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ABSTRACT

It is well known that surface groups admit free and proper actions on

finite products of infinite valence trees. In this note, we address the ques-

tion of whether there can be a free and proper action on a finite product

of bounded valence trees. We provide both some obstructions and an

arithmetic criterion for existence. The bulk of the paper is devoted to an

approach to verifying the arithmetic criterion which involves studying the

character variety of certain surface groups over a field of positive charac-

teristic. These methods may be useful for attempting to determine when

groups admit good linear representations in other contexts.

1. Introduction

In this note we address a question that arose during the MSRI special semester

on Dynamics on Moduli Spaces of Geometric Structures.

Question 1: Let Σg be a surface group of genus g ≥ 2. Is there a discrete and

faithful representation of Σg into Aut(Y ) for Y a locally compact Euclidean

building? Can we take Y to be a finite product of bounded valence trees?

The question was motivated by recent results in the theory of Anosov rep-

resentations [KLP, GGKW] which we discuss in somewhat more detail later in

this introduction. We note that producing a free action on a product of infinite-

valence trees is an easy exercise in Bass–Serre theory. Indeed, one selects the

actions associated with the splittings arising from a family of essential simple

closed curves that fill the surface. Moreover, it is easy to use the fact that

surface groups are fully residually free to produce such an action on an infinite

product of finite-valence trees.

We approach only the special case of Question 1 for products of trees and from

two distinct directions. First we attempt a construction of an action via arith-

metic methods, in particular using actions on trees coming from representations

into algebraic groups over fields of positive characteristic. This approach may

also be interesting for building linear representations of other groups in other

contexts. Second, we prove some results indicating that any positive answer to

the question must be given by a highly irreducible action. These irreducibility

results obstruct some avenues for building the representations by methods of

geometric topology.

Our approach to building examples leads us to:
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Question 2: Let Σg be the fundamental group of a closed oriented surface of

genus g ≥ 2. Does there exist a faithful representation of Σg into PGL2(K) for

some global field K of characteristic p > 0?

We show that a positive answer to Question 2 implies a positive answer to

Question 1. This is probably known, but we include a proof for the benefit of

the reader.

Theorem 3: Suppose Γ is a finitely generated group that admits a faithful

representation into PGL2(K) forK a global field of characteristic p > 0. Then Γ

admits a discrete and faithful representation into Aut(Y ) for Y a finite product

of finite-valence trees.

A result of this kind with K of characteristic zero was famously exploited by

Bass [B] to show that lattices in SL2(C) with a nonintegral trace admit nontriv-

ial actions on a tree. He then used this to show that the associated hyperbolic

3-manifold is Haken. The analogous result to Theorem 3 in characteristic zero

is that a finitely generated subgroup of SL2(K), with K a number field, admits

a discrete action on a finite product of hyperbolic planes, hyperbolic 3-spaces,

and trees (with at least one of these sets nonempty).

Our first approach to Question 2 can also be thought of as a method for

proving the linearity of certain finitely generated groups Γ, which we illustrate

in our study of surface group representations into linear groups in characteristic

p > 0. This method may be of interest in other contexts, as it uses an unusual

variant of ping pong for groups generated by torsion elements. For example, we

obtain:

Theorem 4: For every p ≥ 5 and g ≥ 2, there exists a finite extension K of

Fp(x, y) and a faithful representation from Σg into PGL2(K).

Our techniques also allow us to prove the following.

Theorem 5: Let Σg be the fundamental group of a closed Riemann surface

of genus g. If p ≥ 5 and g ≥ 2, for every field K of characteristic p and tran-

scendence degree r ≥ 2, there exists n such that GLn(K) contains a subgroup

isomorphic to Σg.

Proving linearity results in sufficiently high transcendence degree by ap-

pealing to a universal representation was suggested to us by the construction
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of “strongly dense” free subgroups by Breuillard, Green, Guralnick, and Tao

[BGGT]. It is also reminiscent of the use of “tautological representations” by

Culler and Shalen in their study of essential surfaces in knot complements [CS].

The general method is as follows.

We begin by embedding Γ into a (possibly) larger group ∆, also finitely

generated. Fix an adjoint simple group G over Fp and suppose that there exists

an irreducible component X of the character variety Hom(∆, G)/G for which

the associated representation is generically Zariski-dense. If K is the function

field of X , then there exists a finite extension L/K and a homomorphism from

∆ to G(L) that represents the generic point of X . Composing with the adjoint

representation of G, we obtain a linear representation of ∆, and therefore Γ,

over L.

It remains to consider whether or not this homomorphism is faithful. To

prove it is, we require a subgroup Ξ ⊂ G(K) such that for every δ ∈ ∆ \ {1}
there exists a homomorphism ψ : ∆ → Ξ such that δ %∈ kerφ. Regarding ψ as a

G-representation of ∆, it determines a point on X . In other words, ∆ must be

“residually Ξ”. This implies linearity over Fp(x1, . . . , xr), where r := dimX ,

and therefore over every characteristic p field of transcendence degree ≥ r.

For our application, Γ will be the surface group Σg. Without loss of gen-

erality we can replace Γ with a cocompact Fuchsian group ∆ that contains

Σ2 (and hence Σg for all g ≥ 2). Fix p, and let G = PGL2. The point of

introducing a group ∆ which contains Γ, instead of working directly with Γ

itself, is that we can find an appropriate cocompact Fuchsian group ∆ with

a PGL2-character variety of dimension 2, whereas the character variety of Σg

is 6(g − 1)-dimensional. Since this dimension is the transcendence degree of

the function field K of our component X , this replacement is key to finding

representations with K of transcendence degree 2 over Fp.

In other words we use ∆ to construct a subvariety of the representation

variety that in this case has dimension 2. We could, in principle, choose any

other subvariety X defined over a finite extension of Fp, even a subvariety of

dimension 1. The difficulty for other choices of X is to show that the generic

representation on X is faithful.

There do exist choices of ∆ having PGL2-character variety of dimension 1, for

example nonorientable Fuchsian groups generated by reflections in the sides of a

quadrilateral. However, we did not succeed in finding a suitable Ξ to implement

the last step of the above method for such a∆. That is, our methods do produce
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surface group representations, but we cannot prove that they are faithful. As

a result, we do not know if Σg is ever linear over a global field of positive

characteristic.

We now state some results restricting the possible positive answers to Ques-

tion 1. We state the first only for a product of two trees, as the more general

statement is somewhat technical. Let Γ be a torsion-free hyperbolic group, let

T1 and T2 be simplicial trees of bounded valence, and let ρ : Γ → Aut(T1 × T2)

be a discrete faithful representation. Passing to a subgroup of index 2, we can

assume that ρ(Γ) preserves both trees. Let ρi : Γ → Aut(Ti) be the induced

representations. Then we have:

Theorem 6: Either Γ is free or ρ1 and ρ2 are faithful and indiscrete.

This result can be extended to products of n bounded valence simplicial

trees, but is a bit technical to state; see Theorem 15 below. We state here

a couple of simple consequences. We let Γ again be a torsion-free hyper-

bolic group, and T1, . . . , Tn be simplicial trees of bounded valence. Suppose

ρ : Γ → Aut(T1 × · · ·× Tn) is a discrete and faithful representation. Passing to

a subgroup of finite index, we can assume that ρ(Γ) preserves each Ti so

ρ : Γ → Aut(T1)× · · ·×Aut(Tn).

Let ρi : Γ → Aut(Ti) be the resulting representation on each factor. Then we

have:

Corollary 7: Suppose that Γ is not a free group and that no restriction of

ρ to a proper subproduct of trees Ti1 × · · · × Tik with k < n is discrete and

faithful. Then n ≥ 2 and each ρi is faithful and indiscrete.

As a consequence of this, we also see:

Corollary 8: Suppose that Γ is a torsion-free, hyperbolic group that is not

free. Then Γ does not admit a faithful homomorphism into a finite direct

product of nonabelian free groups.

This corollary is also a very special case of the main results of [BHMS],

where it is shown that any FP∞ subgroup of F1 × · · ·× Fn is a finite product

of free groups. We mention the corollary here as it is an obstruction to many

approaches to constructing positive answers to Question 1. For a product of

two free groups, a short argument, analyzing projections as we do, is given in
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[K, Prop. 4.1]. For contrast, those notes construct surface subgroups in right

angled Artin groups that are quite closely related to a product of free groups

[K, Thm. 4.4].

We now discuss some geometric motivation behind Question 1. Representa-

tions of surface groups into real and complex Lie groups have been of significant

interest since the foundational work of Fricke and Klein. However, there has

also been a recent surge of activity centered around the notion of an “Anosov

representation”, which is a dynamical generalization of the discrete and faithful

representations into PSL2(R) associated with complete hyperbolic structures on

the underlying surface. For surface groups, this was first defined by Labourie

[L], and one key feature is that any Anosov representation is discrete and faith-

ful.

Recently, [KLP] (see also [GGKW]) gave dynamics-free definitions that could

be used to define Anosov representations into linear algebraic groups over any

local field. However, one can show that the theory is empty for surface groups

acting on spaces with totally disconnected Furstenberg boundary (e.g., Eu-

clidean buildings). Elementary arguments using arithmetic groups provide a

wealth of faithful representations into algebraic groups over local fields of char-

acteristic zero (e.g., PGL2(Qp)), but these representations have large vertex

stabilizers in their actions on the associated building. These constructions ex-

tend to more general locally compact groups as seen in [BGSS]. However, in all

contexts, discrete and faithful representations are more difficult to construct.

We also mention that Question 1 is obviously relevant to whether irreducible

lattices in the isometry groups of higher rank Euclidean buildings contain sur-

face subgroups. This question is analogous to Gromov’s famous surface sub-

group conjecture for hyperbolic groups.

We now briefly outline the paper. In §2, we give some general facts on

character varieties. In §3 we concentrate on surface groups and prove Theorem

5 by a direct construction. In §4 we give the proof of Theorem 4. Finally in §5
we discuss Theorem 6, its more general form for n trees, and Corollary 8.

2. Generalities on character varieties

In this section, ∆ will denote any finitely generated group and G any adjoint

simple algebraic group over a field k. Let A∆,G denote the coordinate ring

of the affine scheme Hom(∆, G). The conjugation action of G on Hom(∆, G)
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determines a dual action of G on A∆,G, and we let B∆,G denote the ring of

invariants and

X∆,G := Spec(B∆,G)

be the G-character variety of ∆. If σ is any representation of G, m is an

integer in [0, dimσ], and δ ∈ ∆, then the map from G-representations ρ of ∆ to

(−1)m times the xdimσ−m coefficient of the characteristic polynomial of σ(ρ(δ))

lies in B∆,G, and we denote this function by T (σ,m, δ).

The natural morphism

Hom(∆, G) → X∆,G

is submersive [GIT, Thm. 1.1]. For the remainder of this section, fix an irre-

ducible componentX of X∆,G with generic point η. This corresponds to picking

a minimal prime ideal I0 of B∆,G to specify the component X and then taking

the field of fractions K of B∆,G/I0 to specify the generic point η. Then the

fiber over η is nonempty and thus has a point lying on a finite extension L of

the residue field K of η, which determines a homomorphism

(1) fη : ∆ → G(L)

such that if b̄ denotes the image of b ∈ B∆,G in B∆,G/I0 ⊂ K ⊂ L, then for all

δ ∈ ∆, the characteristic polynomial of fη(δ) is

dimσ∑

m=0

(−1)mT (σ,m, δ)xdimσ−m.

The following gives a sufficient condition for fη to be faithful when k has positive

characteristic.

Proposition 9: Suppose that ∆ has no p-torsion. For every nontrivial

δ ∈ ∆, suppose that there exists a field extension M/Fp and a homomorphism

g : ∆ → G(M) associated with a point in X(M) such that g(δ) does not have

order pt for any integer t ≥ 0. Then the homomorphism fη defined in (1) is

injective.

Proof. Suppose that δ ∈ ker fη and let σ denote the adjoint representation of

G. Since the characteristic polynomial of the trivial matrix is (x − 1)dimG, for

all integers 0 ≤ m ≤ dimG, the function

T (σ,m, δ)−
(
dimG

m

)
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vanishes at η, and hence vanishes on all of X (i.e., maps to zero under b )→ b̄

and therefore under B∆,G → B∆,G/p for any prime ideal p containing I0). Since

g belongs to X(M) and δ is in the kernel of fη, the characteristic polynomial

of σ(g(δ)) is (x − 1)dimG, and therefore σ(g(δ)) is unipotent. If pt > dimG,

then σ(g(δp
t
)) = 1, which implies g(δp

t
) = 1, and this is a contradiction if δ is

nontrivial.

Remark: A similar statement holds in characteristic zero with the same proof,

where we instead assume that X(M) contains a point associated with a rep-

resentation δ for which g(δ) is not unipotent. This type of argument appears

in Culler and Shalen’s celebrated paper on character varieties of fundamental

groups of 3-manifolds [CS]. There ∆ is the fundamental group of a one-cusped

hyperbolic 3-manifold M of finite volume, X is the component of the SL2(C)
character variety containing a representative for the discrete and faithful repre-

sentation of∆ associated with the complete structure on M , and g is an element

of ∆ representing a nontrivial loop on the boundary torus.

At the expense of increasing the dimension of the representation, we obtain

that ∆ is linear over a purely transcendental field of degree r = dim(X).

Corollary 10: If p is a prime, G is an adjoint simple algebraic group over

Fp, ∆ is a finitely generated group without p-torsion, and X∆,G has an r-

dimensional closed subscheme satisfying the assumptions of Proposition 9, then

∆ is linear over Fp(x1, . . . , xr).

Proof. We showed that there is an injective homomorphism to G(L), with L a

finite extension of the function field K of X . Note that K is a finitely generated

extension of Fp of transcendence degree r. Under the adjoint representation

of G, we then obtain an injective homomorphism from ∆ to GLn(L), where

n := dimG. Choosing r algebraically independent elements x1, . . . , xr ∈ L,

we obtain a purely transcendental subfield k := Fp(x1, . . . , xr) of which L is

a finite extension, say of degree l. Then ∆ can be realized as a subgroup

of GLnl(k).

Remark: In the above, we can replace X with any irreducible closed subscheme

of X∆,G. In fact, embedding a group Γ in a larger group ∆ does precisely this

by considering representations of Γ that extend up to ∆.
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3. Surface groups

For this section we fix

∆ := 〈a, b, c, d | a3, b2, c2, d3, abcd〉.

Then ∆ is a compact oriented Fuchsian group in which every element of finite

order is conjugate to a±1, b, c, d±1, or 1. There is a homomorphism from ∆

onto S3 sending a and d to (123), b to (12), and c to (23). The kernel Γ is of

index 6 and contains no nontrivial torsion element. Its Euler characteristic is

χ(Γ) = 6χ(∆) = 6(2− 4 + 1/3 + 1/2 + 1/2 + 1/3) = −2

and it follows that it is isomorphic to Σ2. Consequently, linear representations

of ∆ determine representations of Σg for all g ≥ 2.

Let

∆̃ = 〈A,B,C,D,Z |A3 = B2 = C2 = D3 = Z, Z2 = ABCD = 1〉.

The map

(A,B,C,D,Z) )→ (a, b, c, d, 1)

gives a surjective homomorphism

∆̃ → ∆

with central kernel 〈Z〉 ∼= Z/2Z. Every element in ∆̃ can be written as Zi times

a word in the symbols A±1, B, C, i ∈ {0, 1}. Replacing the left hand side by

the right in

(2) CABC = BA−1CBA−1

and

(3) CBA−1C = ABCAB

we can reduce the number of symbols of type C. We say a word is reduced

if no two consecutive symbols are equal or inverse to one another and all re-

placements of type (2) and (3) have been made. Up to powers of Z, the inverse

of a word in A, A−1, B, C is obtained by reversing the order of symbols and

interchanging A and A−1; in particular, this process sends reduced words to

reduced words. A word is cyclically reduced if every word obtained from it

by cyclic permutation of symbols is reduced. Note that such a permutation does

not affect the conjugacy class and therefore does not affect character values.
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Proposition 11: Let K be an algebraically closed field of characteristic p ≥ 5.

For all δ ∈ ∆̃, there exists Tδ ∈ Z[u, v, w] such that if ρ : ∆̃ → SL2(K) is any

representation such that ρ(A), ρ(B), ρ(C), ρ(D) have orders 6, 4, 4, and 6

respectively, then

tr(ρ(δ)) = Tδ(tr(ρ(BC)), tr(ρ(CA)), tr(ρ(AB))).

Proof. Let χ denote the character tr ◦ ρ. We prove

χ(δ) = Tδ(χ(BC),χ(CA),χ(AB))

for all δ by induction on the length of a reduced word representing δ. As

χ(zδ) = −χ(δ), it suffices to consider words without occurrence of Z, and

moreover, we may assume δ is represented by a cyclically reduced word. For

length 0, χ(1) = 2. For length 1, χ(A) = 1, χ(B) = χ(C) = 0. For length 2

the character value does not depend on the order of the symbols. Unless A−1

appears, there is nothing to check. Moreover,

χ(A−1B) = χ((A−1B)−1) = χ(B−1A) = χ(AB−1) = −χ(AB),

χ(A−1C) = χ((A−1C)−1) = χ(C−1A) = −χ(CA).

The cyclically reduced words of length 3, up to inversion, cyclic permutation,

and multiplication by Z, are ABC and ACB. We have

χ(ABC) = χ(D−1) = χ(D) = 1.

From the SL2 identity

(4) tr(x)tr(y) = tr(xy) + tr(x−1y),

we deduce

χ(ACB) = χ(A)χ(CB) − χ(A−1CB) = χ(CB)− χ(A−1CB)

= χ(BC)− χ(BCA) = χ(BC)− 1.

For cyclically reduced words of length l ≥ 4, we may assume, after cyclic

permutation if necessary, that the first symbol of the word either coincides with

or is inverse to the kth symbol for some k ∈ [2, l−1]. Defining x and y to be the

product of the first k−1 symbols and the remaining l−k+1 symbols respectively,

we can then use (4) to express χ(δ) as a polynomial with Z-coefficients in terms

of χ-values of elements representable by strictly shorter words.
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Theorem 12: The component of the character variety Hom(∆̃, SL2)/SL2 con-

taining the representations that are faithful when restricted to 〈A〉, 〈B〉, 〈C〉,
and 〈D〉 is birationally equivalent to the affine cubic surface

S := Spec(K[u, v, w]/(uvw + u2 + v2 + w2 − u− 2)).

Proof. We consider the morphism φ : Hom(∆̃, SL2)/SL2 → A3 mapping

χ )→ (χ(BC),χ(CA),χ(AB)).

For K not of characteristic 2 or 3, the conditions

χ(A) = χ(ABC) = 1 and χ(B)=χ(C) = 0

cut out the open and closed subscheme X of Hom(∆̃, SL2)/SL2 consisting of

representations ρ faithful on the finite cyclic groups generated by A, B, C, D.

The following identity for triples (X,Y, Z) of 2 × 2 matrices can be verified

easily:

tr(X)tr(Y )tr(Z)tr(XY Z) + tr(Y Z)tr(ZX)tr(XY ) + tr(XY Z)2

+
∑

detXtr(Y Z)2 +
∑

tr(X)2 detY Z − 4 detXY Z

−
∑

detXtr(Y )tr(Z)tr(Y Z)−
∑

tr(X)tr(Y Z)tr(XY Z) = 0,

where each indicated sum is a symmetric sum of 3 terms (including the specified

one) given by cyclically permuting X,Y and Z. This implies the following

identity for triples (x, y, z) in SL2:

tr(x)tr(y)tr(z)tr(xyz)+tr(yz)tr(zx)tr(xy)+tr(xyz)2+
∑

tr(yz)2+
∑

tr(x)2

=
∑

tr(y)tr(z)tr(yz)+
∑

tr(x)tr(yz)tr(xyz)+4.

It follows that the restriction of φ to X maps to S. To see this recall that

we map A → x, B → y and C → z and that χ(A) = 1, χ(B) = χ(C) = 0 and

χ(ABC) = 1 and let the variables u = χ(BC), v = χ(CA) and w = χ(AB).

Since S is irreducible, to show that φ|X is dominant it suffices to prove the

image is 2-dimensional. We can do this by projecting the image onto the u-w

plane. Setting

A =

(
q r

−1+q−q2

r 1− q

)
, B =

(
i 0

0 −i

)
, C =

(
s 1

−1− s2 −s

)
,
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we obtain a triple in X which maps to ((2q − 1)i, 2si) as long as there exists a

solution r to the equation

i(s2 + 1)r − s(q2 − q + 1)

r
+R(s, q) = 0

for an explicit polynomial R. As long as s is not a 4th root of unity, this has

at least one solution r.

Finally, φ|X is an isomorphism at every point in X corresponding to an

absolutely irreducible representation [N]. As long as χ(BC) %∈ {±2}, ρ(B) and

ρ(C) cannot lie in a common Borel subgroup of SL2, and it follows that χ is

absolutely irreducible.

Our goal now is to show that the representation of ∆̃ on the function field of

the cubic surface S from Theorem 12 is faithful. By Proposition 9, this provides

a faithful representation of ∆ into PGL2 over a field of transcendence degree 2

and characteristic p, which completes the proof of Theorem 4. To achieve this,

we use Proposition 9 and the following result, which shows that ∆ is residually

Ξ for Ξ a virtually free group (in fact, Ξ is isomorphic to the modular group

PSL2(Z)).

Proposition 13: For every nontrivial element δ ∈ ∆ there exists N such that

for every n > N , δ is not in the kernel of the homomorphism

ψn : ∆ → Ξ := 〈x, y | x3, y2〉

defined by

a )→ x, b )→ y, c )→ (xy)ny−1(xy)−n, d )→ (xy)nx−1(xy)−n.

Proof. Let S(a, b) denote the set of finite strings α in the symbols a, a−1, b such

that an a or a−1 can only be followed by a b, and a b can only be followed by an

a or an a−1. Let S(c, d) denote the set of finite strings γ in c, d, and d−1 such

that d or d−1 can only be followed by c, and c can only be followed by d or d−1,

and moreover, γ is nonempty and cannot begin or end with the substring cd or

d−1c. For any element α ∈ S(a, b) (resp. γ ∈ S(c, d)), we denote by ᾱ (resp. γ̄)

the element of Ξ obtained by substituting x for a and y for b (resp. y for c and

x−1 for d). Every element δ ∈ ∆ can be written uniquely as a word

α0γ1α1 · · · γkαk,
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for some k ≥ 0, some αi ∈ S(a, b) and some γj ∈ S(c, d). Thus

ψn(δ) = ᾱ0(xy)
nγ̄1(yx

−1)nᾱ1 · · · (xy)nγ̄k(yx−1)nᾱk.

As γi cannot begin with d−1c or end with cd, at most one symbol pair cancels

in (xy)nγ̄i, and at most one pair cancels in γ̄i(yx−1)n. Therefore, if n is larger

than the maximum length of the αi, the expression as a whole is nontrivial in

Ξ as claimed.

Remark: The group ∆ is the free product of Ξ with itself amalgamated over

the subgroup generated by ab = (cd)−1. Geometrically this splits the sphere

with four cone points of orders 3, 2, 2, 3 along the curve dividing the cone points

into two sets of 2, 3. The map ψ0 is the natural projection onto Ξ from this free

product with amalgamation, and ψn for n ≥ 1 is the composition of a Dehn

twist of order n around ab with ψ0. The above algebraic calculation means that

the curve obtained from δ after a sufficiently high power of the Dehn twist must

map to a nontrivial reduced word in the group Ξ ∼= Z/2 ∗ Z/3 under ψ0. This

strategy was first used by Baumslag to show that surface groups are residually

free [Ba].

Proposition 14: For all primes p, there exists an injective homomorphism

Ξ → PGL2(Fp(t)).

Proof. We use the construction of Hausdorff [H, Anh. pp. 469–472], which we

recast in a somewhat more conceptual form. Consider the homomorphism ι

defined by

x )→
[(

0 1

−1 −1

)]
, y )→

[(
0 1

t 0

)]
,

where [M ] denotes the image of M ∈ GL2(Fp(t)) in PGL2(Fp(t)). To prove ι is

injective, we consider the action of Ξ on P1(F̄p(t)) which it determines. There

is a natural map P1(F̄p(t)) → P1(F̄p) characterized by

(P (t) : Q(t)) )→ (P (0) : Q(0)),

where P (t) and Q(t) are relatively prime polynomials. Whereas ι(x) induces

a well-defined operation on all of P1(F̄p), ι(y) maps P1(F̄p) \ {∞} to ∞ but is

not well-defined at ∞. Since the ι(x)-orbit of ∞ is {0,−1,∞}, it follows that

for every nontrivial g, and every α ∈ F̄p \ {0,−1}, ι(g) maps α to 0, −1, or ∞.

Thus ι is injective.
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We conclude by proving Theorem 5. There is a natural morphism

Hom(∆̃, SL2) → Hom(∆,PGL2)

which is surjective with finite fibers By Theorem 12, the generic point η of

S maps to the generic point of a 2-dimensional component of X∆,PGL2 . This

component contains points representing all homomorphisms ∆ → PGL2 which

lift to homomorphisms ∆̃ → SL2 where A, B, C, and D map to points of

order 6, 4, 4, and 6 respectively, i.e., all points representing homomorphisms

where a and b maps to points of order 3 and 2, respectively. By Corollary 10,

Proposition 13, and Proposition 14, this implies the theorem.

4. The proof of Theorem 3

Let K be a global field of characteristic p > 0. Then K is the function field of

a unique smooth projective curve C over Fp. Each place ν of K determines a

nonarchimedean local fieldKν , the completion ofK with respect to the topology

induced by the equivalence class of valuations determined by ν. Let Oν be the

valuation ring of Kν and

A ⊂
∏

ν

Kν

be the adele ring of K, i.e., the restricted direct product of the Kν with respect

to theOν . The diagonal embedding ofK into A is well-known to be discrete [CF,

§II.14], and this extends to a discrete embedding of PGL2(K) into PGL2(A).
Therefore, if ρ : Γ → PGL2(K) is a faithful representation, then ρ determines

a discrete representation of ρA : Γ → PGL2(A). Since Γ is finitely generated,

this in fact determines a discrete representation of Γ into

ρS : Γ → G =
∏

ν∈S

PGL2(Kν)

for some finite nonempty collection S of places of K. Indeed, each generator

γ of Γ in a fixed generating set lies in PGL2(Oν) for all but a finite set Sγ of

places. Since the image of Γ under ρA is discrete, each Sγ must be nonempty,

and we take S to be the union of the Sγ over our finite generating set.

We refer the reader to [S] for the definition of the tree Tν associated with

the group PGL2(Kν). Recall that Tν is a (q + 1)-regular tree, where q is the

cardinality of the residue field of K. That the image of ρ̂ is discrete means that
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ρS(Γ) acts discretely on

X =
∏

ν∈S

Tν .

In particular, we have shown that Γ acts discretely and faithfully on a finite

product of finite-valence trees, which proves Theorem 3.

Remark: In general, one has little control over the number of trees. However,

when the representation is constructed from a curve on the characteristic p

SL2(Fp)-character variety of Γ, there is a bound. Let X be an affine curve of

characters of Γ, and assume that the generic point of X determines a repre-

sentation of Γ into SL2(K), where K is the function field of X . Let C be the

smooth complete curve associated with X and f : C → X be the normalization,

which is a birational morphism. The points

C ! f−1(X)

are sometimes called the ideal points of X . The image of Γ in SL2(Kν) lies in

SL2(Oν) for every ν associated with a point in f−1(X). Indeed, the translation

length on Tν is associated with the valuation of the trace, and the character

must have a pole at the point on C associated with ν in order to have nontrivial

translation length. However, characters are finite-valued on the affine part of

X , so the set S described above consists only of ideal points.

5. Actions on products of trees

Our goal is to prove the following generalization of Theorem 6:

Theorem 15: Suppose that Γ is a torsion-free hyperbolic group that is not

free. Let

X = T1 × · · ·× Tn

be a product of finite-valence trees, Gi = Aut(Ti), and G =
∏

Gi. Let σi
denote the projection of G onto Gi. If ρ : Γ → G is a discrete and faithful

representation, then there are at least two i such that ρi = σi ◦ ρ is faithful and

has indiscrete image. Moreover, suppose ρ1, . . . , ρr are faithful representations

and the other ρi are not. Then the representation

ρ1 × · · ·× ρr : Γ → G1 × · · ·×Gr

is discrete and faithful.
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Before embarking upon the proof, we prove Corollary 8 from the introduction:

Proof. Consider a discrete and faithful action of Fi on a tree Ti. Then the

composition

Γ →
∏

Fi →
∏

Aut(Ti)

is discrete and faithful, which contradicts Theorem 15.

We will repeatedly use the following classical result (cf. [S, §3.3 Thm. 4]):

Theorem 16: A torsion-free, discrete group of isometries of a (single) tree is

free.

In the proof of the theorem, we will also use the following lemma.

Lemma 17: Let Γ be a torsion-free hyperbolic group. Then any two nontrival

normal subgroups of Γ have nontrivial intersection.

Proof. Let K and L be normal subgroups of Γ. Pick x ∈ K and y ∈ L nontrivial

elements, which we can assume to be distinct, else we would be done. In fact,

we can assume that xn %= ym for any nonzero (n,m) ∈ Z. Since K and L are

normal, any commutator [x, y] ∈ K ∩ L lies in the intersection, hence x and y

commute and generate a Z2 in Γ. This is impossible since Γ is hyperbolic.

We now prove Theorem 15.

Proof of Theorem 15. Suppose that ρ1, . . . , ρr are faithful, r ≥ 0, and that

ρr+1, . . . , ρn are not. We also assume that r < n, else we would be done. Let

Ki be the kernel of ρi. Lemma 17 implies that

K =
n⋂

i=r+1

Ki

is a nontrivial normal subgroup of Γ. In particular, we see that r ≥ 1, since

otherwise ρ would have a nontrivial kernel.

Since Γ is not free, the images ρi(Γ) for the faithful representations ρi,

i = 1, . . . , r are not discrete by Theorem 16. Also, for i > r, ρi is not faithful.

Hence for some vertex pi ∈ Ti for i = 1, . . . , r, the stabilizer

∆i = {y ∈ Γ | y · pi = pi}

is not trivial.
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Consider x ∈ K and y ∈ ∆i. Our goal is to find an element in K ∩∆i, so we

can assume x and y do not lie in a cyclic subgroup. As in the lemma above, as

K is normal, we get

[x, yk] = x(ykx−1y−k) ∈ K

for every k ∈ Z. We claim that there is some k ≥ 1 such that we also have

[x, yk] ∈ ∆i, so then [x, yk] ∈ K ∩∆i. To prove this, consider the action of Γ

on Ti induced by ρi, where we have

(ykx−1y−k) · pi = (ykx−1) · pi.

Since yk fixes pi, the points {(ykx−1) · pi} are all vertices of Ti at distance

dTi(pi, x · pi) from pi. There are only finitely many such points, so there must

be k1, k2 ∈ Z with k1 %= k2 such that

(yk1x−1) · pi = (yk2x−1) · pi,

which implies that

(yk1−k2x−1) · pi = x−1 · pi,
and hence that

xykx−1 · pi = pi

with k = k1 − k2, and it follows that [x, yk] ∈ ∆i, as claimed. Thus either

K ∩∆i is not trivial or x and yk commute, and hence generate a Z2 in Γ. The

latter is impossible as Γ is hyperbolic.

Now suppose that r = 1. Then there is exactly one i such that ρi is faithful

and we only have ∆i for i = 1. Then the element [x, yk] constructed above (or

xn in the degenerate case where x and y have a common power) has a global

fixed point

p = (p1, . . . , pn) ∈ X,

where pi is any point on Ti for 2 ≤ i ≤ n. Therefore, the action of Γ on

T1 × · · · × Tn is not discrete, contradicting our hypothesis. This proves that

r ≥ 2, i.e., that at least two ρi are faithful, and hence indiscrete.

Now consider the representation

ρ1 × · · ·× ρr : Γ → G1 × · · ·×Gr.

It is evidently faithful, since each ρi is faithful by assumption. We must prove

that the image is discrete. If not, then we could find 1 %= y ∈ Γ with a fixed

point

p = (p1, . . . , pr) ∈ T1 × · · ·× Tr.
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Let ∆ be the stabilizer of p in Γ. Then the above argument applied to ∆ in

place of ∆i produces a nontrivial element γ ∈ ∆∩K. However, γ then fixes the

point

(p1, . . . , pr, pr+1, . . . , pn) ∈ T1 × · · ·× Tn,

where pi ∈ Ti is arbitrary for i ≥ r + 1. This violates discreteness of ρ, which

shows that ρ1 × · · · × ρr must be discrete. This completes the proof of the

theorem.

Let us now prove Corollary 7 from the introduction.

Proof. By the assumption on the restriction of the action to proper subtrees,

we see right away that r as in Theorem 15 is equal to n. Thus ρ1, . . . , ρn are

faithful, and n ≥ 2. By Theorem 16, all ρi for i = 1, . . . , n have to be indiscrete

as Γ is not free.

Remark: These arguments apply to a much wider class of groups. For example,

Theorem 15 holds for Gromov hyperbolic groups with torsion but with trivial

center. In nonuniform lattices in rank one Lie groups, one finds an appropriate

loxodromic element x ∈ K (e.g., using the fact that the limit set of K is the

limit set of Γ), and uses the fact that a loxodromic element is centralized only

by the maximal cyclic subgroup of Γ containing it, to prove the theorem with a

variant of the above argument. Instead of showing that 〈x, y〉 is free of rank one

or two, one must argue with ping pong that it is either cyclic or that one can

pass to powers such that 〈xn, ym〉 is free of rank two, and be careful of elliptic

and parabolic elements. For higher rank lattices, there is an entire literature

that shows much stronger and more general results than Theorem 15.
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