 7. Then the frame flow is

ergodic.

We remark that Brin and Karcher [7] proved ergodicity of the frame flow in even
dimensions 6= 8 under pinching assumptions on the curvature. These results were extended
under pinching restrictions on the curvature to dimensions 7 and 8 by Burns and Pollicott
in [9]. Our approach does not apply to such results, since those authors use pinching to
control Brin–Pesin groups.

2. Preliminaries

We first review some basic definitions and results.

2.1. Frame flow. Let M be a closed, oriented n-dimensional manifold with Riemannian
metric. Let SM = {(x, v) : x 2 M, v 2 Tx M, kvk = 1} denote the unit tangent bundle,
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and let FM = {(x; v0, v1, . . . , vn�1) : x 2 M, vi 2 Tx M}, where the vi form a positively
oriented orthonormal frame at x , be the frame bundle. The metric induces a geodesic
flow g

t : SM ! SM, defined by g
t (x, v) = (�(x,v)(t), �̇(x,v)(t)), where �(x,v) is the

unique geodesic determined by the vector (x, v). The metric also induces a frame flow
F

t : FM ! FM, defined by

F
t (x, v0, v1, . . . , vn�1) = (gt (x, v0), 0

t

� (v1), . . . , 0t

� (vn�1)),

where 0t

� denotes parallel transport along the geodesic �(x,v0). The frame bundle is a fiber
bundle over SM, with structure group SO(n � 1) acting on the frames by rotations that
keep the vector v0 fixed. Hence, we have the following commuting diagram:

FM FM

SM SM

F
t

⇡ ⇡

g
t

The frame flow preserves a natural smooth measure µ = µL ⇥ �SO(n�1), where µL is
(normalized) Liouville measure on the unit tangent bundle, and �SO(n�1) is Haar measure
on SO(n � 1). Note that ⇡⇤µ = µL , and µL is preserved by the geodesic flow.

2.2. Partial hyperbolicity. A flow f
t : X ! X on a manifold X with a Riemannian

metric is called partially hyperbolic if the tangent bundle splits into three subbundles
TX = E

s � E
c � E

u , each invariant under the flow, such that vectors in E
s are

(eventually) exponentially contracted by the flow, vectors in E
u are (eventually)

exponentially expanded by the flow, and any contraction (respectively expansion) of
vectors in E

c is dominated by that of vectors in E
s (respectively E

u). A flow is Anosov if
these bundles can be chosen with E

c = h ḟ i.
Some, but not necessarily all, distributions made up of these subbundles are integrable.

For a point x 2 X , the strong stable and strong unstable manifolds are defined by

W
su(x) = {y 2 X | d( f

�t
x, f

�t
y) ! 0 as t ! +1},

W
ss(x) = {y 2 X | d( f

t
x, f

t
y) ! 0 as t ! +1}.

These are C
1-immersed submanifolds of X , with Tx W

su(x) = E
u(x) and Tx W

ss(x) =

E
s(x). The strong unstable (respectively stable) leaves form a foliation of X , which we

denote W
su (respectively W

ss).
If the flow is Anosov, the center bundle consists only of the flow direction and we can

define weak-unstable (respectively weak-stable) manifolds through x by

W
u(x) =

[

t2R
W

su( f
t
x),

W
s(x) =

[

t2R
W

ss( f
t
x).

Then Tx W
u(x) = E

u(x) � E
c(x) and Tx W

s(x) = E
s(x) � E

c(x). In contrast, the center
bundle of a partially hyperbolic flow may be non-integrable, and the existence of weak-
stable and weak-unstable manifolds is not guaranteed.
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In our setting, the geodesic flow on a manifold of negative sectional curvature is an
Anosov flow, while the frame flow is an example of a partially hyperbolic flow with center
bundle of dimension 1 + dim SO(n � 1). The frame flow actually has a stronger property
that implies partial hyperbolicity: it acts isometrically on the center bundle, with respect
to any bi-invariant metric on SO(n � 1).

2.3. Pressure. Given a function ' : X ! R (often called a potential), consider the
accumulation of ' along orbits of f

t given by 'T (x) =
R

T

0 '( f
t (x)) dt . Let B(x, ✏) =

{y 2 X | d(x, y) < ✏}, and let

B(x, ✏, T ) = {y 2 X : d( f
t
x, f

t
y) < ✏ for 0  t  T }.

If
S

x2E
B(x, ✏, T ) = X for some set E ⇢ X , then E is called (T, ✏)-spanning. Then the

value
S( f, ', ✏, T ) = inf

⇢X

x2E

e
'T (x)

:

[

x2E

B(x, ✏, T ) = X

�

gives the minimum accumulation of e
' for time T of a (T, ✏)-spanning set. The topological

pressure of ( f
t , ') is the exponential growth rate (as T ! 1) of this quantity as the

resolution ✏ becomes finer:

P( f
t , ') = lim

✏!0
lim sup

T !1

1
T

log S( f, ', ✏, T ).

Note that when ' ⌘ 0, the sum
P

e
'T x simply counts the elements of the (T, ✏)-

spanning set, and we recover htop( f
t ). The measure-theoretic pressure, with respect to

an invariant measure µ, is defined to be

Pµ( f
t , ') = hµ( f

t ) +

Z

X

' dµ.

For a Hölder continuous potential ', the variational principle states that

P( f
t , ') = sup

µ2M( f t )

Pµ( f
t , ').

A measure µ 2 M( f
t ) for which Pµ( f

t , ') = P( f
t , ') is called an equilibrium measure

for ( f
t , ').

2.4. Conditional measures. Given a probability space (Z , µ), a measurable partition
determines a way to disintegrate the measure µ. Let P be a partition of Z into measurable
sets. Let ⇡ : Z ! P be the map sending z 2 Z to the element Q 2 P that contains it, and
set µ̂ := ⇡⇤µ (note that this is a measure on the partition P). Then a system of conditional

measures (relative to P) is a family {µQ}Q2P such that:
(1) for each Q 2 P , the measure µQ is a probability measure on Q; and
(2) for each µ-measurable set B ⇢ Z , the map Q 7! µQ(B \ Q) is µ̂-measurable and

µ(B) =

Z

P
µQ(B \ Q) dµ̂(Q).
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We will often abbreviate this second statement by writing µ =
R
P µQ dµ̂. By a theorem

of Rokhlin, whenever P is a measurable partition, there exists a system of conditional
measures relative to P . It is a straightforward consequence of item (2) that any two such
systems must agree on a set of full µ̂-measure.

3. Equilibrium measures for fiber bundles

Let ⇡ : Y ! X be a fiber bundle with Y a measurable metric space and fibers a compact Lie
group V . Let F

t : Y ! Y be a smooth flow, and let M(F
t ) denote the set of F

t -invariant
probability measures on Y . If F

t takes fibers to fibers and commutes with the action of
the structure group (i.e. F

t is a bundle automorphism for all t 2 R), then there is a flow
f

t : X ! X such that ⇡ � F
t = f

t � ⇡ . In this case, an F
t -invariant probability measure

µ 2 M(F
t ) can be pushed forward to get an f

t -invariant probability measure µ̂ = ⇡⇤µ 2

M( f
t ) on X . Note that as long as the fibers are measurable sets, the partition {⇡�1(x)}x2X

of Y is measurable.
In order to leverage information about equilibrium measures for the base dynamics, we

use the assumption that the potential function on Y is constant on the fibers. The following
illustrates the difficulties inherent in the more general case, and how this assumption
resolves them. Let ' : Y ! R be a Hölder continuous function. Then, given a measure
µ 2 M(F

t ) and a disintegration of that measure µ =
R

X
µx dµ̂, we can define a function

'̂µ : X ! R by taking the average of ' on the fibers ⇡�1(x):

'̂µ(x) =

Z

⇡�1x

' dµx .

Since any two such disintegrations of µ agree on a full µ̂-measure set, any two functions
defined by different disintegrations of µ agree on a set of full µ̂ measure. In general,
the function '̂µ : X ! R is only measurable, since the disintegration x 7! µx is only
measurable. In the case that ' is constant on fibers, however, '̂µ is just the common
value of ' and thus does not depend on the conditional measures of µ. Then the Hölder
continuity of ' implies that '̂ = '̂µ is also Hölder continuous.

While the existence of equilibrium measures is in general a non-trivial problem, work
of Newhouse and Yomdin showed that such a measure always exists for C

1 dynamics.
Since our Riemannian metric is C

1, both the geodesic flow and frame flow are also C
1,

and so an equilibrium measure is guaranteed to exist [25]. Alternatively, one can use that
the frame flow is entropy expansive and standard arguments to show the existence of an
equilibrium measure [15, Theorem 2.4]. Thus, we are concerned in the following only with
the uniqueness of equilibrium measures.

Since V is assumed to be a compact Lie group, it has a bi-invariant metric. We will say
that F : Y ! Y acts isometrically on the fibers if F preserves distances in the fibers with
respect to such a metric.

LEMMA 3.1. Suppose that F
t :Y !Y acts isometrically on the fibers of the bundle Y ! X,

and let ' be a Hölder continuous function that is constant on the fibers. Let µ be an

equilibrium measure for (F
t , '). Then '̂ is a Hölder continuous function and µ̂ = ⇡⇤µ is

an equilibrium measure for ( f
t , '̂).
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Proof. Since F
t acts isometrically on the fibers, F

t |⇡�1(x) does not generate any entropy.
Then the Ledrappier and Walters formula [21] implies that hµ(F

t ) = hµ̂( f
t ), and

P(F
t , ') = hµ(F

t ) +

Z

Y

' dµ

= hµ̂( f
t ) +

Z

X

Z

⇡�1x

' dµx dµ̂(x)

 P( f
t , '̂).

Now suppose that ⌫ is an equilibrium measure on X for ( f
t , '̂), and let �x be (normalized)

Haar measure on the fiber ⇡�1(x). Then x 7! �x is ⌫-measurable, and ⌫̃ =
R

X
�x d⌫(x) 2

M(F
t ). Moreover, '̂(x) =

R
' d�x because ' is constant on fibers. Thus,

P( f
t , '̂) = h⌫( f

t ) +

Z

X

✓Z

⇡�1x

' d�x

◆
d⌫(x)

= h⌫̃(F
t ) +

Z

Y

' d ⌫̃

 P(F
t , '),

so P( f
t , '̂) = P(F

t , '). Hence,

Pµ̂( f
t , '̂) = hµ̂( f

t ) +

Z

X

'̂ dµ̂

= hµ(F
t ) +

Z

Y

' dµ

= P(F
t , ') = P( f

t , '̂),

so µ̂ is an equilibrium measure for ( f
t , '̂). ⇤

In order to study the conditional measures µx , we define subgroups of Isom Vx by
their interaction with the measure µx . Let µ be a measure on Y with decomposition
µ =

R
µx dµ̂ along fibers, and let

G
µ
x

= {� 2 Isom Vx | �⇤µx = µx and �(⇠g) = �(⇠)g 8g 2 V, µx -almost every ⇠ 2 Vx }.

This is clearly a subgroup of Isom Vx . Moreover, since any two decompositions of µ

agree on a set of full µ̂-measure, any two sets {G
µ
x | x 2 X} defined using different

decompositions of µ agree µ̂-almost everywhere.
The next lemma characterizes the support of conditional measures. It is an adaptation

of [18, Lemma 5.4].

LEMMA 3.2. Let F : Y ! Y be a fiber bundle automorphism that acts by isometries on

the fibers, and suppose that µ is an ergodic measure. Then, for µ̂-almost every x 2 X and

µx -almost every ⇠ 2 Vx ,

G
µ
x
⇠ = supp µx .

Proof. First, we show that G
µ
x ⇠ ✓ supp µx . Fix an x 2 X , let � 2 G

µ
x , and let ⇠ 2 supp µx .

Let B✏ ⇢ Vx be the ball of radius ✏ around �⇠ . Then, by the definition of G
µ
x , we have

�⇤µx = µx and
µx (B✏) = �⇤µx (B✏) = µx (�

�1
B✏) > 0

because ⇠ 2 ��1
B✏ and ⇠ 2 supp µx . Hence, �⇠ 2 supp µx .
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Next, we show that there is a set of full µ̂-measure in X such that for µx -almost every
⇠ , we have G

µ
x ⇠ ◆ supp µx . Let ⌘ 2 supp µx ; we will show that for µx -almost every ⇠ ,

there is a � 2 G
µ
x such that �(⇠) = ⌘. Recall that the µ-disintegration x 7! µx is only a

measurable map. By Lusin’s theorem, however, for any ✏ > 0, there exists a closed set
K✏ ⇢ X such that:
(1) the map K✏ ! M(E) taking x to µx is continuous; and
(2) µ̂(K✏) > 1 � ✏.
Since µ is an ergodic measure, the Birkhoff ergodic theorem implies that µ-almost every
point in Y has dense orbit in supp µ. Thus, the set

K
0
✏ := {⇠ 2 K✏ | µx -almost every ⇠ 2 ⇡�1(x) has dense orbit in supp µ}

has measure µ̂(K
0
✏) = µ̂(K✏) > 1 � ✏. Moreover, for any x 2 K

0
✏ and µx -almost any

⇠ 2 ⇡�1(x), there exists a sequence of times ti such that F
ti ⇠ ! ⌘. Then:

(1) since F
ti |⇡�1(x) are all isometries, F

ti |⇡�1(x) ! � 2 Isom Vx ;
(2) �(⇠) = ⌘;
(3) by the F

t -invariance of µ, we have that F
t

⇤µx = µ f t x for µ̂-almost every x . This,
together with the continuity of the map x 7! µx on K

0
✏ , implies that

�⇤µx = lim
i!1

F
ti
⇤ µx = lim

i!1
µ f

ti x = µx .

Further, since F
t commutes with the action of the isometry group on the fibers and

F
ti |⇡�1(x) ! �, we get that �(⇠g) = �(⇠)g. Hence, � 2 G

µ
x .

Letting ✏ ! 0 gives a set K of full µ̂-measure such that for any x 2 K , µx -almost every ⇠
satisfies G

µ
x ⇠ ◆ supp µx . ⇤

3.1. Regularity of sections. Let M be a closed manifold, and consider an Anosov
flow f

t : M ! M . Then M has the following local product structure with respect to
the strong stable foliation W

ss and weak unstable foliation W
u : for any x 2 M , there

exists a neighborhood Vx of x such that every point in Vx can be written as [y, z] :=

W
u

loc(y) \ W
ss

loc(z) for some y 2 W
ss

loc(x) and z 2 W
u

loc(x).
Let ⇡�

x
: Vx ! W

�
loc(x) (for � = ss, u) be the projection map onto the appropriate local

manifold. Given a measure µ on M , let µ�
x

= (⇡�
x
)⇤µ (for � = ss, u). We say that µ has

local product structure if

dµ([y, z]) = �x (y, z) dµss

x
(y) ⇥ dµu

x
(z)

for any y 2 W
ss

loc(x) and any z 2 W
u

loc(x), where �x is a non-negative Borel function.

Remark 3.3. The definition above corresponds to the one used in [22]. An alternate
definition states that µ has local product structure if µ is locally equivalent to µss

x
⇥ µu

x
[3].

This alternate definition is a strictly stronger property, since the function �x above is only
a non-negative Borel function.

Methods of [16] extend to prove the following Livšic regularity theorem.

THEOREM 3.4. Let P ! M be a principal H-bundle over a compact, connected manifold

M with H a compact group. Suppose that G = R or Z acts Hölder continuously by

�����	���������������������������������������������������

������������������������

https://doi.org/10.1017/etds.2016.62


Equilibrium measures for certain isometric extensions 1163

bundle automorphisms such that the induced action on M is Anosov. Let m be a

G-invariant measure on M with local product structure, and let L ✓ M. Let V be a

transitive left H-space that admits an H-invariant metric, and consider the associated

bundle EV ! M. Then any G-invariant measurable (with respect to m) section L ! EV

is Hölder continuous on a subset L
0 ✓ L with m(L

0) = m(L).

Remark 3.5. Goetze and Spatzier in [16] proved this result for Anosov actions for an
invariant smooth measure for Lie groups with a bi-invariant metric; the theorem above
extends this to invariant measures with local product structure.

Remark 3.6. In particular, H is a transitive left H -space with H -invariant metric. In this
case, the conclusion of the theorem states that any G-invariant measurable section L ! P

is Hölder continuous on a full measure subset of L .

The remainder of this section provides an outline of the ideas used to prove this theorem
in the case V = H ; the interested reader can find details in [16]. First, we discuss the
relationship between sections of a bundle and cocycles. A cocycle is a map ↵ :G ⇥ M ! H

such that
↵(t2 + t1, x) = ↵(t2, gt1 x)↵(t1, x).

Two such cocycles ↵ and � are cohomologous if there is a function  : M ! H such that

↵(t, x) =  (gt x)�(t, x) (x)�1.

We say that ↵ and � are measurably (respectively Hölder) cohomologous if  can be
chosen to be a measurable (respectively Hölder continuous) function. If the underlying
action is ergodic, then it follows that is unique up to a constant. In this case, the regularity
of the cohomology does not depend on the  chosen.

Measurable sections correspond under the G-action to measurable cocycles as
follows. Let � : M ! P be a measurable section. This determines a measurable cocycle
↵ : G ⇥ M ! H by the relationship

gt� (x) = � (gt x)↵(t, x)

(↵ is uniquely determined since P ! M is a principal H -bundle). Given a function
b : M ! H , the section �b(x) := � (x)b(x) yields a cocycle �(t, x) that is cohomologous
to ↵. As � is a measurable G-invariant section, ↵ is in fact a measurable coboundary
(i.e. measurably cohomologous to the trivial cocycle).

Since P ! M may be a non-trivial bundle, there may be topological obstructions to
a continuous section M ! P . Thus, in order to consider increasing the regularity of the
section � , we must break up the correspondence with cocycles into local trivializations on
open sets Ui that cover M . On an open set Ui , there is a smooth section si : Ui ! P . Then,
for any x 2 Ui , there is a map hi : P ! H such that for any x

⇤ 2 P in the fiber over x 2 Ui ,

x
⇤

= si (x)hi (x
⇤).

In particular, � (x) = si (x)hi (� (x)). Note that the maps hi are uniformly Lipschitz, but
hi � � is a priori only measurable since � is only measurable.

The proof of the theorem thus reduces to showing that hi(x) � � : L ! H is Hölder
continuous. (This then implies that the section � must also be Hölder continuous, since
hi(x) is uniformly Lipschitz and its image is transverse to the fibers.) Let L

0 ✓ L be the
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set of points that are also in the support of m and for which the Birkhoff ergodic theorem
holds. We have m(L

0) = m(L). Consider two points x, w 2 L
0 that are close enough to be

in a neighborhood of local product structure. Then there exist y 2 W
ss

loc(x) and z 2 W
u

loc(x)

such that w = [y, z]x . Observe that also x = [z, y]w.
By local product structure of m, we have

dm([y, z]) = �x (y, z) dm
ss

x
(y) ⇥ dm

u

x
(z)

for a non-negative Borel function �x . Since w = [y, z] is in the support of m, � must be
positive at (y, z), y must be in the support of m

ss

x
, and z must be in the support of m

u

x
.

Likewise, z must be in the support of m
ss

w and y must be in the support of m
u

w. Then, by
the triangle inequality,

d(hi (� (x)), hi (� (w)))  d(hi (� (x)), hi (� (y))) + d(hi (� (y)), hi (� (w)))

(where d denotes distance in H ). Thus, the problem is further reduced to showing that
hi(x) � � is Hölder continuous along stable and unstable manifolds.

Toward this end, consider two points x, y 2 L
0 on the same stable manifold. We want to

measure the distance between hi(x)(� (x)) and hi(y)(� (y)). Recall that � is a G-invariant
section, and note that x and y are on the same stable manifold and so eventually are in the
same open set U j . Then the Hölder continuity of the G-action, along with the exponential
contraction along the stable leaf, allows us to reduce our consideration to the distance
between h j (gt� (x)) and h j (gt� (y)).

Although � is a measurable section, Lusin’s theorem guarantees a compact set K ⇢ L

with m(K ) > 1/2 on which � is uniformly continuous. This implies that, for x and y in
a set of full measure, there is an unbounded set of t such that gt� (x) and gt� (y) are in
K . For such x and y, combining this with the previous paragraph gives Hölder continuity
of hi(x) � � along the local stable manifold. A similar argument shows that hi(x) � � is
Hölder continuous along the unstable manifold.

4. Proofs of theorems

Consider the frame flow F
t : FM ! FM of a closed, oriented, negatively curved manifold

M , and a Hölder continuous potential ' : FM ! R that is constant on the fibers of the
bundle FM ! SM. As discussed above, there exists an equilibrium measure µ for (F

t , ');
we will show that this equilibrium measure is unique.

Suppose that µ is an equilibrium measure for (F
t , '). By Lemma 3.1, µ̂ is an

equilibrium measure for ( f
t , '̂), and '̂ is Hölder continuous. The following result about

equilibrium measures for hyperbolic flows then applies to µ̂.

THEOREM 4.1. (Bowen and Ruelle [5], Leplaideur [22]) Let f
t : M ! M be an Anosov

flow and ' : M ! R a Hölder continuous potential. Then there exists a unique equilibrium

measure for ( f
t , '). It is ergodic and has local product structure and full support.

4.1. Proof of Theorem 1 in dimension three. We first prove Theorem 1 in the case
n = 3, where the logic of the proof is the same but the groups are simpler. The reason for
this is that in the three-dimensional case, the fibers of the bundle FM ! SM are S1, which
is an abelian group.
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Consider the conditional measures {µx } given by Rokhlin decomposition µ =
R

µx dµ̂.
By Lemma 3.2, the support of a conditional measure µx for a typical point x is the orbit of
a closed subgroup of isometries of the fiber. Since the fibers of FM ! SM are SO(2) ⇡ S1,
we get two possibilities: either:

(1) supp µx = S1 for µ̂-almost every x ; or
(2) µx is atomic and supported on m points for µ̂-almost every x .

In the first case, Lemma 3.2 implies that G
µ
x = S1, so µx must be a multiple of Haar

measure. Since µ̂ is ergodic, this multiple must be constant and, since µ is a probability
measure, the constant must be one. Hence, µ =

R
µx dµ̂ is uniquely determined, since µ̂

is unique by Theorem 4.1. We will show that topological considerations prevent the second
case from occurring.

The easiest case is if m = 1. Let L be the full µ̂-measure set on which supp µx is one
point. This gives a measurable section � : L �! FM sending x to the point supp µx . Since
µ̂ has local product structure by Theorem 4.1, we can apply Theorem 3.4 to show that � is
actually Hölder continuous. Because µ̂(L) = 1 and µ̂ has full support on SM, � can then
be extended to a Hölder continuous section SM ! FM. Restricting this section to Sp M

for some p 2 M gives a continuous map on Sp M ⇡ S2 that sends each point to an element
of SO(2) ⇡ S1. This can be seen as a non-vanishing, continuous vector field on S2, which
is a contradiction.

Now suppose that m > 1. Let F be the fiber of the bundle FM ! SM. Construct a
new bundle FM

m ! SM with fibers the Cartesian product F
m . Then the discussion above

produces a measurable map � : L ! FM
m/6m , where 6m acts on FM

m by permutations,
sending x 2 L to the m points in the support of µx . Now we apply Theorem 3.4 to
the associated bundle EV = FM

m/6m with H = SO(2)m and V = SO(2)m/6m . This
implies that � is a Hölder continuous map on L , which then can be extended to a Hölder
continuous map M ! FM

m/6m . Then the projection map FM
m/6m ! SM, restricted to

the preimage of a set Sp M , is an m-fold cover of Sp M ⇡ S2. Since S2 is simply connected,
the preimage must be a disjoint union of m copies of S2. Restricting the cover to one of
these copies gives a non-vanishing, continuous vector field on S2 as in the case m = 1,
which is a contradiction.

4.2. Proof of Theorem 1 in higher dimensions. More generally, the structure group of
FM ! SM is SO(n � 1). Recall that the measure µx is invariant under the group G

µ
x

by construction. Then either G
µ
x = SO(n � 1) for µ̂-almost every x and µ is uniquely

determined by µ̂ (as in §4.1), or else G
µ
x is a strict subgroup of SO(n � 1) µ̂-almost

everywhere.

Again, let us show that the second case cannot occur. By ergodicity of µ̂, G
µ
x must be the

same subgroup H < SO(n � 1) µ̂-almost everywhere. This gives a measurable section � :

SM ! FM/H that takes x to the support of µx on a set of full µ̂-measure. By Theorem 3.4,
we can extend this to a continuous, global section SM ! FM/H . Such a section gives
a reduction of the structure group of FM ! SM, as follows. The section � provides a
trivialization of the bundle FM/H ! SM. Since FM ! FM/H is a principal H -bundle,
the pullback � ⇤(FM) = FMH is a reduction of FM with structure group H as indicated by
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the diagram below:

FMH FM

SM FM/H

⇡

�

A non-trivial reduction of the structure group of FM ! SM also gives a non-trivial
reduction of the structure group of the restricted bundle Fp M ! Sp M ⇡ Sn�1 over a point
p 2 M . Then, for n odd and not equal to 7, [6, Proposition 5.1] implies that H cannot act
transitively on Sn�2 = ⇡�1

2 (p) (the fiber of the projection of 2-frames to the unit tangent
bundle over a point p). However, for n odd, any such structure group must act transitively
on Sn�2, by [6, Corollary 4.2]. This is a contradiction. Thus, G

µ
x must be equal to

SO(n � 1) µL -almost everywhere, and µ is uniquely determined. ⇤

4.3. Proof of Theorem 2. For the Heisenberg manifold M , the bundle M ! T2 is a
fiber bundle with structure group S1. Any automorphism of M automatically preserves the
S1 fibers, acts by volume-preserving diffeomorphisms on both M and T2, and hence has
eigenvalue 1 in the (invariant) fiber direction. Thus, f acts by isometries on the fibers. By
assumption, f induces an Anosov diffeomorphism on the base torus T2. Let ' : M ! R
be a Hölder continuous potential function that is constant on the fibers of M ! T2, and
let m be an equilibrium measure for ( f, '). Then the arguments from the case of frame
flows apply verbatim and give us the dichotomy: either m is invariant under the structure
group S1, and we can understand the equilibrium state via the base torus T2, or there is a
continuous invariant section of the fiber bundle M ! T2 or a finite cover. In the first case,
m is uniquely determined since the equilibrium measure of an Anosov diffeomorphism on
T2 is unique [4, Theorem 4.1]. The second case implies that for a finite cover M̄ of M ,
⇡1(M̄) = Z ⇥ Z2, which is impossible since Heis(Z) does not contain a rank-3 abelian
subgroup.

4.4. Proof of Theorem 3. The following proof of Theorem 3 replaces an earlier, longer
argument and was suggested by the referee.

Consider the so-called geometric potential defined by

�u
= lim

t!1

1
t

log Jacu F
t ,

where Jacu is the Jacobian of the restriction of the geodesic flow to the unstable manifold.
Since the frame flow acts isometrically on fibers, �u is constant along the fibers. Moreover,
since the metric g is smooth and the unstable foliation is Hölder, �u is Hölder continuous.
Hence, by Theorem 1, the equilibrium measure is unique. Following the arguments in
§4.2, the conditional measures must be invariant by the structure group SO(n � 1), and
µ projects to the unique equilibrium measure for the geometric potential for the geodesic
flow. This is well known to be the Liouville measure [17, Exercise 20.4.1]. Hence, µ is the
natural smooth measure for the frame flow, and it is ergodic by Theorem 1. ⇤
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[16] E. R. Goetze and R. J. Spatzier. On Livšic’s theorem, superrigidity, and Anosov actions of semisimple Lie

groups. Duke Math. J. 88(1) (1997), 1–27.
[17] A. Katok and B. Hasselblatt. Introduction to the Modern Theory of Dynamical Systems (Encyclopedia of

Mathematics and its Applications, 54). Cambridge University Press, Cambridge, 1995.
[18] A. Katok and R. J. Spatzier. Invariant measures for higher-rank hyperbolic abelian actions. Ergod. Th. &

Dynam. Sys. 16(4) (1996), 751–778.
[19] G. Knieper. The uniqueness of the measure of maximal entropy for geodesic flows on rank 1 manifolds.

Ann. of Math. (2) 148(1) (1998), 291–314.
[20] G. Knieper. The uniqueness of the maximal measure for geodesic flows on symmetric spaces of higher

rank. Israel J. Math. 149 (2005), 171–183.
[21] F. Ledrappier and P. Walters. A relativised variational principle for continuous transformations. J. Lond.

Math. Soc. (2) 16(3) (1977), 568–576.
[22] R. Leplaideur. Local product structure for equilibrium states. Trans. Amer. Math. Soc. 352(4) (2000),

1889–1912.
[23] E. Lindenstrauss and K. Schmidt. Invariant sets and measures of nonexpansive group automorphisms. Israel

J. Math. 144 (2004), 29–60.
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