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ABSTRACT

It is well known that surface groups admit free and proper actions on
finite products of infinite valence trees. In this note, we address the ques-
tion of whether there can be a free and proper action on a finite product
of bounded valence trees. We provide both some obstructions and an
arithmetic criterion for existence. The bulk of the paper is devoted to an
approach to verifying the arithmetic criterion which involves studying the
character variety of certain surface groups over a field of positive charac-
teristic. These methods may be useful for attempting to determine when
groups admit good linear representations in other contexts.

1. Introduction

In this note we address a question that arose during the MSRI special semester
on Dynamics on Moduli Spaces of Geometric Structures.

Question 1: Let X, be a surface group of genus g > 2. Is there a discrete and
faithful representation of ¥, into Aut(Y) for ¥ a locally compact Euclidean
building? Can we take Y to be a finite product of bounded valence trees?

The question was motivated by recent results in the theory of Anosov rep-
resentations [KLP, GGKW] which we discuss in somewhat more detail later in
this introduction. We note that producing a free action on a product of infinite-
valence trees is an easy exercise in Bass—Serre theory. Indeed, one selects the
actions associated with the splittings arising from a family of essential simple
closed curves that fill the surface. Moreover, it is easy to use the fact that
surface groups are fully residually free to produce such an action on an infinite
product of finite-valence trees.

We approach only the special case of Question 1 for products of trees and from
two distinct directions. First we attempt a construction of an action via arith-
metic methods, in particular using actions on trees coming from representations
into algebraic groups over fields of positive characteristic. This approach may
also be interesting for building linear representations of other groups in other
contexts. Second, we prove some results indicating that any positive answer to
the question must be given by a highly irreducible action. These irreducibility
results obstruct some avenues for building the representations by methods of
geometric topology.

Our approach to building examples leads us to:
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Question 2: Let X, be the fundamental group of a closed oriented surface of
genus g > 2. Does there exist a faithful representation of £, into PGLy(K) for
some global field K of characteristic p > 07

We show that a positive answer to Question 2 implies a positive answer to
Question 1. This is probably known, but we include a proof for the benefit of
the reader.

THEOREM 3: Suppose I' is a finitely generated group that admits a faithful
representation into PGLa(K) for K a global field of characteristicp > 0. ThenT'
admits a discrete and faithful representation into Aut(Y’) for Y a finite product
of finite-valence trees.

A result of this kind with K of characteristic zero was famously exploited by
Bass [B] to show that lattices in SLo(C) with a nonintegral trace admit nontriv-
ial actions on a tree. He then used this to show that the associated hyperbolic
3-manifold is Haken. The analogous result to Theorem 3 in characteristic zero
is that a finitely generated subgroup of SLy(K), with K a number field, admits
a discrete action on a finite product of hyperbolic planes, hyperbolic 3-spaces,
and trees (with at least one of these sets nonempty).

Our first approach to Question 2 can also be thought of as a method for
proving the linearity of certain finitely generated groups I', which we illustrate
in our study of surface group representations into linear groups in characteristic
p > 0. This method may be of interest in other contexts, as it uses an unusual
variant of ping pong for groups generated by torsion elements. For example, we
obtain:

THEOREM 4: For every p > 5 and g > 2, there exists a finite extension K of
F,(z,y) and a faithful representation from ¥, into PGLy(K).

Our techniques also allow us to prove the following.

THEOREM 5: Let ¥, be the fundamental group of a closed Riemann surface
of genus g. If p > 5 and g > 2, for every field K of characteristic p and tran-
scendence degree r > 2, there exists n such that GL,,(K) contains a subgroup
isomorphic to X.

Proving linearity results in sufficiently high transcendence degree by ap-
pealing to a universal representation was suggested to us by the construction
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of “strongly dense” free subgroups by Breuillard, Green, Guralnick, and Tao
[BGGT]. It is also reminiscent of the use of “tautological representations” by
Culler and Shalen in their study of essential surfaces in knot complements [CS].
The general method is as follows.

We begin by embedding T" into a (possibly) larger group A, also finitely
generated. Fix an adjoint simple group G over F,, and suppose that there exists
an irreducible component X of the character variety Hom(A, G)/G for which
the associated representation is generically Zariski-dense. If K is the function
field of X, then there exists a finite extension L/K and a homomorphism from
A to G(L) that represents the generic point of X. Composing with the adjoint
representation of G, we obtain a linear representation of A, and therefore T,
over L.

It remains to consider whether or not this homomorphism is faithful. To
prove it is, we require a subgroup = C G(K) such that for every 6 € A\ {1}
there exists a homomorphism ¢: A — = such that § & ker ¢. Regarding 1) as a
G-representation of A, it determines a point on X. In other words, A must be
“residually Z”. This implies linearity over Fp(z1,...,,), where r := dim X,
and therefore over every characteristic p field of transcendence degree > r.

For our application, I' will be the surface group ;. Without loss of gen-
erality we can replace I' with a cocompact Fuchsian group A that contains
Y5 (and hence X, for all ¢ > 2). Fix p, and let G = PGLy. The point of
introducing a group A which contains I', instead of working directly with I'
itself, is that we can find an appropriate cocompact Fuchsian group A with
a PGLa-character variety of dimension 2, whereas the character variety of ¥,
is 6(g — 1)-dimensional. Since this dimension is the transcendence degree of
the function field K of our component X, this replacement is key to finding
representations with K of transcendence degree 2 over F,,.

In other words we use A to construct a subvariety of the representation
variety that in this case has dimension 2. We could, in principle, choose any
other subvariety X defined over a finite extension of I, even a subvariety of
dimension 1. The difficulty for other choices of X is to show that the generic
representation on X is faithful.

There do exist choices of A having PGLo-character variety of dimension 1, for
example nonorientable Fuchsian groups generated by reflections in the sides of a
quadrilateral. However, we did not succeed in finding a suitable = to implement
the last step of the above method for such a A. That is, our methods do produce
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surface group representations, but we cannot prove that they are faithful. As
a result, we do not know if 3, is ever linear over a global field of positive
characteristic.

We now state some results restricting the possible positive answers to Ques-
tion 1. We state the first only for a product of two trees, as the more general
statement is somewhat technical. Let I' be a torsion-free hyperbolic group, let
Ty and Ty be simplicial trees of bounded valence, and let p : I' — Aut(7} x Ts)
be a discrete faithful representation. Passing to a subgroup of index 2, we can
assume that p(T") preserves both trees. Let p; : I' = Aut(7;) be the induced
representations. Then we have:

THEOREM 6: Either I' is free or p; and py are faithful and indiscrete.

This result can be extended to products of n bounded valence simplicial
trees, but is a bit technical to state; see Theorem 15 below. We state here
a couple of simple consequences. We let I' again be a torsion-free hyper-
bolic group, and T1,...,T, be simplicial trees of bounded valence. Suppose
p:I'— Aut(Th x --- x T),) is a discrete and faithful representation. Passing to
a subgroup of finite index, we can assume that p(I") preserves each T} so

p: T = Aut(Ty) x -+ x Aut(T),).

Let p; : ' — Aut(T;) be the resulting representation on each factor. Then we
have:

COROLLARY 7: Suppose that I' is not a free group and that no restriction of
p to a proper subproduct of trees T;, x --- x T;, with k < n is discrete and
faithful. Then n > 2 and each p; is faithful and indiscrete.

As a consequence of this, we also see:

COROLLARY 8: Suppose that I' is a torsion-free, hyperbolic group that is not
free. Then I' does not admit a faithful homomorphism into a finite direct
product of nonabelian free groups.

This corollary is also a very special case of the main results of [BHMS],
where it is shown that any F P,, subgroup of Fy x --- x F}, is a finite product
of free groups. We mention the corollary here as it is an obstruction to many
approaches to constructing positive answers to Question 1. For a product of
two free groups, a short argument, analyzing projections as we do, is given in
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[K, Prop. 4.1]. For contrast, those notes construct surface subgroups in right
angled Artin groups that are quite closely related to a product of free groups
[K, Thm. 4.4].

We now discuss some geometric motivation behind Question 1. Representa-
tions of surface groups into real and complex Lie groups have been of significant
interest since the foundational work of Fricke and Klein. However, there has
also been a recent surge of activity centered around the notion of an “Anosov
representation”, which is a dynamical generalization of the discrete and faithful
representations into PSLs (R) associated with complete hyperbolic structures on
the underlying surface. For surface groups, this was first defined by Labourie
[L], and one key feature is that any Anosov representation is discrete and faith-
ful.

Recently, [KLP] (see also [GGKW]) gave dynamics-free definitions that could
be used to define Anosov representations into linear algebraic groups over any
local field. However, one can show that the theory is empty for surface groups
acting on spaces with totally disconnected Furstenberg boundary (e.g., Eu-
clidean buildings). Elementary arguments using arithmetic groups provide a
wealth of faithful representations into algebraic groups over local fields of char-
acteristic zero (e.g., PGL2(Qp)), but these representations have large vertex
stabilizers in their actions on the associated building. These constructions ex-
tend to more general locally compact groups as seen in [BGSS]. However, in all
contexts, discrete and faithful representations are more difficult to construct.

We also mention that Question 1 is obviously relevant to whether irreducible
lattices in the isometry groups of higher rank Euclidean buildings contain sur-
face subgroups. This question is analogous to Gromov’s famous surface sub-
group conjecture for hyperbolic groups.

We now briefly outline the paper. In §2, we give some general facts on
character varieties. In §3 we concentrate on surface groups and prove Theorem
5 by a direct construction. In §4 we give the proof of Theorem 4. Finally in §5
we discuss Theorem 6, its more general form for n trees, and Corollary 8.

2. Generalities on character varieties

In this section, A will denote any finitely generated group and G any adjoint
simple algebraic group over a field k. Let Aa g denote the coordinate ring
of the affine scheme Hom(A, G). The conjugation action of G on Hom(A, G)



Vol. 225, 2018 CHARACTER VARIETIES AND PRODUCTS OF TREES 895

determines a dual action of G on Aa g, and we let Ba ¢ denote the ring of
invariants and
Xa,c = Spec(Ba,g)
be the G-character variety of A. If o is any representation of G, m is an
integer in [0, dim o], and § € A, then the map from G-representations p of A to
(—1)™ times the 9™ 7=™ coefficient of the characteristic polynomial of o (p(5))
lies in Ba,q, and we denote this function by T'(co, m, d).
The natural morphism

HOII](A, G) — XA,G

is submersive [GIT, Thm. 1.1]. For the remainder of this section, fix an irre-
ducible component X of XA ¢ with generic point 1. This corresponds to picking
a minimal prime ideal Iy of Ba ¢ to specify the component X and then taking
the field of fractions K of Ba ¢/Io to specify the generic point 7. Then the
fiber over 7 is nonempty and thus has a point lying on a finite extension L of
the residue field K of 7, which determines a homomorphism

(1) fn: A= G(L)

such that if b denotes the image of b € Ba g in Ba,g/Io C K C L, then for all
0 € A, the characteristic polynomial of f,(8) is

dim o

Z (_1)mW$dim o—m

m=0
The following gives a sufficient condition for f, to be faithful when £ has positive
characteristic.

PROPOSITION 9: Suppose that A has no p-torsion. For every nontrivial
d € A, suppose that there exists a field extension M /F, and a homomorphism
g: A — G(M) associated with a point in X (M) such that g(d) does not have
order p' for any integer t > 0. Then the homomorphism f, defined in (1) is

injective.

Proof. Suppose that ¢ € ker f,, and let o denote the adjoint representation of
G. Since the characteristic polynomial of the trivial matrix is (z — 1)%m ¢  for
all integers 0 < m < dim G, the function

T(o,m, ) — (

m

dim G>
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vanishes at 7, and hence vanishes on all of X (i.e., maps to zero under b — b
and therefore under Ba ¢ — Ba,¢/p for any prime ideal p containing Iy). Since
g belongs to X (M) and ¢ is in the kernel of f,), the characteristic polynomial
of a(g(8)) is (z — 1)¥™E and therefore o(g(d)) is unipotent. If p¢ > dim G,
then o (g(67")) = 1, which implies g(6?") = 1, and this is a contradiction if ¢ is

nontrivial. [ |

Remark: A similar statement holds in characteristic zero with the same proof,
where we instead assume that X (M) contains a point associated with a rep-
resentation § for which g(d) is not unipotent. This type of argument appears
in Culler and Shalen’s celebrated paper on character varieties of fundamental
groups of 3-manifolds [CS]. There A is the fundamental group of a one-cusped
hyperbolic 3-manifold M of finite volume, X is the component of the SLy(C)
character variety containing a representative for the discrete and faithful repre-
sentation of A associated with the complete structure on M, and g is an element
of A representing a nontrivial loop on the boundary torus.

At the expense of increasing the dimension of the representation, we obtain
that A is linear over a purely transcendental field of degree r = dim(X).

COROLLARY 10: If p is a prime, G is an adjoint simple algebraic group over
F,, A is a finitely generated group without p-torsion, and Xa g has an -
dimensional closed subscheme satisfying the assumptions of Proposition 9, then
A is linear over Fp(z1,...,z,).

Proof. We showed that there is an injective homomorphism to G(L), with L a
finite extension of the function field K of X. Note that K is a finitely generated
extension of F, of transcendence degree r. Under the adjoint representation
of G, we then obtain an injective homomorphism from A to GL, (L), where
n = dim G. Choosing r algebraically independent elements z1,...,z, € L,
we obtain a purely transcendental subfield k := Fp(z1,...,2,) of which L is
a finite extension, say of degree I. Then A can be realized as a subgroup
of GL,;(k). |

Remark: In the above, we can replace X with any irreducible closed subscheme
of Xa,g. In fact, embedding a group I' in a larger group A does precisely this
by considering representations of I that extend up to A.
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3. Surface groups

For this section we fix

A= <a,b,C,d|a37 b2, CQ, d3 ab0d>.

3

Then A is a compact oriented Fuchsian group in which every element of finite
order is conjugate to a*', b, ¢, d*!, or 1. There is a homomorphism from A
onto S3 sending a and d to (123), b to (12), and ¢ to (23). The kernel T' is of

index 6 and contains no nontrivial torsion element. Its Euler characteristic is
X(T)=6x(A)=6(2—-4+1/34+1/2+1/2+1/3)=-2

and it follows that it is isomorphic to ¥5. Consequently, linear representations
of A determine representations of 3, for all g > 2.
Let

A=(AB,C,D,Z|A>=B*=C*=D>=2,2%= ABCD =1).
The map
(A,B,C,D,Z) ~ (a,b,c,d, 1)
gives a surjective homomorphism
A=A
with central kernel (Z) = 7/27. Every element in A can be written as Z° times

a word in the symbols A*! B, O, i € {0,1}. Replacing the left hand side by
the right in

(2) CABC = BA"'CBA™!
and
(3) CBA™'C = ABCAB

we can reduce the number of symbols of type C. We say a word is reduced
if no two consecutive symbols are equal or inverse to one another and all re-
placements of type (2) and (3) have been made. Up to powers of Z, the inverse
of a word in A, A=, B, C is obtained by reversing the order of symbols and
interchanging A and A~!'; in particular, this process sends reduced words to
reduced words. A word is cyclically reduced if every word obtained from it
by cyclic permutation of symbols is reduced. Note that such a permutation does
not affect the conjugacy class and therefore does not affect character values.
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PropoSITION 11: Let K be an algebraically closed field of characteristic p > 5.
For all § € A, there exists Ts € Z[u,v,w] such that if p: A — SLy(K) is any
representation such that p(A), p(B), p(C), p(D) have orders 6, 4, 4, and 6
respectively, then

tr(p(6)) = T5(tx(p(BC)), tr(p(CA)), tr(p(AB))).

Proof. Let x denote the character tr o p. We prove
X(6) = T5(x(BC),x(CA), x(AB))

for all § by induction on the length of a reduced word representing 6. As
x(z0) = —x(0), it suffices to consider words without occurrence of Z, and
moreover, we may assume 0 is represented by a cyclically reduced word. For
length 0, x(1) = 2. For length 1, x(A) = 1, x(B) = x(C) = 0. For length 2
the character value does not depend on the order of the symbols. Unless A~*
appears, there is nothing to check. Moreover,

=
>
=

I
=
=
=
|

I
=<

(B~'A) = x(AB™") = —x(AB),
X(ATIC) = x((AT'C) ™) = x(CTTA) = —x(CA).

The cyclically reduced words of length 3, up to inversion, cyclic permutation,
and multiplication by Z, are ABC' and ACB. We have

MABC) = x(D™1) = x(D) = 1.
From the SLg identity
4) tr(z)tr(y) = tr(zy) + tr(z'y),
we deduce
X(ACB) = x(A)x(CB) = x(A"'CB) = x(CB) — x(A™'CB)
— X(BC) — x(BCA) = x(BC) - 1.

For cyclically reduced words of length I > 4, we may assume, after cyclic
permutation if necessary, that the first symbol of the word either coincides with
or is inverse to the kth symbol for some k € [2,1—1]. Defining « and y to be the
product of the first k—1 symbols and the remaining [—k+1 symbols respectively,
we can then use (4) to express x(d) as a polynomial with Z-coefficients in terms
of x-values of elements representable by strictly shorter words. |
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THEOREM 12: The component of the character variety Hom(A, SLy)/SLy con-
taining the representations that are faithful when restricted to (A), (B), (C),
and (D) is birationally equivalent to the affine cubic surface

S := Spec(K [u, v, w]/(vow + u? + v + w? —u — 2)).
Proof. We consider the morphism ¢: Hom(A, SLy)/SLy — A% mapping
X = (x(BC), x(CA), x(AB)).
For K not of characteristic 2 or 3, the conditions
x(4) =x(ABC) =1 and x(B)=x(C)=0

cut out the open and closed subscheme X of Hom(A,SLy)/SLy consisting of
representations p faithful on the finite cyclic groups generated by A, B, C, D.
The following identity for triples (X,Y,Z) of 2 x 2 matrices can be verified
easily:

tr(X)tr(Y)tr(2)tr(XY Z) + tr(Y Z2)tr(Z X )tr(XY) 4 tr( XY Z)?
+ > det Xtr(YZ2)? + Ztr X)?detYZ —Adet XY Z
=Y det Xtr(Y)tr(Z)tr(YZ) = > tr(X)tr(Y Z)tr(XY Z) =

where each indicated sum is a symmetric sum of 3 terms (including the specified
one) given by cyclically permuting X,Y and Z. This implies the following
identity for triples (z,y, z) in SLa:

tr(z)tr(y)tr(2)tr(zy2) +tr(y2)tr(zz)tr(zy) +r(ryz)? + ) tr(yz)?+ > tr(x)?
=Y tr(y)tr(2)tr(yz)+ Y _ tr(a)tr(yz)tr(zyz) +4.

It follows that the restriction of ¢ to X maps to S. To see this recall that
we map A = x, B — y and C' — z and that x(4) = 1, x(B) = x(C) = 0 and
X(ABC) =1 and let the variables u = x(BC), v = x(CA) and w = x(AB).

Since S is irreducible, to show that ¢|x is dominant it suffices to prove the
image is 2-dimensional. We can do this by projecting the image onto the u-w
plane. Setting

q r i 0 S 1
O I B R T S
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we obtain a triple in X which maps to ((2¢ — 1)7,2si) as long as there exists a
solution r to the equation
(@ —q+1)

i(s? +1)r — 2 + R(s,q) =0

r

for an explicit polynomial R. As long as s is not a 4th root of unity, this has
at least one solution r.

Finally, ¢|x is an isomorphism at every point in X corresponding to an
absolutely irreducible representation [N]. As long as x(BC) ¢ {+2}, p(B) and
p(C) cannot lie in a common Borel subgroup of SLy, and it follows that x is
absolutely irreducible. |

Our goal now is to show that the representation of A on the function field of
the cubic surface S from Theorem 12 is faithful. By Proposition 9, this provides
a faithful representation of A into PGLy over a field of transcendence degree 2
and characteristic p, which completes the proof of Theorem 4. To achieve this,
we use Proposition 9 and the following result, which shows that A is residually
= for = a virtually free group (in fact, Z is isomorphic to the modular group
PSLy(Z)).

PRrROPOSITION 13: For every nontrivial element 6 € A there exists N such that
for every n > N, ¢ is not in the kernel of the homomorphism

UVt A= 2= (z,y | 2%,y%)

defined by

n n

arx, by, o (xy)y Hay) T, de (wy) e (2y) T

Proof. Let S(a,b) denote the set of finite strings a in the symbols a, =1, b such

that an a or @ !

can only be followed by a b, and a b can only be followed by an
a or an a~!. Let S(c,d) denote the set of finite strings v in ¢, d, and d—! such
that d or d~' can only be followed by ¢, and ¢ can only be followed by d or d~*',
and moreover, v is nonempty and cannot begin or end with the substring cd or
d~'c. For any element € S(a,b) (resp. v € S(c,d)), we denote by @ (resp. ¥)
the element of Z obtained by substituting x for a and y for b (resp. y for ¢ and
x~! for d). Every element 6 € A can be written uniquely as a word

QoY1Qn -t Vg,
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for some k > 0, some «; € S(a,b) and some v, € S(c,d). Thus
Un(8) = do(ay) " Ti(ya™)"ar - (xy)" J(ya )" ar.

As «; cannot begin with d~!c or end with cd, at most one symbol pair cancels

in (zy)"9;, and at most one pair cancels in 7;(yz~1)". Therefore, if n is larger

than the maximum length of the «y, the expression as a whole is nontrivial in

= as claimed. [ |

Remark: The group A is the free product of = with itself amalgamated over
the subgroup generated by ab = (cd)~!. Geometrically this splits the sphere
with four cone points of orders 3, 2, 2, 3 along the curve dividing the cone points
into two sets of 2, 3. The map g is the natural projection onto = from this free
product with amalgamation, and v, for n > 1 is the composition of a Dehn
twist of order n around ab with 1y. The above algebraic calculation means that
the curve obtained from § after a sufficiently high power of the Dehn twist must
map to a nontrivial reduced word in the group = = Z/2 % Z/3 under vy. This
strategy was first used by Baumslag to show that surface groups are residually
free [Ba).

PropoSITION 14: For all primes p, there exists an injective homomorphism
= — PGLy(Fp(2)).

Proof. We use the construction of Hausdorff [H, Anh. pp. 469-472], which we

recast in a somewhat more conceptual form. Consider the homomorphism ¢

where [M] denotes the image of M € GLy(F,(¢)) in PGLy(F,(¢)). To prove ¢ is
injective, we consider the action of = on P*(F,(t)) which it determines. There
is a natural map P(F,(t)) — P*(F,) characterized by

(P(t) : Q1)) = (P(0) : Q(0)),

where P(t) and Q(t) are relatively prime polynomials. Whereas ¢(x) induces
a well-defined operation on all of P(F,), ¢(y) maps P*(F,) \ {oo} to oo but is
not well-defined at oo. Since the ¢(x)-orbit of co is {0, —1, 00}, it follows that
for every nontrivial g, and every a € F, \ {0, —1}, ¢(g) maps « to 0, —1, or oco.
Thus ¢ is injective. |
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We conclude by proving Theorem 5. There is a natural morphism
Hom(A, SLy) — Hom(A, PGLy)

which is surjective with finite fibers By Theorem 12, the generic point 7 of
S maps to the generic point of a 2-dimensional component of Xa par,. This
component contains points representing all homomorphisms A — PGLsy which
liftt to homomorphisms A — SL, where A, B, C, and D map to points of
order 6, 4, 4, and 6 respectively, i.e., all points representing homomorphisms
where a and b maps to points of order 3 and 2, respectively. By Corollary 10,
Proposition 13, and Proposition 14, this implies the theorem.

4. The proof of Theorem 3

Let K be a global field of characteristic p > 0. Then K is the function field of
a unique smooth projective curve C' over F,,. Each place v of K determines a
nonarchimedean local field K, the completion of K with respect to the topology
induced by the equivalence class of valuations determined by v. Let O, be the

valuation ring of K, and
AC H K,

be the adele ring of K, i.e., the restricted direct product of the K, with respect
to the O,. The diagonal embedding of K into A is well-known to be discrete [CF,
§I1.14], and this extends to a discrete embedding of PGLy(K) into PGLa(A).

Therefore, if p : T' — PGLy(K) is a faithful representation, then p determines
a discrete representation of ps: I' — PGLo(A). Since I' is finitely generated,
this in fact determines a discrete representation of I' into

ps: ' = G =[] PGLy(K,)
ves

for some finite nonempty collection S of places of K. Indeed, each generator
v of I' in a fixed generating set lies in PGL2(O,)) for all but a finite set S, of
places. Since the image of I' under p, is discrete, each S, must be nonempty,
and we take S to be the union of the S, over our finite generating set.

We refer the reader to [S] for the definition of the tree T, associated with
the group PGL2(K,). Recall that T}, is a (¢ + 1)-regular tree, where ¢ is the
cardinality of the residue field of K. That the image of p is discrete means that
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ps(T) acts discretely on
x=]]7.
ves
In particular, we have shown that I' acts discretely and faithfully on a finite
product of finite-valence trees, which proves Theorem 3.

Remark: In general, one has little control over the number of trees. However,
when the representation is constructed from a curve on the characteristic p
SLa(Fp)-character variety of I', there is a bound. Let X be an affine curve of
characters of I', and assume that the generic point of X determines a repre-
sentation of I' into SLy(K'), where K is the function field of X. Let C be the
smooth complete curve associated with X and f: C' — X be the normalization,
which is a birational morphism. The points

O~ fUX)

are sometimes called the ideal points of X. The image of I" in SLy(K,) lies in
SL»(0,) for every v associated with a point in f~!(X). Indeed, the translation
length on T, is associated with the valuation of the trace, and the character
must have a pole at the point on C associated with v in order to have nontrivial
translation length. However, characters are finite-valued on the affine part of
X, so the set S described above consists only of ideal points.

5. Actions on products of trees
Our goal is to prove the following generalization of Theorem 6:
THEOREM 15: Suppose that I' is a torsion-free hyperbolic group that is not
free. Let

X=Ty x---xT,
be a product of finite-valence trees, G; = Aut(T;), and G = [[G;. Let o;
denote the projection of G onto G;. If p : I' — G is a discrete and faithful
representation, then there are at least two i such that p; = o; o p is faithful and

has indiscrete image. Moreover, suppose p1, ..., p, are faithful representations
and the other p; are not. Then the representation

p1 X xXp: =Gy x---xG,

is discrete and faithful.
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Before embarking upon the proof, we prove Corollary 8 from the introduction:

Proof. Consider a discrete and faithful action of F; on a tree T;. Then the

composition
r—[[F - []Aut(T)

is discrete and faithful, which contradicts Theorem 15. |

We will repeatedly use the following classical result (cf. [S, §3.3 Thm. 4]):

THEOREM 16: A torsion-free, discrete group of isometries of a (single) tree is
free.

In the proof of the theorem, we will also use the following lemma.

LEMMA 17: Let I' be a torsion-free hyperbolic group. Then any two nontrival
normal subgroups of I' have nontrivial intersection.

Proof. Let K and L be normal subgroups of I'. Pick z € K and y € L nontrivial
elements, which we can assume to be distinct, else we would be done. In fact,
we can assume that z™ # y™ for any nonzero (n,m) € Z. Since K and L are
normal, any commutator [z,y] € K N L lies in the intersection, hence = and y
commute and generate a Z2 in I'. This is impossible since I' is hyperbolic. |

We now prove Theorem 15.

Proof of Theorem 15. Suppose that pq,...,p, are faithful, » > 0, and that
Pri1,---,Pn are not. We also assume that » < n, else we would be done. Let
K; be the kernel of p;. Lemma 17 implies that

n
K= () K
i=r+1
is a nontrivial normal subgroup of I'. In particular, we see that r > 1, since
otherwise p would have a nontrivial kernel.
Since T' is not free, the images p;(I") for the faithful representations p;,

i=1,...,r are not discrete by Theorem 16. Also, for i > r, p; is not faithful.
Hence for some vertex p; € T; for i = 1,...,r, the stabilizer

Ai={yel |y -pi=pi}

is not trivial.
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Consider x € K and y € A,;. Our goal is to find an element in K N A;, so we
can assume x and y do not lie in a cyclic subgroup. As in the lemma above, as
K is normal, we get

kY _ (ko —1, —k
[z, y ] =a(y"z"y ") € K
for every k € Z. We claim that there is some k£ > 1 such that we also have
[z,y*] € Ay, so then [z,y*] € K N A;. To prove this, consider the action of T
on T; induced by p;, where we have

("2 ly ™) pi = (T i
Since y* fixes p;, the points {(y*z~!) - p;} are all vertices of T; at distance

dr,(pi,x - p;) from p;. There are only finitely many such points, so there must
be ki, ko € Z with ky # ko such that

("™t pi = (Pt s,
which implies that

klszzfl) . —1

(y pPi=T = - Pi

and hence that
zytat - pi=pi
with k& = k; — ko, and it follows that [z,3*] € A;, as claimed. Thus either
K N A; is not trivial or = and 3* commute, and hence generate a Z? in I'. The
latter is impossible as I' is hyperbolic.
Now suppose that » = 1. Then there is exactly one i such that p; is faithful
and we only have A; for i = 1. Then the element [z, y*] constructed above (or

n

2™ in the degenerate case where x and y have a common power) has a global

fixed point
p=(P1,---,pn) €X,
where p; is any point on T; for 2 < ¢ < n. Therefore, the action of I' on
Ty x --- x T, is not discrete, contradicting our hypothesis. This proves that
r > 2, i.e., that at least two p; are faithful, and hence indiscrete.
Now consider the representation

pr X Xp: =Gy X X G,

It is evidently faithful, since each p; is faithful by assumption. We must prove
that the image is discrete. If not, then we could find 1 # y € I' with a fixed
point

p=P1,...,pr) €ET1 x - x T
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Let A be the stabilizer of p in I'. Then the above argument applied to A in
place of A; produces a nontrivial element v € AN K. However, v then fixes the

point
(plv" <y PrsPr41, - - 7pn) S Tl X X Tn;

where p; € T; is arbitrary for ¢ > r + 1. This violates discreteness of p, which
shows that p; X --- X p, must be discrete. This completes the proof of the
theorem. [ |

Let us now prove Corollary 7 from the introduction.

Proof. By the assumption on the restriction of the action to proper subtrees,
we see right away that r as in Theorem 15 is equal to n. Thus pq,...,p, are
faithful, and n > 2. By Theorem 16, all p; for i = 1,...,n have to be indiscrete
as " is not free. |

Remark: These arguments apply to a much wider class of groups. For example,
Theorem 15 holds for Gromov hyperbolic groups with torsion but with trivial
center. In nonuniform lattices in rank one Lie groups, one finds an appropriate
loxodromic element 2 € K (e.g., using the fact that the limit set of K is the
limit set of T"), and uses the fact that a loxodromic element is centralized only
by the maximal cyclic subgroup of I' containing it, to prove the theorem with a
variant of the above argument. Instead of showing that (z,y) is free of rank one
or two, one must argue with ping pong that it is either cyclic or that one can
pass to powers such that (™, y™) is free of rank two, and be careful of elliptic
and parabolic elements. For higher rank lattices, there is an entire literature
that shows much stronger and more general results than Theorem 15.
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