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Abstract

We prove that there is no parity anomaly in M-theory in the low-energy field theory approxima-
tion. Our approach is computational. We determine the generators for the 12-dimensional bordism
group of pin manifolds with aw1-twisted integer lift ofw4; these are the manifolds on whichWick-
rotatedM-theory exists. The anomaly cancellation comes down to computing a specific η-invariant
and cubic form on these manifolds. Of interest beyond this specific problem are our expositions
of computational techniques for η-invariants, the algebraic theory of cubic forms, Adams spectral
sequence techniques and anomalies for spinor fields and Rarita–Schwinger fields.

1. Introduction

Time-reversal symmetry is a topic of renewed interest, in part because of its prevalence in condensed
matter models. Under Wick rotation, time reversal is connected to reflections in Euclidean space,
and time-reversal symmetric theories may be formulated unoriented manifolds. The obstruction to
doing so is often termed a ‘parity anomaly’, though ‘parity’ is not synonymous with ‘time-reversal
symmetry’. (‘Parity’ typically refers to a spatial reflection through a point in Minkowski spacetime,
relative to a splitting into time cross space. As this is orientation preserving in even space dimensions,
more relevant is reflection in a timelike hyperplane, which is always orientation reversing. A time
reversal is reflection in a spacelike hyperplane.) Witten [56] recently showed that there is no anomaly
for this symmetry on an M2-brane in M-theory. He suggested that we investigate the analogous issue
in the bulk on suitable 11-manifolds. We do so here and prove that there is no time-reversal anomaly
in M-theory.

We work in the low-energy field theory approximation to M-theory, which is a classical 11-
dimensional supergravity with a gravitational correction term [20, 54]. The theory includes a
fermionic field, and so X carries a pin structure—the appropriate choice is a pin+ structure, as
opposed to a pin− structure—on the tangent bundle. The C-field in M-theory, which is odd under
time-reversal symmetry, induces an additional topological structure on X: a w1-twisted integer lift of
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604 D. S. FREED AND M. J. HOPKINS

the fourth Stiefel–Whitney class w4(X) (see [57, Section 2.3]). A pin+-manifold with a w1-twisted
integer lift of w4 is called an mc-manifold. There are two sources of anomalies. The first is the stan-
dard fermion anomaly, though there are subtleties: the fermion field is a Rarita–Schwinger field,
rather than a spinor field, and the background is a pin manifold, rather than a spin manifold. The
second anomaly is non-standard, due to the cubic form for the C-field. In the spin case, Witten
[57, Section 4] represents the C-field as a connection on a principal E8-bundle, and he uses this
to prove that these two anomalies cancel. In the pin case, this argument is not available, so we
resort to a computational approach. Each anomaly is encoded in an invertible unitary topological
12-dimensional field theory, hence is determined by its partition function. Furthermore, the partition
function is a bordism invariant, so it suffices to check that the partition functions of the two theories
agree on a set of generators for the appropriate bordism group. We use the Adams spectral sequence,
together with computer assistance and geometric arguments, to compute a set of generators for the
relevant bordism group. We deploy a mix of topological and geometric techniques to compute the
partition functions on these generators and so prove anomaly cancellation.

To defineM-theory, we must not only prove that anomalies cancel but provide data which perform
the anomaly cancellation. In the spin case, ignoring time-reversal symmetry, this ‘setting of the
quantum integrand’ can be achieved using Witten’s E8-bundle technique [29]. We do not know a
canonical setting in the pin case, and indeed, isomorphism classes of settings form a torsor over
isomorphism classes of 11-dimensional invertible field theories on the same class of manifolds. The
latter group is isomorphic toZ/2Z, at least conjecturally, as we explain in Section 7. Since this group
is non-zero, the problem of setting the quantum integrand remains open.

Now we give a more detailed summary. We begin in the expository Section 2 by reviewing the
Wick-rotated setting for M-theory as a theory on a certain geometric bordism category. We recall
that the anomaly of an 11-dimensional theory is an invertible 12-dimensional theory α and that
invertible topological theories may be represented as maps of spectra in stable homotopy theory.
The aim of this paper is to prove Theorem 2.2: the tensor product αRS⊗αC of the anomaly theo-
ries arising from the Rarita–Schwinger and C-fields of M-theory is trivializable. In Section 3, we
define αRS. As with the anomaly of any fermionic field, its partition function is the exponential of an
Atiyah–Patodi–Singer η-invariant. We elucidate some aspects of the general theory in Appendix A,
and in Section 3.2, we give a general formula for the anomaly theory of a Rarita–Schwinger field
(see (3.10)). In our situation, the anomaly partition function is independent of the Riemannian met-
ric, so is a topological invariant. It turns out to be ±1 on mc-manifolds, though at this stage the
only apparent statement is that it is a root of unity. Indeed, on a general pin+ manifold, it does not
necessarily have the order 2. We develop formulas to compute it, following the work of Donnelly,
Stolz and Zhang. Of particular interest is a topological formula which, as far as we know, has only an
analytic proof in the literature [58]; it was brought to our attention by Jonathan Campbell. The par-
tition function of the anomaly theory αC is an inhomogeneous cubic polynomial in the C-field. It is
also topological and by definition is equal to±1. In Section 4, we develop an algebraic theory of the
cubic form, imitating the standard algebraic theory of quadratic forms, and then define αC. We also
review Witten’s proof that αRS⊗αC is trivializable when restricted to spin manifolds. Section 5 is a
geometric interlude to review some basic spin and pin+ manifolds and their topological invariants.
We also introduce more complicated manifolds used as representative elements of bordism groups.
Our main computational result, whose proof we sketch in Section 8, is stated as Theorem 6.1. We
specify the generators of the relevant 12-dimensional bordism group, which we represent by specific
12-dimensionalmc-manifolds. For each of these, we compute that the partition function of αRS⊗αC
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CONSISTENCY OF M-THEORY 605

vanishes, which suffices to demonstrate the anomaly cancellation. We employ a potpourri of tech-
niques to make the computations. The aforementioned ambiguity in the definition of M-theory is
discussed in Section 7. Section 8 contains a computation of the low-dimensional bordism groups of
mc-manifolds. In particular, we provide a proof of Theorem 6.1. For the computation, we need a set
of generators of 12-dimensional spin bordism (localized at 2), which we produce in Appendix B,
based on the work of Anderson–Brown–Peterson. Appendix C details the mod 2 cohomology of the
Thom spectrum ofmc-manifolds, a key input into the Adams spectral sequence computation. Amore
detailed computer-free version of these computations will appear in [31].

Aspects of this paper have interest beyond our proof that M-theory is time-reversal invariant. This
includes the algebraic theory of cubic forms in Section 4; our techniques to compute η-invariants
of pin manifolds; the Adams spectral sequence techniques in Section 8 and the cohomology com-
putations in Appendix C; the discussion of spinor field anomalies in Appendix A; and the interplay
between invertible unitary topological field theories and stable homotopy theory, which is developed
and plays a key role in an application to condensed matter physics in [26].

The authors take this opportunity to express our deep sense of gratitude and indebtedness to
Michael Atiyah for his mentoring, encouragement and support. Michael’s enthusiasm for mathe-
matics and for its interaction with physics has long been an inspiration. We appreciate his unfailing
sense of what constitutes an enlightening and ‘correct’ proof, and we join him in lamenting the lack
of such a proof for this anomaly cancellation.

We thank Rob Bruner, Jonathan Campbell, Stephan Stolz and Edward Witten for useful conver-
sations and correspondence. The anonymous referee gave an earlier version a very close reading,
and the resulting comments greatly improved the manuscript, for which we are thankful.

2. Time-reversal, anomalies and bordism

A relativistic quantum field theory on n-dimensional Minkowski spacetime Mn has a symmetry
groupH1,n−1, equipped with a homomorphism to the group of isometries ofMn. (See [26, Section 2]
for an account of symmetry groups in quantum field theory.) Divide by translations and Wick rotate
to Euclidean signature to obtain a compact Lie group Hn of vector symmetries, equipped with a
homomorphism ρn : Hn → On whose image is (i) SOn in the absence of time-reversal symmetry,
or (ii) On if the theory has time-reversal symmetry. Eleven-dimensional M-theory has both time-
reversal symmetry and fermionic fields, and no additional global symmetries, so the Wick-rotated
symmetry group is one of the two Pin groups. (One could regard the C-field as the background field
for a higher symmetry, but as the primary objects of interest are the background fields we do not
pursue this point of view.) Because time-reversal squares in Minkowski spacetime to (−1)F, the
appropriate group is H11 = Pin+11; see [26, Appendix A]. We consider M-theory on curved compact
11-dimensional Riemannian manifolds X, and so we require that X have a tangential pin+ structure;
equivalently, the stable normal bundle of X has a pin− structure. There is an additional topologi-
cal structure, first identified in [57, Section 2.3]. The C-field is an abelian gauge field, thus obeys
a Dirac quantization condition. The correct condition is that the de Rham cohomology class of its
field strength, a closed 4-form twisted by the orientation bundle, refines to a w1-twisted integer coho-
mology class c ∈ H4(X; Z̃) whose mod 2 reduction is the fourth Stiefel–Whitney class w4(X). Here
Z̃ is the local coefficient system induced from the orientation double cover of X. This motivates the
following terminology, taken from [56, Section 4.3], where it is introduced by analogy with a spinc

structure.
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606 D. S. FREED AND M. J. HOPKINS

Definition 2.1 Let M be a pin+ manifold. An mc structure on M is a w1-twisted integer lift
of w4(M). We say M is an mc-manifold if M is equipped with an mc structure.

A necessary and sufficient condition to be mc is β̃w4(M) = 0, where β̃ is the Bockstein map into
w1-twisted integral cohomology (see 4.21). TheWick rotation of M-theory is defined on a geometric
bordism category of mc-manifolds.

Once an n-dimensional field theory is formulated on compact Riemannian manifolds, then there
is the possibility of an anomaly: the partition function may not be well-defined as a complex num-
ber, but rather may be an element of a complex line. These complex lines depend locally on the
Riemannian manifold, which is expressed by saying that they are the quantum state spaces of a field
theoryα. The theoryα is called a gravitational anomaly. In addition to the coupling to a gravitational
background, if the kernel of ρn : Hn → On is non-trivial, then there is also a coupling to a background
gauge field, in which case we have a mixed gravitational and gauge anomaly. In most examples, the
anomaly theory α extends to an (n+ 1)-dimensional theory which has a partition function on closed
(n+ 1)-manifolds. That is so in this paper. The 11-dimensional M-theory is not rigorously defined,
but nonetheless we do define the 12-dimensional anomaly theory that is our main focus. Anomalies
are very special among field theories: they are invertible. Recall that field theories have a composi-
tion law of tensor product, and there is a trivial theory 1 which is an identity for this composition
law. So a field theory α is invertible if there exists a theory β such that α⊗β is isomorphic to 1. An
invertible field theory has non-zero partition functions, one-dimensional state spaces, etc. We refer
to [23] and the references therein for exposition on this point of view about anomalies.

Recall thatM-theory has two bosonic fields—ametric andC-field—and a single fermionic field—
the Rarita–Schwinger field ψ. To analyse anomalies we work in the effective theory after integrating
out ψ; the metric and C-field are treated as background fields. One source of anomalies is the
fermionic integration of ψ, which we review in Section 3. Let αRS denote that 12-dimensional
anomaly theory. The other source of anomalies is the ‘Chern-Simons coupling’ of the C-field, which
is an inhomogeneous cubic formwe review in Section 4. Let αC denote that 12-dimensional anomaly
theory. Our main result is the cancellation of these anomalies.

Theorem 2.2 The total anomaly theory αRS⊗αC is trivializable.

That is, αRS⊗αC
∼= 1. This implies that M-theory should exist as an ‘absolute’ quantum field the-

ory whose partition functions are complex numbers (not merely elements of an abstract complex
line), whose state spaces are vector spaces (not merely well-defined as projective spaces), etc. In
other words, M-theory is anomaly-free. As explained in [56, Section 1], this is a strong form of the
vanishing of the ‘parity anomaly’.

An important feature is that both αRS and αC are topological field theories. That means they
are each independent of the metric and αC only depends on the C-field through its topology: a
C-field on X represents a class in the twisted differential cohomology group qH4(X; Z̃) (Section 4.5);
the statement is that the anomaly theory αC only depends on the representative of its image under
qH4(X; Z̃)→ H4(X; Z̃). Furthermore, as already stated these theories are invertible. Finally, due to
their physical origins these theories are unitary, or equivalently in the Wick-rotated version they
satisfy reflection positivity. The main theorem in [26] asserts that, assuming reasonable ansätze,
reflection positive invertible topological field theories live in the world of stable homotopy the-
ory: they are spectrum maps from a Thom spectrum to a universal target, the shifted Pontrjagin
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CONSISTENCY OF M-THEORY 607

dual to the sphere spectrum. (In the absence of unitarity, an invertible topological theories has
domain a Madsen–Tillmann spectrum; see [27], [47].) This result uses a strong form of locality—a
fully extended field theory—and also a companion strong form of reflection positivity for invertible
topological theories. Thus the anomaly theories are maps

αRS,αC : Mmc −→ Σ12IC×. (2.1)

HereMmc is the Thom spectrum ofmc-manifolds: manifolds with a stable tangential pin+ structure
and a w1-twisted integer lift of w4. We construct Mmc in Section 8.1. Also, IC× is the character
dual to the sphere spectrum, closely related to the Brown–Comenetz dual [8]. The universal prop-
erty which characterizes IC× (see [26, Section 5.3]) implies that the group of homotopy classes of
maps (2.1) is isomorphic to the group Hom(π12Mmc,C×) of characters of π12Mmc. In other words,
the maps (2.1) are determined up to homotopy—and the corresponding topological field theories up
to isomorphism—by abelian group homomorphisms

α̂RS, α̂C : π12Mmc −→ C×. (2.2)

These homomorphisms encode the partition functions of the respective anomaly theories. We prove
Theorem 2.2 by demonstrating that the product

α̂RS · α̂C : π12Mmc −→ C× (2.3)

of partition functions is identically one. Both α̂RS and α̂C take values in the group T⊂ C× of unit
norm complex numbers. From its definition (4.41), the homomorphism α̂C takes values in {±1} ⊂
C×, and so the field theory αC has order two: its square is isomorphic to the trivial theory. It emerges
from our computations that αRS also has order two. (We remark that αRS is pulled back from an
invertible theory defined on MT Pin+ which has order 28.)

Theorem 2.2 asserts that the total anomaly is trivializable but does not specify a trivialization. (For
further discussion, see [29] where the trivialization is called a ‘setting of the quantum integrand’.)
Homotopy classes of trivializations form a torsor over the group of invertible 11-dimensional reflec-
tion positive topological theories. That is, given one trivialization, and so in principle one realization
of M-theory, any other one differs by inserting a ‘topological term’ in the 11-dimensional theory. In
Section 7, based on computations to appear in [31], we discuss the following.

Conjecture 2.3 The group of homotopy classes of spectrum maps Mmc → Σ11IC× is isomorphic
to (Z/2Z). The partition function of the non-trivial theory is the mod 2 index of the Dirac operator.

3. The Rarita–Schwinger operator and η-invariants

The reader may want to refer to recent expositions of fermions and anomalies in [55, 56]. We recall
the relation between fermion integrals and pfaffians in Section 3.1. In Section 3.2, we indicate the
modifications engendered by a Rarita–Schwinger field, as opposed to a spinor field, and then spe-
cialize to M-theory and define the Rarita–Schwinger anomaly theory αRS. This all relies on material
in Appendix A. In Section 3.3, we recall and prove some properties of and formulas for η-invariants
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608 D. S. FREED AND M. J. HOPKINS

on pin+ 12-manifolds that we use in our subsequent computations (Section 6). This exponentiated η-
invariant is topological—independent of the Riemannian metric—and there is a topological formula
(Theorem 3.9) for its value.

3.1. Brief recollection of free fermionic path integrals

The material in this section also appears in [25, Section 11] as part of a broader discussion of
anomalies.

Suppose W is a finite dimensional complex vector space and

B : W×W−→ C (3.1)

a skew-symmetric bilinear form. We identify B as a skew-symmetric map W→W*, and so an
element ωB ∈

∧2W∗. The natural integral on the exterior algebra is the linear map

∫

ΠW
:
∧•W∗ −→ DetW∗ (3.2)

which projects a form of mixed degree to its highest degree component in DetW∗ =
∧maxW∗. The

odd vector space ΠW, the parity-reversal ofW, has as its ring of functions the Z/2Z-graded exterior
algebra

∧•W∗. The fermionic integration (3.2) is purely algebraic—there is no measure—and it is
defined on functions rather than forms or densities. If dimW = 2m is even, then

∫

ΠW
eωB =

ωmB
m!

= pfaff B ∈ DetW∗ (3.3)

is the pfaffian of B; if dimW is odd, then the integral vanishes. It is natural to regard DetW* as
Z/2Z-graded by the parity of dimW, which is equal to the parity of the dimension of the null space
kerB. There is an infinite dimensional version of the pfaffian forW a Hilbert space and B a Fredholm
form: B is Fredholm if kerB is a closed, finite dimensional subspace. Then the Z/2Z-graded line
PfaffB depends on B and forms a non-trivial complex line bundle over the space of Fredholm skew
forms, and the pfaffian elements

pfaffB ∈ PfaffB (3.4)

form a section of the Pfaffian bundle. See [45], [49, Appendix B] for the case of the Fredholm
determinant (Remark 3.2 below). (We remark that the space of Fredholm skew forms has two com-
ponents distinguished by the parity of dim kerB, the mod 2 index. Over each component the Pfaffian
line bundle represents a generator ofH2(−;Z). The pfaffian section vanishes if and only if kerB 6= 0.)

Remark 3.1 There are real and quaternionic refinements; the latter applies to M-theory on spin
manifolds [29, Section 1].
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CONSISTENCY OF M-THEORY 609

Remark 3.2 Suppose T : U→ V is a linear map between complex vector spaces. Set W= V∗ ⊕U
and

B
(
(v∗1 ,u1),(v

∗
2 ,u2)

)
= 〈v∗1 ,Tu2〉− 〈v∗2 ,Tu1〉. (3.5)

Then the Pfaffian line of B is canonically isomorphic to the determinant line DetV⊗ (DetU)∗ of T,
and under that isomorphism pfaffB= detT as an element of Det(U)∗ ⊗Det(V).

A spinor field in an n-dimensional relativistic field theory on Minkowski spacetime (without
time-reversal symmetry) is specified by a real spinor representation S of Spin1,n− 1 together with a
symmetric non-negative Spin1,n− 1-invariant bilinear form Γ : S× S→ R1,n−1 (see Section A.1) for
details. The complexification SC is a representation of the compact spin group Spinn. On a closed
Riemannian spin n-manifold X there is an associated complex vector bundle whose sections are
spinor fields ψ. Define the complex skew-symmetric form

BX(ψ1,ψ2) =

∫

X
Γ
C
(ψ1,∇ψ2) |dx|, (3.6)

where ∇ is induced from the Levi-Civita covariant derivative, Γ
C
is the complexification of Γ and

|dx| is the Riemannian measure. On appropriate function spaces BX is Fredholm. The Feynman path
integral over ψ is the formal analog of (3.3), and we define the result to be (3.4), the pfaffian element
of the Pfaffian line. In particular, the fermionic path integral is anomalous.

As explained in Section 2, the Pfaffian line of the Dirac form BX is the quantum state space on X
of an invertible (n+ 1)-dimensional field theory α, called the anomaly theory. To define its partition
function, we must use the data (S,Γ) to define a Dirac operator on a Riemannian spin (n+ 1)-
dimensional manifoldW. That construction is carried out in Appendix A; the partition function α(W)
for W closed is the exponentiated η-invariant (A10).

3.2. The Rarita–Schwinger anomaly

The Rarita–Schwinger field occurs in theories of supergravity; it is the super-partner to the metric.
In n spacetime dimensions there is an associated anomaly theory, which is an (n+ 1)-dimensional
invertible field theory, just as for a spinor field. Here we explain the modifications to the discussions
in the previous section and Section A.1 required to specify the anomaly theory. More information
may be found in [28], [29, Appendix A] and the references therein.

Suppose given data (S,Γ) for a spinor field in n-dimensional Minkowski spacetimeM n, as above.
Let V be the standard n-dimensional real representation of Spin1,n− 1. The Rarita–Schwinger field is
a function χ : Mn → S⊗V. (More precisely, we should view S⊗V as an odd super vector space.)
There is a correspondence between free fields and particles, and under this correspondence the
Rarita–Schwinger field gives rise to four particles, as recounted in [28, Section A.2]: a single spin 3/2
particle, which is the desired gravitino, as well as three spurious spin 1/2 particles. Two of the spin 1/2
particles are associated with spinor fields with values in S and the third to a spinor field with values
in S∗. Wick rotation of χ proceeds by complexification, and one obtains a skew form B′

X analogous
to (3.6), now built on sections of a spinor bundle tensored with the tangent bundle. To eliminate the
extra spin 1/2 particles, we divide the pfaffian of B′

X by the product of the pfaffians of the forms BX
associated with the three Wick rotated spin 1/2 fields [28, Section A.5].
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610 D. S. FREED AND M. J. HOPKINS

We now determine the associated anomaly theory, which is an invertible (n+ 1)-dimensional field
theory of Riemannian spin manifolds. In Appendix A, we define the anomaly theory α

S
associated

with spinor data (S,Γ). There is a variation which gives the anomaly of the pfaffian of B′
X. Motivated

by (A7) define

E′ = Cliff+2 ⊗ (S⊕ S∗) ⊗ Rn+1. (3.7)

(Our notation: the real Clifford algebra Cliffp,q has p generators squaring to +1 and q generators
squaring to −1. Set Cliff+p = Cliffp,0 and Cliff−q = Cliff0,q.) Let Spinn+ 1 act as after (A7) on
E= Cliff+2 ⊗ (S⊕ S∗) and tensor with the usual vector representation onRn+1. There is a commut-
ing Cliff−3 action, as after (A7), and the Dirac operator (A8) and exponentiated η-invariant (A10)
are defined. Denote the resulting (n+ 1)-dimensional theory as α

S⊗V. Since Spinn acts reducibly
on Rn+1 = R⊕Rn, the specialization to a product manifold R×X gives the Dirac operator coupled
to the tangent bundle plus an extra copy of the Dirac operator on spinor fields. Therefore, the anomaly
theory associated with the pfaffian of B′

X is

α
S⊗V⊗α

⊗(−1)
S

. (3.8)

Put (3.8) together with the anomalies of the spurious spin 1/2 fields to obtain the total anomaly

α
S⊗V⊗α

⊗(−3)
S

⊗α
⊗(−1)
S∗

. (3.9)

Proposition A.1 implies that the product α
S
⊗α

S∗
is trivializable. Hence (3.9) is isomorphic to

α
S⊗V⊗α

⊗(−2)
S

. (3.10)

This is a general formula for the anomaly theory of a Rarita–Schwinger field in n dimensions built
from the spinor data (S,Γ).

Now we specialize to n= 11 and M-theory on pin+ manifolds. The spinor data (S,Γ) are spec-
ified in Section A.2. Let W be a closed Riemannian pin+ 12-manifold. We compute the partition
function α̂RS(W) of the total anomaly theory (3.10). The (s)pinor bundle on W is a rank 32 quater-
nionic bundle, and the appropriate Dirac operator (A8) is a self-adjoint operator on its sections. The
partition function (A10) is, in this case, a ratio of exponentiated η-invariants, which we write as

α̂RS(W) = exp

(
2πi

η(TW− 2)
4

)
. (3.11)

Here η(TW − 2) is the difference of the η-invariant of the Dirac operator coupled to the tangent
bundle and twice the η-invariant of the pure Dirac operator.

Proposition 3.3 The Rarita–Schwinger partition function α̂RS(W) is (i) independent of the metric
on W, (ii) a pin+ bordism invariant and (iii) a root of unity.

Proof. Similar assertions for even dimensional pinc manifolds are proved in [30, Section 1], so we
will be brief. The space of Riemannian metrics is connected (better: contractible), so it suffices to
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CONSISTENCY OF M-THEORY 611

compute the derivative with respect to the metric. That variation formula [5] is an integral of a w1-
twisted 13-form over W; the result is a 1-form on the space of metrics. The integrand is a local
invariant of the geometry by a general theory developed by Seeley [46], and here it vanishes for
parity reasons (see [30, Lemma 1.5]). This proves (i). Now supposeW is the boundary of a compact
pin+ 13-manifold Z. Then [4, Theorem 3.10] computes (3.11) as the exponential of the integral of the
same w1-twisted 13-form over Z. But as above, this 13-form vanishes identically, and so (ii) holds.
For (iii) we need only use that the relevant bordism group is finite, in fact [38]

π12MTPin
+ ∼= Z/28Z ⊕ Z/24Z ⊕ Z/22Z. (3.12)

□

Corollary 3.4 The Rarita–Schwinger partition function factors through a homomorphism

α̂RS : π12MTPin
+ −→ C×. (3.13)

As reviewed in Section 2, the homomorphism (3.13) determines an invertible unitary topological
field theory

αRS : MTPin
+ −→ Σ12IC× (3.14)

up to isomorphism. (The maps (2.1), (2.2) which correspond to (3.13), (3.14) are lifted to the bor-
dism spectrum Mmc of manifolds with a pin+ structure and a w1-twisted integer lift of w4.) We
stretch notation slightly and use the notation ‘αRS(W)’ for the partition function of a closed pin+

12-manifold W.

3.3. Properties of the η-invariant

On a spinmanifoldW, the partition function αRS(W) has a natural logarithm defined using an integer
index.

Proposition 3.5 Let W be a closed spin 12-manifold. Then αRS(W) = (−1)RS(W), where

RS(W) =
1
2

〈
Â(W) ch(TW− 2) , [W]

〉
. (3.15)

Proof. As remarked after (A21), the pin+ spinor data restrict to spin spinor data, so on a spin mani-
fold we apply the discussion in Section A.1. The crucial point, which holds in general for n odd, is
that the action of the volume form ω = δ1δ2γ1 · · ·γ10 ⊂ Cliff+12 commutes with the action of Spin12
and so anticommutes with the Dirac operator D0. This implies that the spectrum of D0 is invariant
under λ 7→ −λ. Choose a in (A9) to be negative and greater than the first negative eigenvalue of D0.
Then ηa(s) = dimkerD0 for all s—the non-zero eigenvalues in the sum cancel—and so from (A10)
we have

αRS(W) = exp(2πidimC kerD
0/4) = (−1)dimH kerD0

. (3.16)

The quaternionic dimension of the kernel is congruent mod 2 to the quaternionic index of the chiral
Dirac operator, which maps the +1-eigenspace of ω to its −1-eigenspace. The Atiyah–Singer index
formula completes the proof. □
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612 D. S. FREED AND M. J. HOPKINS

Remark 3.6 The expansion of (3.15) in terms of Pontrjagin numbers of W is

RS(W) =

〈
97p31 − 788p1p2 + 3952p3

967680
, [W]

〉
. (3.17)

Remark 3.7 In Section 4.3 we encounter a shift of (3.15) by an integer, namely

RS′(W) =
1
2

〈
Â(W) ch(TW− 4) , [W]

〉
. (3.18)

It has the same mod 2 reduction as RS(W).

For a real vector bundle V→W over a closed pin+ 12-manifold set

τW(V) = exp

(
2πi

ηW(V)
4

)
. (3.19)

The η-invariant (A9) depends on a parameter a ∈ R, as we defined it, but the exponential (3.19) is
independent of a. Comparing with (3.11) our notation is αRS(W) = τW(TW− 2).

Proposition 3.8 Let V0,V1 →Wbe real vector bundles over a closed pin+ 12-manifoldW. Then the
ratio τW(V

0)/τW(V
1) of exponentiated η-invariants depends only on the class of the virtual bundle

[V0]− [V1] ∈ KO0(W).

In particular, it does not depend on the choices of covariant derivative.

Proof. The independence from the covariant derivative follows from the variation formula, as
in the proof of Proposition 3.3. Then simply observe that τW(V) is multiplicative: τW(V⊕V′) =

τW(V)τW(V
′). □

Propositions 3.3 and 3.8 suggest that there is a KO-theory formula for τW(V). Indeed, such a
formula was recently proved by Zhang [58], based on an analytic theorem of Bismut–Zhang [14]
telling the behavior of η-invariants under immersions. While the other formulas and techniques in
this section suffice for most of the computations in Section 6.2, we were only able to compute αRS in
Section 6.2.6 using this topological formula. We express (3.20) in a different, but equivalent, form
than [58], and we have used the pin+ variant of his pin− theorem (which he remarks holds in the
pin+ case).

Theorem 3.9 (Zhang) Let V→W be a real vector bundle over a closed pin+ 12-manifold W. Let
L→W be the orientation real line bundle, H→ RP20 the tautological line bundle and γ : W→ RP20

a map such that γ*H∼= L. Then

γ∗
(
[V]
)
= 211

ηW(V)
4

(
1− [H]

)
in K̃O

0
(RP20). (3.20)

In this formula [V]∈KO0(W) is the KO-class of V→W; the map γ has a spin structure induced from
the pin+ structures on W and RP20 together with a choice of isomorphism γ*H∼= L; and γ* is the
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CONSISTENCY OF M-THEORY 613

induced pushforward on KO-theory, after multiplication by the Bott class. The group K̃O
0
(RP20) is

cyclic of order 211 with generator 1− [H].
A pin+ structure on a smooth manifold M has an opposite, obtained by tensoring with the

orientation double cover.

Proposition 3.10 Let V→W be a real vector bundle over a closed pin+ 12-manifold W, and let
L→W be the real line bundle associated with the orientation double cover π : Ŵ→W. Then

τW(V⊗ L) = τW(V)
−1. (3.21)

Proof. Let σ be the deck transformation of the double cover π. Then V-valued spinor fields on W
lift to σ-invariant π*V-valued spinor fields on Ŵ and V⊗ L-valued spinor fields on W lift to σ-anti-
invariant π*V-valued spinor fields on Ŵ. Hence ηW(V)+ ηW(V⊗ L) = ηŴ(π

∗V). The pullback of
the pin+ structure on W combines with the orientation of Ŵ to produce a spin structure on Ŵ, so
τŴ(π

∗V) is computed using the mod 2 reduction of

1
2

〈
π∗
[
Â(W)ch(V)

]
, [Ŵ]

〉
, (3.22)

as in Proposition 3.5. Since σ is an orientation-reversing involution, it follows that the integer (3.22)
equals its negative, hence vanishes. □

Proposition 3.11 Suppose W=W′ ×W′′ is the product of a pin+ 4-manifold W′ and a spin 8-
manifold W′′. Let V′ →W′ and V′′ →W′′ be real vector bundles. Then

τW(V
′ ⊗V′′) = τW′(V′)indDW′′ (V′′), (3.23)

where the exponent is the index of the Dirac operator coupled to V′′.

Proof. This follows directly from the topological index formula (3.20), but there is a straightforward
analytic proof which we outline here. Use the setup of Appendix A. Let E ′i,E ′′i, i= 0, 1, denote the
spaces of spinor fields onW′,W′′, andD′,D′′ the Dirac operators. Let ω = γ0δ1δ2 denote the volume
form of the commuting Cliff−3. Then the space of spinor fields on W is E ′0 ⊗E ′′0 ⊕ E ′1 ⊗E ′′1

and the Dirac operator on W is D0
W = ωD′ ⊗ id + ω⊗D′′. (As we eventually compute using an

orthogonal decomposition into finite dimensional eigenspaces, we do not worry about the topology
in these tensor products.) Write spectral decompositions

E
′0 =

⊕

λ∈specωD′

E
′
λ
0

E
′′0 =

⊕

µ∈spec(D′′)2

E
′′
µ2

0

E
′′1 =

⊕

µ∈spec(D′′)2

E
′′
µ2

1
.

(3.24)
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614 D. S. FREED AND M. J. HOPKINS

If µ2 6=0 then D0
W acts on E ′

λ
0 ⊗E ′′

µ2
0 ⊕ E ′

λ
1 ⊗E ′′

µ2
1 with trace 0: we compute

D0
W(ψ

′ ⊗ψ′′ ± µ−1ωψ′ ⊗D′′ψ′′) = (λ∓µ)(ψ′ ⊗ψ′′ ∓ µ−1ωψ′ ⊗D′′ψ′′) (3.25)

and let ψ′,ψ′′ run over orthonormal bases of E ′
λ
0,E ′′

µ2
0, respectively. Choose a in (A9) to be less than

zero and greater than the first negative eigenvalue ofDW . to conclude that the only contributions to the
η-invariant of D0

W come from E ′0 ⊗ (kerD′′)0 and E ′1 ⊗ (kerD′′)1. If ψ′ ∈ E ′
λ
0 and ψ′′i ∈ (kerD′′)i,

i= 0, 1, then since ωD′ =−D′ω we compute

D0
W(ψ

′ ⊗ψ′′0) = λ(ψ′ ⊗ψ′′0)

D0
W(ωψ

′ ⊗ψ′′1) =−λ(ωψ′ ⊗ψ′′1)
(3.26)

and (3.23) quickly follows. □

The next result is inspired by techniques in [5]. Suppose W is a closed pin+ 12-manifold and
π : Ŵ→W its orientation double cover. Let σ : Ŵ→ Ŵ be the canonical orientation-reversing free
involution. If P→W is the principal Pin+12-bundle of frames, then σ lifts canonically to an involution
of π∗P→ Ŵ which reverses the spin structure on Ŵ. Suppose that Z is a compact spin 13-manifold
with boundary ∂Z= Ŵ and σ′ an orientation-reversing involution of Z which extends σ and is
equipped with a lift to a spin-reversing involution of the Pin+13-bundle of frames. Let F⊂ Z denote
the fixed point set of σ′. At an isolated fixed point f ∈F the action of σ′ on T f Z is by −1, so its
lift to the pin+ frames acts by ±ω, where ω = γ1γ2 · · ·γ13 is the volume form. Let if =±1 denote
the sign. If V→W is a real vector bundle, assume π∗V→ Ŵ extends over Z and the involution σ′

lifts, extending the lift of σ on the boundary. Let τf denote the trace of the lifted action at a fixed
point f ∈F.

Proposition 3.12 If F consists of isolated points, then

τW(V) = exp


2πi

∑

f∈F

if τf
28


 . (3.27)

If V is the trivial real line bundle, then this is [50, Proposition 5.3], which is based on the general
equivariant index theorem [21, Theorem 1.2] for manifolds with boundary. Donnelly’s theorem iden-
tifies the contribution at a fixed point in terms of an asymptotic expansion of a heat kernel. The general
cohomological expression for that contribution appears in [7, (3.9)] in the context of the general Lef-
schetz theorem, and it applies to fixed point manifolds of positive dimension as well as isolated fixed
points. That this is the correct fixed point contribution in Donnelly’s theorem is proved in [22] for
the signature operator. We use it for the Dirac operator and an orientation-reversing isometry in
Section 6.2.5.
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CONSISTENCY OF M-THEORY 615

4. Cubic forms and the C-field

4.1. Motivation: spinc manifolds

Recall that the compact Lie group Spincn is a group extension

1−→ T−→ Spincn −→ SOn −→ 1 (4.1)

where T is the circle group of complex numbers of unit norm; it is defined as the quotient
(Spinn×T)/{±1}. Let M be an n-dimensional spinc manifold. A spinc structure on M is a prin-
cipal Spincn-bundle BSpinc(M)→M together with an isomorphism BSpinc(M)/T∼= BSO(M) with the
principal SOn-bundle of oriented orthonormal frames. The T-bundle over M associated with the
homomorphism Spincn → T is called the characteristic bundle, and its first Chern class c ∈ H2(M;Z)
is an integer lift of the second Stiefel–Whitney class:

c≡ w2(M) (mod 2). (4.2)

Furthermore, any other spinc structure is obtained by ‘tensoring’ with a circle bundle Q→M using
the homomorphism Spincn×T→ Spincn; the characteristic class of the new spinc structure is c+ 2x,
where x= c1(Q). Finally, there is an involution on spinc structures which inverts the characteristic
bundle and so changes the sign of c.

Suppose n= dim M is even and M is compact without boundary. The (Z/2Z-graded) complex
spin representation of Spincn gives rise to a Dirac operator DM whose index is a topological invariant.
It is computed by the Atiyah–Singer formula

indexDM = 〈Â(M)ec/2 , [M]〉, (4.3)

where Â(M) = 1− p1(M)/24+ . . . and [M] is the fundamental class ofM. As a function κ(c) of the
characteristic class c it is a polynomial, which for n= 4, 6 may be written

κ2(c) =
c2 −σ(M)

8
, (4.4)

κ3(c) =
c3 − p1(M)c

48
. (4.5)

The subscript indicates the degree of the polynomial, σ(M) is the signature of the 4-manifoldM and
we omit evaluation on [M] from the notation for convenience. One may continue to n= 8,10, . . . to
obtain polynomials of higher degree. These polynomials satisfy a symmetry property:

κ2(−c) = κ2(c), κ3(−c) =−κ3(c). (4.6)

For a fixed characteristic element c define qc : H2(M;Z)→ Z as

qc(x) = κ(c+ 2x)−κ(c), x ∈ H2(M;Z). (4.7)
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616 D. S. FREED AND M. J. HOPKINS

For n= 4, 6 we find

qc2(x) =
1
2
(x2 + cx) (4.8)

qc3(x) =
1
24

(
p1(M)x+ 4x3 + 6cx2 + 3c2x

)
(4.9)

=
1
6
x3 + . . .

Note qc2 is a quadratic refinement of the intersection pairing on H2(M4;Z)/torsion, and qc3 is a cubic
refinement of the symmetric trilinear form on H2(M6;Z)/torsion.

The general mathematical problem suggested here is: Replace c by a cohomology class of arbi-
trary even degree and extend the topological invariants (4.4), (4.5). Of course, one may pose this as
well for the higher degree polynomials of c deduced from the index formula (4.3) in higher dimen-
sions. In the quadratic case, we have n= 4k for some k ∈ Z>0 and c ∈ H2k(M;Z) lies in the middle
degree. The associated topological invariant was investigated by Brown [12] and Browder [11]. In
this instance c is an integer lift of the middle Wu class ν2k ∈ H2k(M;Z/2Z), which may or may not
exist. Corresponding geometric invariants were constructed in [33]. We take up the next interest-
ing case—the cubic form for n= 12 and deg c= 4—which appears in the action of the C-field in
M-theory.

4.2. Algebraic theory of cubic forms

We begin with a review of the algebraic theory of quadratic forms. Let L be a finitely generated free
abelian group and 〈·, ·〉 : L× L→ Z a non-degenerate (that is, unimodular) symmetric bilinear form.
The non-degeneracy implies the existence of a unique element c̄ ∈ L⊗Z/2Z such that

〈x̄, x̄〉 ≡ 〈c̄, x̄〉 (mod 2), x̄ ∈ L⊗Z/2Z, (4.10)

since the left-hand side is linear in x̄. An element c∈ L with c≡ c̄ (mod 2) is called characteristic.
The set Lchar ⊂ L of characteristic elements is a torsor for L: if c ∈ Lchar and x∈ L then c+ 2x ∈ Lchar.
Now an easy check shows that 〈c,c〉 (mod 8) is independent of c ∈ Lchar, so for any integer lift σ ∈ Z
of 〈c,c〉 (mod 8),

κ2(c) =
〈c,c〉−σ

8
(4.11)

is an integer. It is a standard result [48, Chapter 5] that σ may be chosen to be the signature of 〈·, ·〉,
defined by extending the form to the real vector space L⊗R. This is the algebraic theory which
underlies (4.4). Note κ2(−c) = κ2(c).

We develop a similar theory for the cubic (4.5). Consider the triple (L,〈·, ·, ·〉, c̄) where L is a
finitely generated free abelian group, 〈·, ·, ·〉 : L× L× L→ Z is a symmetric trilinear form and c̄ ∈

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/q
jm

a
th

/a
rtic

le
/7

2
/1

-2
/6

0
3
/6

2
2
5
8
6
9
 b

y
 H

a
rv

a
rd

 L
a
w

 S
c
h
o
o
l L

ib
ra

ry
 u

s
e
r o

n
 0

4
 M

a
y
 2

0
2
2



CONSISTENCY OF M-THEORY 617

L⊗Z/2Z is assumed to satisfy

〈c̄, x̄, ȳ〉 ≡ 〈x̄, x̄, ȳ〉+ 〈x̄, ȳ, ȳ〉 (mod 2), x̄, ȳ ∈ L⊗Z/2Z. (4.12)

(Equation (4.12) for trilinear forms appears in Postnikov’s study [44] of the mod 2 cohomology ring
of a closed 3-manifold, for example.) As we do not know a notion of non-degeneracy for trilinear
forms which guarantees the existence of c̄, we postulate its existence. Define the torsor Lchar ⊂ L of
characteristic elements as above. Let L∗ = Hom(L,Z) and for convenience write the trilinear form
as a simple product.

Lemma 4.1 There exists a unique p̂ ∈ L∗ ⊗Z/24Z such that

p̂ · x̂≡ 4x̂3 + 6ĉx̂2 + 3ĉ2x̂ (mod 24) (4.13)

for all x̂ ∈ L⊗Z/24Z and mod 24 reductions ĉ of characteristic elements c ∈ Lchar.

Proof. Use (4.12) to check that, as a function of x̂, the right-hand side of (4.13) defines a
homomorphism L⊗Z/24Z→ Z/24Z. □

Lemma 4.2 Let p∈ L* satisfy p≡ p̂ (mod 24). Then

c3 − p · c
24

(mod 2) (4.14)

lies in Z/2Z and is independent of c ∈ Lchar. Furthermore, there exist lifts p∈ L* of p̂ such that this
invariant vanishes, in which case

κ3(c) =
c3 − p · c

48
(4.15)

is an integer. Also, κ3(−c) =−κ3(c).

Proof. To check the independence of c ∈ Lchar, replace c in (4.14) with c+ 2x for x∈ L and use the
fact that cx2 is even, which follows from (4.12). To see that the fraction in (4.14) is an integer,
use (4.13) and the fact that c3 is even, which also follows from (4.12). To find the lift p, if c̄= 0,
then any p works since we can compute (4.14) using c= 0. If c̄ 6= 0, and if for a chosen lift p the
invariant (4.14) is non-zero, choose x∗ ∈ L∗ such that x*· c is odd for any characteristic c and replace p
with p+ x*. □

4.3. The cubic form on spin 12-manifolds

In (4.5), we gave an example of the cubic form (4.15) for a closed oriented 6-manifold M6, where
L= H2(M;Z)/torsion, 〈x,y, z〉= 〈x^ y^ z , [M]〉, c̄= w2(M) and p= p1(M). We now consider a
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618 D. S. FREED AND M. J. HOPKINS

closed spin 12-manifold W12 and set

L= H4(W;Z)/torsion

〈x,y, z〉= 〈x^ y^ z , [W]〉
c̄= w4(W).

(4.16)

Remark 4.3 Let T4 ⊂ H4(W;Z) denote the torsion subgroup, which fits into the exact sequence

0−→ T4 −→ H4(W;Z)−→ L−→ 0. (4.17)

Tensoring with Z/2Z defines a homomorphism H4(W;Z)−→ H4(W;Z/2Z), and the precise
definition of c̄ is the image of w4(W) under the quotient map

H4(W;Z/2Z)−→ H4(W;Z/2Z)/(T4 ⊗Z/2Z). (4.18)

In the classifying space BSpin there is a characteristic class λ ∈ H4(BSpin;Z) such that (i) 2λ= p1
and (ii) the image of λ under H4(BSpin;Z)→ H4(BSpin;Z/2Z) is w4. A spin manifold W has a
corresponding integer characteristic class λ(W). The existence of this integer lift of w4(W) implies
that the image of w4(W) under (4.18) lies in the subgroup

(
H4(W;Z)/T4

)
⊗Z/2Z= L⊗Z/2Z. The

computations below are written inH•(W;Z/2Z), but the results should be interpreted in terms of this
subquotient. (To do so, use the fact that torsion integer cohomology classes evaluate trivially on the
fundamental class.)

Lemma 4.4 The Stiefel–Whitney class c̄= w4(W) of a closed spin 12-manifold W satisfies (4.12).

The proof uses the Cartan formula and Adem relations for Steenrod squares, as well as the Wu
formula, which states that on a closed n-manifoldM there is a class νi(M) ∈ Hi(M;Z/2Z) such that
squaring to the top,

Sqi : Hn−i(M;Z/2Z)−→ Hn(M;Z/2Z), (4.19)

is cup product with ν i(M). In low degrees we have

ν1 = w1

ν2 = w2
1 +w2

ν3 = w1w2

ν4 = w4 +w1w3 +w2
2 +w4

1

(4.20)

in terms of the Stiefel–Whitney classes of the tangent bundle. (See [33, Section E.1.1] for character-
istic properties of Wu classes from which (4.20) may be computed.) The Bockstein β is defined as

the connecting homomorphism induced from the coefficient sequence 0→ Z
2−→Z→ Z/2Z→ 0:

· · · −→ Hi(M;Z)
r−→Hi(M;Z/2Z)

β−→Hi+1(M;Z)
2−→Hi+1(M;Z)−→ ·· · (4.21)

Also, Sq1 = r ◦β. It follows that if x is an integer cohomology class, Sq1 vanishes on its mod 2
reduction x̄= r(x).

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/q
jm

a
th

/a
rtic

le
/7

2
/1

-2
/6

0
3
/6

2
2
5
8
6
9
 b

y
 H

a
rv

a
rd

 L
a
w

 S
c
h
o
o
l L

ib
ra

ry
 u

s
e
r o

n
 0

4
 M

a
y
 2

0
2
2



CONSISTENCY OF M-THEORY 619

Proof. If x,y ∈ H4(W;Z) and x̄, ȳ ∈ H4(W;Z/2Z) are their mod 2 reductions, then (4.20) with w1 =
w2 = 0 implies

w4(W)x̄ȳ= Sq4(x̄ȳ)

= (Sq4x̄)ȳ+ Sq2x̄ Sq2ȳ+ x̄ Sq4ȳ

= x̄x̄ȳ+ Sq2x̄ Sq2ȳ+ x̄ȳȳ,

(4.22)

since Sq1 vanishes on reductions of integer classes. Then from (4.20) again

0= w2(W)x̄ Sq2ȳ

= Sq2(x̄ Sq2ȳ)

= Sq2x̄ Sq2ȳ+ x̄ Sq2Sq2ȳ

= Sq2x̄ Sq2ȳ+ x̄ Sq3Sq1ȳ

= Sq2x̄ Sq2ȳ.

(4.23)

□

Proposition 4.5 In BSpin there is a unique characteristic class p ∈ H8(BSpin;Z) with

2p= p2 −λ2. (4.24)

Furthermore, p≡ w8 (mod 2).

For a smooth manifold M we obtain a characteristic class p(M) ∈ H8(M;Z), and we use the same
symbol to denote its reduction modulo torsion.

Proof. H8(BSpin;Z) is torsionfree and p2 ≡ λ2 ≡ w2
4 (mod 2), which proves the existence and

uniqueness of p. To compute its reduction mod 2 we restrict to the classifying space of a maxi-
mal torus of SpinN for N≥ 8. The computation is carried out in [13, Section 3], where p is the
class called ‘−q2.’ Its reduction mod 2 equals the reduction of the class called ‘c4,’ which is the
Stiefel–Whitney class w8. □

Remark 4.6 Hopkins–Singer [33, Appendix E] define spin Wu classes in H•(BSpin;Z), in terms of
which we have p= νSpin8 − 2p2 + p21.

Proposition 4.7 On a closed spin 12-manifold W the mod 24 reduction of p(W) satisfies (4.13).

Proof. We follow Witten’s argument in [57, Section 4]. Namely, a principal E8-bundle over a 12-
manifold is determined up to isomorphism by an element x ∈ H4(W;Z). Let V(x) denote the (real)
adjoint vector bundle to the principal E8-bundle with characteristic class x, and set c=λ(W)+2x.
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620 D. S. FREED AND M. J. HOPKINS

The Chern character of V(x)→W is

chV(x) = 248− 60x+ 6x2 − 1
3
x3. (4.25)

To see this, observe that a priori the Chern character is a cubic polynomial in x, so we need only
determine the coefficients. The restriction of the adjoint representation of E8 to Spin16 ⊂ E8 is the
sum of a half-spin representation and the adjoint representation of Spin16. The restriction of its com-
plexification to Spin3 ⊂ Spin16 is 78V1 ⊕ 64V2 ⊕ 14V3, where Vn is the n-dimensional irreducible
representation of Spin3 ∼= SU2; the Chern character of this representation is easily computed. Finally,
the generator of H4(BE8;Z) restricts to minus twice the generator of H4(BSU2;Z). (The gener-
ator of H4(BSO16;Z) restricts to the generator of H4(BSO3;Z). The former pulls back to twice
the generator of H4(BSpin16;Z), whereas the latter pulls back to minus four times the generator
of H4(BSU2;Z).) Then a long computation verifies the following identity:

〈
c3 − pc
48

+
1
2
Â(W) chV(x) +

1
4
Â(W) ch(TW− 4) , [W]

〉
= 0. (4.26)

The second term is an integer; it is the KO-theory direct image of the real bundle V(x), defined using
the spin structure, which by the Atiyah–Singer index theorem is the index of the Dirac operator
coupled to V(x). Similarly, the last term is a half-integer, hence so is the cubic expression. Replace
the denominator in the cubic expression by 24 to obtain an integer, and now subtract the integers for
arbitrary x and x= 0 to establish the congruence

(
p2(W)−λ(W)2

)
x≡ 8x3 + 12λ(W)x2 + 6λ(W)2x (mod 24), (4.27)

where we omit evaluation on [W] from the notation for convenience. If necessary, use the last
argument in Lemma 4.2 to replace p(W) by p′ = p(W)+ 24a for a ∈ H8(W;Z)/torsion so that

c3 − p′c
48

∈ Z, c= λ(W)+ 2x, x ∈ H4(W;Z), (4.28)

and so deduce the desired mod 24 congruence. □

Note that p(W) is not necessarily a distinguished lift of p̂ described in Lemma 4.2; rather we need
to add the constant term 1/4RS′(W) (see (3.18)) in (4.26) is needed to obtain integrality. Define the
integer-valued cubic form

κW(c) =
c3 − p(W)c

48
+

1
2
RS′(W) (4.29)

on characteristic elements; it satisfies a shifted version of the symmetry (4.6):

κW(−c) = RS′(W)−κW(c). (4.30)
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CONSISTENCY OF M-THEORY 621

4.4. The cubic form on pin+ 12-manifolds

Any manifold M has a canonical orientation double cover M̂→M: the fiber at m∈M is the set
of orientations on TmM. There results a canonical local system Z̃→M of coefficients; we call
H•(M; Z̃) thew1-twisted cohomology. An orientation is a trivialization of Z̃→M, and on an oriented
manifold w1-twisted integer cohomology reduces to untwisted integer cohomology. The fundamen-
tal class [M] of a closed manifold M lives in w1-twisted integer homology, so we can integrate
w1-twisted cohomology classes.

Lemma 4.8 Let M be a closed n-manifold with no orientable components and π : M̂→M the
orientation double cover. Then the image of

π∗ : Hn(M; Z̃)−→ Hn(M̂;Z) (4.31)

is 2Hn(M̂;Z), and if ω̄ ∈ Hn(M; Z̃), then

〈ω̄, [M]〉=
〈
1
2
π∗ω̄, [M̂]

〉
. (4.32)

As the domain and codomain of (4.31) are torsionfree, we can prove Lemma 4.8 using de Rham
theory, a task we leave to the reader.

Let W be a closed pin+ 12-manifold W. The existence of a pin+ structure on W is equivalent
to w2(W)= 0, but in general w1(W) 6=0. Also, w3(W)= 0 since w3 = Sq1w2 +w1w2 (Wu formula).
Note then that the Wu classes (4.20) simplify to ν2(W) = w1(W)2 and ν4(W) = w4(W)+w1(W)4.

There is a short exact sequence of coefficients 0→ Z̃
2−→ Z̃→ Z/2Z→ 0, and the connecting homo-

morphism in the resulting long exact sequence—(4.21) with twisted coefficients—is the twisted
Bockstein β̃. In this case r ◦ β̃ = Sq1 +w1, so that if x is a w1-twisted integer class then

Sq1x̄= w1(M)^ x. (4.33)

For a closed mc 12-manifold W we modify (4.16) to

L= H4(W; Z̃)/torsion

〈x,y, z〉= (x^ y^ z)[W]

c̄= w4(W).

(4.34)

Remark 4.3 applies if we replace integer cohomology with w1-twisted integer cohomology and
assume W is an mc-manifold. The dual lattice L∗ = H8(W;Z)/torsion is untwisted integer coho-
mology as in the spin case.

Proposition 4.9 In BPin+ there is a unique characteristic class p̄ ∈ H8(BPin+;Z)/torsion whose
restriction to BSpin is the class p of Proposition 4.5.
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622 D. S. FREED AND M. J. HOPKINS

Proof. Let {Ep,qr } denote the Leray–Serre spectral sequence for the fibration

BSpin−→ BPin+
w1−→RP∞. (4.35)

Then E0,8
2

∼= H8(BSpin;Z) and E0,8
∞

∼= H8(BPin+;Z)/torsion∼= ker(d2 : E
0,8
2 → E2,7

2 ). Note that
E2,7
2

∼= Z/2Z, since H7(BSpin;Z) is cyclic of order 2, generated by the integer Bockstein of w6,
and H2

(
RP∞;Z/2Z

)∼= Z/2Z. The proposition follows from d2(p)= 0, which in turn follows since
d2(p) is detectable mod 2 and p (mod 2) = w8 survives the differentials. □

Remark 4.10 There is a (homotopy) splitting of the map w1 in (4.35), namely the classifying map
RP∞ → BO of the reduced tautological bundle H→ RP∞, which lifts since H has a pin+ structure.
(Introduce an inner product on H→ RP∞ and use a splitting of the homomorphism Pin+1 → O1.)
Then the product map

BSpin×RP∞ → BPin+ (4.36)

is a homotopy equivalence, since it induces an isomorphism on homotopy groups. This yields an
isomorphism H•(BPin+;Z)/torsion→ H•(BSpin;Z)/torsion, which re-proves Proposition 4.9.

Proposition 4.11 Let W be a closed mc 12-manifold. Then c̄= w4(W) satisfies equation (4.12).
Furthermore, the mod 24 reduction of p̄(W), viewed as a class in L∗ = H8(W;Z)/torsion, satisfies
the condition in Lemma 4.1.

Proof. We modify the proof of Lemma 4.4. So (4.22) becomes

(
w4(W)+w4

1(W)
)
x̄ȳ= x̄x̄ȳ+ x̄ȳȳ+w1(W)(x̄ Sq3ȳ+ ȳ Sq3x̄)+ Sq2x̄ Sq2ȳ (4.37)

and (4.23) becomes

w2
1(W)x̄ Sq2ȳ= Sq2x̄ Sq2ȳ+w1(W)x̄Sq3ȳ+ x̄w2

1(W)Sq2ȳ+ x̄w1(W)Sq3ȳ, (4.38)

which implies Sq2x̄ Sq2ȳ= 0. Then using ν3(W)= 0 from (4.20), we find

0= Sq3(w1(W)x̄ȳ) = w2
1(W)Sq2(x̄ȳ) + w1(W)Sq3(x̄ȳ)

= w4
1(W)x̄ȳ + w1(W)

(
x̄Sq3ȳ+ ȳSq3x̄

)
.

(4.39)

Combine these equations to complete the proof that c̄ satisfies (4.12).
For the last statement in the proposition we observe that Proposition 4.9 implies p̄(W) = p(W) if

W is spin, and also if π : Ŵ→W is the orientation double cover then π∗p̄(W) = p(Ŵ). The last state-
ment reduces to Proposition 4.7 on orientable components ofW, and on non-orientable components
we use Lemma 4.8 to reduce to Proposition 4.7 on the orientation double cover. □
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CONSISTENCY OF M-THEORY 623

Lemma 4.12 Let W be a closedmc 12-manifold and c̃ ∈ H4(W; Z̃) a w1-twisted integer lift of w4(W).
Then

c̃3 − p̄(W)c̃
48

(mod Z) (4.40)

lies in 1
2Z/Z, is independent of the choice of c̃, and is a bordism invariant of mc-manifolds. It is

additive under disjoint union.

Proof. That the fraction in (4.40) is a half-integer follows from Lemma 4.2 in the algebraic theory
of cubic forms. Any w1-twisted integer lift of w4(M) has the form c̃+ 2x̃ for some x̃ ∈ H4(W; Z̃),
and an easy check from (4.13) proves that (4.40) is unchanged by the replacement. IfW= ∂Z is the
boundary of a compact mc 13-manifold Z, then Z has a fundamental class in relative homology and
the usual adjunction (integer Stokes’ theorem) argument implies that (4.40) vanishes, even before
reducing modulo Z. □

Define

α̂C(W) = exp

(
2πi

c̃3 − p̄(W)c̃
48

)
. (4.41)

Recall that Mmc is the bordism spectrum of pin+ manifolds with an mc structure.

Corollary 4.13 The exponential of the cubic form factors through a homomorphism

α̂C : π12Mmc −→ C× (4.42)

which takes values in {±1} ⊂ C×.

As discussed in Section 2, the homomorphism (3.13) determines an invertible topological field
theory

αC : Mmc −→ Σ12IC× (4.43)

up to isomorphism. The square α⊗2
C is isomorphic to the trivial theory.

Remark 4.14 Let π : Ŵ→W be the orientation double cover of an mc-manifold which has no
orientable components, and suppose c̃ ∈ H4(W; Z̃) is a w1-twisted integer lift of w4(W). Set c=
π∗c̃ ∈ H4(Ŵ;Z). As in the proof of Proposition 4.11 we have p(Ŵ) = π∗p̄(W). Apply Lemma 4.8 to
evaluate the integer cubic form—twice (4.40)—on the orientation double cover:

〈
c̃3 − p̄(W)c̃

24
, [W]

〉
=

〈
c3 − p(W)c

48
, [Ŵ]

〉
. (4.44)
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624 D. S. FREED AND M. J. HOPKINS

4.5. The C-field and its anomaly; cancellation on spin manifolds

The C-field in M-theory is an example of an abelian gauge field. Classically, all information is
captured by its field strength Ω, which is a closed 4-form. In the quantum theory Dirac’s quantization
of charge applies: the de Rham cohomology class of Ω is constrained to lie in a full lattice in the
degree 4 real cohomology. There is more information, as inspired by the Aharanov–Bohm effect in
the case of ordinary electromagnetism and the resulting refinement of the electromagnetic field—a
closed 2-form—to a connection on a principal T-bundle. In higher degrees a suitable language for
quantum abelian gauge fields is differential cohomology, which is developed in [33] in part to model
the C-field; the focus there is on the M5 brane and so on a quadratic form. (See [24, Section 3] for
a general exposition of abelian gauge fields as differential cocycles.) Here we work in the ‘bulk’
on a Wick-rotated spacetime which we take to be an 11-dimensional Riemannian pin+ manifold X.
Dirac’s quantization of charge for theC-field, which is determined in [57], is encoded by positing the
C-field as a geometric representative of aw1-twisted differential cohomology class which liftsw4(X).
(If X is spin, then there is a model [18] in terms of E8-bundles, as in the proof of Proposition 4.7.)
Locally C-fields exist but there is a global obstruction, as explained after Definition 2.1. In that
spirit, a C-field qΩ is a differential mc structure on X; a precise model is established in [33], where it
is termed a differential integral Wu structure. Its field strength Ω is a closed w1-twisted 4-form whose
de Rham cohomology class in H4(X; R̃) is the real image of a w1-twisted integer lift c̃ ∈ H4(X; Z̃)
of w4(X). (The form Ω lifts to a closed 4-form Ω̂ on the total space of the orientation double cover
X̂→ X; then σ∗Ω̂ =−Ω̂, where σ : X̂→ X̂ is the non-trivial deck transformation.)

The effective action of M-theory has a cubic term of the form

exp

(
2πi

qΩ3 −qp(X)qΩ

48

)
, (4.45)

where qp(X) is a lift to differential cohomology of the class p̄(X) ∈ H8(X;Z)/torsion. This differential
cohomology version of the cubic form is analogous to a Chern–Simons invariant. We do not need its
precise definition, so will not elaborate further.

Remark 4.15 The qΩ3 term in (4.45) is part of the classical 11-dimensional supergravity action [15].
The qp(X)qΩ term is a quantum correction, introduced in [20, (3.14)] in the spin case, in part inspired
by [54, Section 3] who introduce an analogous correction in the Type IIA superstring. We do not
know of any literature about this quantum correction in the pin+ case.

Remark 4.16 We have only defined the class qp in (4.45) up to an element of H7(BPin+;R/Z),
but we now argue that (4.45) is independent of the lift. First, H7(BPin+;R/Z)∼= H8(BPin+;Z)tor,
since H7(BPin+;R) = 0. (Ator is the torsion subgroup of the abelian group A.) Recall from (4.36)
that BPin+ ' BSpin×RP∞. Then the main theorem in [37] implies that 2H8(BPin+;Z)tor = 0. Use
the short exact sequence

0−→ 1
2
Z/Z−→ R/Z

2−→R/Z−→ 0 (4.46)

to deduce that H7(BPin+; 12Z/Z)−→ H7(BPin+;R/Z) is surjective. It follows that the ambiguity
in (4.45) is expressed as a characteristic number of mod 2 cohomology. Our Adams spectral sequence
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CONSISTENCY OF M-THEORY 625

computation (see Fig. 1 in Section 8) shows that there is no element of π11Mmc in Adams filtration 0,
and so every mod 2 characteristic number vanishes on closed 11-dimensional mc-manifolds.

Note that there is an ambiguity in the M-theory action from a topological term which is not
mod 2 characteristic numbers but rather a mod 2 KO-characteristic number, a mod 2 index of a
Dirac operator (see Section 7).

Our focus is on anomalies, and here the crucial point is that only the square of (4.45) is unambigu-
ously defined as an element ofC. This is equivalent to the assertion that on a closedmc 12-manifoldW
the cubic form

c̃3 − p̄(W)c̃
24

(4.47)

is integral, but is not necessarily even. Hence the square root (4.45) is an element of a complex
line αC(X) whose square αC(X)

⊗2 is trivialized. As the notation suggests, this line is the state space
of the invertible 12-dimensional field theory αC. The field theory αC is topological: it does not
depend on the Riemannian metric or differential mc structure, only on the underlying topological
mc structure.

Witten’s argument [57, Section 4], reproduced in the proof of Proposition 4.7, proves the Anomaly
Cancellation Theorem 2.2 on spin manifolds. LetMSpin〈βw4〉 denote the bordism spectrum of spin
manifolds with an integer lift ofw4. There is a mapMSpin〈βw4〉 →Mmc, whereMmc is the bordism
spectrum of mc-manifolds.

Theorem 4.17 (Witten) The lift αRS⊗αC : MSpin〈βw4〉 → Σ12IC× is trivializable.

The E8-model for the C-field leads to a distinguished trivialization [29].

Proof. Because an invertible topological field theory is determined up to isomorphism by its par-
tition functions, to prove Theorem 4.17 we show that for any closed spin 12-manifold W with an
mc structure we have

α̂RS(W)α̂C(W) = 1. (4.48)

This follows immediately from the integrality of (4.29) (see Proposition 3.5 and Remark 3.7). □

5. Some spin and pin manifolds

This section is a geometric interlude to review and introduce some special manifolds and their topo-
logical invariants. We use these manifolds as building blocks for the closed pin+ 12-manifolds we
need in Section 6, where we also specify mc structures.

If M is a smooth manifold, then we use the notations

w(M) = 1+w1(M)+w2(M)+ · · ·
p(M) = 1+ p1(M)+ p2(M)+ · · ·

(5.1)

for the total Stiefel–Whitney class and total Pontrjagin class, respectively. The former satisfies the
Whitney sum formula w(M1 ×M2) = w(M1)w(M2) for Cartesian products; the analogous equation
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626 D. S. FREED AND M. J. HOPKINS

for the total Pontrjagin class is true modulo torsion. Also, these characteristic classes are defined for
arbitrary real vector bundles, not just the tangent bundle, and are stable in the sense that they are
unchanged by adding a trivial bundle. Recall also the characteristic class λ of a spin manifold, or of
a real vector bundle with a spin structure, characterized after (4.18); it satisfies 2λ= p1.

5.1. K3 surface

There is a moduli space of inequivalent complex K3 surfaces whose underlying real 4-manifolds are
all diffeomorphic. For definiteness, then, we define K⊂ CP3 as the zero locus of the quartic

(z0)4 +(z1)4 +(z2)4 +(z3)4 = 0, (5.2)

where z0, z1, z2, z3 are the standard homogeneous coordinates on CP3. It is a smooth closed real 4-
manifold which is simply connected, and the complex structure induces an orientation. The Chern
classes can be computed from those of CP3 and that of the normal bundle, which is the restriction
of O(4)→ CP3 to K, and from there we derive the Stiefel–Whitney and Pontrjagin classes:

w(K) = 1

p(K) = 1− 48k,
(5.3)

where k ∈ H4(K;Z)∼= Z is the positive generator. In particular, w2(K)= 0 and so K admits a spin
structure compatible with the orientation, which is unique up to isomorphism since K is simply
connected. Also,

λ(K) =−24k. (5.4)

5.2. Quaternionic projective plane

Let HP2 denote the space of one-dimensional quaternionic subspaces of the quaternionic vector
space H3. For definiteness we let the division algebra H act on the right of H3. In coordinates write

HP2 =
{
[q0,q1,q2] : qi ∈H

}
/∼, [q0,q1,q2]∼ [q0h,q1h,q2h], h ∈H ̸=0. (5.5)

HP2 is a simply connected 8-manifold. In fact, the filtration ∗ ⊂HP1 ⊂HP2 provides a CW struc-
ture with a single 0-cell, 4-cell and 8-cell. The simple connectivity implies that up to isomorphism
HP2 has a unique spin structure compatible with a given orientation.

Let L→HP2 be the tautological quaternionic line bundle; its fiber at a point ` ∈HP2 is the
quaternionic line `. There is a short exact sequence

0−→ L−→H3 −→ Q−→ 1 (5.6)

of (right) quaternionic vector bundles; in the middle is the trivial bundle with fiber H3 and the
sequence defines the rank two quotient bundle Q→HP2. Note that the dual L∗ ∼= Hom

H
(L,H) is
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CONSISTENCY OF M-THEORY 627

canonically a leftH-module. The tangent bundle is identified as the real vector bundle Hom
H
(L,Q)∼=

Q⊗
H
L∗, and it is the quotient in the short exact sequence of real vector bundles

0−→ L⊗
H
L∗ −→H3 ⊗

H
L∗ −→ Q⊗

H
L∗ −→ 0, (5.7)

so its total Pontrjagin class is the quotient

p(HP2) =
p(H3 ⊗

H
L∗)

p(L⊗
H
L∗)

, (5.8)

since H•(HP2;Z) is torsionfree. The quaternionic line bundle L∗ →HP2 is, by restriction of scalars
to C⊂H, a rank 2 complex vector bundle isomorphic to its complex conjugate, so its total Chern
class has the form 1− x, where x ∈ H4(HP2;Z); we call x the quaternionic first Pontrjagin class.
Restrict to HP1 ⊂HP2 and fix a non-zero quaternionic functional H2 →H to define a section of
L∗ →HP1 which vanishes transversely at a single point. It follows that x generates H4(HP2;Z).
Now L⊗

H
L∗ splits off a trivial real line bundle, and the orthogonal rank 3 bundle is the real adjoint

bundle of the complex 2-plane bundle underlying L∗ →HP2; the first Pontrjagin class of the real
adjoint bundle is 4x. Therefore, from (5.8)

p(HP2) =
(1+ x)6

(1+ 4x)
= 1+ 2x+ 7x2. (5.9)

(See [9, Section 15.5] for an alternative derivation.) It follows that

λ(HP2) = x, w4(HP2) = x̄, (5.10)

where x̄ ∈ H4(HP2;Z/2Z) is the mod 2 reduction of x.

Remark 5.1 As mentioned above, a quaternionic line bundle L→X has a quaternionic first Pon-
trjagin class pH1 (L) ∈ H4(X;Z) which equals minus the second Chern class after restricting scalars
to C⊂H. We can also restrict scalars to R⊂H to obtain a rank 4 real vector bundle LR → X, whose
first Pontrjagin class satisfies p1(LR) = 2pH1 (L). The following general formula is useful, and can be
used in the derivation of (5.9). Suppose R,L→X are right and left quaternionic line bundles with
quaternionic first Pontrjagin classes r,` ∈ H4(X;Z). Then R⊗

H
L→ X is a real 4-plane bundle with

total Pontrjagin class 1+ 2(r+ `)+ (r− `)2.

Use x2 ∈ H8(HP2;Z)∼= Z to orient HP2: choose the fundamental class such that 〈x2, [HP2]〉= 1.

5.3. Bott manifold

The bordism group π8M Spin is free abelian of rank two: there is an isomorphism

π8MSpin−→ Z⊕Z

[M] 7−→
(
Â(M),σ(M)

) (5.11)
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628 D. S. FREED AND M. J. HOPKINS

which maps a closed spin 8-manifold to its Â-genus and its signature. The quaternionic projective
plane has Â(HP2) = 0, σ(HP2) = 1. A closed spin manifold B with Â(B) = 1 is called a Bott mani-
fold. We need not insist on vanishing signature, as that can always be achieved by connected sumwith
copies of HP2 or its orientation-reversal, and indeed the Bott manifold we use has signature −224.

We do not know of an elementary construction of a Bott manifold. One possibility is a Rie-
mannian manifold B of special holonomy Spin7 ⊂ Spin8, which necessarily satisfies Â(B) = 1 and
is simply connected (see [34, Section 10.6]). Closed 8-manifolds with Spin7 holonomy were first
produced by Joyce. A more topological approach leans on the work of Kervaire and Milnor [42],
[36]. The Bott manifold B so constructed is also simply connected, so admits a unique spin struc-
ture. Briefly, plumb together eight copies of the disk bundle of the tangent bundle to S4 according
to the E8 Dynkin diagram. The resulting compact 8-manifold N has a boundary which is an exotic
7-sphere. The Kervaire–Milnor results imply that a connect sum of 28 copies of the exotic sphere
bounds a ball, hence we define B as the boundary connect sum of 28 copies of N and cap off with
a standard ball (see [32, Section 6.5]) for details. The manifold B is almost parallelizable, that is,
admits a trivialization of the tangent bundle away from a point. This implies that p1(B)= 0, and from
a computation with the signature we deduce the total Pontrjagin class

p(B) = 1− 1440b, (5.12)

where b ∈ H8(B;Z)∼= Z is the positive generator. Note λ(B)= 0 and w4(B)= 0. Then

Â(B) =

〈
7p21 − 4p2
5760

, [B]

〉
(5.13)

implies Â(B) = 1. We use this Bott manifold in the sequel.

5.4. Real projective spaces

Let L→ RPn be the tautological real line bundle. Arguing as in the second paragraph of Section 5.2
we deduce that the tangent bundle to RPn is stably equivalent to

(n+ 1)L− 1. (5.14)

Then if α ∈ H1(RPn;Z/2Z)∼= Z/2Z is the generator, we conclude

w(RPn) = (1+α)n+1. (5.15)

Projective 4-space RP4 has w2 = 0, so admits a pin+ structure, in fact two distinct ones which are
opposite in the sense of Proposition 3.10. Of course, w1(RP

4) = α so that RP4 is not orientable, so
not spin either. Also, w4(RP

4) = α4 is non-zero, and we fix a w1-twisted lift c̃RP4 ∈ H4(RP4; Z̃)∼= Z
which is a generator.

For n= 12 we compute from (5.15) that RP12 is not orientable; is pin+ with two opposite pin+

structures; that w4(RP
12) = α4; and since H4(RP12; Z̃) = 0 it does not admit an mc structure.

The η-invariants of RP4 and RP12 are computed in [50, Corollary 5.4]. The results are reciprocal
for the two opposite pin+ structures (Proposition 3.10), and we use the η-invariant to pin down a
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CONSISTENCY OF M-THEORY 629

choice. Stolz’s result follows from Proposition 3.12 (see (3.19) for notation):

τ
RP4 = exp

(
2πi
24

)
(5.16)

τ
RP12 = exp

(
2πi
28

)
. (5.17)

For later use we quote from [38] the position of these real projective spaces in pin+ bordism. In
dimension 4 we have

π4MTPin
+ ∼= Z/24Z (5.18)

and RP4 represents a generator. In dimension 12 we have, as already quoted in (3.12),

π12MTPin
+ ∼= Z/28Z ⊕ Z/24Z ⊕ Z/22Z (5.19)

and RP12 represents a generator of the first factor. Proposition 8.11 below proves that

π4Mmc
∼= Z ⊕ Z/23Z. (5.20)

The pair (RP4, c̃RP4) represents a generator of the infinite cyclic summand. The connected sum
RP4#RP4 has order 8 in (5.18) and has vanishing w4 (since its value on the fundamental class
is the mod 2 Euler number). The pair (RP4#RP4,0) represents a generator of the second summand
in (5.20).

Remark 5.2 Stolz uses Proposition 3.12 to compute (5.16) and (5.17). These results also follow from
the topological formula (3.20), stated for pin+ 12-manifolds but with an extension to pin+ (8k+ 4)-
manifolds, k ∈ Z≥0. (Zhang uses the η-invariant of real projective spaces to prove Theorem 3.9, so
logically we are only illustrating the theorem here, not using it to derive (5.16) and (5.17).) For exam-
ple, let γ : RP12 → RP20 be a linear embedding, andH→ RP20 the tautological real line bundle. The
normal bundle to γ is the restriction of H⊕8 → RP20 to RP12, and RP12 is the 0-set of a section of
H⊕8 → RP20 (8 linearly independent linear functions). It follows that γ*(1) is the KO Euler class of
H⊕8 →HP20, which we compute to be 8

(
1− [H]

)
after multiplication by the Bott class. (The Euler

class is associated with the difference of the half spin representations of Spin8, which restricted to
the diagonal Z/2Z⊂ Spin8 is 8(1− ε), where ε is the sign representation.) It remains to observe that
8
(
1− [H]

)
has order 28 in K̃O(RP20).

5.5. Three special manifolds

We define three 12-dimensional manifoldsW′
0,W

′′
0 ,W1 which appear in Theorem 6.1 below. Each of

W′
0,W

′′
0 is presented as the quotient of its orientation double cover by a free involution.
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630 D. S. FREED AND M. J. HOPKINS

W′
0. Set

Ŵ′
0 = S4 × (HP2#HP2), (5.21)

the Cartesian product of the 4-sphere and the connected sum of two quaternionic projective planes.
As an explicit model of the connected sum, fix a line through the origin in real affine space A9,
remove two small antipodal balls from S8 ⊂ A9 which are exchanged by the half-turn about that line,
and glue in two identical copies of HP2 \B8. Then (5.21) has a free orientation-reversing involution
which is the Cartesian product of the antipodal involution of S4 and the half-turn of HP2#HP2

with its two fixed points. The quotient is the manifold W′
0. Since Ŵ

′
0 is simply connected, we have

π1W′
0
∼= Z/2Z and hence H1(W′

0;Z/2Z)∼= Z/2Z. Since the involution is free on S4, the manifold
W′

0 fits into a fiber bundle

HP2#HP2 −→W′
0 −→ RP4. (5.22)

The simply connected manifold HP2#HP2 has a unique spin structure, and so the half-turn lifts to
a spin automorphism. Its square is either the identity or the spin flip; we show it is the identity by
computing at a fixed point on S8. The differential of the half-turn is the linear map −1 on the eight-
dimensional tangent space. The linear map −1 lifts to the volume form in Spin8, which squares
to +1. Therefore, the vertical tangent bundle of (5.22) is spin, and so wi(W′

0), i= 1, 2, are pulled
back from RP4. Using (5.15) we see that W′

0 is pin
+: it admits two opposite pin+ structures.

The cohomology ring of the connected sum is

H•(HP2#HP2;Z)∼= Z[x1, x2]/(x1x2, x
2
1 − x22), degx1 = degx2 = 4. (5.23)

Let t ∈ H4(S4;Z) denote a positive generator. Then under the antipodal involution the class 2t
descends to the generator c̃ ∈ H4(RP4; Z̃) (see Lemma 4.8). Recalling (5.10) and the fact that
w4(RP

4) = α4, as mentioned following (5.15), we deduce that w4(W′
0) = α4 + x̄1 + x̄2, where x̄i is

the mod 2 reduction of xi. The class x̄1 + x̄2 is invariant under the involution of HP2#HP2 and
descends to w4 of the vertical tangent bundle in (5.22). Define the w1-twisted integer lift c̃′0 ∈
H4(W′

0; Z̃) of w4(W′
0) by

π∗c̃′0 = 2t+ x1 − x2, (5.24)

where π : Ŵ′
0 →W′

0 is the orientation double cover.

W′′
0 . Let KR → S4 =HP1 be the underlying real 4-plane bundle of the quaternionic line bundle K→

S4 with pH1 (K) ∈ H4(S4;Z) a positive generator. Define W′′
0 = P(K⊕2

R
⊕R) as the total space of the

real projective bundle

RP8 −→ P(K⊕2
R

⊕R)
ρ−→S4. (5.25)

Let L→W′′
0 be the tautological real line bundle. Since the stable tangent bundle to S4 is trivial, the

stable tangent bundle to W′′
0 is the stable tangent bundle along the fibers, which is
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CONSISTENCY OF M-THEORY 631

(L−R)+ (ρ∗K⊕2
R

⊗ L). (5.26)

This comes from the short exact sequence 0→ L→ ρ∗(K⊕2
R

⊕R)→ Q→ 0 of real vector bundles
overW′′

0 (compare (5.6)). Using (5.26) we compute w1(W′′
0 ) = w1(L) and w2(W′′

0 ) = 0: it suffices to
restrict to a fiber of (5.25) since that restriction induces an isomorphism on Hi(−;Z/2Z), i= 1, 2.
The orientation double cover is an S8-bundle over S4, which is simply connected. HenceW′′

0 admits
two opposite pin+ structures.

The bundle ρ∗KR ⊗ L has total Stiefel–Whitney class of the form 1+w4, and it follows easily
from the Whitney formula applied to (5.26) that w4(W′′

0 ) = 0.

W1. The projective group PSp1 ∼= SO3 acts on HP2 via (see (5.5) for notation)

λ · [q0,q1,q2] = [λq0,λq1λq2], λ ∈ Sp1. (5.27)

So a principal SO3-bundle has an associated fiber bundle with fiberHP2. The action (5.27) lifts to the
spin bundle of frames of HP2. To see this, choose a basepoint [1, 0, 0] and write HP2 = Sp3/Sp1 ×
Sp2. The principal Spin8-bundle of frames is associated with the principal (Sp1 × Sp2)-bundle Sp3 →
HP2 via the representation

Sp1 × Sp2 ∼= Spin3 × Spin5 −→ Spin8. (5.28)

The PSp1 action fixes the basepoint, and the ‘diagonal’ map Sp1 → Sp1 × Sp2 → Spin8 descends
to PSp1. The induced map PSp1 → Spin8 gives the desired lift. Define W1 as the fiber bundle

HP2 −→W1 −→ CP1 ×CP1 (5.29)

obtained from the principal SO3-bundle of oriented orthonormal frames of the real 3-plane bundle
O(1,1)R ⊕R→ CP1 ×CP1, where O(1,1)→ CP1 ×CP1 is the tensor product of the hyperplane
line bundles on the factors. The manifold W1 is simply connected, hence orientable. The stable
tangent bundle to CP1 ×CP1 is trivial, and the vertical tangent bundle is spin, henceW1 is spin with
a unique spin structure refining each orientation.

To compute the Pontrjagin classes of the vertical tangent bundle of (5.29), we use the PSp1 action
to construct a fiber bundle

HP2 −→ E−→ CP∞ (5.30)

from the rank three real vector bundle O(1)R ⊕R→ CP∞. The squaring map T→ T induces a
degree two map f on BT= CP∞; the pullback f∗

(
O(1)R ⊕R

)∼=O(2)R ⊕R is the adjoint bundle of
a principal Sp1 ∼= SU2-bundle we write as the quaternionic line bundle K→ CP∞. Then the pullback
of (5.30) under f is the projectivization of the rank three quaternionic vector bundleK⊕3 → CP∞. Let
a ∈ H2(CP∞;Z) be a generator; then the quaternionic Pontrjagin class of K→ CP∞ is pH1 (K) = a2.
Let L→ P(K⊕3) be the tautological quaternionic line bundle. Using the technique in Section 5.2,
including Remark 5.1, we compute the total Pontrjagin class of the vertical tangent bundle to
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632 D. S. FREED AND M. J. HOPKINS

E′ = P(K⊕3)→ CP∞ as

p(E′/CP∞) =

[
1+ 2(x+ a2)+ (x− a2)2

]

1+ 4x

= 1 + (2x+ 6a2) + (7x2 − 6a2x) + (12a2x2) + · · ·
(5.31)

where x= pH1 (L) ∈ H4(E′;Z). Grothendieck’s formula for projective bundles implies

x3 = 3a2x2 − 3a4x+ a6. (5.32)

(A quick explanation: Let V→X be a vector bundle of rank r > 0 (over R, C, or H), P(V)
p−→X its

projectivization, and L→ P(V) the tautological line bundle. OverP(V) there is a short exact sequence
0→L→ p*V→Q→ 0 of vector bundles, where Q→ P(V) has rank r− 1. Grothendieck’s formula
expresses the vanishing of its rth Chern or Pontrjagin class.) Use the pullback diagram

(5.33)

of fiber bundles to compute π* of the degree 12 Pontrjagin classes p3,p1p2,p31 of the vertical tangent
bundle to E/CP∞; they pull back under f̃ to the corresponding Pontrjagin classes of E′/CP∞. Note
f *a= 2a. Thus

f∗π∗p3 = π′
∗ f̃

∗
p3 = π′

∗(12a
2x2) = 12a2 (5.34)

from which

π∗p3 = 3a2. (5.35)

Similarly,

π∗p1p2 = 18a2 (5.36)

π∗p
3
1 = 24a2 (5.37)

and hence

π∗λ
3 = 3a2. (5.38)
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CONSISTENCY OF M-THEORY 633

Finally, we pull back by the degree (1, 1) map CP1 ×CP1 → CP∞ to compute the corresponding
quantities on W1. After evaluating on the fundamental class [CP1 ×CP1] we find

〈p3(W1) , [W1]〉= 6

〈p1p2(W1) , [W1]〉= 36

〈p31(W1) , [W1]〉= 48

〈λ3(W1), [W1]〉= 6 .

(5.39)

6. The anomaly cancellation

In this sectionwe state themain computational result, Theorem 6.1, which provides generators for the
dimension 12 bordism of manifolds which occur in M-theory. We give the proof in Section 8. Here,
in six subsections, we use this bordism computation to prove the Anomaly Cancellation Theorem 2.2
by computing the invariants αRS,αC for a generator of each factor. We organize the presentation by
Adams filtration (see Section 8.4). Two of the six generators are represented by spin manifolds, so
in these cases the anomaly cancellation is already proved in Theorem 4.17. Nonetheless, we check
directly by computing the invariants.

Since our invariants take values in a finite abelian 2-group (see Corollaries 3.4 and 4.13), it suffices
to compute after completing at the prime 2. (The structure of the bordism group at odd primes is much
simpler, but we do not treat it here.) Let Z2 denote the 2-adic numbers.

6.1. The bordism group

Recall that Mmc denotes the bordism spectrum of mc-manifolds. We use the manifolds and coho-
mology classes defined in Section 5. The cohomology class λ of a spin manifold is the canonical
integer lift of w4.

Theorem 6.1 The following six mc-manifolds generate the group π12Mmc⊗Z2:

(W ′
0, c̃

′
0), (W ′′

0,0), (W1,λ)

(K×HP2,λ), (RP4, c̃′
RP4)×B, (RP4#RP4,0)×B.

(6.1)

Note that W1 and K×HP2 are spin manifolds.

6.2. Computations

As explained in (2.3), the Anomaly Cancellation Theorem 2.2 is a consequence of Theorem 6.1 and
the following.

Theorem 6.2 For each of the pairs (W,c̃) listed in (6.1) the anomaly cancellation condition
αRS(W)αC(W) = 1 holds.

The proof of Theorem 6.2 is divided into six parts, one for each generator. It occupies the remainder
of Section 6. Recall that αRS is defined in (3.11) and αC in (4.41). Strictly speaking, we do not rely
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634 D. S. FREED AND M. J. HOPKINS

on the particular w1-twisted integer lift c̃ of w4 since the mod 2 cubic invariant αC is independent of
the choice (Lemma 4.12). For convenience, we summarize the computations in the following chart:

(W,c̃) αRS(W) αC(W)

(W′
0, c̃

′
0) +1 +1

(W′′
0 ,0) +1 +1

(W1,λ) +1 +1

(K×HP2,λ) −1 −1

(RP4, c̃′
RP4) +1 +1

(RP4#RP4,0) +1 +1

(6.2)

Adams filtration 4
To compute the Rarita–Schwinger anomaly partition function ofRP4 ×B, we apply Propositions 3.8
and 3.11:

αRS(RP
4 ×B) = τRP4×B(TRP

4 + TB− 2) =
τ
RP4(TRP

4)indDB τ
indDB(TB)
RP4

τ 2indDB

RP4

. (6.3)

From (5.14) the stable tangent bundle to RP4 is 5L− 1. Proposition 3.10 implies that as far as η-
invariants are concerned, tensoring with L induces a change of sign. Hence using Proposition 3.8
and (5.17)

τRP4(TRP4) = τRP4(5L− 1) = τRP4(−6) = exp

(
−3πi

4

)
. (6.4)

An alternative computation uses the four-dimensional analog of Proposition 3.12 in which the
denominator of 28 in (3.27) is replaced by 24. Bound the orientation double cover S4 by the closed 5-
ball D5 with its antipodal involution. The pullback of TRP4 extends over D5 as TD5−1. The trace τ f
at the unique fixed point is −5− 1=−6, and we recover (6.4) from (3.27). Still another computa-
tion uses a variant of Theorem 3.9 for pin+ 4-manifolds: replace RP20 with RP12 and 211 in (3.20)
with 27. Following the notation in Remark 5.2 with these replacements we compute

γ∗(TRP
4) = γ∗

(
γ∗(5[H]− 1)

)

= (5[H]− 1)γ∗(1)

= (5[H]− 1)8(1− [H])

=−48(1− [H]),

(6.5)

and now (6.4) follows from the adapted (3.20). For the index computation on the Bott manifold we
use the Atiyah–Singer index theorem and (5.12):

indDB(TB) = Â(B)ch(TB)[B] =
(
1− p2

1440

)(
8− p2

6

)
[B] = 248. (6.6)
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CONSISTENCY OF M-THEORY 635

Combining (5.16), (6.3), (6.4), (6.6) and indDB= 1 (see (5.13)) we conclude

αRS(RP
4 ×B) =

e−3πi/4 eπi

eπi/4
= 1. (6.7)

The C-field anomaly partition function is the exponential of the mod 2 reduction of the cubic
form (4.47). As in Section 6.2 the class p̄(RP4 ×B) = p(B) =−720b. Evaluating on the generator
c̃RP4 ∈ H4(RP4, Z̃) we find

(
c̃3
RP4 − p̄c̃RP4

24

)
[RP4 ×B] = 30. (6.8)

Since this is even, αC(RP
4 ×B) = 1.

Adams filtration 5
The Rarita–Schwinger partition function only depends on the image of (RP4#RP4)×B in pin+

bordism. The connected sum RP4#RP4 represents twice RP4 in pin+ bordism, and the same
is true after crossing with the Bott manifold. (See Section 5.4.) Thus we deduce from (6.7)
that αRS

(
(RP4#RP4)×B

)
= αRS(RP

4 ×B)2 = 1. Since w4
(
(RP4#RP4)×B

)
= 0 we can take the

w1-twisted integer lift to vanish, and hence αC
(
(RP4#RP4)×B

)
= 1.

Adams filtration 3
The manifoldW3 = K×HP2 is spin, so by Proposition 3.5 the Rarita–Schwinger anomaly partition
function is the mod 2 reduction of an integer RS(W3) defined in (3.15). Using (5.3) and (5.9) we
compute

1
2
Â(W3)ch(TW3 − 2) =

1
2
Â(K)Â(HP2)

(
ch(TK)+ ch(THP2)− 2

)

=
1
2
(1+ 2k)

(
1− x

12

)(
(4− 48k)+

(
8+ 2x− 5

6
x2
)
− 2

)

=−kx2 + · · ·

(6.9)

Therefore, RS(W3)=−1 and αRS(W3) = −1.
The C-field anomaly partition function is computed from the cubic form

λ3 − pλ
24

=
(x− 24k)3 − (3x2 − 24xk)(x− 24k)

24
= kx2 + · · · (6.10)

Evaluating on the fundamental class and exponentiating we deduce αC(W3) =−1.

Adams filtration 1
The spin manifold W1 is defined in Section 5.5.3; it is an HP2-bundle over CP1 ×CP1. We
plug (5.39) into (3.17) to compute αRS(W1) = 1 and into (4.47) with c̃= λ to compute αC(W1) = 1.
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636 D. S. FREED AND M. J. HOPKINS

Adams filtration 0, part 1
The manifold W′

0 is an (HP2#HP2)-bundle over RP4 (see (5.22)). We claim that its Rarita–
Schwinger anomaly partition function is trivial: αRS(W

′
0) = 1. To prove this we apply Proposi-

tion 3.12. The total space (5.21) of the orientation double cover bounds D5 × (HP2#HP2) with
the antipodal involution on D5 times the half-turn about an axis through S8 ⊂ A9 acting on the con-
nected sum. There are two fixed points: the center of D5 times antipodal points p,p′ ∈ S8. In (3.27)
the traces τp = τp′ , and we claim ip′ =−ip. To prove this choose the center of S8 as the origin of A9,
so identify the affine space A9 with the vector space R9. The half-turn is implemented on spinors
by the element ω = γ1γ2 · · ·γ8 in Cliff+9, where we choose the axis to be the last coordinate. But
the standard basis vectors e1, e2, . . . , e8 form an oriented basis of exactly one of TpS8, Tp′S8; it is
negatively oriented at the other point. So the action of frames at the other point is by the conjugate
e1ωe

−1
1 =−ω. Multiply by the volume element of Cliff+5, which gives the action of the involution

on pin+ frames at the center of D5.
For the C-field anomaly partition function we compute the cubic form on the orientation double

cover using (4.44). Use the w1-twisted integer lift c̃ specified in (5.24) via its lift c to Ŵ′
0. Use (5.9)

to compute that p(Ŵ′
0) = 3(x21 + x22). Thus

c3 − pc
48

=
12tx2 − 12tx2

48
= 0, (6.11)

since x2 = x21 = x22 in H
8(HP2#HP2) (see (5.23)). Therefore, αC(W

′
0) = 1.

Adams filtration 0, part 2
The manifoldW′′

0 = P(2KR ⊕R), defined in (5.25) as an RP8-bundle over S4. Recall that K→ S4 is
the quaternionic line bundle with pH1 (K) ∈ H4(S4;Z) the positive generator. We use Theorem 3.9 to
compute αRS(W

′′
0 ) = 1.

As a preliminary define µ ∈ K̃O4
(S4) as ι*(1) for ι : pt→ S4, and λ ∈ K̃O0

(S4) as the KO-class

[KR]− 4, where KR → S4 is the real 4-plane bundle underlying K→ S4. Identify K̃O
4
(S4) as the

Grothendieck group of quaternionic vector bundles over S4 of virtual rank zero; then µ= [K]− [H].
Let π : S4 → pt be the unique map. Then we claim

λµ= 0 (6.12)

λ[H] = 4µ (6.13)

π∗µ= 1 (6.14)

π∗[H] = 0. (6.15)

Since we can trivialize KR → S4 away from a point, we can arrange representatives of λ,µ with
disjoint support, from which (6.12) follows. For (6.13) we observe that ifM is any quaternionic line,
then there is a natural isomorphism
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CONSISTENCY OF M-THEORY 637

M⊕4 −→MR ⊗R H

(ξ1,ξ2,ξ3,ξ4) 7−→
4∑

s=1

−ξs⊗ 1 + ξsi⊗ i + ξsj⊗ j + ξsk⊗ k
(6.16)

of quaternionic vector spaces. Equation (6.14) is immediate: π∗µ= (π ◦ ι)∗(1) = 1. Finally,H→ S4

is pulled back from H→ pt, so π∗[H] = [H]π∗(1) = 0 since 1 ∈ KO0(S4) extends over the 5-ball.
Another preliminary: IfMR → Y is the real 4-plane bundle underlying a quaternionic line bundle

M→Y, then its KO-theory Euler class is

[H]− [M] ∈ K̃O4
(Y). (6.17)

Proof:M→Y is associated with a principal Sp1-bundle via (i) the embedding Sp1 ↪→ Spin4 ∼= Sp1 ×
Sp1 onto the second factor and (ii) the action of Sp1 × Sp1 onH in which the first factor acts trivially
and the second by right multiplication. Then theKO-Euler class is pulled back from the vector bundle
associated with the difference of the quaternionic half-spin representations.

Let J→ S4 be the quaternionic line bundle with pH1 (J) =−2pH1 (K). Then K⊕2
R

⊕ JR → S4 is
trivializable. Define

γ : W′′
0 = P(K⊕2

R
⊕R)

i−→P(K⊕2
R

⊕R⊕ JR)∼= S4 ×RP12 π−→RP12 j−→RP20, (6.18)

where π is the projection onto the second factor and j is a linear embedding as in Remark 5.2. Let
L→ P(K⊕2

R
⊕R⊕ JR) be the tautological real line bundle. Then L∼= π∗H= π∗j∗H for H→ RP20

the tautological line bundle, and i*L is also isomorphic to the tautological line bundle. We identify
L*∼=L. The normal bundle to i is the quotient of tangent bundles (see (5.26)):

[
(i∗L−R) ⊕ K⊕2

R
⊗ i∗L ⊕ JR ⊗ i∗L

] / [
(i∗L−R) ⊕ K⊕2

R
⊗ i∗L

]∼= JR ⊗ i∗L

∼= i∗(JR ⊗ L).
(6.19)

There is a canonical section of

JR ⊗ L∼= Hom(L,JR)−→ P(K⊕2
R

⊕R⊕ JR) (6.20)

given by projection K⊕2
R

⊕R⊕ JR → JR, and its zero set is the image of i. It follows that i*(1) is the
KO-Euler class of (6.20), which we compute using (6.17):

i∗(1) = [H]− [J⊗ L] = (1− [L])[H] + 2[L]µ

= π∗
{
(1− [H])[H] + 2[H]µ

}
.

(6.21)

Using (5.26) we find

[TW′′
0 ]− 2= i∗

{
2[H]λ+ 9[H] + 1

}
. (6.22)

Combining (6.21) and (6.22) with (6.12)–(6.15) we calculate

π∗i∗([TW
′′
0 ]− 2) = π∗

{(
2[H]λ+ 9[H] + 1

)(
(1− [H])[H] + 2[H]µ

)}

= 10[H] + 10.
(6.23)
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638 D. S. FREED AND M. J. HOPKINS

Now j∗(1) = 8(1− [H]) is computed in Remark 5.2, and so

j∗
(
[H]
)
= [H] j∗(1) = 8[H](1− [H]) =−j∗(1), (6.24)

from which

γ∗([TW
′′
0 ]− 2) = j∗π∗i∗([TW

′′
0 ]− 2) = 0. (6.25)

Then αRS(W
′′
0 ) = 1 follows immediately from (3.20).

The C-field anomaly is also trivial—αC(W
′′
0 ) = 1—since w4(W′′

0 ) = 0 and we can choose the
w1-twisted integer lift c̃ in (4.41) to be zero.

7. Ambiguities in the M-theory action

As mentioned in the introduction, to define an M-theory action it is not sufficient to demonstrate the
cancellation of anomalies; we must also give a trivialization of the product αRS⊗αC, a so-called
setting of the quantum integrand. The ratio β of two trivializations is an invertible 11-dimensional
field theory. Unitarity of M-theory requires that β be reflection positive. If β were to depend on the
metric or the field strength of the C-field, then it would be detected locally. Since the local physics
is fixed by considerations other than anomaly cancellation, we restrict β to be a topological field
theory. As explained in Section 2 a reflection positive invertible 11-dimensional topological field
theory of mc-manifolds is determined by a homomorphism π11Mmc → C/Z. (Reflection positivity
imposes a restriction, which is satisfied here by all such homomorphisms, since they take values
in {±1} ⊂ C/Z.) The following conjecture describes the group of these theories.

Let Σ be the Klein bottle. It has four pin+ structures of which two are non-bounding [39, Propo-
sition 3.9]; fix one of those. Also, let S1 denote the circle with its non-bounding string structure (see
Remark 8.1). Define the 11-manifold

N= S1 ×Σ×B, (7.1)

where B is the Bott manifold (Section 5.3). The following is based on computations to appear in
[31], and out of an abundance of caution we state it here as a conjecture, a more precise version of
Conjecture 2.3.

Conjecture 7.1 The group π11Mmc is cyclic of order 2. The bordism class of the pair (N, 0) rep-
resents the generator. The mod 2 index of the pin+ Dirac operator is an isomorphism π11Mmc →
Z/2Z.

See Section 8.5.4 for a justification of Conjecture 7.1 using the Adams spectral sequence.

Remark 7.2 Index invariants of pin+ n-manifolds correspond to index invariants of spin (n− 1)-
manifolds (see [26, Section 9.2.3]). Hence the mod 2 indices of spin manifolds in dimensions 9, 10
correspond to mod 2 indices of pin+ manifolds in dimensions 10, 11. Let P be a pin+ 10-manifold.
Then the mod 2 index of the product S1 ×P10 equals the mod 2 index of P. We use product formulas
analogous to Proposition 3.11 to compute that the mod 2 index of Σ×B is non-zero.
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CONSISTENCY OF M-THEORY 639

8. The bordism computation

In this section, we present the computations which prove Theorem 6.1 and justify Conjecture 7.1.
We begin in Section 8.1 by constructing the Thom spectrum Mmc. In Section 8.2, we discuss some
characteristic classes of mc-manifolds and their behavior under transfer maps from the orientation
double cover. We compute the values of some mc-characteristic classes on two special manifolds
in Section 8.3. The Adams spectral sequence is introduced in Section 8.4. A crucial input is the
structure of the mod 2 cohomology of Bmc, which is discussed in Appendix C. The main work in
this section occurs in Section 8.5. We present arguments to determine the facts we need about mc-
bordism groups in dimensions 11 and 12, and along the way compute low dimensional mc-bordism
groups.

8.1. The Thom spectrum

Our aim in this section is to justify the claim that the manifolds listed in Theorem 6.1 generate
the bordism group of mc-manifolds (Definition 2.1). We begin by identifying the relevant Thom
spectrum.

Suppose that (X, ζ) is a space X equipped with a stable vector bundle ζ of virtual dimension 0,
which one may think of as a map ζ :X→BO from X to the classifying space of the infinite orthogonal
group. Write Thom(X, ζ) for the Thom spectrum of ζ. The homotopy group πmThom(X, ζ) is the
bordism group of triples (M, f,φ) consisting of an m-manifold M equipped with a map f :M→X,
and an isomorphism

π : f∗ζ ≈ Rm− TM

of virtual vector bundles. Put more colloquially it is the bordism group of manifolds whose stable
normal bundle has an (X, ζ)-structure. The bordism group of manifolds whose stable tangent bundle
has an (X, ζ)-structure is the homotopy group πn Thom(X,−ζ).

We are interested in manifolds M whose whose stable tangent bundle has a pin+ structure and
which are equipped with a w1-twisted integer lift of w4. We therefore consider the space Bmc defined
by the homotopy pullback square

(8.1)

let ζ be the virtual vector bundle classified by the pullback

Bmc → BPin+ → BO,

and write Mmc = Thom(Bmc,−ζ). The homotopy groups π∗Mmc are then the bordism groups of
manifolds equipped with a tangential pin+-structure and a w1-twisted integer lift of w4.
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640 D. S. FREED AND M. J. HOPKINS

As in Definition 2.1, an mc-manifold is a pair (M, c) in which M is a pin+-manifold and c is a
w1-twisted integer lift of tangential w4. A Spin-manifoldM gives rise to an mc-manifold by taking c
to be the tangential characteristic class λ.

Remark 8.1 Given twomc-manifolds (M1, c1) and (M1, c2) it is tempting to imagine that the product
(M1 ×M2, c1 + c1) is an mc-manifold. While it is true that w4(M1 ×M2) = w4(M1)+w4(M2), the
sum c1 + c2 does not really make sense as the two summands lie in different twisted cohomology
groups. The expression does make sense if w1(M2) = 0 and c2 = 0, and in particular, ifM2 is a Spin-
manifold equippedwith a trivialization of λ (a String-manifold). The ‘Bott manifold’B of Section 5.3
is a String-manifold so if (N, c) is an mc-manifold, then (N×B,π∗

1 c) is also an mc-manifold.

8.2. Characteristic classes

To describe bordism invariants of mc-manifolds we will require some cohomology classes in Bmc.
First note that under the equivalence

BO1 ×BSO
⊕−→BO

the characteristic class w2 pulls back to (0,w2). Passing to the homotopy fiber of the classifying map
to K(Z/2,2) gives an equivalence

BO1 ×BSpin→ BPin+.

From this one sees that a pin+-structure on a vector bundle T may be identified with an equivalence
T≈ L⊕V of stable vector bundles, in which L is a line bundle and V is a Spin-bundle.

Suppose M is a pin+ manifold and, using the above, regard the pin+-structure as giving a stable
isomorphism TM≈ L⊕V with L a real line bundle and V a Spin-bundle. Set

α= w1(TM) = w1(L),

wi = wi(TM) = wi(V), 1< i≤ 4,

and, as in Section 4.3, write

λ= λ(V)

for the characteristic class of Spin-bundles, twice which is p1. The mod 2 reduction of λ is w4, so
every pin+-manifold has an untwisted integer lift of w4.

Now suppose that (M, c) is an mc-manifold. The total space of the orientation double cover π :
M̂→M is a Spin-manifold, and in fact TM̂ is equipped with a stable isomorphism TM̂≈ π∗V. The
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CONSISTENCY OF M-THEORY 641

class ĉ= π∗c is an untwisted integer lift of w4(TM̂). This specifies a class

ι ∈ H4(M̂;Z)

satisfying

2ι= λ− ĉ (8.2)

Remark 8.2 The fact that ι is specified uniquely and not just up to elements of order two follows
from the fact that both λ and ĉ are integer lifts of w4. The integer lifts of a fixed mod 2 cohomology
class of dimension k form a torsor for integer cohomology in dimension k, under the action in which
an integer cohomology class ι changes an integer lift c to c+ 2ι. See [33, Section 2.5] for a more
systematic discussion of this from the point of view of cocycles. It is also not difficult to show (for
example using (8.1)) that the classifying space BSpin〈βw4〉 for Spin bundles with an integer lift
of w4 is homotopy equivalent to BSpin×K(Z,4) and in particular has torsion free H4. So in fact
equation (8.2) specifies ι uniquely as a cohomology class in BSpin〈βw4〉.

Transfer
We will make use of the additive and multiplicative transfers

tr : Hk(M̂;Z/2)→ Hk(M;Z/2)

P : Hk(M̂;Z/2)→ H2k(M;Z/2).

Most computations of the additive transfer can be made in terms of M̂: for y ∈ H∗M one has
∫

M
tr(x)y=

∫

M̂
(xπ∗y).

Computing the map P can be a little tricky, however there are some useful methods in special cases.
For one thing, the map P is quadratic:

P(x+ y) = P(x)+P(y)+ tr(xτ(y)),

where τ is the cohomology homomorphism induced by the involution. One can also compute P(x)
in terms of characteristic classes, when x itself is a characteristic class. The following, which is all
we need, is a special case of [35, Theorem 1.1].

Lemma 8.3 Suppose that p : X̂→ X is a double cover and W is a Spin-vector bundle on X̂ of
dimension d. If x= w4(W) ∈ H4(X̂;Z/2) then

P(x) = w8(p∗W− p∗R
d) ∈ H8(X;Z/2)

where, for a vector bundle V, p∗V= X̂ ×
Z/2

(V⊕V). □

Remark 8.4 In the situation of Lemma 8.3, ifW= p∗U for some vector bundle U on X then p∗W=
U⊕ (U⊗ L) where L= X̂ ×

Z/2
R, with Z/2 is acting on R by the sign representation. In that case

P(x) = w8(U+U⊗ L− L⊕d).
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642 D. S. FREED AND M. J. HOPKINS

8.3. Two examples

Two characteristic classes play an important role in our computation of π12Mmc. They are tr(ι3 +
ι2w4) and α4P(ι).

Example 8.5 Recall from Section 5.5.1 the pair (W′
0, c̃

′
0) in which

W′
0 = S4 ×

Z/2
HP2#HP2.

The orientation double cover is

Ŵ′
0 = S4 ×HP2#HP2 π−→S4 ×

Z/2
HP2#HP2

and the involution of HP2#HP2 exchanges the two summands, is orientation preserving, and has
two fixed points. The w1-twisted cohomology class c̃′0 satisfies

π∗c̃′0 = 2t+ x1 − x2.

Since λ= x1 + x2 (see (5.10)) we have

ι=
1
2
(λ− π̃∗c′0)

= x2 − t

ι3 + ι2w4 = x22 t

and so
∫

W′

0

tr(ι3 + ι2w4) =

∫

Ŵ′

0

(ι3 + ι2w4) =

∫

Ŵ′

0

(x22 t) = 1.

Remark 8.6 One can check that
∫
W′

0
α4P(ι) = 0, though we will not make use of this fact.

Example 8.7 Consider the manifold W′′
0 = P(K⊕2

R
⊕R) described in Section 5.5.2. Since the

Stiefel–Whitney classes of K⊕2
R

vanish on S4, the projective bundle formula gives

H∗(W′′
0 ;Z/2) = Z/2[t,α]/(t2,α9)

where t is the generator of H4(S4). The orientation double cover is S(K⊕2
R

⊕R) and the mod 2
reduction of

ι=
1
2
(λ− c)

is t= w4(KR). Since the map

H4(S4)→ H4(S(K⊕2
R

⊕R))
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CONSISTENCY OF M-THEORY 643

is an isomorphism, we have

ι3 + ι2w4 = 0,

and so
∫

W′′

0

tr(ι3 + ι2w4) = 0.

For the characteristic number α4P(ι) we first appeal to Lemma 8.3 and compute

P(ι) = w8(p∗KR − p∗R
4).

Since KR is pulled back fromW′′
0 we are in the situation of Remark 8.4. Writing Lα for the real line

bundle with w1(Lα) = α we are led to the total Stiefel–Whitney class

w(KR +KR ⊗ Lα − 4Lα) = (1+ t)(1+ t+α4)(1+α)−4

= 1+ t2 +α4t+O[9] = 1+α4t+O[9].

Thus

P(ι) = α4t

and
∫

W′′

0

α8P(ι) = 1.

8.4. The Adams spectral sequence

Our aim is to identify generators for π12Mmc. Since ourmain concern is the comparison of two differ-
ent homomorphisms from π12Mmc to a finite abelian 2-group, it suffices to do so after completing
at 2. For this we can appeal to the Adams spectral sequence, and this can be done by computer
calculation. For the purposes of this paper the authors used Mathematica to determine the mod 2
cohomology of Bmc as a module over the mod 2 Steenrod algebra, and Rob Bruner’s program [10]
for computing the E2-term of the Adams spectral sequence, as well as the map of Adams spec-
tral sequences induced by the map from M Spin to Mmc. The results are displayed in Figs 1 and 2.
Appendix C contains much more information about the cohomology of Bmc. In [31], a more detailed
version of this computation is described, as well as means of doing it by hand.

The Adams spectral sequence begins with

Es,t2 = Exts,tA (H
∗Mmc,Z/2) = ExtsA(H

∗+tMmc,Z/2),

with A the mod 2 Steenrod algebra, and converges to the homotopy groups of the 2-adic completion
M̂mc ofMmc. Since the homology groups of Bmc are each finitely generated, the homotopy groups
of Mmc are each finitely generated and so πt−sM̂mc is just the 2-adic completion of πt−sMmc.
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644 D. S. FREED AND M. J. HOPKINS

Remark 8.8 For the remainder of this section all bordism groups will be 2-adically completed.
Except for the appearance of the symbol Z2 for the 2-adic numbers, this will not be indicated in the
notation.

The differential dr of the Adams spectral sequence goes from bidegree (s, t) to bidegree (s+ r, t+
r− 1). It is customary to display the Adams spectral sequence with the horizontal axis numbered by
(t− s) and the vertical axis s. With this convention the differential dr goes one square to the left and
r-squares upward. The groups contributing to a given homotopy group lie in a column.

The ‘s’ in the Adams spectral sequence direction corresponds to a decreasing filtration of stable
homotopy groups known as the Adams filtration.

Definition 8.9 A map f :X→Y of spectra has (mod 2) Adams filtration greater than or equal to n
if there is a factorization

X= X0
f0−→X1

f1−→ ·· · → Xn = Y

in which each f i induces the zero map in mod 2 cohomology.

The Adams filtration is natural in both variables, in the sense that composition with a map X′ → X
or Y→ Y′ sendsmaps ofAdams filtration greater than or equal to n tomaps ofAdams filtration greater
than or equal to n.

Definition 8.10 A map has Adams filtration n if it has Adams filtration greater than or equal to n
but not greater than or equal to (n+ 1).

The maps in Adams filtration greater than or equal to n appear in the Adams charts with
s-coordinate greater than or equal to n.

The Adams spectral sequence for π∗X is a module over the Adams spectral sequence for the stable
homotopy groups π∗S0 of spheres. The element 2 ∈ π0S0 has Adams filtration 1 and is represented
by a class traditionally denoted

h0 ∈ Ext1,1A (Z/2,Z/2).

Multiplication by h0 in any Adams spectral sequence is indicated in the chart by a vertical line.
Similarly, the Hopf map η ∈ π1S0 is represented by the element

h1 ∈ Ext2,1A (Z/2,Z/2)

and multiplication by h1 is indicated by a (1, 1) diagonal line. A little care must be used in draw-
ing conclusions from these notations. For example, Fig. 1 shows the Adams spectral sequence for
π∗Mmc. From the chart it appears that π4Mmc = Z/8⊕Z2, with the generator of the Z/8 appearing
in Adams filtration 1. However all that the chart implies is that 8 times the apparent generator in
filtration 1 has Adams filtration greater than 4. Some additional argument is needed to conclude that
there is an element of order 8 in filtration 1. One can conclude from the chart that π4 is generated by
2 elements and has rank 1. The computation of π4Mmc will be given in detail in Section 8.5.2.
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CONSISTENCY OF M-THEORY 645

The s= 0 line of the Adams spectral sequence consists of the groups

homA(H
tX,H0S0)⊂ HtX.

The kernel of the higher differentials pick out the image of the Hurewicz homomorphism in
HtX. When X=Thom(B,V) is a Thom spectrum it is often useful to label an element x ∈ E0,t

2 =
homA(HtX,H0S0) with a cohomology class β ∈Ht(B) whose image under

Ht(B)
Thom iso−→ Ht(X)

x∗−→Ht(St) = Z/2 (8.3)

is non-zero. This can be a little perilous as there can be many cohomology classes having a non-
zero image under given class, and some care must be taken to ensure that the labeled cohomology
classes are linearly independent on the image of the Hurewicz homomorphism. In the end it provides
useful information. If x survives the Adams spectral sequence and is represented by a manifold M,
the image of β under (8.3) is

∫

M
β.

Such labels therefore provide a means of identifying specific manifolds as representing a basis of the
image of the Hurewicz homomorphism. The class β is a characteristic class of some kind.

8.5. Computations

Armed with these spectral sequences, we first turn to the computation of π∗Mmc in low degrees and
then proceed to π12Mmc. We remind the reader of Remark 8.8, that all homotopy groups have been
2-adically completed.

Dimension less than 4
The homotopy fiber of the map Bmc → BPin+ is the Eilenberg–MacLane space K(Z,4). It follows
easily from this that the map

π∗Mmc → π∗MTPin
+

is an isomorphism for * < 4 and an epimorphism when *= 4. From [38] one concludes that

π0Mmc = Z/2 generated by a point

π1Mmc = 0

π2Mmc = Z/2 generated by (Σ,0)

where Σ is a Klein bottle in a non-bounding pin+-structure, and

π3Mmc = Z/2 generated by S1 ×Σ,

where S1 is given the non-bounding String-structure (on S1 a String structure is equivalent to a Spin-
structure).
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646 D. S. FREED AND M. J. HOPKINS

Figure 1. The Adams spectral sequence for π∗Mmc

Dimension 4
We define a homomorphism e : π4Mmc → Z2 by

e(M,c) =
∫

M
c.

Forgetting the twisted lift of w4 gives a map

u : π∗Mmc → π∗MTPin
+.

By [38], the group π4MTPin
+ is cyclic of order 16, with generator RP4. Combined, these two

homomorphisms give a map

π4Mmc
(e,u)−→Z2 ⊕Z/16. (8.4)

Proposition 8.11 The map above gives an isomorphism of π4Mmc with the set of elements (a,b) ∈
Z2 ⊕Z/16 with a≡ b mod 2. The group π4Mmc is generated by (RP

4, c̃RP4) and (RP4#RP4,0).

Proof. By definition, the map

π4Mmc
e−→Z2 → Z/2
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CONSISTENCY OF M-THEORY 647

is given by
∫
Mw4, and the map

π4Mmc → π4MTPin
+ → π4MTPin

+ ⊗ Z/2= Z/2

is given by
∫
Mw

4
1. Since Sq4 : H0(M;Z/2)→ H4(M;Z/2) is zero, the fourth Wu class (4.20)

vanishes. Therefore,
∫
M(w4 +w1w3 +w2

2 +w4
1) =

∫
M(w4 +w4

1) = 0. This implies

∫

M
w4
1 =

∫

M
w4,

so the image of (8.4) is contained in the subgroup of elements (a, b) with a≡ b mod 2. On the other
hand, the Adams spectral sequence shows that the kernel of e has order at most 8. TheMmc-manifold
(RP4#RP4,0) is in the kernel of e. Its image in π4MTPin

+ = Z/16 is 2[RP4]. Since [RP4] generates
π4MTPin

+, the image of (RP4#RP4,0) actually has order 8. The assertion about generators follows
from the computation

(RP4, c̃1) 7→ (1,1)

(RP4#RP4,0) 7→ (0,2).

This completes the proof. □

Example 8.12 IfM is a Spin-manifold of dimension 4 then under (8.4) one has

(M,λ)→ (λ(M),λ(M)).

It follows that (M,λ)≡ λ(M)(RP4, c̃1). In particular

[K,λ] =−24[RP4, c̃1]

when K is a Kummer surface.

Dimension 12
Our main result in dimension 12 is the following restatement of Theorem 6.1.

Proposition 8.13 The group π12Mmc is generated (over Z2) by the six manifolds

(W′
0, c̃

′
0), (W′′

0 ,0), (W1,λ)

(K×HP2,λ), (RP4, c̃′
RP4)×B, (RP4#RP4,0)×B.

□

The proof makes use of the following fact about Spin-bordism, which we prove in Appendix B.
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648 D. S. FREED AND M. J. HOPKINS

Proposition 8.14 The group π12MSpin is free of rank 3, and generated by K×B, K×HP2, and
the manifold W1 described in Section 5.5.3, sitting in the fibration sequence

HP2 →W1 → CP1 ×CP1.

□

Proof. Proof of Proposition 8.13 We begin by extracting some facts from the Adams spectral
sequence. First of all, the map

π12Mmc → Z/2⊕Z/2 (8.5)

with components

∫

M
α4P(ι) and

∫

M
tr(ι3 + ι2w4)

gives an isomorphism of the quotient of π12Mmc by the elements of positive Adams filtration with
a subgroup of Z/2⊕Z/2. The computations of examples 8.5 and 8.7 show that this subgroup is in
fact all of Z/2⊕Z/2. The kernel of this map contains the image of π12M Spin and the image of
multiplication by B. This follows from a consideration of Adams filtrations, but it is easily checked
directly. Indeed if M is a Spin-manifold, then M is oriented, α= 0, and

∫
Mα

4P(ι) = 0. Also, since
the orientation double cover of M is MqM, one has

∫

M
tr(ι3 + ι2w4) =

∫

M⨿M
(ι3 + ι2w4)

= 2
∫

M
(ι3 + ι2w4) = 0.

In the case (M,c) = (N4, c′)×B all of the characteristic classes to be integrated are pulled back from
H8(N4) = 0.

Let J′ ⊂ π12Mmc be the subgroup generated by the image of π12M Spin and the image of
multiplication by B, and let

C= π12Mmc/J
′.

A portion of the Adams spectral sequence for computing the map π12MSpin→ π12Mmc is shown
in Fig. 2. The map, which is part of the (machine) computation of Ext, can also be determined by
composing with the map π12Mmc → π12MTPin

+. From it one can read off that the map (8.5) gives
an isomorphism

C⊗Z/2≈ Z/2⊕Z/2.

Since C is finitely generated, Nakayama’s Lemma and the computations of Examples 8.5 and 8.7
show that C is generated by (W′

0, c̃
′
0) and (W

′′
0 ,0).
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CONSISTENCY OF M-THEORY 649

Let J⊂ π12Mmc be the subgroup generated by

(W1,λ), (K×HP2,λ), (RP4, c̃′
RP4)×B, and (RP4#RP4,0)×B.

We are done if we can show that the manifolds (W′
0, c̃

′
0) and (W′′

0 ,0) generate π12Mmc/J. Note
that by Proposition 8.11, the subgroup J contains J′: it contains image of multiplication by B and
by Proposition 8.14 it contains the image of π12M Spin. By the above discussion, the manifolds
(W′

0, c̃
′
0) and (W′′

0 ,0) generate π12Mmc/J′, so they certainly generate π12Mmc/J. This completes
the proof. □

Dimension 11
The ambiguity of the M theory action has to do with the group π11Mmc. In this section, we offer
a tentative evaluation of this group. Since the ambiguity involves the entire group, we drop the
convention that groups have been completed at 2.

Proposition 8.15 The group π11Mmc is a finite abelian 2-group.

Figure 2. The map from Spin bordism to Mmc-bordism in dimension 12
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650 D. S. FREED AND M. J. HOPKINS

Proof. From the theory of Serre classes, one knows that π11Mmc is finitely generated. It therefore
suffices to show that

π11Mmc⊗Z[1/2] = 0.

The homotopy fiber of the map Bmc
w1−→K(Z/2,1) is BSpin×K(Z,4), representing Bmc as the

homotopy quotient of an action of Z/2 on BSpin×K(Z,4). A map T→ BSpin×K(Z,4) classifies
a pair consisting (V, ι) consisting of a Spin bundle V→T and an element ι ∈ H4(T;Z). The pullback
of the universal w1-twisted integer lift c of w4 is

c= λ(V)− 2ι

(see (8.2)), and the generator of the Z/2-action sends (V, ι) to

(V,λ(V)− ι).

By passing to Thom spectra, this depicts Mmc as the homotopy quotient of the Z/2 spectrum
MSpin∧K(Z,4)+ ∧ S1−σ, where σ is the sign representation of Z/2. This means that after inverting
2, the map

π∗MSpin∧K(Z,4)+ → π∗Mmc

is projection to a summand. The claim now follows from Stong’s Theorem [51], which states that
π11MSpin∧K(Z,4)+ = 0. □

From the discussion in the above proof, it is an easy matter to compute

π∗Mmc⊗Q.

Let J= (j1, . . . ,) run through the sequences of non-negative integers, almost all of which are 0, and
write

|J|= j1 + 2j2 + · · ·+ njn+ · · ·

pJ = p j11 p
j2
2 · · · .

Proposition 8.16 The group πmMmc⊗Q is zero if m is not divisible by 4. The map

(M,c) 7−→
∫

M
c2k+1pJ

gives an isomorphism

π4nMmc⊗Q−→
∏

2k+1+|J|=n

Q.

For example, this implies that the group π12Mmc has rank 3, corresponding to the indices
(k, J)= (0, (2, 0)), (0, (0, 1)), (1, (0)). This implies that there must be non-trivial differentials in the
chart (Fig. 1) from dimension 13 to dimension 12.
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CONSISTENCY OF M-THEORY 651

Remark 8.17 In [51] (note after Item 6), Stong also shows that for * < 12 the groups

π∗MSpin∧K(Z,4)+ ⊗Z[1/2]

are torsion free. In fact his argument for dimension 8 can also be adapted to dimension 12 to establish
the same conclusion for *= 12. So the above also provides an evaluation of the groups

π∗Mmc⊗Z[1/2], ∗ ≤ 12.

Because of Proposition 8.15, the group π11Mmc can be determined from the Adams spectral
sequence, which is displayed in Fig. 1. The E2-term provides an upper bound and shows that the
group has order at most 8. In the table, there are two d3-differentials indicated, originating in Adams
filtrations 1 and 2. These should be regarded as tentative at the moment and will appear in [31].
Assuming them, the Adams spectral sequence shows that after 2-completion, the group π11Mmc is
cyclic of order 2 and that an isomorphism is given by the mod 2 index of the pin+-Dirac operator.
We state the outcome of this argument as a restatement of Conjecture 7.1.

Conjecture 8.18 The map

π11Mmc → Z/2

given by the mod 2 index of the pin+ Dirac operator is an isomorphism.

Remark 8.19 Let M be the product of the Bott manifold, S1 in its non-bounding String-structure
and (Σ, 0) whereΣ is the Klein bottle in a non-bounding pin+-structure (see Section 8.5.1). The mod
2 index of the pin+ Dirac operator on M is 1 and so the above conjecture implies that π11Mmc is
generated by M.
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Appendix A On the anomaly theory of a spinor field

In an n-dimensional field theory F, the partition function of a spinor field on a closed n-dimensional
Riemannian manifold is the pfaffian of a Dirac operator, which is an element of a Pfaffian line,
as reviewed in Section 3. The Pfaffian line is the quantum state space of the associated anomaly
theory, which is an invertible (n+ 1)-dimensional theory α, but initially truncated to manifolds of
dimension ≤n, since such manifolds form the domain of F. To extend α to an (n+ 1)-dimensional
theory, we must define the partition function of a closed (n+ 1)-manifold, as well as an element
in the state space of the boundary of a compact (n+ 1)-manifold with boundary, and these ele-
ments must satisfy a gluing law. The results in [17] imply that an exponentiated η-invariant works
as the partition function: on a compact (n+ 1)-manifold with boundary, it takes values in the Pfaf-
fian line. But to define it, we must construct a Riemannian Dirac operator in (n+ 1)-dimensions
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652 D. S. FREED AND M. J. HOPKINS

from the n-dimensional Lorentzian data which define the spinor field. The construction was given in
[26, Section 9.2.5], but only in passing; in this appendix, we give more detail. We discuss the base
case of spin manifolds (no time-reversal symmetry) in Section A.1. In Section A.2, we specialize to
11 dimensions and the pin module relevant to M-theory.

A.1. The spin case in general dimensions

A spinor field in a relativistic quantum field theory is specified by [16, Section 6], a real spin represen-
tation S of the Lorentz spin group Spin1,n− 1 together with a symmetric positive Spin1,n− 1-invariant
map

Γ : S⊗ S−→ R1,n−1. (A1)

the positivity condition is that Γ(s, s) lie in the closure of the forward timelike vectors in R1,n−1.
Thus, S is an ungraded module over the even subalgebra Cliff0n−1,1 of the Clifford algebra, with
n− 1 generators squaring to+1 and a single generator squaring to−1. The pair (S,Γ)Wick rotates to
define a Dirac operator on a Riemannian spin n-manifold X as follows. First, the complexification SC
is a module over the complex algebra Cliff0n (C), so restricts to a representation of the compact spin
group Spinn. Also, Γ complexifies to a Spinn-equivariant morphism

Γ
C
: (Cn)∗ ⊗ S

C
−→ S∗C. (A2)

Let S→X be the complex vector bundle on X associated with the Spinn representation SC. Then as
usual the Dirac operator on X is the composition

DX = Γ
C
◦∇ : C∞(X;S)−→ C∞(X;S∗), (A3)

where∇ is the covariant derivative on sections of S→X. The operator DX is complex skew-adjoint.
(The metric on S→X is constructed in the next paragraph.) For X closed this operator appears in the
Dirac form (3.6), and its pfaffian is the fermionic path integral (3.4).

The construction of a Dirac operator on a Riemannian spin (n+ 1)-manifold W from the
data (S,Γ) uses the Clifford linear Dirac operator [40, Section II.7] and Morita equivalence of
Clifford algebras. By [16, Corollary 6.2], the data (S,Γ) determine a uniqueZ/2Z-graded Cliffn− 1,1-
module structure on S⊕ S∗. Let γ0 denote the Clifford generator with (γ0)2 =−1, acting as an odd
endomorphism of S⊕ S∗, and γ1, . . . ,γn−1 the Clifford generators with (γi)2 =+1. Fix an inner
product on S⊕ S∗ such that the finite group consisting of products of the γµ, µ= 0,1, . . . ,n− 1 acts
orthogonally. (It follows that Spinn acts unitarily on SC, which induces the hermitian metric on S→X
used in (A3).) Now

Cliff+(n+1) ⊗ (S⊕ S∗) (A4)

is a real super vector space which carries a left action of Spinn+ 1—by left multiplication on
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CONSISTENCY OF M-THEORY 653

Cliff+(n+ 1) tensored the identity on the second factor—and a commuting left action of the real super
algebra

A= Cliff−(n+1) ⊗Cliffn−1,1. (A5)

Elements of Cliff+(n+ 1) act by right multiplication on the first factor of (A4), tensored with the
identity on the second factor, which is equivalent to a left action of Cliff−(n+ 1), the opposite super
algebra. Elements of Cliffn− 1,1 act by the identity on the first factor of (A4) tensored with the action
above on the second factor. Now the left Spinn+ 1 action on (A4) defines a bundle of real A-modules
over W as well as a Dirac operator on its sections which commutes with the action of A. We claim
this solves the problem of defining an (n+ 1)-dimensional Riemannian Dirac operator from (S,Γ)
which can be used in the anomaly theory α. To verify that claim we must (i) define the exponentiated
η-invariant of this operator and (ii) identify the induced operator in n dimensions with (A3).

For (i) we use a (super) Morita equivalence of A with Cliff−3, ‘canceling’ the last n− 1 gen-
erators of Cliff−(n+ 1) with the n− 1 positive generators of Cliffn− 1,1. (The cancellation identifies
Cliff−(n−1) ⊗Cliff+(n−1) with the super algebra of endomorphisms of the vector space Cliff+(n− 1),
which is Morita trivial.) Under the Morita isomorphism, left A-modules are identified with left
Cliff−3-modules, and so the A-module (A4), rewritten as

Cliff+(n+1) ⊗ (S⊕ S∗)∼= Cliff+(n−1) ⊗ Cliff+2 ⊗ (S⊕ S∗), (A6)

is identified with

E= HomCliff+(n−1)⊗Cliff−(n−1)

(
Cliff+(n−1) , Cliff+(n−1) ⊗ Cliff+2 ⊗ (S⊕ S∗)

)

∼= Cliff+2 ⊗ (S⊕ S∗).
(A7)

Let δ1,δ2 be the generators of Cliff+2, and γ0 as above the (negative) generator of the Cliffn− 1,1-
action on S⊕ S∗. Then the Cliff−3 which acts on E is generated by γ0,δ1,δ2, with δ1,δ2 acting
by right multiplication on Cliff+2, tensored with the identity on S⊕ S∗. Furthermore, Spinn+1 ⊂
Cliff+(n+1) acts on E using left multiplication by δ1,δ2 on Cliff+2, tensored with the identity on S⊕
S∗, and by γ1, . . . ,γn−1 acting on S⊕ S∗, tensored with the identity on Cliff+2. The latter actions
determine an odd skew-adjoint Dirac operatorD on sections of the real vector bundle E= E0 ⊕E1 →
W associated with the representation E of Spinn+ 1. The operator D commutes with the left Cliff−3-
action on E. Now δ1δ2 ∈ Cliff−3 acts as a complex structure on E and γ 0δ2 ∈ Cliff−3 acts as a
complex antilinear operator which squares to −idE. Thus E has a quaternionic structure. (More
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654 D. S. FREED AND M. J. HOPKINS

simply, the ungraded algebra Cliff0−3 is isomorphic to the quaternion algebra.) The even self-adjoint
operator

D0 := γ 0δ1δ2D : C∞(W;E0)→ C∞(W;E0) (A8)

commutes with this quaternionic structure. Assume W is compact without boundary. Then D0 is
elliptic, so has a discrete spectrum and the eigenspaces E0

λ are finite dimensional quaternionic vector
spaces. Let a ∈ R be in the complement of the spectrum. Define

ηa(s) =
∑

λ ̸=0

sign(λ− a) (dimCE
0
λ) |λ|−s − sign(a)dimC kerD

0, Re(s)>> 0, (A9)

where the sum is over the non-zero eigenvalues of D0 and s is a complex number. According to the
results of [4–6] the sum converges to a holomorphic function of s if the real part of s is sufficiently
large, it has a meromorphic continuation to C, and s= 0 is a regular point. Then

α(W) = exp(2πiηa(0)/4) (A10)

is independent of a. It is the partition function of the anomaly theory.
We now verify (ii) above, namely that the Dirac operator in n dimensions induced from (A8)

(see [4, (3.1)]) can be identified with (A3). Let X be an n-dimensional Riemannian spin manifold
and considerW= R×Xwith the product Riemannian metric and spin structure. ThenW has a Dirac
operator (A8), which we view as complex since it commutes with the complex structure δ1δ2. Choose
a local orthonormal framing on X, with basis numbered 0,1, . . . ,n− 1, and a global coordinate t onR.
Order the Clifford generators of Cliff+(n+ 1) as δ1,δ2,γ1, . . . ,γn−1, as in the previous paragraph. Then
the Dirac operator D0 on W can be written locally as

D0 = γ0δ1δ2
(
δ1
∂

∂t
+ δ2∇0 + γi∇i

)
, (A11)

where the sum over i runs from 1 to n− 1. The symbol of D, evaluated on dt, is induced from the
algebraic operator

J(x⊗χ) =−(−1)|x| δ1xδ1δ2 ⊗ γ0χ, x ∈ Cliff+2, χ ∈ S⊕ S∗, (A12)

where |x| ∈ Z/2Z is the parity of the homogeneous element x. Then J commutes with the complex
structure δ1δ2, anticommutes with D0, and J2 =−id. According to [17, Section 1] the induced Dirac
operator D0

X on X is the operator (A11) restricted to functions on R×X which are invariant under
translation in t, mapping the +

√
−1-eigenspace of J to the −

√
−1-eigenspace of J. Thus, if now
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CONSISTENCY OF M-THEORY 655

x⊗χ is a section of E0→X, we compute

D0
X(x⊗χ) =−(−1)|x| (δ2∇0 + γi∇i)(xδ

1δ2 ⊗ γ0χ). (A13)

Write the ±
√
−1 eigenbundles of J as E0

± → X, and recall the complex vector bundle S→X
associated with SC. Then there are isomorphisms

S−→ E0
+

ψ +
√
−1ψ′ 7−→ 1⊗ψ − δ1 ⊗ γ0ψ − δ2 ⊗ γ0ψ + δ1δ2 ⊗ψ′

(A14)

and

S∗ −→ E0
−

λ +
√
−1λ′ 7−→ −1⊗ γ0λ′ + δ1 ⊗λ′ − δ2 ⊗λ + δ1δ2 ⊗ γ0λ

(A15)

A straightforward computation demonstrates that these isomorphisms intertwine the operators D0
X

in (A13) and DX in (A3), where the latter is

DX =
√
−1γ0∇0 + γi∇i (A16)

in the local moving frame on X. The factor
√
−1 comes fromWick rotation when passing from (A1)

to (A2).
As a companion to (A8) we have the operator

D1 := γ0δ1δ2D : C∞(W;E1)→ C∞(W;E1) (A17)

of the odd subspace of E= D0 ⊕E1. Note that swapping S and S∗ swaps the even and odd parts of E
(see (A7)).

Proposition A.1 The exponentiated η-invariant formed with D1 is the reciprocal of the exponenti-
ated η-invariant (A10) formed with D0.

Proof. From the definition of D following (A7), since Cliff−3 graded commutes with Cliff+(n+ 1)

it follows that ω = γ0δ1δ2 satisfies ωD=−Dω, and then since Di=ωD, i= 0, 1, we deduce ωD0 =
−D1ω. Therefore, the spectrum ofD1 is the negative of the spectrum of D0. Then, distinguishing the
η-functions (A9) for D0,D1, we have η0a(s) =−η1−a(s) for all s. The desired conclusion follows by
analytic continuation. □

The exponentiated η-invariants are the partition functions of invertible field theories α0,α1, and
the stronger version of Proposition A.1 is that α0 and α1 are inverse theories. If both are topological,
which is the case for the application to M-theory, then the stronger assertion follows from Proposi-
tion A.1 since the partition function determines the isomorphism class of the theory. Here we will not
attempt to justify the stronger assertion in the non-topological case, nor the conjecture that α0 ⊗α1

admits a canonical trivialization.
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656 D. S. FREED AND M. J. HOPKINS

A.2. The pin case in dimension 11

We describe the relevant pin representation and check that (A11) produces the Dirac operator in
12 dimensions which appears in [50].

We follow [26, Section 9.2] in which the Pin+ case is described by a parameter s=−1. The point
is to use the embeddings [26, Lemma 9.25] and [26, (9.44)], which specialize to

Pin+12 −→ Cliff012,1

γi 7−→ γi⊗ γ−
(A18)

and

Pin10,1 −→ Cliff010,2

γi −→ γi⊗ γ−,
(A19)

where (γ−)2 =−1 and i= 1,2, . . . ,12. These give embeddings of groups Pin+12 ↪→ Spin12,1 and

Pin10,1 ↪→ Spin10,2. The starting data are a real representation of Pin10,1 obtained by restriction from
an ungraded real Cliff010,2-module. There are isomorphisms

Cliff10,2 ∼= Cliff+8 ⊗Cliff2,2 ∼= End(M0 ⊕M1)⊗End(Cliff+2) (A20)

whereMi is a real vector space of dimension 8. A minimal real Cliff010,2-module is the even subspace

S :=M0 ⊗Cliff0+2 ⊕ M1 ⊗Cliff1+2 (A21)

of (M0 ⊕M1)⊗Cliff+2, which has real dimension 32. (We could as well take the odd subspace (see
Proposition A.1.)) The restriction of S to Cliff010,1 ⊂ Cliff010,2, or equivalently to Spin10,1 ⊂ Spin10,2,
is irreducible. (The Cliff+8 in (A20) splits off and one simply checks for Cliff2,1 ⊂ Cliff2,2.) By [16,
Theorem 6.1] there is a Spin10,1-invariant pairing (A1), unique up to a positive scalar, and it is then
automatically Pin10,1-invariant. This defines the starting data (S,Γ).

The Wick rotation on 12-manifolds, carried out in the second paragraph of Section A.1, is
modified in the first instance by tensoring (A4) with Cliff−1 and using the embedding (A18), of
course setting n= 11. Then the commuting super algebra (A5) is Cliff1,12 ⊗Cliff10,2, which as
before is Morita equivalent to Cliff−3. Then E= Cliff+2 ⊗ (S⊕ S∗) is as in (A7), but is a left
Cliff12,1 ⊗Cliff−3-module: the last Clifford generator in Cliff12,1 acts via the action of the last Clif-
ford generator on the Cliff10,1-module S⊕ S∗. The even subspaceE0 ⊂ E has real dimension 128 and
carries a quaternionic structure, so is a 32-dimensional quaternionic vector space. The resulting rep-
resentation of Pin+12 agrees with the one described at the end of [50, Section 3]. (Stolz distinguishes
between two representations of Pin+13, but they are isomorphic when restricted to Pin+12.)

Appendix B Spin bordism in dimension 12

The purpose of this appendix is to give a proof of Proposition 8.14, which asserts that after 2-adic
completion the groupMSpin4 = π12MSpin is freely generated by the bordism class of the manifolds
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CONSISTENCY OF M-THEORY 657

K×B, K×HP2 and W1. Here B is a Bott-manifold, K is a K3-surface, HP2 is quaternionic projec-
tive space and W1 is the manifold described in Section 5.5.3. This is done by direct application of
the computation of Anderson, Brown and Peterson [3]. The material in the section owes much to
conversations with Meng Guo.

Following Anderson, Brown and Peterson [2, Section 4], associated with an oriented vector
bundle V over a space X is the total KO-Pontrjagin class

πt(V) =
∞∑

n=0

πn(V) tn ∈ KO0(X)[[t]].

It is uniquely determined by the following properties:

(1) (Naturality) If f :Y→X is a continuous map then πt(f∗V) = f∗πt(V).
(2) For vector bundles V and W one has πt(V⊕W) = πt(V)πt(W).
(3) If V is an oriented 2-plane bundle then πt(V) = 1+ t(V− 2).

Because of property (2) the total KO-Pontrjagin class πt(V) can be defined for virtual oriented
vector bundles V.

In practice one often computes πt(V) by following the splitting principle and finding a map
f :Y→X for which KO∗f is a monomorphism and f∗V is isomorphic to the oriented real vector
bundle underlying a sum of complex line bundles Li. In this case one has

πt(f
∗V) =

∏
(1+ t(Lui − 2)) ∈ KO0(Y) and

πt(f
∗V)⊗C=

∏
(1+ t(Li+ L−1

i − 2)) ∈ K0(Y),

in which the notation Wu is being used for the real vector bundle underlying a complex vector
bundleW.

For a Spin-manifold M of dimension d, and a sequence J= (j1, j2, . . . ,), of non-negative integers
ji, with ji= 0 for i� 0, one defines the KO-Pontrjagin number πJ(M) ∈ KOd to be the index of the
Clifford linear Dirac operator on M coupled to the virtual bundle

(
π1(TM)

) j1 (
π2(TM)

) j2 · · · .

Anderson, Brown and Peterson showed that the map

MSpind
(πJ(M) ,wN(M))−→

∏

J

KOd×
∏

N

Z/2 (B1)

is an isomorphism after completion at 2. Here J runs over the sequences (j1, . . .) with j1 = 0 and

n(J) = (j1 + 2j2 + 3j3 + · · ·)≤
{
d/4 n(J) even

(d+ 2)/4 n(J) odd.

The invariants wN(M) are certain Stiefel–Whitney numbers of M, and do not occur in dimension
less than 20. Both sides of (B1) are finitely generated abelian groups, so that the property of being
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658 D. S. FREED AND M. J. HOPKINS

an isomorphism after 2-adic completion is equivalent to being an isomorphism after localization at
2 and also to being an isomorphism after reducing mod 2. For further information see [1, Corol-
lary 1.4], [3, Theorem 2.2] or the Manifold Atlas [41]. We alert the reader consulting these sources
that our convention associating Pontrjagin numbers to sequences J differs from the one used in these
references.

For the purpose of writing down KO-Pontrjagin numbers it is helpful to choose a basis of KO4k

that is compatible with multiplication. We do this by identifying KO4k with its image in K4k. Writing
v1 ∈ K2 for the Bott periodicity class, a basis for the image of KO∗ consists of the elements

{v8k1 ,2v8k+4
1 }.

For convenience we will use the same names for basis elements of KO4k, with the reminder that the
element 2v8k+4

1 ∈ KO8k+4 is not divisible by 2.
We are interested in dimensions d= 4, 8, 12 where the KO-Pontrjagin numbers one encounters

are those for which J is the zero sequence, in which case πJ(M) (which we denote π0(M)) is the
index of the Clifford linear Dirac operator onM, or the sequence Ji whose only non-zero entry is a 1
in the ith spot. In this latter case πJi(M) is the index of the Clifford linear Dirac operator on M with
coefficients in πi(TM). We write

πi(M) = πJi(M),

and note that sending M to the total class

πt(M) =
∑

i≥0

πi(M) ti

defines a ring homomorphism

MSpin∗ → KO∗[[t]].

Remark B.1 Hopefully our notation will not be confusing to the reader. The symbol πt(−) has a
meaning that depends on the mathematical type of the argument. For a vector bundle V over a space
X, πt(V) is an element ofKO0(X)[[t]]. IfM is a Spin-manifold of dimension d then πt(M) is an element
of KOd[[t]]. One has

πt(M) = f∗πt(TM)

where f is the unique map from M to a point, and f∗ is the pushforward in KO-theory.

By [2, Theorem 4.6], whenM has dimension d= 4i the KO-Pontrjagin number πi(M) is the same
as the ordinary Pontrjagin number pi(M)

πi(M) = pi(M)v2i1 . (B2)

Note that in terms of our chosen basis for KO4i, when i is odd, (B2) means that

πi(M) = (2v2i1 )
pi(M)

2
.
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CONSISTENCY OF M-THEORY 659

We now turn to our specific manifolds. In dimension 4 we have (by (B2))

πt(M) = (2v21)
(
− p1
48

+
p1
2
t
)
.

For a K3-surface one has p1 =−48 (see (5.3)), and so

πt(K) = (2v21)(1− 24t).

In the Anderson, Brown, Peterson isomorphism for d= 4, only the zero sequence J occurs, and the
map

π0(M) :MSpin4 → KO4

is an isomorphism after completing at 2. Since π0(K) = (2v21) the composition

Z
K−→MSpin4

π0

−→KO4

is an isomorphism, and so

Z
K−→MSpin4

is an isomorphism after completing at 2. Less formally, the 2-adic completion of M Spin4 is freely
generated (2-adically) by K.

In dimension 8, a little calculation gives

πt(M) = v41

(
7p21 − 4p2
5760

+
p21 − 4p2

24
t+ p2 t

2

)
[M]. (B3)

For the Bott manifold, p21 = 0 and p2 =−1440 (see (5.12)), and so

πt(B) = v41(1+ 240t− 1440t2).

For HP2 one can plug the values of the Pontrjagin classes from (5.9) into (B3) to get

πt(HP2) = v41(−t+ 7t2),

though it is a little more instructive to work through the splitting principle approach (after all, that
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660 D. S. FREED AND M. J. HOPKINS

was what was used to determine the Pontrjagin classes in the first place). Let f : CP5 →HP2 be the
map

S11/U(1)→ S11/SU(2).

As described in Section 5.2, the KO class of f∗THP2 is the KO class underlying the virtual complex
bundle

3(O(1)+O(−1))− (O(2)+ 1).

This means that

f∗πt(THP2) =
(1+ t(O(1)u− 2))3(1+ t(O(−1)u− 2)))3

(1+ t(O(2)u− 2))

=
(1+ t(O(1)u− 2))6

(1+ t(O(2)u− 2))

since O(n)u =O(−n)u.
We need to complexify the above and compute the Chern character. Complexifying gives

f∗πt(THP2)⊗C=
(1+ t(O(1)+O(−1)− 2))6

(1+ t(O(2)+O(−2)− 2))
∈ K0(CP5)

and so

f∗Â(THP2) = (y/(ey/2 − e−y/2))6(2y/(ey− e−y))−1

ch(f∗πt(THP2)) = (1+ t(ey+ e−y− 2))6/(1+ t(e2y+ e−2y− 2))

f∗Â(THP2)ch(πt(THP2)) = 1+
1
12

(−1+ 24t)x+
(
−t+ 7t2

)
x2

in which y= c1(O(1)) is the generator ofH2(CP5) and x= y2. From the coefficient of x2 we recover
the formula

πt(HP2) = v41(−t+ 7t2). (B4)

In dimension 8 the Anderson, Brown, Peterson map is

(π0,π2) :MSpin8 → (KO8)
2.

The matrix of the composite

Z2

[
B HP2

]

−→ MSpin4



π
0

π2





−→ (KO8)
2
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CONSISTENCY OF M-THEORY 661

is

(
1 0

−1440 7

)

which is the identity modulo 2. This implies that after 2-adic completion, (or even just localization
at 2), M Spin8 is freely generated by {B,HP2}.

Now for dimension 12. The invariants are π0, π2 and π3, and we need to calculate them on K×B,
K×HP2 and W1. Using the fact that πt(M) is multiplicative in the Spin-manifold M we find

πt(K×B) = (2v61)(1− 24t)(1+ 240t− 1440t2)

= (2v61)(1+ 216t+−7200t2 + 34560t3)

and

πt(K×HP2) = (2v61)(1− 24t)(−t+ 7t2)

= (2v61)(−t+ 31t2 − 168t3).

We also know from (5.39) that p3(W1) = 6 so that

π3(W1) = 6v61 = (2v61)(3).

The matrix of the composition

Z3

[
K×B K×HP2 W1

]

−→ MSpin12





π0

π2

π3





−→ (KO12)
3

is therefore




1 0 ∗
−7200 31 ∗
34560 −168 3




which reduces modulo 2 to



1 0 ∗
0 1 ∗
0 0 1




which is clearly invertible. This shows that {K×B,K×HP2,W1} freely generate the 2-adic
completion of M Spin12, which is the assertion of Proposition 8.14.
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662 D. S. FREED AND M. J. HOPKINS

Appendix C Cohomology ofMmc

As explained earlier, the Adams spectral sequence chart in Section 9 was determined by specifying
a basis for H∗(Mmc) and then using a Mathematica program to encode the action of the Steenrod
operations in this basis and generate the input for Bruner’s program [10] for computing the coho-
mology of the Steenrod algebra with coefficients in a given module. In this appendix, we describe
the cohomology ring H∗(Bmc), the module H∗(Mmc) and the action of the Steenrod algebra. Using
this, the interested reader should be able to reproduce the computation of the E2-term of the Adams
spectral sequence.

Throughout this appendix all cohomology will be with coefficients in Z/2.
We begin with the cohomology of BSpin. For a number n=

∑
εi2i, ε∈ {0, 1} write α(n)=

∑
εi.

Proposition C.1 (Thomas [53]) The map BSpin→BSO induces an isomorphism

Z/2[wi | α(i− 1)> 1] = Z/2[w4,w6, . . . ]≈ H∗(BSpin). (C1)

□

Remark C.2 The kernel of the map

H∗(BSO) = Z/2[w2,w3, . . . ]→ H∗(BSpin)

is the regular ideal with generators

Sq2
n

Sq2
n−1 · · ·Sq1w2. (C2)

It is not generated by the classeswi withα(i− 1)= 1. The first place these ideals differ is in dimension
17. In H∗(BSpin) one has

w17 = w7w10 +w6w11 +w4w13.

Consider the fibration sequence

BString→ BSpin
λ−→K(Z,4). (C3)

Proposition C.3 (Stong [52]) The map BString→BO induces an isomorphism

Z/2[wi | α(i− 1)> 2] = Z/2[w8,w12, . . . ]≈ H∗(BString).

Remark C.4 The kernel ofH∗(BSpin)→ H∗(BString) is the regular ideal generated by the elements
SqIw4 in which I= (i1, i2, . . . , ik) is a sequence of non-negative integers satisfying

iℓ ≥ 2iℓ 1≤ `≤ k

(i1 − 2i2)+ · · ·+(ik−1 − 2ik)+ ik < 4

ik > 1.

The first condition is called admissibility and the quantity on the left side of the second inequality is
the excess of the sequence. The kernel is not the ideal generated by the wi with α(i− 1)= 2.
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CONSISTENCY OF M-THEORY 663

The Leray–Hirsch theorem applied to (C3) implies

Proposition C.5 The map BSpin→ K(Z,4) induces an isomorphism

H∗(K(Z,4))[wi | α(i− 1)> 2] = H∗(K(Z,4))[w8,w12, . . . ]
≈−→H∗(BSpin). (C4)

□

Remark C.6 To work out the action of the Steenrod operations under the above isomorphism, one
must use the relations setting the terms (C2) equal to zero, and the Wu formulae. This can get
complicated. For example one has

Sq1w16 = w17

= w7w10 +w6w11 +w4w13

= (Sq4Sq2w4)(Sq
3w4)+ (Sq5Sq2w4)(Sq

2w4)

+ (Sq6Sq3w4)(w4)+ (Sq2w4)(Sq
3w4)w4.

From (C3) one constructs a fibration sequence

BString→ BSpin×K(Z,4)
(ι,−λ−ι)−→ K(Z,4)×K(Z,4). (C5)

in which the rightmost map is equivariant when K(Z,4)×K(Z,4) is given permutation Z/2-action.
For a space X write

D2(X) = EZ/2 ×
Z/2

(X2)

in which X2 =X×X is equipped with the permutation action. Passing to homotopy orbits from (C5)
gives the fibration sequence

BString→ Bmc → D2(K(Z,4)).

As before the Leray–Hirsch theorem leads to an isomorphism

H∗(D2(K(Z,4))[w8,w12, . . . ]
≈−→H∗(Bmc).

To go further we must describe the cohomology of D2(X). The computation of the cohomology
ring of D2(X) is due to Dyer and Lashof [19], and the action of the Steenrod operations was deter-
mined by Nishida [43]. To describe the computation we first recall the additive and multiplication
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664 D. S. FREED AND M. J. HOPKINS

transfers described in Section 8.2.1. Suppose that

π : M̂→M

is a double cover, classified by

α ∈ H1(M;Z/2),

and write

τ : H∗(M̂)→ H∗(M̂)

for the map induced by the deck transformation. There are additive and multiplicative transfers

tr : Hk(M̂;Z/2)→ Hk(M;Z/2)

P= Pα : Hk(M̂;Z/2)→ H2k(M;Z/2)

which are natural in the sense that they commute with base change inM. They satisfy the following
properties (for x,y ∈ H∗(M̂), z ∈ H∗(M))

(1) tr(x+ y) = tr(x)+ tr(y)
(2) tr(x)z= tr(xπ∗(z))
(3) π∗tr(x) = x+ τ(x)
(4) P(xy)=P(x)P(y)
(5) P(x+ y) = P(x)+P(y)+ tr(xτ(y))
(6) π∗P(x) = xτ(x).

Note that property (2) implies that tr(x)α= 0.
We will refer to the additive transfer tr simply as the transfer and the multiplicative transfer P as

the norm.
The transfer map commutes with Steenrod operations

Sqktr(x) = tr(Sqkx).

Suitably interpreted, the norm also commutes with the Steenrod operations. Let β ∈ H1(BZ/2) be
the non-zero element and for x∈Hn(X) write

Sqβ(x) =
∑

Sqn−i(x)βi = x2 +βSqn−1(x)+ · · ·+βnx ∈ H2n(BZ/2×X).

As Nishida [43] observed, the values of the Steenrod operations on the norm P(x) are determined
by the formula

Sqβ(P(x)) = P(Sqβ(x)). (C6)

Proposition C.7 ([19], Proposition 2.2) Suppose X is a space and {ei} is a basis of H∗(X;Z/2).
The vector space H∗(D2(X)) has basis

{tr(ei⊗ ej) | i< j}∪ {α jP(ei⊗ 1) | j≥ 0}.
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CONSISTENCY OF M-THEORY 665

To relate the elements P(x) and tr(x) to other naturally occurring elements, it is useful to exploit
both the covering map

π : EZ/2×X×X→ D2(X))

and the diagonal map

∆ : BZ/2×X→ D2(X),

the latter obtained by passing to homotopy orbits from the diagonal inclusion (denoted by the same
symbol)

∆ : X→ X×X.

From the definition of Steenrod operations, one has

∆∗(P(x)) = Sqα(x)

where α ∈ H1(BZ/2) is the non-zero element. From naturality and the pullback square,

one also sees that

∆∗(tr(x)) = tr(∆∗(x)) = 0.

The next result also follows from [19, Proposition 2.2]

Proposition C.8 If π∗(x) = 0 and ∆∗(x) = 0 then x= 0.

In practice, it is easier not to separate out the factor of D2K(Z,4) but rather to work directly with
BSpin×K(Z,4). In these terms, the diagonal inclusion corresponds to the map

BSpin〈w4〉
(id,−λ/2)−→ BSpin×K(Z,4) (C7)
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666 D. S. FREED AND M. J. HOPKINS

in which BSpin〈w4〉 is defined by left square in the diagram of homotopy pullback squares

(C8)

Since the right square in (C8) is a homotopy pullback square, the space BSpin〈w4〉 can is canonically
equivalent to homotopy fiber of the map

BSpin
w4−→K(Z/2,4).

The left square in (C8) gives a cohomology class λ/2 ∈ H4(BSpin〈w4〉)with the property that 2(λ/2)
is the restriction of λ.

One arrives at (C7) by considering first

to identify the homotopy pullback of the left horizontal and vertical maps with the homotopy fiber
of the map (2ι+λ), and the homotopy pullback square

to identify the fiber of (2ι+λ) with BSpin〈w4〉.
Passing to homotopy orbits from

BSpin〈w4〉 → BSpin×K(Z,4)→ BSpin

one sees that the composition

BZ/2×BSpin〈w4〉 → Bmc → BPin+ ≈ BZ/2×BSpin

is the product of the identity map and the map BSpin〈w4〉 → BSpin. It follows that the virtual vector
bundle classified by

BZ/2×BSpin〈w4〉 → Bmc → BO
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CONSISTENCY OF M-THEORY 667

is the sum of the pullback of the tautological line bundle L on BZ/2 and the pullback of the virtual
vector bundle V classified by

BSpin〈w4〉 → BSpin→ BO.

See Section 8.2. With this in hand, one can appeal to the pullback square

and Proposition C.8 to conclude that the map from H∗(Bmc) to the pullback of

is a monomorphism and identify classes like tr(e) and P(e) in terms of Stiefel–Whitney classes when
possible.

Example C.9 Consider the class tr(ι). The restriction of tr(ι) to H∗(BSpin×K(Z,4)) is

ι+ τ(ι) = ι+(ι+w4) = w4.

This suggests that tr(ι)=w4. To verify this, one needs to only check that the restriction of w4 to
BZ/2×BSpin〈w4〉 is zero. For this, one computes

w4(L⊕V) = w4(V)+w1(L)w3(V) = 0.

It follows that tr(SqIι) = SqI(w4).

Remark C.10 For the interested reader, the map

H∗(BSpin)→ H∗(BSpin〈w4〉)

factors uniquely as

H∗(BSpin)→ H∗(BString)→ H∗(BSpin〈w4〉).
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668 D. S. FREED AND M. J. HOPKINS

Using this, the pullback square

and the Eilenberg–Moore spectral sequence imply that the map

H∗(BString)⊗H∗(K(Z,4))→ H∗(BSpin〈w4〉) (C9)

is an isomorphism of algebras over the Steenrod algebra.

To put this all together, let {ei} be the basis ofH∗(K(Z,4)) consisting of monomials in the admis-
sible Steenrod operations on ι and {wI} be the basis of monomials in the Stiefel–Whitney classes

{wi | α(i− 1)> 2}.

Then, a basis of H∗(Bmc) is given by

{wItr(eiτ(ej)) | i< j}∪ {wIα jP(ei)}. (C10)

The Steenrod operations, products and the relation with the Stiefel–Whitney classes are as described
above.

The module H∗(Mmc) is a free module over H∗(Bmc) on the Thom class U of the vector bundle
classified by the negative of the map

Bmc → BPin+ → BO

As described in Section 8.2, we use the equivalence

BZ/2×BSpin≈ BPin+

obtained by writing a stable Pin+ bundle in the form L⊕V and write α=w1(L), wi = wi(V). With
these conventions, the Thom formula for the total squaring operation on U gives

Sqt(U) = (1+ tα)−1(1+ t4w4 + · · ·)−1U. (C11)

For the computations reported in this paper, the authors restricted to dimensions less than 16 and
used the basis consisting of the product of the basis elements in (C10) with the Thom class U.
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