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Invertible phases of matter with spatial
symmetry

DANIEL S. FREED AND MICHAEL J. HOPKINS

We propose a general formula for the group of invertible topolog-
ical phases on a space Y, possibly equipped with the action of a
group G. Our formula applies to arbitrary symmetry types. When
Y is Euclidean space and G a crystallographic group, the term
‘topological crystalline phases’ is sometimes used for these phases
of matter.

In previous work [FH], recalled in §1 below, we determine the homotopy type
of the space of invertible field theories with a fixed symmetry type. This re-
sult is a theorem about field theories in the framework of the Axiom System
for field theory introduced by Segal in the 1980’s. It has wide applicabil-
ity: invertible field theories enter quantum field theory and string theory in
many different ways. In condensed matter theory our theorem can be used
to classify invertible phases of matter (on Euclidean space), but only accept-
ing standard unproved assertions about effective low energy field theories of
discrete models. In this note we combine this theorem with a few more basic
principles (§2) to offer a general formula for the abelian group of invertible
topological phases of matter on a topological space Y equipped with the
action of a group G. Time does not appear: Y models space, not spacetime.
We motivate and present the formula in Ansatz 2.1 and Ansatz 3.3; the
formula depends on a symmetry type but not on a dimension. As evidence
we compute some illustrative examples and compare to known results. (See
Example 2.3 and Example 3.5.) The pedagogical aspirations of this note
are realized in §4, where we briefly explain some computational techniques
in Borel equivariant homotopy theory, and in §5, where we illustrate via a
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specific example — a half-turn in 3-space — which we attack using three
different methods.

The idea that invertible phases comprise a generalized homology group
on space was suggested by Alexei Kitaev; he works with lattice models to
motivate the particular homology theory. There are discussions of special
cases of the problem we treat here in [SHFH, TE, HSHH]. The recent pa-
per [SXG] uses a spectral sequence to compute the group of phases, as
do we in §4.2, §5.3, but the generalized homology theory is not specified
and physical arguments are used to compute differentials. We thank Lukasz
Fidkowski, Mike Hermele, and Ashvin Vishwanath for bringing the specific
example treated in §5 and the general problem to our attention, as well as
for a very informative email correspondence.’

1 Recollection of [FH]

Let d be the dimension of space. The symmetry type of a Wick-rotated rela-
tivistic field theory in spacetime dimension d + 1 is described by a pair (H, p).
The topological group H is the colimit of a sequence of compact Lie groups
H ;. 1, each sitting in a group extension

(1.1) 1— K — Hypy 225 044

in which the image of pg41 is either Og41 (symmetry type with time-reversal)
or SOg441 (no time-reversal). Then p: H — O is the stabilization of pgy1
as d — oo; see [FH, §2]. The subgroup K is the group of internal symme-
tries — those which act trivially on spacetime — and is independent of d.
(If we break relativistic invariance, there is a slightly larger group which
acts trivially on space; see [FH, Remark 9.32].) The homomorphism p deter-
mines a rank zero virtual real vector bundle W — BH, the stabilization of
rank zero virtual bundles over BH;, 1, and there is a corresponding Thom
spectrum

(1.2) MTH = Thom(BH; W)

of the virtual vector bundle —W — BH. Let IZ be the Anderson dual to
the sphere spectrum and

(1.3) E = E, = %*1zM™H

!Debray [D] extends the ideas in this paper and carries out many computations
to check the ansatze.
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the spectrum of maps MTH — Y21Z. Then the main outcome? of [FH] is
an identification of

(1.4) E_4(pt) = E4(pt) = [MTH, 2217]

as the group of deformation classes of invertible reflection positive extended
field theories in d + 1 dimensions with symmetry type (H, p). Computations
for various (H, p) may be found in [FH, §§9-10] as well as [Ka, KTTW, C,
BC, GPW].

2 Invertible phases on a space

We imagine that invertible topological phases can be localized in space,
possibly with noncompact support; satisfy some locality properties; and are
equipped with a pushforward under proper continuous maps. Since Ey(pt) is
the group of invertible phases in 0 + 1 dimensions — that is, phases on a
point — we posit the following.

Ansatz 2.1. Let Y be a locally compact topological space. Then the group
of invertible topological phases on Y of symmetry type (H, p) is the Borel-
Moore homology group Ej 5,,(Y).

If Y is the complement in a finite CW complex Y of a subcomplex Yy C

~

Y, then Borel-Moore homology reduces to relative homology: Ej ,,(Y) =
Eo(Y,Yp). Thus on Euclidean d-space we have

(2.2) Ey g (EY) = Eo(S?, pt) = E_q(pt),
which recovers (1.4). If Y is compact, then £, 5,,(Y) = Ey(Y).

Example 2.3 (Phases on a torus). Let Y = (S1)*? be the d-dimensional
torus. After suspension Y is homotopy equivalent to a wedge of spheres, from

2This statement is left as a conjecture in that paper; what is proved from various
ansdtze is an identification of the torsion subgroup with isomorphism classes of
invertible topological theories. The entire group (1.4) is also proved to be the group
of isomorphism classes of “continuous” invertible theories; see [FH, §5.4].
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which
d
(2.4) Eo(Y) 2@ E_i(pt)®() .

For example, if d = 2 and we consider fermionic theories (H = Spin), then
(2.5) Eo(S' x SY)Y =2 (2/22) © (Z/2Z & Z/2Z) & (Z);

the summands correspond to theories supported on a point, on the 1-cells
(figure eight), and on the 2-cell, respectively. We remark that all classes
are represented by free fermions: (2.5) is also isomorphic to KO%(St x S1).
See [R] for a discussion of the physics of this example.

Remark 2.6 (Invertible phases on a compact smooth manifold).
A compact smooth d-manifold Y with boundary has a Spanier-Whitehead
dual D(Y/9Y) ~ Thom(Y; =TY) ~ £~TYY  according to [A], and so

(2.7) Eo(Y,0Y) =[S, EAY/OY]

[MTH , S*IZNY/0Y]

~ vR-TY (VYA MTH , £%217)
~ [nETY(y), 24E],

where RY — Y is the trivial vector bundle with fiber R?. This last group
is a twisted E-cohomology group of Y; the twisting is trivialized by an FE-
orientation of Y.

The third line of (2.7) may be regarded as deformation classes of invert-
ible field theories of symmetry type (H,p) with a background scalar field
valued in Y, or rather in a twist of Y if Y is not E-oriented. This field theory
interpretation was used in [TE] to study special cases.

3 Invertible phases on a G-space
It is natural consider a compact Lie group G is acting on a locally compact

space Y and model equivariant phases on Y.? For this there is a choice to
make and so far simply working with Borel equivariant homotopy theory

3We allow noncompact groups acting with compact isotropy subgroups, i.e., topo-
logical stacks with compact Lie group stabilizers [FHT, A.2.2]. Example 2.3 is of
this type: (S1)*¢ is isomorphic to the quotient stack E4//Z9.
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seems to work. We therefore work in the category of Borel G-equivariant
spectra. See [FH, §6] for an introduction and for notation explanation. We
write [—, —]hG for the abelian group of homotopy classes of Borel equiv-
ariant maps between G-spectra.

As evidence in favor of Borel equivariant spectra, consider the case when
Y? is a closed manifold and G acts trivially on Y. Interpret the last line
of (2.7) as twisted E-cohomology; replace E-cohomology by Borel equiv-
ariant F-cohomology; use the fact that the Borel G-equivariant cohomol-
ogy of Y is the nonequivariant FE-cohomology of the Borel construction
EG X Y; then since G acts trivially on Y, the Borel construction reduces
to EG xgY = BG x Y; hence the Borel equivariant version of (2.7) is

(3.1) SR-TY(Y) A MTH A BG,, S™217) = Ey(Y),

where E is the spectrum (1.3) for the symmetry type (H x G, p X €) ob-
tained from (H, p) by taking the Cartesian product with G as an internal
symmetry. This is the expected answer.

Denote the Borel equivariant homology of a G-space Y as

(3.2) Eg(Y) =% E Y4,

where on the right hand side F is regarded as a G-spectrum with trivial
G-action.

Ansatz 3.3. Let Y be a locally compact topological space equipped with
the action of a compact Lie group G. Then the group of invertible topolog-
ical phases on Y of symmetry type (H,p) is the Borel-Moore equivariant
homology group E&%M(Y).

Remark 3.4. Whereas Borel equivariant FE-cohomology is the FE-
cohomology of the Borel construction, Borel equivariant E-homology (3.2)
is mot the E-homology of the Borel construction.

Example 3.5 (Euclidean symmetries with a fixed point). Suppose
Y = E? and G is a group of isometries which fixes a point p € E¢. Use p as
a basepoint to identify the affine space E¢ with the vector space R?: then
the action is described by a homomorphism A: G — Og4. Let S* denote the
associated representation sphere: the one point compactification of R¢ with
basepoint the new point at infinity and inherited G-action. Then Ansatz 3.3
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computes the group of invertible phases:

IIZ

(3.6)  Eg9(S?, 00) = [S° EASA]

(S, B

[Ed ’\(BG)/\MTH »i+217)
Thom(BH x BG; -W +R? - V), £4217],

12 IIZ

I

where V), — BG is associated to A. (The isomorphism (3.6) is a special
case of (2.7).) The last expression in (3.6) is the group of invertible phases
in d space dimensions of the symmetry type (H x G,p x A). For H = SO
(bosonic theories) this reduces to the “crystalline equivalence principle”
of [TE] in dimensions d < 1 for which we can replace M SO by HZ. (Note
that (3.6) includes a twist for symmetries which reverse orientation.)

4 Computational techniques in Borel equivariant theory

We offer a brief exposition of computational methods, relying on [FH, §6]
and the references therein for background on equivariant stable homotopy
theory.

4.1 Reduction to nonequivariant computations. The evaluation of
the Borel equivariant maps between G-spectra can often be reduced to the
computation of non-equivariant maps by the following devices.

(A) When M is a G-spectrum and N is an ordinary spectrum, regarded as
a G-spectrum with trivial action one has

(4.1) [M,NJ"¢ = [EG, A M, N).

(B) (Adams isomorphism). When M has trivial G-action, N is a G-spectrum,
and T is a finite free G-CW-complex, the transfer map

(4.2) [M,(N ATy AS%ng) = [M,N AT, "¢

is an isomorphism. Here S® is the one point compactification of the Lie
algebra of G and

(NAS%)ne = EG4 A (N A S9).
(C) Atiyah duality identifies the Spanier-Whitehead dual of a closed man-

ifold M with the Thom complex M~TM_ When W C G is a closed sub-
group this implies that the Spanier-Whitehead dual of the homogeneous



Invertible phases with spatial symmetry 1779

space G/W is the Thom spectrum G v/‘\/S_g/“’, in which g = LieG and
to = Lie W.

(D) When W C G is a closed subgroup one has an isomorphism
[M NGy /W,NJ* = [M, N]"W
from which, using Atiyah duality, one deduces an isomorphism
[M,N AG/W " = [M,N A S%/®hW,

Remark 4.3. In (B) when N is the suspension spectrum of a G-space X
then (N A S%),q is the suspension spectrum of the Thom complex

Thom(EG x X, g).
G

Computations in Borel equivariant homotopy theory can be made using
the above rules, augmented with knowledge of the effect of the maps

(4.4) [M,N AG/(W1)4 " — [M,N AGJ(Wy),]"¢
(4.5) [M AG/(Wa)y, NI"Y — [M AG/(Wy)y, NC

induced by an equivariant map
G / W1 — G / WQ.

Remark 4.6. In the extended example in §5, the group G is cyclic of order
2 and the only map whose effect need be worked out is

G — GJG.

When M and N have trivial G-action, the maps (4.4) and (4.5) are identified,
using the rules above, with the maps

[M,N] = [M A BG4, N]
[M A BG4, N] — [M,N]

induced by the transfer map BG; — S° and the map S° — BG, associated
to a choice of point in BG.
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4.2 Equivariant Atiyah-Hirzebruch spectral sequence. To moti-
vate the construction assume G is a finite group and Z a pointed G-space.
Let L' C G be a subgroup and suppose f: G/L' x SP~! — Z is a continuous
G-equivariant map for some positive integer p. The mapping cone of f is
the union W = Z Uy (G/L' x DP) which attaches an equivariant p-cell to
the space Z. From the equivariant cofibration sequence

(4.7) Z — W — W/Z~G/L x (DP,SP™1)
we obtain a boundary map in equivariant homology:
(4.8) d: ENY(W, Z) — ENC(2).

By excision and (4.1) the domain is isomorphic to EP~*(BL'), which by (1.4)
is interpreted as a group of topological phases in spatial dimension p — k.
If E=E,) as in (1.3), then these theories have symmetry type (H x
L' p x e). Suppose Z is obtained from a subcomplex Z’' C Z by attaching
an equivariant (p — 1)-cell G/L x DP~1 and compose (4.8) with the quotient
map

(49) B} (2) — E}%\(2,2) = BlS(G/L x 5"') = EPH(BL).

If the composite is nonzero, which means the boundary of the p-cell attached
in (4.7) intersects the (p — 1)-cell in (4.9), then since the stabilizer subgroup
can only increase by taking the boundary, we must have L' C L. The com-
posite EP~*(BL') — EP~*(BL) is the transfer, the pushforward along the
finite cover BL' — BL with fiber L'/L.

The Atiyah-Hirzebruch spectral sequence is obtained by filtering a G-
CW complex by its skeleta and systematizing the argument above. Suppose
Y is the complement of a subcomplex Yy C Y of a finite G-CW complex.
Then the E'-page of the spectral sequence is the Bredon homology of (YY)
with coefficients in the covariant functor on the orbit category of G with
values in Z-graded abelian groups whose component in degree ¢ at G/L
is E~9(BL), which is the language used to describe the systematization of
the previous paragraph. In degree —q the coefficient group is the group of
invertible topological phases of symmetry type (H X L,p X e) in (spatial)
dimension ¢; see (3.1). This is the El-page contribution of an equivariant
p-cell e? x G/L. The spectral sequence converges to an associated graded of
B (Y, Yo).
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The differential d' is the composition of the usual equivariant cellular
boundary map with a transfer map, the latter nontrivial in case the stabi-
lizer group L of a (p — 1)-cell e is strictly larger than the stabilizer group L’
of a p-cell ¢’ whose boundary rel the (p — 2)-skeleton maps with nontrivial
degree to e. Assume G is finite. The transfer* E~4(BL') — E~¢(BL) has
a field-theoretic interpretation as a map from (d + 1)-dimensional theories
of H-manifolds equipped with a principal L’-bundle to (d + 1)-dimensional
theories of H-manifolds equipped with a principal L-bundle. If M is a man-
ifold (bordism) equipped with a principal L-bundle P — M, then a section
of the associated fiber bundle P/L" — M with fiber L/L’ is equivalent to a
reduction of P — M to structure group L' C L. The evaluation of the trans-
fer of F' on (M, P) is the (tensor) product over sections of P/L" — M of the
values of the theory F'. In general sections only exist locally, so we must use
the extended locality of these field theories to compute the transfer.

We remark that there is a similar spectral sequence if G is a compact
Lie group. See [SXG] for further information about the Atiyah-Hirzebruch
spectral sequence in this context.

5 Fermionic phases on E3 with a half-turn

By way of illustration we now turn to the classification of phases on E?
which are symmetric with respect to the involution (z,vy,2) — (x, —y, —2).
The one point compactification of E? is the equivariant sphere 1727, where
o is the real sign representation. The symmetry type (H, p) has H the infinite
Spin group, and in this case we may identify MTSpin with MSpin. Applying
Ansatz 3.3 in the form (3.6), we determine the group of equivariant phases
to be

(5.1) [MSpin, 221 A §1H20]02/2,

We compute this group is three ways.

5.1 First method. Apply (3.6) with d =3 and A = 1 4 20 to compute
(5.1) as

(5.2) [L272RP™ A MSpin, X°17) = [Z2727RP™ |, Y ko(0---4)].

Here we use the Anderson-Brown-Peterson [ABP] decomposition of M Spin,
in which the leading term is ko and higher terms do not appear since 3°17Z

1

4We assume an inclusion L' C L; an inclusion into a conjugate gLg~! is then

composition with an automorphism.
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has vanishing homotopy groups above dimension 5; we also use the Anderson
self-duality of ko (with a shift of 4) [HS]. Note £2729RP%° is the Thom spec-
trum Thom(RP>; R? — L®2), where L — RP™ is the tautological real line
bundle. Let U be the Thom class of R?2 — L®? — RP*, U its mod 2 reduc-
tion, and a € H'(RP*;Z/27Z) the generator. The right hand side of (5.2)
can be computed from the nonequivariant Atiyah-Hirzebruch cohomology
spectral sequence

(5.3) ERT > HP (S2727RP™; ko(0 - - - 4)%(pt))
= [B272RP™ | $P ko0 - - - 4)].

The contributions in total degree 1 come from E = Z/QZ'U&Q and
E3 ~22>7/97 - Ua3, which are kllled respectlvely by do(U) = S¢*(U) from

9 and dy(Ua) = S¢*(Ua) from Ey . (Observe S¢*(U) = Uwy, (R2 — L#2).)
Thus the group (5.1) of phases vanishes in this case.

5.2 Second method. Decompose S'727 into pieces of fixed isotropy
and make use of the methodology described in §4.1. The first step is to
write

Sl+20 — Sl A SQO’
and
[M Spln EQIZ A Sl+2a’]hZ/2 [M Spln E3IZ A SQU]hZ/Z

Now 527 is the unreduced suspension of the unit sphere S(20) C R* so
there is a cofibration sequence of pointed Z/2-spaces (or spectra)

S(20); — S° — 8%
and an exact sequence

MSpin, 2317]"%/?

(5.4) [MSpin, 2317 A S(20)1]"%/? — |
[MSpin, 2317 A §201h%/2
[
[

MSpin, S417Z A S(20) 4]"2/?

%
_)
— [MSpin, £417)M%/2.

We will check that

(5.5) [MSpin, 2317 A S(20)4]"*/? — [MSpin, £317)"/?
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is an epimorphism and
(5.6) [MSpin, 2417 A S(20)4]"%/? — [MSpin, S 17Z]"%/?
is a monomorphism, from which we deduce

[MSpin, £31Z A §27)h2/2 — ¢,

This implies that there is only one phase on E? — the trivial phase — which
is symmetric with respect to the involution (z,y, z) — (z, —y, —2).

To evaluate (5.5) and (5.6) note the orbit space S(20)/(Z/2) is just
RP! = S! so from the Adams isomorphism (4.2) we have

[MSpin, ¥*I1Z A S(20)+]"%/? ~ [MSpin, S¥I1Z A RPL).

The composition

[MSpin, £*1Z A S(20)4]"%/? — [MSpin, 2317Z)"*/? — [MSpin, 231Z]
is the map induced by the transfer map of spectra
(5.7) RP. — S°
A choice of base point in RP! gives a weak equivalence
(5.8) RP! 5 stv S0
Since RP! is path connected, the homotopy class of this map is independent
of this choice.

The following can be proved using standard methods.

Proposition 5.9. With respect to the decomposition (5.8) the transfer
map

RP} — 5°
has components

n:St— 80

2:8% — 5.

in which 7 € m 5% = Z/2 is the non-trivial element. O
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Using the fact that the Atiyah-Bott-Shapiro map MSpin — ko is an
equivalence up to dimension 8, and the isomorphisms

[MSpin, S*17 A S(20)4]"%/* ~ [MSpin, S¥1Z A RP ]
~ [MSpin, 2¥+117] @ [MSpin, 2*1Z]
[MSpin, S*1Z]"%/2 ~ [MSpin ABZ/2,, S 17)

[

~ [MSpin ABZ/2, ¥*I7) & [MSpin, 2* 7]

one extracts the following table of values

k [MSpin, Z*I7Z] | [MSpin, SFIZ A S(20) ]"%/? | [MSpin, Sk 17Z)"%/2
0 Z v/ v/
1 0 7.)2 0
(5.10) o 7)2 7.)2 ® Z)2 7.)2 ® 7/2
3 7/2 ZOL/2 Z/26Z)2
4 Z y/ Z®ZL/8
5 0 0

as well as the fact that multiplication by the non-zero element 1 € m1.5° is
the non-trivial map

[MSpin, 2¥1Z] — [MSpin, 2*~117]

when k = 4 or 3.
By Remark 4.6, homomorphisms

[MSpin, S¥I17 A (Z,/2)]"*/? — [MSpin, £*17)"/?
[MSpin, S*1Z]"%/2 s [MSpin A(Z/2) 4, SF17)"%/?

induced by the map Z/2 — pt can be identified with the maps

[MSpin, ¥*1Z] — [MSpin ABZ /2, , 2*17]
[MSpin ABZ/2,%*I7] — [MSpin, ©*17]

induced by the transfer map BZ/2, — S°, and the inclusion map SY —
BZ/2. associated to a choice of point in BZ/2. The effect of the transfer
map is given by the following table
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k |MSpin, Y% 17| — transfer > | |MSpin, X% 1] 4
0 Z [2] Z

1 0 0

2 7/2 0 1) Z/2®7/2

3 7/2 o 1" 7/2®7/2

4 7 2 1)’ 7D 7/8

5 0 0

With these values, and Proposition 5.9 the map

[MSpin, £31Z A S(20) 4]"%/? — [MSpin, 2317)"%/?

x

(5.11) Z®L)2 ——3T7)2® L2

becomes

which is indeed an epimorphism, while

[MSpin, S*1Z A S(20) )"/ — [MSpin, £417)"%/?

§

Z———7Z&Z/8

becomes

which is a monomorphism.

1785

5.3 Third method. A lecture by Mike Hermele based on [HSHH] sug-
gested to us that the equivariant Atiyah-Hirzebruch homology spectral se-
quence has a physical interpretation in this context; here we describe how
this spectral sequence plays out to kill the relevant group. See also [SXG]
for many worked examples using this spectral sequence. We refer to §4.2 for
an exposition of the equivariant Atiyah-Hirzebruch spectral sequence. In the
case of equivariant phases on E3, we use the equivariant cell decomposition

Si20 — g1y Z/2 xe? U Z/2 x €3

of the one-point compactification of E2, the appropriate representation

sphere. Using the table (5.10), the spectral sequence works out to be
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0 1 2 3
0
d! d"
-1 Z/2617/2 ~— 7)2 <—%— 7/2
d2
) LOL/8 ——— 7 -—1—— 7
dt d*

The (1, —d) entry is the group of invertible (d + 1)-dimensional fermionic
phases with internal symmetry group Z/27Z (the stabilizer group of the 1-
cell), and the (p, —d) entry for p = 2,3 is the group of invertible (d + 1)-
dimensional fermionic phases. The group (3.2) of interest is the homology
in degree 0.

Claim 5.12. The spectral sequence scorecard in degree 0 is:
(i) the differential d': E5 | — Ef _; hits a Z/2Z-subgroup;
(ii) d': By _5 — B} _, is injective; and
(ili) the differential d*: E5 , — E} _ is onto the remaining Z/2Z.

Proof. The group Eifl of invertible topological phases of spin 2-manifolds X
equipped with a double cover Q — X may be described in terms of parti-
tion functions. Recall that a spin structure on a closed 2-manifold X gives
a quadratic refinement gy of the intersection pairing on H'(X;Z/2Z), and
gx has an Arf invariant Arf(gx) € Z/27Z. The equivalence class of a double
cover Q — X lives in H'(X;Z/27). The four possible partition functions
are 1, (—1)Af(e0)  (—1)Aflax+@Q)  and (—1)2x(@). A more precise version
of (i) is: the first differential d': Ej ; — E} ;| maps the second of these,
which is a theory on spin manifolds without a double cover, onto the last
of these.® We can compute that from the transfer as follows. Let the target
2-groupoid for these extended field theories be the Morita category of cen-
tral simple complex superalgebras equipped with a Z/2Z-action. The four

5which Mike Hermele calls a “fermionic AKLT state”
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theories evaluate on a point respectively to C with trivial involution, the
Clifford algebra A = Cliff$ with trivial involution, the algebra A with non-
trivial involution, and C with nontrivial involution. The transfer maps the
second of these to A ® A with the involution exchanging the factors, and
this is Morita equivalent to C with nontrivial involution. This proves (i).
Claim (ii) is straightforward: the differential d*: E} , — E] _, does not in-
volve a transfer, so reduces to the cellular differential. The differential in (iii)
is induced by the transfer (5.7), and was worked out in (5.11). O

References

[A] M. F. Atiyah, Bordism and cobordism, Proc. Cambridge Philos.
Soc. 57 (1961), 200-208.

[ABP] D. W. Anderson, E. H. Brown, Jr., and F. P. Peterson, The struc-
ture of the Spin cobordism ring, Ann. of Math. (2) 86 (1967),
271-298.

[BC] Agnes Beaudry and Jonathan A. Campbell, A guide for computing
stable homotopy groups, arXiv:1801.07530.

[C] Jonathan A. Campbell, Homotopy theoretic classification of sym-
metry protected phases, in preparation.

[D] Arun Debray, Invertible phases for mized spatial symme-
tries and the fermionic crystalline equivalence principle,
arXiv:2102.02941.

[FH] D. S. Freed and M. J. Hopkins, Reflection positivity and invertible
topological phases, arXiv:1604.06527.

[FHT] D. S. Freed, M. J. Hopkins, and C. Teleman, Loop groups and
twisted K -theory I, J. Topology 4 (2011), 737-798.

[GPW] Meng Guo, Pavel Putrov, and Juven Wang, Time reversal, SU
(N) Yang—Mills and cobordisms: Interacting topological supercon-
ductors/insulators and quantum spin liquids in 3+ 1D, Annals of
Physics 394 (2018), 244-293.

[HS] Drew Heard and Vesna Stojanoska, K -theory, reality, and duality,
J. K-Theory 14 (2014), no. 3, 526-555.

[HSHH] Sheng-Jie Huang, Hao Song, Yi-Ping Huang, and Michael Hermele,
Building crystalline topological phases from lower-dimensional
states, arXiv:1705.09243.



1788 D. S. Freed and M. J. Hopkins

[Ka] Anton Kapustin, Symmetry protected topological phases, anoma-
lies, and cobordisms: beyond group cohomology, arXiv:1403.1467.

[KTTW] Anton Kapustin, Ryan Thorngren, Alex Turzillo, and Zitao Wang,
Fermionic symmetry protected topological phases and cobordisms,
arXiv:1406.7329.

[R] Ying Ran, Weak indices and dislocations in general topological
band structures, arXiv:1006.5454.

[SHFH] Hao Song, Sheng-Jie Huang, Liang Fu, and Michael Hermele,
Topological phases protected by point group symmetry, arXiv:
1604.08151.

[SXG] Ken Shiozaki, Charles Zhaoxi Xiong, and Kiyonori Gomi, Gen-
eralized homology and Atiyah-Hirzebruch spectral sequence in
crystalline symmetry protected topological phenomena, arXiv:
1810.00801.

[TE] Ryan Thorngren and Dominic V. Else, Gauging spatial sym-
metries and the classification of topological crystalline phases,
arXiv:1612.00846.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TEXAS
AusTiN, TX 78712, USA

FE-mail address: dafr@math.utexas.edu

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY
CAMBRIDGE, MA 02138, USA
E-mail address: mjh@math.harvard.edu



	References

