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Abstract

We prove that there is no parity anomaly in M-theory in the low-energy field theory approxima-
tion. Our approach is computational. We determine the generators for the 12-dimensional bordism
group of pin manifolds with a w;-twisted integer lift of wy; these are the manifolds on which Wick-
rotated M-theory exists. The anomaly cancellation comes down to computing a specific n-invariant
and cubic form on these manifolds. Of interest beyond this specific problem are our expositions
of computational techniques for n-invariants, the algebraic theory of cubic forms, Adams spectral
sequence techniques and anomalies for spinor fields and Rarita—Schwinger fields.

1. Introduction

Time-reversal symmetry is a topic of renewed interest, in part because of its prevalence in condensed
matter models. Under Wick rotation, time reversal is connected to reflections in Euclidean space,
and time-reversal symmetric theories may be formulated unoriented manifolds. The obstruction to
doing so is often termed a ‘parity anomaly’, though ‘parity’ is not synonymous with ‘time-reversal
symmetry’. (‘Parity’ typically refers to a spatial reflection through a point in Minkowski spacetime,
relative to a splitting into time cross space. As this is orientation preserving in even space dimensions,
more relevant is reflection in a timelike hyperplane, which is always orientation reversing. A time
reversal is reflection in a spacelike hyperplane.) Witten [S6] recently showed that there is no anomaly
for this symmetry on an M2-brane in M-theory. He suggested that we investigate the analogous issue
in the bulk on suitable 11-manifolds. We do so here and prove that there is no time-reversal anomaly
in M-theory.

We work in the low-energy field theory approximation to M-theory, which is a classical 11-
dimensional supergravity with a gravitational correction term [20, 54]. The theory includes a
fermionic field, and so X carries a pin structure—the appropriate choice is a pin™ structure, as
opposed to a pin~ structure—on the tangent bundle. The C-field in M-theory, which is odd under
time-reversal symmetry, induces an additional topological structure on X: a w-twisted integer lift of
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604 D. S. FREED AND M. J. HOPKINS

the fourth Stiefel-Whitney class w4(X) (see [57, Section 2.3]). A pin*-manifold with a w;-twisted
integer lift of wy is called an m.-manifold. There are two sources of anomalies. The first is the stan-
dard fermion anomaly, though there are subtleties: the fermion field is a Rarita—Schwinger field,
rather than a spinor field, and the background is a pin manifold, rather than a spin manifold. The
second anomaly is non-standard, due to the cubic form for the C-field. In the spin case, Witten
[57, Section 4] represents the C-field as a connection on a principal Eg-bundle, and he uses this
to prove that these two anomalies cancel. In the pin case, this argument is not available, so we
resort to a computational approach. Each anomaly is encoded in an invertible unitary topological
12-dimensional field theory, hence is determined by its partition function. Furthermore, the partition
function is a bordism invariant, so it suffices to check that the partition functions of the two theories
agree on a set of generators for the appropriate bordism group. We use the Adams spectral sequence,
together with computer assistance and geometric arguments, to compute a set of generators for the
relevant bordism group. We deploy a mix of topological and geometric techniques to compute the
partition functions on these generators and so prove anomaly cancellation.

To define M-theory, we must not only prove that anomalies cancel but provide data which perform
the anomaly cancellation. In the spin case, ignoring time-reversal symmetry, this ‘setting of the
quantum integrand’ can be achieved using Witten’s Eg-bundle technique [29]. We do not know a
canonical setting in the pin case, and indeed, isomorphism classes of settings form a torsor over
isomorphism classes of 11-dimensional invertible field theories on the same class of manifolds. The
latter group is isomorphic to Z/2Z, at least conjecturally, as we explain in Section 7. Since this group
is non-zero, the problem of setting the quantum integrand remains open.

Now we give a more detailed summary. We begin in the expository Section 2 by reviewing the
Wick-rotated setting for M-theory as a theory on a certain geometric bordism category. We recall
that the anomaly of an 11-dimensional theory is an invertible 12-dimensional theory « and that
invertible topological theories may be represented as maps of spectra in stable homotopy theory.
The aim of this paper is to prove Theorem 2.2: the tensor product cpg ® - of the anomaly theo-
ries arising from the Rarita—Schwinger and C-fields of M-theory is trivializable. In Section 3, we
define arpg. As with the anomaly of any fermionic field, its partition function is the exponential of an
Atiyah—Patodi—Singer n-invariant. We elucidate some aspects of the general theory in Appendix A,
and in Section 3.2, we give a general formula for the anomaly theory of a Rarita—Schwinger field
(see (3.10)). In our situation, the anomaly partition function is independent of the Riemannian met-
ric, so is a topological invariant. It turns out to be =1 on m.-manifolds, though at this stage the
only apparent statement is that it is a root of unity. Indeed, on a general pin™ manifold, it does not
necessarily have the order 2. We develop formulas to compute it, following the work of Donnelly,
Stolz and Zhang. Of particular interest is a topological formula which, as far as we know, has only an
analytic proof in the literature [58]; it was brought to our attention by Jonathan Campbell. The par-
tition function of the anomaly theory «- is an inhomogeneous cubic polynomial in the C-field. It is
also topological and by definition is equal to £1. In Section 4, we develop an algebraic theory of the
cubic form, imitating the standard algebraic theory of quadratic forms, and then define «.. We also
review Witten’s proof that apg ® a is trivializable when restricted to spin manifolds. Section 5 is a
geometric interlude to review some basic spin and pin™ manifolds and their topological invariants.
We also introduce more complicated manifolds used as representative elements of bordism groups.
Our main computational result, whose proof we sketch in Section 8, is stated as Theorem 6.1. We
specify the generators of the relevant 12-dimensional bordism group, which we represent by specific
12-dimensional m.-manifolds. For each of these, we compute that the partition function of opg ® o
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CONSISTENCY OF M-THEORY 605

vanishes, which suffices to demonstrate the anomaly cancellation. We employ a potpourri of tech-
niques to make the computations. The aforementioned ambiguity in the definition of M-theory is
discussed in Section 7. Section 8 contains a computation of the low-dimensional bordism groups of
m.-manifolds. In particular, we provide a proof of Theorem 6.1. For the computation, we need a set
of generators of 12-dimensional spin bordism (localized at 2), which we produce in Appendix B,
based on the work of Anderson—-Brown—Peterson. Appendix C details the mod 2 cohomology of the
Thom spectrum of m.-manifolds, a key input into the Adams spectral sequence computation. A more
detailed computer-free version of these computations will appear in [31].

Aspects of this paper have interest beyond our proof that M-theory is time-reversal invariant. This
includes the algebraic theory of cubic forms in Section 4; our techniques to compute n-invariants
of pin manifolds; the Adams spectral sequence techniques in Section 8 and the cohomology com-
putations in Appendix C; the discussion of spinor field anomalies in Appendix A; and the interplay
between invertible unitary topological field theories and stable homotopy theory, which is developed
and plays a key role in an application to condensed matter physics in [26].

The authors take this opportunity to express our deep sense of gratitude and indebtedness to
Michael Atiyah for his mentoring, encouragement and support. Michael’s enthusiasm for mathe-
matics and for its interaction with physics has long been an inspiration. We appreciate his unfailing
sense of what constitutes an enlightening and ‘correct’ proof, and we join him in lamenting the lack
of such a proof for this anomaly cancellation.

We thank Rob Bruner, Jonathan Campbell, Stephan Stolz and Edward Witten for useful conver-
sations and correspondence. The anonymous referee gave an earlier version a very close reading,
and the resulting comments greatly improved the manuscript, for which we are thankful.

2. Time-reversal, anomalies and bordism

A relativistic quantum field theory on n-dimensional Minkowski spacetime M”" has a symmetry
group J4 ,—1, equipped with a homomorphism to the group of isometries of M". (See [26, Section 2]
for an account of symmetry groups in quantum field theory.) Divide by translations and Wick rotate
to Euclidean signature to obtain a compact Lie group H, of vector symmetries, equipped with a
homomorphism p,,: H, — O, whose image is (i) SO, in the absence of time-reversal symmetry,
or (ii) O, if the theory has time-reversal symmetry. Eleven-dimensional M-theory has both time-
reversal symmetry and fermionic fields, and no additional global symmetries, so the Wick-rotated
symmetry group is one of the two Pin groups. (One could regard the C-field as the background field
for a higher symmetry, but as the primary objects of interest are the background fields we do not
pursue this point of view.) Because time-reversal squares in Minkowski spacetime to (—1)7, the
appropriate group is H,; = Pinlﬁ; see [26, Appendix A]. We consider M-theory on curved compact
11-dimensional Riemannian manifolds X, and so we require that X have a tangential pin™ structure;
equivalently, the stable normal bundle of X has a pin~ structure. There is an additional topologi-
cal structure, first identified in [57, Section 2.3]. The C-field is an abelian gauge field, thus obeys
a Dirac quantization condition. The correct condition is that the de Rham cohomology class of its
field strength, a closed 4-form twisted by the orientation bundle, refines to a w;-twisted integer coho-
mology class ¢ € H*(X;Z) whose mod 2 reduction is the fourth Stiefel-Whitney class w4(X). Here
Z is the local coefficient system induced from the orientation double cover of X. This motivates the
following terminology, taken from [56, Section 4.3], where it is introduced by analogy with a spin¢
structure.
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606 D. S. FREED AND M. J. HOPKINS

DEFINITION 2.1 Let M be a pin™ manifold. An m, structure on M is a wi-twisted integer lift
of wa(M). We say M is an m.-manifold if M is equipped with an m, structure.

A necessary and sufficient condition to be m, is BW4 (M) =0, where B is the Bockstein map into
wi-twisted integral cohomology (see 4.21). The Wick rotation of M-theory is defined on a geometric
bordism category of m.-manifolds.

Once an n-dimensional field theory is formulated on compact Riemannian manifolds, then there
is the possibility of an anomaly: the partition function may not be well-defined as a complex num-
ber, but rather may be an element of a complex line. These complex lines depend locally on the
Riemannian manifold, which is expressed by saying that they are the quantum state spaces of a field
theory .. The theory ais called a gravitational anomaly. In addition to the coupling to a gravitational
background, if the kernel of p, : H, — O, is non-trivial, then there is also a coupling to a background
gauge field, in which case we have a mixed gravitational and gauge anomaly. In most examples, the
anomaly theory « extends to an (n 4 1)-dimensional theory which has a partition function on closed
(n+ 1)-manifolds. That is so in this paper. The 11-dimensional M-theory is not rigorously defined,
but nonetheless we do define the 12-dimensional anomaly theory that is our main focus. Anomalies
are very special among field theories: they are invertible. Recall that field theories have a composi-
tion law of tensor product, and there is a trivial theory 1 which is an identity for this composition
law. So a field theory « is invertible if there exists a theory /3 such that & ® 3 is isomorphic to 1. An
invertible field theory has non-zero partition functions, one-dimensional state spaces, etc. We refer
to [23] and the references therein for exposition on this point of view about anomalies.

Recall that M-theory has two bosonic fields—a metric and C-field—and a single fermionic field—
the Rarita—Schwinger field ¢. To analyse anomalies we work in the effective theory after integrating
out 7; the metric and C-field are treated as background fields. One source of anomalies is the
fermionic integration of v, which we review in Section 3. Let oy denote that 12-dimensional
anomaly theory. The other source of anomalies is the ‘Chern-Simons coupling’ of the C-field, which
is an inhomogeneous cubic form we review in Section 4. Let o~ denote that 12-dimensional anomaly
theory. Our main result is the cancellation of these anomalies.

THEOREM 2.2 The total anomaly theory opg @ (- is trivializable.

That is, aze ® o = 1. This implies that M-theory should exist as an ‘absolute’ quantum field the-
ory whose partition functions are complex numbers (not merely elements of an abstract complex
line), whose state spaces are vector spaces (not merely well-defined as projective spaces), etc. In
other words, M-theory is anomaly-free. As explained in [56, Section 1], this is a strong form of the
vanishing of the ‘parity anomaly’.

An important feature is that both ayg and o are fopological field theories. That means they
are each independent of the metric and o only depends on the C-field through its topology: a
C-field on X represents a class in the twisted differential cohomology group 0 X; Z) (Section 4.5);
the statement is that the anomaly theory a. only depends on the representative of its image under
H*(X;Z) — H*(X;Z). Furthermore, as already stated these theories are invertible. Finally, due to
their physical origins these theories are unitary, or equivalently in the Wick-rotated version they
satisfy reflection positivity. The main theorem in [26] asserts that, assuming reasonable ansatze,
reflection positive invertible topological field theories live in the world of stable homotopy the-
ory: they are spectrum maps from a Thom spectrum to a universal target, the shifted Pontrjagin
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dual to the sphere spectrum. (In the absence of unitarity, an invertible topological theories has
domain a Madsen-Tillmann spectrum; see [27], [47].) This result uses a strong form of locality—a
fully extended field theory—and also a companion strong form of reflection positivity for invertible
topological theories. Thus the anomaly theories are maps

Qpg O Mm, — Z12IC*. Q2.1

Here Mm,. is the Thom spectrum of m.-manifolds: manifolds with a stable tangential pin™ structure
and a wi-twisted integer lift of wy. We construct Mm, in Section 8.1. Also, IC* is the character
dual to the sphere spectrum, closely related to the Brown—Comenetz dual [8]. The universal prop-
erty which characterizes IC* (see [26, Section 5.3]) implies that the group of homotopy classes of
maps (2.1) is isomorphic to the group Hom(mwj,Mm,, C*) of characters of w,Mm,. In other words,
the maps (2.1) are determined up to homotopy—and the corresponding topological field theories up
to isomorphism—>by abelian group homomorphisms

&RS’ dcl TioMm, — C*. 2.2)

These homomorphisms encode the partition functions of the respective anomaly theories. We prove
Theorem 2.2 by demonstrating that the product

dRS'dC: TiaMm, — C* 2.3)

of partition functions is identically one. Both G and &, take values in the group T C C* of unit
norm complex numbers. From its definition (4.41), the homomorphism ¢ takes values in {£1} C
C*, and so the field theory o has order two: its square is isomorphic to the trivial theory. It emerges
from our computations that ag also has order two. (We remark that o is pulled back from an
invertible theory defined on MT Pin* which has order 28.)

Theorem 2.2 asserts that the total anomaly is trivializable but does not specify a trivialization. (For
further discussion, see [29] where the trivialization is called a ‘setting of the quantum integrand’.)
Homotopy classes of trivializations form a torsor over the group of invertible 11-dimensional reflec-
tion positive topological theories. That is, given one trivialization, and so in principle one realization
of M-theory, any other one differs by inserting a ‘topological term’ in the 11-dimensional theory. In
Section 7, based on computations to appear in [31], we discuss the following.

CONIJECTURE 2.3 The group of homotopy classes of spectrum maps Mm, — S IC* is isomorphic
to (Z/2Z). The partition function of the non-trivial theory is the mod 2 index of the Dirac operator.

3. The Rarita—Schwinger operator and 7n-invariants

The reader may want to refer to recent expositions of fermions and anomalies in [55, 56]. We recall
the relation between fermion integrals and pfaffians in Section 3.1. In Section 3.2, we indicate the
modifications engendered by a Rarita—Schwinger field, as opposed to a spinor field, and then spe-
cialize to M-theory and define the Rarita—Schwinger anomaly theory . This all relies on material
in Appendix A. In Section 3.3, we recall and prove some properties of and formulas for n-invariants
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608 D. S. FREED AND M. J. HOPKINS

on pin* 12-manifolds that we use in our subsequent computations (Section 6). This exponentiated 7-
invariant is topological—independent of the Riemannian metric—and there is a topological formula
(Theorem 3.9) for its value.

3.1. Brief recollection of free fermionic path integrals

The material in this section also appears in [25, Section 11] as part of a broader discussion of
anomalies.
Suppose W is a finite dimensional complex vector space and

B:WxW—C 3.

a skew-symmetric bilinear form. We identify B as a skew-symmetric map W — W", and so an
element wy € /\2W*. The natural integral on the exterior algebra is the linear map

: AW — Det W* (3.2)
w

which projects a form of mixed degree to its highest degree component in Det W* = A" W*. The
odd vector space IIW, the parity-reversal of W, has as its ring of functions the Z/27Z-graded exterior
algebra /\*W*. The fermionic integration (3.2) is purely algebraic—there is no measure—and it is
defined on functions rather than forms or densities. If dim W = 2m is even, then

/ evs = W—B' = pfaff B € Det W* (3.3)
ow m!

is the pfaffian of B; if dim W is odd, then the integral vanishes. It is natural to regard Det W™ as
7./27Z-graded by the parity of dim W, which is equal to the parity of the dimension of the null space
ker B. There is an infinite dimensional version of the pfaffian for W a Hilbert space and B a Fredholm
form: B is Fredholm if ker B is a closed, finite dimensional subspace. Then the Z/27Z-graded line
Pfaff B depends on B and forms a non-trivial complex line bundle over the space of Fredholm skew
forms, and the pfaffian elements

pfaff B € PfaffB (3.4)

form a section of the Pfaffian bundle. See [45], [49, Appendix B] for the case of the Fredholm
determinant (Remark 3.2 below). (We remark that the space of Fredholm skew forms has two com-
ponents distinguished by the parity of dim ker B, the mod 2 index. Over each component the Pfaffian
line bundle represents a generator of H>(—;Z). The pfaffian section vanishes if and only if ker B # 0.)

REMARK 3.1 There are real and quaternionic refinements; the latter applies to M-theory on spin
manifolds [29, Section 1].
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REMARK 3.2 Suppose T: U — V is a linear map between complex vector spaces. Set W =V* @ U
and

B((vi,uy), (v3,uy)) = (v, Tup) — (v3, Tuy). (3.5)

Then the Pfaffian line of B is canonically isomorphic to the determinant line DetV ® (DetU)* of T,
and under that isomorphism pfaff B = det T as an element of Det(U)* @ Det(V).

A spinor field in an n-dimensional relativistic field theory on Minkowski spacetime (without
time-reversal symmetry) is specified by a real spinor representation S of Spin; ,_; together with a
symmetric non-negative Spin;, _ j-invariant bilinear form I': S x S — R~ (see Section A.1) for
details. The complexification Sc is a representation of the compact spin group Spin,. On a closed
Riemannian spin rn-manifold X there is an associated complex vector bundle whose sections are
spinor fields . Define the complex skew-symmetric form

Bx(11,12) :/XFC(%,V%)NXL (3.6)

where V is induced from the Levi-Civita covariant derivative, I is the complexification of I' and
|dx] is the Riemannian measure. On appropriate function spaces By is Fredholm. The Feynman path
integral over ® is the formal analog of (3.3), and we define the result to be (3.4), the pfaffian element
of the Pfaffian line. In particular, the fermionic path integral is anomalous.

As explained in Section 2, the Pfaffian line of the Dirac form By is the quantum state space on X
of an invertible (n + 1)-dimensional field theory «, called the anomaly theory. To define its partition
function, we must use the data (S,T") to define a Dirac operator on a Riemannian spin (n+ 1)-
dimensional manifold W. That construction is carried out in Appendix A; the partition function a(W)
for W closed is the exponentiated n-invariant (A10).

3.2. The Rarita—Schwinger anomaly

The Rarita—Schwinger field occurs in theories of supergravity; it is the super-partner to the metric.
In n spacetime dimensions there is an associated anomaly theory, which is an (n + 1)-dimensional
invertible field theory, just as for a spinor field. Here we explain the modifications to the discussions
in the previous section and Section A.1 required to specify the anomaly theory. More information
may be found in [28], [29, Appendix A] and the references therein.

Suppose given data (S, I") for a spinor field in n-dimensional Minkowski spacetime M", as above.
Let V be the standard n-dimensional real representation of Spin; , — ;. The Rarita—Schwinger field is
a function x: M" — S® V. (More precisely, we should view S ® V as an odd super vector space.)
There is a correspondence between free fields and particles, and under this correspondence the
Rarita—Schwinger field gives rise to four particles, as recounted in [28, Section A.2]: a single spin 3/2
particle, which is the desired gravitino, as well as three spurious spin 1/2 particles. Two of the spin 1/2
particles are associated with spinor fields with values in S and the third to a spinor field with values
in S*. Wick rotation of x proceeds by complexification, and one obtains a skew form B} analogous
to (3.6), now built on sections of a spinor bundle tensored with the tangent bundle. To eliminate the
extra spin 1/2 particles, we divide the pfaffian of B} by the product of the pfaffians of the forms By
associated with the three Wick rotated spin 1/2 fields [28, Section A.5].
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610 D. S. FREED AND M. J. HOPKINS

‘We now determine the associated anomaly theory, which is an invertible (n + 1)-dimensional field
theory of Riemannian spin manifolds. In Appendix A, we define the anomaly theory oy associated
with spinor data (S, I"). There is a variation which gives the anomaly of the pfaffian of Bj,. Motivated
by (A7) define

E' = Cliff;, ® (S®S*) ® R"".. (3.7)

(Our notation: the real Clifford algebra Cliff, ; has p generators squaring to +1 and g generators
squaring to —1. Set Cliff |, = Cliff, o and ClLiff_, = Cliffo,.) Let Spin, | act as after (A7) on
E = Cliff 1, ® (S ® S*) and tensor with the usual vector representation on R"*!. There is a commut-
ing Cliff_j action, as after (A7), and the Dirac operator (A8) and exponentiated n-invariant (A10)
are defined. Denote the resulting (n + 1)-dimensional theory as agg,. Since Spin, acts reducibly
on R**! = R @ R", the specialization to a product manifold R x X gives the Dirac operator coupled
to the tangent bundle plus an extra copy of the Dirac operator on spinor fields. Therefore, the anomaly
theory associated with the pfaffian of BY is

aggy@af . (3.8)

Put (3.8) together with the anomalies of the spurious spin 1/2 fields to obtain the total anomaly
aS®V®a§(f3) ®a§i(71). (3.9)

Proposition A.1 implies that the product ag ® ag. is trivializable. Hence (3.9) is isomorphic to

®(-2)
Ogqy @ ag . (3.10)
This is a general formula for the anomaly theory of a Rarita—Schwinger field in n dimensions built
from the spinor data (S, T").

Now we specialize to n=11 and M-theory on pin™ manifolds. The spinor data (S, T") are spec-
ified in Section A.2. Let W be a closed Riemannian pin* 12-manifold. We compute the partition
function dipg(W) of the total anomaly theory (3.10). The (s)pinor bundle on W is a rank 32 quater-

nionic bundle, and the appropriate Dirac operator (A8) is a self-adjoint operator on its sections. The
partition function (A10) is, in this case, a ratio of exponentiated n-invariants, which we write as

Grgs(W) = exp (2m' ’W) (3.11)

Here n(TW —2) is the difference of the n-invariant of the Dirac operator coupled to the tangent
bundle and twice the n-invariant of the pure Dirac operator.

PROPOSITION 3.3 The Rarita—Schwinger partition function zg(W) is (i) independent of the metric
on W, (ii) a pin™ bordism invariant and (iii) a root of unity.

Proof. Similar assertions for even dimensional pin“ manifolds are proved in [30, Section 1], so we
will be brief. The space of Riemannian metrics is connected (better: contractible), so it suffices to
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CONSISTENCY OF M-THEORY 611

compute the derivative with respect to the metric. That variation formula [S] is an integral of a w-
twisted 13-form over W; the result is a 1-form on the space of metrics. The integrand is a local
invariant of the geometry by a general theory developed by Seeley [46], and here it vanishes for
parity reasons (see [30, Lemma 1.5]). This proves (i). Now suppose W is the boundary of a compact
pin* 13-manifold Z. Then [4, Theorem 3.10] computes (3.11) as the exponential of the integral of the
same wi-twisted 13-form over Z. But as above, this 13-form vanishes identically, and so (ii) holds.
For (iii) we need only use that the relevant bordism group is finite, in fact [38]

TMTPin"T =2 7/2%7 © 7.)2*7. @ 7./2°7. (3.12)
0

COROLLARY 3.4 The Rarita—Schwinger partition function factors through a homomorphism
Gipg: TaMTPin™ — C*. (3.13)

As reviewed in Section 2, the homomorphism (3.13) determines an invertible unitary topological
field theory

gt MTPint — 2121C> (3.14)

up to isomorphism. (The maps (2.1), (2.2) which correspond to (3.13), (3.14) are lifted to the bor-
dism spectrum Mm, of manifolds with a pin™ structure and a wi-twisted integer lift of w4.) We
stretch notation slightly and use the notation ‘agg(W)” for the partition function of a closed pin™
12-manifold W.

3.3. Properties of the n-invariant

On a spin manifold W, the partition function cu,g(W) has a natural logarithm defined using an integer
index.

PROPOSITION 3.5 Let W be a closed spin 12-manifold. Then cpg(W) = (—1)F5MW) where

RS(W) = % <A(W) ch(TW —2), [W]>. (3.15)

Proof. As remarked after (A21), the pin™ spinor data restrict to spin spinor data, so on a spin mani-
fold we apply the discussion in Section A.1. The crucial point, which holds in general for n odd, is
that the action of the volume form w = §'6%7' - -1 C Cliff | |, commutes with the action of Spini,
and so anticommutes with the Dirac operator D°. This implies that the spectrum of D° is invariant
under A — —\. Choose a in (A9) to be negative and greater than the first negative eigenvalue of D°.
Then 7,(s) = dimker D° for all s—the non-zero eigenvalues in the sum cancel—and so from (A10)
we have

aps(W) = exp(2midime ker D° /4) = (—1)dimskerD”, (3.16)

The quaternionic dimension of the kernel is congruent mod 2 to the quaternionic index of the chiral
Dirac operator, which maps the +1-eigenspace of w to its —1-eigenspace. The Atiyah—Singer index
formula completes the proof. O
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REMARK 3.6 The expansion of (3.15) in terms of Pontrjagin numbers of W is

RS(W) = < i~ 78986’; ‘é’;OJ“ 3952p3 [W]> . (3.17)
REMARK 3.7 In Section 4.3 we encounter a shift of (3.15) by an integer, namely
RS'(W) :%<A(W) ch(TW — 4), [W}>. (3.18)
It has the same mod 2 reduction as RS(W).
For a real vector bundle V — W over a closed pin™ 12-manifold set
(V) = exp <2m' "W§V)> . (3.19)

The n-invariant (A9) depends on a parameter a € R, as we defined it, but the exponential (3.19) is
independent of a. Comparing with (3.11) our notation is apg(W) = 7, (TW — 2).

PROPOSITION 3.8 Let VO, V! — W be real vector bundles over a closed pin* 12-manifold W. Then the
ratio Ty,(V°)/1y(V') of exponentiated n-invariants depends only on the class of the virtual bundle
[VO] —[V!] € KO°(W).

In particular, it does not depend on the choices of covariant derivative.

Proof. The independence from the covariant derivative follows from the variation formula, as
in the proof of Proposition 3.3. Then simply observe that 7,,(V) is multiplicative: 7, (V& V') =

Tw(V)7(V). O

Propositions 3.3 and 3.8 suggest that there is a KO-theory formula for 7,,(V). Indeed, such a
formula was recently proved by Zhang [58], based on an analytic theorem of Bismut—Zhang [14]
telling the behavior of n-invariants under immersions. While the other formulas and techniques in
this section suffice for most of the computations in Section 6.2, we were only able to compute o in
Section 6.2.6 using this topological formula. We express (3.20) in a different, but equivalent, form
than [58], and we have used the pin™ variant of his pin~ theorem (which he remarks holds in the
pin™ case).

THEOREM 3.9 (Zhang) Let V— W be a real vector bundle over a closed pin™ 12-manifold W. Let
L — W be the orientation real line bundle, H — RP* the tautological line bundle and v: W — RP?
a map such that v"H= L. Then

WV (1) in kO (RE). (3.20)

7 (V) =21 =

In this formula [V] € KO°(W) is the KO-class of V — W; the map ~ has a spin structure induced from
the pin™ structures on W and RP* together with a choice of isomorphism v*H =2 L; and ~+ is the
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induced pushforward on KO-theory, after multiplication by the Bott class. The group If(VOO (RIP’zO) is
cyclic of order 2! with generator 1 — [H].

A pin™T structure on a smooth manifold M has an opposite, obtained by tensoring with the
orientation double cover.

PROPOSITION 3.10 Let V— W be a real vector bundle over a closed pin™ 12-manifold W, and let
L — W be the real line bundle associated with the orientation double cover w: W — W. Then

mw(VRL) =7,(V)~". (3.21)

Proof. Let o be the deck transformation of the double cover 7. Then V-valued spinor fields on W
lift to o-invariant 7" V-valued spinor fields on W and V® L-valued spinor fields on W lift to o-anti-
invariant 7*V-valued spinor fields on W. Hence 7, (V) + 1, (VQ L) = /(7 V). The pullback of
the pin™ structure on W combines with the orientation of W to produce a spin structure on W, so
7(7*V) is computed using the mod 2 reduction of

% (= [Am)en(v)]. (W), (3.22)

as in Proposition 3.5. Since ¢ is an orientation-reversing involution, it follows that the integer (3.22)
equals its negative, hence vanishes. |

PROPOSITION 3.11 Suppose W= W' x W' is the product of a pin™ 4-manifold W' and a spin 8-
manifold W'. Let V. — W' and V"' — W" be real vector bundles. Then

Ty (V' @ V") = iy (V/)indPwrr V), (3.23)
where the exponent is the index of the Dirac operator coupled to V.

Proof. This follows directly from the topological index formula (3.20), but there is a straightforward
analytic proof which we outline here. Use the setup of Appendix A. Let &', &"",i=0, 1, denote the
spaces of spinor fields on W/, W, and D', D" the Dirac operators. Let w = 7°3!§? denote the volume
form of the commuting Cliff _3. Then the space of spinor fields on W is &° @ & @ &' @ &'
and the Dirac operator on W is DY, = wD’ ®id + w® D". (As we eventually compute using an
orthogonal decomposition into finite dimensional eigenspaces, we do not worry about the topology
in these tensor products.) Write spectral decompositions

= P &

A€EspecwD’

I/O_ //O
&= P én (3.24)

pEspec(D’)?

//1_ 1
s O s

pEspec(D'’)?
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If 44*5£0 then DY, acts on é’)’\o ® 6":20 &) é")’\l ® 5’:21 with trace 0: we compute

D(‘)/V(w/@w// + #_lwW@D"W/) _ ()\:Fu)(w/(@w// ¥ ,Uf_lww/@DH"///) (3.25)

and let 1)/, 1" run over orthonormal bases of éa)’\o, & ; 10 respectively. Choose a in (A9) to be less than
zero and greater than the first negative eigenvalue of Dy . to conclude that the only contributions to the
n-invariant of DY, come from &° @ (kerD")° and &' @ (kerD")!. If ¢/ € &° and ¢""" € (kerD")’,
i=0, 1, then since wD’ = —D’w we compute

DYy @y = AW 04"

(3.26)
DYy (wy @ ") = =X (' @)

and (3.23) quickly follows. g

The next result is inspired by techniques in [S]. Suppose W is a closed pin™ 12-manifold and
m: W — W its orientation double cover. Let o: W — W be the canonical orientation-reversing free
involution. If P — W is the principal Pinfrz-bundle of frames, then o lifts canonically to an involution
of 7*P — W which reverses the spin structure on w. Suppose that Z is a compact spin 13-manifold
with boundary 0Z = W and ¢/ an orientation-reversing involution of Z which extends ¢ and is
equipped with a lift to a spin-reversing involution of the Pin?g-bundle of frames. Let F C Z denote
the fixed point set of o’. At an isolated fixed point f € F the action of ¢’ on Ty Z is by —1, so its
lift to the pin™ frames acts by Fw, where w = y'~y*---4!3 is the volume form. Let ir ==+1 denote
the sign. If V— W is a real vector bundle, assume 7*V — W extends over Z and the involution o
lifts, extending the lift of o on the boundary. Let 7 denote the trace of the lifted action at a fixed
point f € F.

ProrosITION 3.12 If F consists of isolated points, then

Tw(V) = exp 2mz%f . (3.27)
feF

If V is the trivial real line bundle, then this is [S0, Proposition 5.3], which is based on the general
equivariant index theorem [21, Theorem 1.2] for manifolds with boundary. Donnelly’s theorem iden-
tifies the contribution at a fixed point in terms of an asymptotic expansion of a heat kernel. The general
cohomological expression for that contribution appears in [7, (3.9)] in the context of the general Lef-
schetz theorem, and it applies to fixed point manifolds of positive dimension as well as isolated fixed
points. That this is the correct fixed point contribution in Donnelly’s theorem is proved in [22] for
the signature operator. We use it for the Dirac operator and an orientation-reversing isometry in
Section 6.2.5.
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4. Cubic forms and the C-field
4.1. Motivation: spin® manifolds

Recall that the compact Lie group Spin;, is a group extension
1 — T — Spin;, — SO, — 1 4.1)

where T is the circle group of complex numbers of unit norm; it is defined as the quotient
(Spin, x T)/{£1}. Let M be an n-dimensional spin® manifold. A spin® structure on M is a prin-
cipal Spin,-bundle Bspinc (M) — M together with an isomorphism Bspine (M) /T = Bso (M) with the
principal SO,-bundle of oriented orthonormal frames. The T-bundle over M associated with the
homomorphism Spin — T is called the characteristic bundle, and its first Chern class ¢ € H*(M;Z)
is an integer lift of the second Stiefel-Whitney class:

c=wy(M) (mod 2). 4.2)

Furthermore, any other spin© structure is obtained by ‘tensoring’ with a circle bundle Q — M using
the homomorphism Spin;, x T — Spin;; the characteristic class of the new spin® structure is ¢ + 2x,
where x = ¢;(Q). Finally, there is an involution on spin® structures which inverts the characteristic
bundle and so changes the sign of c.

Suppose n=dim M is even and M is compact without boundary. The (Z/27Z-graded) complex
spin representation of Spin;, gives rise to a Dirac operator D), whose index is a topological invariant.
It is computed by the Atiyah—Singer formula

index Dy, = (A(M)e/?, [M]), 4.3)

where A(M) = 1 — p;(M) /24 + ... and [M] is the fundamental class of M. As a function x(c) of the
characteristic class c it is a polynomial, which for n =4, 6 may be written

2

ka(c) = CTU(M) , 4.4)
S oM

K3(c) = % . (4.5)

The subscript indicates the degree of the polynomial, o (M) is the signature of the 4-manifold M and
we omit evaluation on [M] from the notation for convenience. One may continue to n = 8§, 10, ... to
obtain polynomials of higher degree. These polynomials satisfy a symmetry property:

Ka(—c) = ka(c), k3(—c) = —krs(c). (4.6)
For a fixed characteristic element ¢ define ¢¢: H*(M;Z) — 7Z as

q°(x) = k(c+2x) — k(c), x € H*(M;Z). 4.7
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For n=4,6 we find

. 1
g5(x) = 5 (= + ex) (4.8)
X 1
q5(x) = 54 (Pl (M)x + 4x> 4 6¢x* + 3c2x) (4.9)
= éx3 +...

Note g5 is a quadratic refinement of the intersection pairing on H*(M*;Z) /torsion, and ¢ is a cubic
refinement of the symmetric trilinear form on H?(M®;Z) /torsion.

The general mathematical problem suggested here is: Replace ¢ by a cohomology class of arbi-
trary even degree and extend the topological invariants (4.4), (4.5). Of course, one may pose this as
well for the higher degree polynomials of ¢ deduced from the index formula (4.3) in higher dimen-
sions. In the quadratic case, we have n = 4k for some k € Z>° and ¢ € H*(M;Z) lies in the middle
degree. The associated topological invariant was investigated by Brown [12] and Browder [11]. In
this instance ¢ is an integer lift of the middle Wu class v, € H* (M;7,/27), which may or may not
exist. Corresponding geometric invariants were constructed in [33]. We take up the next interest-
ing case—the cubic form for n =12 and deg c =4—which appears in the action of the C-field in
M-theory.

4.2. Algebraic theory of cubic forms

We begin with a review of the algebraic theory of quadratic forms. Let L be a finitely generated free
abelian group and (-, -): L x L — 7 anon-degenerate (that is, unimodular) symmetric bilinear form.
The non-degeneracy implies the existence of a unique element ¢ € L ® Z /27 such that

(x,x) =(¢,x) (mod 2), X€eL®Z/2Z, (4.10)

since the left-hand side is linear in X. An element ¢ € L with ¢ = ¢ (mod 2) is called characteristic.
The set L¢h,e C L of characteristic elements is a torsor for L: if ¢ € Lep,, and x € L then ¢ + 2x € Lepa,.
Now an easy check shows that (c,¢) (mod 8) is independent of ¢ € L, so for any integer lift o € Z
of {¢,c) (mod 8),

ka(c) = (ec) =0 C;_ d @.11)

is an integer. It is a standard result [48, Chapter 5] that o may be chosen to be the signature of (-, -),
defined by extending the form to the real vector space L ® R. This is the algebraic theory which
underlies (4.4). Note x,(—c) = k2(c).

We develop a similar theory for the cubic (4.5). Consider the triple (L, (-, -, -),¢) where L is a
finitely generated free abelian group, (-,-,-): L X L X L — Z is a symmetric trilinear form and ¢ €
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L®Z/27 is assumed to satisfy
(6x%y) = (X%y) +(xyy) (mod2), LyEL®Z/2Z. (4.12)

(Equation (4.12) for trilinear forms appears in Postnikov’s study [44] of the mod 2 cohomology ring
of a closed 3-manifold, for example.) As we do not know a notion of non-degeneracy for trilinear
forms which guarantees the existence of ¢, we postulate its existence. Define the torsor Lep, C L of
characteristic elements as above. Let L* = Hom(L, Z) and for convenience write the trilinear form
as a simple product.

LEMMA 4.1 There exists a unique p € L* ® Z /247 such that

p-i=4% +6¢8* +3¢%%  (mod 24) (4.13)
forall x € L® 7Z/247 and mod 24 reductions ¢ of characteristic elements ¢ € Lepgy.

Proof. Use (4.12) to check that, as a function of X, the right-hand side of (4.13) defines a
homomorphism L ® Z /247 — 7./247. O

LEMMA 4.2 Let p € L" satisfy p=p (mod 24). Then

G—p-c

oy (mod2) (4.14)
lies in 7./27 and is independent of ¢ € Ly, Furthermore, there exist lifts p € L" of p such that this
invariant vanishes, in which case

(4.15)

is an integer. Also, r3(—c) = —r3(c).

Proof. To check the independence of ¢ € Lgpay, replace ¢ in (4.14) with ¢ 4+ 2x for x € L and use the
fact that cx? is even, which follows from (4.12). To see that the fraction in (4.14) is an integer,
use (4.13) and the fact that ¢ is even, which also follows from (4.12). To find the lift p,if c=0,
then any p works since we can compute (4.14) using ¢ =0. If ¢ # 0, and if for a chosen lift p the
invariant (4.14) is non-zero, choose x* € L* such that x"- ¢ is odd for any characteristic ¢ and replace p
with p +x". (|

4.3. The cubic form on spin 12-manifolds

In (4.5), we gave an example of the cubic form (4.15) for a closed oriented 6-manifold M°®, where
L= H*(M;Z)/torsion, {x,y,z) = (x — y — z, [M]), ¢ = wy(M) and p = p;(M). We now consider a
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closed spin 12-manifold W'? and set
L = H*(W,Z)/torsion
(yz) = (x—y—z W) (4.16)
¢ =wy(W).
REMARK 4.3 Let T* C H*(W,Z) denote the torsion subgroup, which fits into the exact sequence
0—T*— HYW,Z) — L — 0. (4.17)

Tensoring with Z/27 defines a homomorphism H*(W;Z) — H*(W;Z/27), and the precise
definition of ¢ is the image of w4(W) under the quotient map

HY(W,Z/27) — H*(W,Z/27)/(T* ® Z./27). (4.18)

In the classifying space BSpin there is a characteristic class A € H*(BSpin;Z) such that (i) 2\ = p,
and (ii) the image of A under H*(BSpin;Z) — H*(BSpin;Z/27) is w4. A spin manifold W has a
corresponding integer characteristic class A(W). The existence of this integer lift of w4(W) implies
that the image of w4(W) under (4.18) lies in the subgroup (H*(W;Z)/T*) ® Z./2Z = L& Z/27. The
computations below are written in H*(W;Z/27Z), but the results should be interpreted in terms of this
subquotient. (To do so, use the fact that torsion integer cohomology classes evaluate trivially on the
fundamental class.)

LEMMA 4.4 The Stiefel-Whitney class ¢ = wy(W) of a closed spin 12-manifold W satisfies (4.12).

The proof uses the Cartan formula and Adem relations for Steenrod squares, as well as the Wu
formula, which states that on a closed n-manifold M there is a class v;(M) € H'(M;Z/27) such that
squaring to the top,

Sq': H ' (M;Z/27) — H"(M;Z/27), (4.19)
is cup product with v;(M). In low degrees we have
vy =wg
V) = wf +wy
(4.20)
V3 = wWiwy

2 4
Vs = wg +Wiw3 +w; +wy

in terms of the Stiefel-Whitney classes of the tangent bundle. (See [33, Section E.1.1] for character-
istic properties of Wu classes from which (4.20) may be computed.) The Bockstein 3 is defined as

the connecting homomorphism induced from the coefficient sequence 0 — Z 277 /27— 0:
S H(MZ) - H(M;Z)2Z) 25 H (M Z) 2 H (M Z) — - 4.21)

Also, Sq' = ro 3. It follows that if x is an integer cohomology class, Sg¢' vanishes on its mod 2
reduction X = r(x).
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Proof. 1f x,y € H*(W;Z) and X,y € H*(W;Z/2Z) are their mod 2 reductions, then (4.20) with w; =
wy = 0 implies

wa(W)iy = Sq" (35)
= (S¢*%)y + S¢°% Sq*y + xSq"y (4.22)
= X%y + S¢°% S¢°y + Xy,
since Sq' vanishes on reductions of integer classes. Then from (4.20) again

0 = wy(W)xS¢*y

= S¢*(x S¢°3)
= Sq¢°% Sq*y + xSq*Sq*y (4.23)
= S¢°% S¢*y +%Sq°Sq'y
= S¢*% S¢%3.
|
PROPOSITION 4.5 In BSpin there is a unique characteristic class p € H®(BSpin;Z) with
2p=pr— N\ (4.24)

Furthermore, p = wg (mod 2).

For a smooth manifold M we obtain a characteristic class p(M) € H*(M;Z), and we use the same
symbol to denote its reduction modulo torsion.

Proof. H®(BSpin;Z) is torsionfree and p, = A\> = w3 (mod 2), which proves the existence and

uniqueness of p. To compute its reduction mod 2 we restrict to the classifying space of a maxi-
mal torus of Spiny for N > 8. The computation is carried out in [13, Section 3], where p is the
class called ‘—g,.” Its reduction mod 2 equals the reduction of the class called ‘c4,” which is the
Stiefel-Whitney class wsg. O

REMARK 4.6 Hopkins—Singer [33, Appendix E] define spin Wu classes in H* (BSpin; Z), in terms of
which we have p = ;™" — 2p, + p?.
PROPOSITION 4.7 On a closed spin 12-manifold W the mod 24 reduction of p(W) satisfies (4.13).

Proof. We follow Witten’s argument in [57, Section 4]. Namely, a principal Eg-bundle over a 12-
manifold is determined up to isomorphism by an element x € H* (W;Z). Let V(x) denote the (real)
adjoint vector bundle to the principal Eg-bundle with characteristic class x, and set ¢ = A(W)+2x.
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The Chern character of V(x)—W is
1
chV(x) = 248 — 60x + 6x* — §x3. (4.25)

To see this, observe that a priori the Chern character is a cubic polynomial in x, so we need only
determine the coefficients. The restriction of the adjoint representation of Eg to Spin 4 C Eg is the
sum of a half-spin representation and the adjoint representation of Spin;e. The restriction of its com-
plexification to Spin; C Spin,¢ is 78V @ 64V, @ 14V3, where V,, is the n-dimensional irreducible
representation of Spin; = SU,; the Chern character of this representation is easily computed. Finally,
the generator of H*(BEg;Z) restricts to minus twice the generator of H*(BSU,;Z). (The gener-
ator of H*(BSO4;7) restricts to the generator of H*(BSO3;7Z). The former pulls back to twice
the generator of H*(BSpin,4;Z), whereas the latter pulls back to minus four times the generator
of H*(BSU,;7Z).) Then a long computation verifies the following identity:

<C31’C + YAw) ehvir) +

48 2 A(W) ch(TW - 4), [W]> =0. (4.26)

1
4

The second term is an integer; it is the KO-theory direct image of the real bundle V(x), defined using
the spin structure, which by the Atiyah—Singer index theorem is the index of the Dirac operator
coupled to V(x). Similarly, the last term is a half-integer, hence so is the cubic expression. Replace
the denominator in the cubic expression by 24 to obtain an integer, and now subtract the integers for
arbitrary x and x =0 to establish the congruence

(P2(W) — A(W)?)x = 8% + 12A(W)x* + 6A(W)*x  (mod 24), 4.27)

where we omit evaluation on [W] from the notation for convenience. If necessary, use the last
argument in Lemma 4.2 to replace p(W) by p’ = p(W) + 24a for a € H¥(W;Z) /torsion so that

< 4_8” CeZ  c=AW)+2x xeH'(W:Z) (4.28)
and so deduce the desired mod 24 congruence. 0

Note that p(W) is not necessarily a distinguished lift of p described in Lemma 4.2; rather we need
to add the constant term 1/4 RS’ (W) (see (3.18)) in (4.26) is needed to obtain integrality. Define the
integer-valued cubic form

3_
Klc) = % + %RS’(W) (4.29)

on characteristic elements; it satisfies a shifted version of the symmetry (4.6):

Kw(—c) = RS (W) — ky(c). (4.30)
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4.4. The cubic form on pin™ 12-manifolds

Any manifold M has a canonical orientation double cover M— M: the fiber at m€ M is the set
of orientations on T, M. There results a canonical local system Z —M of coefficients; we call
H* (M;Z) the w;-twisted cohomology. An orientation is a trivialization of Z — M, and on an oriented
manifold w-twisted integer cohomology reduces to untwisted integer cohomology. The fundamen-
tal class [M] of a closed manifold M lives in wi-twisted integer homology, so we can integrate
wi-twisted cohomology classes.

LEMMA 4.8 Let M be a closed n-manifold with no orientable components and - M — M the
orientation double cover. Then the image of

™ H'(M;Z) — H'(M;Z) 4.31)

is 2H"(M;Z.), and if & € H"(M;Z), then
(@ [M]) = <17r*w, [fm>. 432)

As the domain and codomain of (4.31) are torsionfree, we can prove Lemma 4.8 using de Rham
theory, a task we leave to the reader.

Let W be a closed pin™ 12-manifold W. The existence of a pin™ structure on W is equivalent
to wo(W) =0, but in general w;(W)#£0. Also, w3(W) =0 since w3 = Sq'w, + wiw, (Wu formula).
Note then that the Wu classes (4.20) simplify to v, (W) = w;(W)? and v4(W) = wa(W) +wi(W)*.
There is a short exact sequence of coefficients 0 — Z RN/ /2Z — 0, and the connecting homo-
morphism in the resulting long exact sequence—(4.21) with twisted coefficients—is the twisted
Bockstein 3. In this case o 3 = Sg' +wy, so that if x is a w;-twisted integer class then

Sq¢'x = wi (M) — x. (4.33)
For a closed m, 12-manifold W we modify (4.16) to

L= H*(W;Z)/torsion
xyz) = (x—y—2)[W (4.34)
c= W4(W).
Remark 4.3 applies if we replace integer cohomology with w-twisted integer cohomology and

assume W is an m.-manifold. The dual lattice L* = H®(W;Z)/torsion is untwisted integer coho-
mology as in the spin case.

PROPOSITION 4.9 In BPin" there is a unique characteristic class p € H*(BPint;Z) /torsion whose
restriction to BSpin is the class p of Proposition 4.5.
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Proof. Let {EY7} denote the Leray—Serre spectral sequence for the fibration
BSpin —» BPinT 5 RP>, (4.35)

Then EJ* = H®(BSpin;Z) and E%® = H®(BPin';Z)/torsion = ker(dy: Ey* — E37). Note that
Ey" = 17,/27, since H' (BSpin;Z) is cyclic of order 2, generated by the integer Bockstein of w,
and H* (RP>;Z/27Z) = 7./2Z. The proposition follows from d>(p) = 0, which in turn follows since
dy(p) is detectable mod 2 and p (mod 2) = wg survives the differentials. g

REMARK 4.10 There is a (homotopy) splitting of the map w; in (4.35), namely the classifying map
RP*° — BO of the reduced tautological bundle H — RIP*°, which lifts since H has a pin™ structure.
(Introduce an inner product on H — RP* and use a splitting of the homomorphism Pin?' — 01.)
Then the product map

BSpin x RP> — BPin™ (4.36)

is a homotopy equivalence, since it induces an isomorphism on homotopy groups. This yields an
isomorphism H*(BPin™;Z) /torsion — H*(BSpin;Z) /torsion, which re-proves Proposition 4.9.

PROPOSITION 4.11 Let W be a closed m, 12-manifold. Then ¢ = wq(W) satisfies equation (4.12).
Furthermore, the mod 24 reduction of p(W), viewed as a class in L* = H3(W;Z) /torsion, satisfies
the condition in Lemma 4.1.

Proof. We modify the proof of Lemma 4.4. So (4.22) becomes

(wa(W) + wi(W))xy = Xx5 + X3y + w1 (W) (xSg°y + ¥y Sq°%) + S¢*% Sg*y (4.37)
and (4.23) becomes

w2 (W)ESq*5 = S¢°% Sq%5 + w1 (W)ZSG5 + 7w? (W) S¢*y + Xw (W)S¢y, (4.38)
which implies Sg*x Sg*y = 0. Then using v3(W) =0 from (4.20), we find

0=Sq’ (w1 (W)xy) = wi(W)Sq*(xy) + wi(W)Sq* (xy)

- o (4.39)
=wi(W)35 + wi(W) (354’5 + 5S¢’%).
Combine these equations to complete the proof that ¢ satisfies (4.12).
For the last statement in the proposition we observe that Proposition 4.9 implies p(W) = p(W) if
W is spin, and also if w: W — Wis the orientation double cover then 7*p(W) = p(W). The last state-
ment reduces to Proposition 4.7 on orientable components of W, and on non-orientable components
we use Lemma 4.8 to reduce to Proposition 4.7 on the orientation double cover. O
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LEMMA 4.12 Let W be a closed w,. 12-manifold and ¢ € H*(W; Z) a wi-twisted integer lift of wy(W).
Then

& —p(W)e

13 (mod Z) (4.40)

lies in %Z /Z, is independent of the choice of ¢, and is a bordism invariant of wm.-manifolds. It is
additive under disjoint union.

Proof. That the fraction in (4.40) is a half-integer follows from Lemma 4.2 in the algebraic theory
of cubic forms. Any w;-twisted integer lift of w4(M) has the form ¢ + 2x for some x € H 4(W;Z),
and an easy check from (4.13) proves that (4.40) is unchanged by the replacement. If W = 0Z is the
boundary of a compact m, 13-manifold Z, then Z has a fundamental class in relative homology and
the usual adjunction (integer Stokes’ theorem) argument implies that (4.40) vanishes, even before
reducing modulo Z. ]

Define
~3 _ — ~
(W) = exp <Z7ri Cfg(w)c> . (4.41)

Recall that Mm,. is the bordism spectrum of pin™ manifolds with an m, structure.

COROLLARY 4.13 The exponential of the cubic form factors through a homomorphism
éécl 7r12MmC — (CX (442)
which takes values in {£1} C C*.

As discussed in Section 2, the homomorphism (3.13) determines an invertible topological field
theory

ag: Mm, — 22 IC* (4.43)

up to isomorphism. The square a?z is isomorphic to the trivial theory.

REMARK 4.14 Let 7: W— W be the orientation double cover of an m.-manifold which has no
orientable components, and suppose ¢ € H*(W;Z) is a w;-twisted integer lift of w4(W). Set ¢ =
7*¢ € H4(W;Z). As in the proof of Proposition 4.11 we have p(W) = 7*p(W). Apply Lemma 4.8 to
evaluate the integer cubic form—twice (4.40)—on the orientation double cover:

<53—§4(W)5, [W]> _ <C3_i’8(W)‘” [ﬁ/}>. ot
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4.5. The C-field and its anomaly; cancellation on spin manifolds

The C-field in M-theory is an example of an abelian gauge field. Classically, all information is
captured by its field strength (), which is a closed 4-form. In the quantum theory Dirac’s quantization
of charge applies: the de Rham cohomology class of Q is constrained to lie in a full lattice in the
degree 4 real cohomology. There is more information, as inspired by the Aharanov—Bohm effect in
the case of ordinary electromagnetism and the resulting refinement of the electromagnetic field—a
closed 2-form—to a connection on a principal T-bundle. In higher degrees a suitable language for
quantum abelian gauge fields is differential cohomology, which is developed in [33] in part to model
the C-field; the focus there is on the M5 brane and so on a quadratic form. (See [24, Section 3] for
a general exposition of abelian gauge fields as differential cocycles.) Here we work in the ‘bulk’
on a Wick-rotated spacetime which we take to be an 11-dimensional Riemannian pin™ manifold X.
Dirac’s quantization of charge for the C-field, which is determined in [S7], is encoded by positing the
C-field as a geometric representative of a w;-twisted differential cohomology class which lifts w4 (X).
(If X is spin, then there is a model [18] in terms of Eg-bundles, as in the proof of Proposition 4.7.)
Locally C-fields exist but there is a global obstruction, as explained after Definition 2.1. In that
spirit, a C-field (2 is a differential m. structure on X; a precise model is established in [33], where it
is termed a differential integral Wu structure. Its field strength Q) is a closed w -twisted 4-form whose
de Rham cohomology class in H*(X;R) is the real image of a wi-twisted integer lift ¢ € H*(X;Z)
of w4 (X). (The form Q lifts to a closed 4-form Q on the total space of the orientation double cover
X — X; then o*Q = —Q where o : X — X is the non-trivial deck transformation. )
The effective action of M-theory has a cubic term of the form

S
exp <27Ti 94’;()‘)Q> , (4.45)

where p(X) is a lift to differential cohomology of the class p(X) € H®(X;Z) /torsion. This differential
cohomology version of the cubic form is analogous to a Chern—Simons invariant. We do not need its
precise definition, so will not elaborate further.

REMARK 4.15 The 3 term in (4.45) is part of the classical 11-dimensional supergravity action [15].
The p(X )Q term is a quantum correction, introduced in [20, (3.14)] in the spin case, in part inspired
by [54, Section 3] who introduce an analogous correction in the Type IIA superstring. We do not
know of any literature about this quantum correction in the pin™ case.

REMARK 4.16 We have only defined the class jp in (4.45) up to an element of H(BPin™;R/Z),
but we now argue that (4.45) is independent of the lift. First, H’ (BPin™;R/Z) = H¥(BPin";Z),.
since H'(BPin";R) = 0. (A,,, is the torsion subgroup of the abelian group A.) Recall from (4.36)
that BPin™ ~ BSpin x RP>. Then the main theorem in [37] implies that 2H®(BPin™;Z),,, = 0. Use
the short exact sequence

0—s %Z/Z—>R/Zi>R/Z—>o (4.46)

to deduce that H' (BPin*;1Z/Z) — H'(BPin™;R/Z) is surjective. It follows that the ambiguity
in (4.45) is expressed as a characteristic number of mod 2 cohomology. Our Adams spectral sequence
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computation (see Fig. 1 in Section 8) shows that there is no element of ; M m,. in Adam:s filtration 0,
and so every mod 2 characteristic number vanishes on closed 11-dimensional m.-manifolds.

Note that there is an ambiguity in the M-theory action from a topological term which is not
mod 2 characteristic numbers but rather a mod 2 KO-characteristic number, a mod 2 index of a
Dirac operator (see Section 7).

Our focus is on anomalies, and here the crucial point is that only the square of (4.45) is unambigu-
ously defined as an element of C. This is equivalent to the assertion that on a closed m, 12-manifold W
the cubic form

& —p(w)e

5 (4.47)

is integral, but is not necessarily even. Hence the square root (4.45) is an element of a complex
line av-(X) whose square ar(X)®? is trivialized. As the notation suggests, this line is the state space
of the invertible 12-dimensional field theory «.. The field theory «. is topological: it does not
depend on the Riemannian metric or differential m, structure, only on the underlying topological
m, structure.

Witten’s argument [57, Section 4], reproduced in the proof of Proposition 4.7, proves the Anomaly
Cancellation Theorem 2.2 on spin manifolds. Let M Spin{Sw,) denote the bordism spectrum of spin
manifolds with an integer lift of w,. There is a map M Spin(Sws) — Mm,, where Mm, is the bordism
spectrum of m.-manifolds.

THEOREM 4.17 (Witten) The lift cipg ® o2 M Spin{Bwa) — S12IC* is trivializable.
The Eg-model for the C-field leads to a distinguished trivialization [29].

Proof. Because an invertible topological field theory is determined up to isomorphism by its par-
tition functions, to prove Theorem 4.17 we show that for any closed spin 12-manifold W with an
m, structure we have

bips(W)a (W) = L. (4.48)

This follows immediately from the integrality of (4.29) (see Proposition 3.5 and Remark 3.7). [J

5. Some spin and pin manifolds

This section is a geometric interlude to review and introduce some special manifolds and their topo-
logical invariants. We use these manifolds as building blocks for the closed pin™ 12-manifolds we
need in Section 6, where we also specify m, structures.

If M is a smooth manifold, then we use the notations

w(M) =1+w (M) +wy(M)+---

(5.1)
p(M) =1+ p (M) + py(M)+---

for the total Stiefel-Whitney class and total Pontrjagin class, respectively. The former satisfies the
Whitney sum formula w(M; x M) = w(M,)w(M,) for Cartesian products; the analogous equation
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for the total Pontrjagin class is true modulo torsion. Also, these characteristic classes are defined for
arbitrary real vector bundles, not just the tangent bundle, and are stable in the sense that they are
unchanged by adding a trivial bundle. Recall also the characteristic class A of a spin manifold, or of
a real vector bundle with a spin structure, characterized after (4.18); it satisfies 2\ =p;.

5.1. K3 surface

There is a moduli space of inequivalent complex K3 surfaces whose underlying real 4-manifolds are
all diffeomorphic. For definiteness, then, we define K C CPP? as the zero locus of the quartic

O+ )+ D)+ () =0, (5.2)

where 20, z!, 72, 7% are the standard homogeneous coordinates on CP>. It is a smooth closed real 4-
manifold which is simply connected, and the complex structure induces an orientation. The Chern
classes can be computed from those of CP? and that of the normal bundle, which is the restriction
of O(4) — CP? to K, and from there we derive the Stiefel-Whitney and Pontrjagin classes:

w(K) =1
p(K) =1— 48k,

(5.3)

where k € H*(K;7Z) = 7Z is the positive generator. In particular, wy(K) =0 and so K admits a spin
structure compatible with the orientation, which is unique up to isomorphism since K is simply
connected. Also,

A(K) = —24k. (5.4)

5.2. Quaternionic projective plane

Let HIP? denote the space of one-dimensional quaternionic subspaces of the quaternionic vector
space H>. For definiteness we let the division algebra H act on the right of H>. In coordinates write

HP? = {[¢".q". ¢ :q' €M}/ ~ 4" . ¢ 1 ~[hg'h*h, heH. (55

HP? is a simply connected 8-manifold. In fact, the filtration * C HP' C HP? provides a CW struc-
ture with a single 0-cell, 4-cell and 8-cell. The simple connectivity implies that up to isomorphism
HP? has a unique spin structure compatible with a given orientation.

Let L — HP? be the tautological quaternionic line bundle; its fiber at a point £ € HIP? is the
quaternionic line ¢. There is a short exact sequence

0—L—H —0—1 (5.6)

of (right) quaternionic vector bundles; in the middle is the trivial bundle with fiber H? and the
sequence defines the rank two quotient bundle Q — HIP2. Note that the dual L* =2 Homy (L, H) is
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canonically a left H-module. The tangent bundle is identified as the real vector bundle Homy (L, Q) =2
O ®y L*, and it is the quotient in the short exact sequence of real vector bundles

0— Loy L' — H @y L* — @@y L* — 0, (5.7)
so its total Pontrjagin class is the quotient

P(}HL3 O L*)

P{HF) = p(L®yL*)’

(5.8)

since H® (HIP’Z; 7) is torsionfree. The quaternionic line bundle L* — HP? is, by restriction of scalars
to C C Hi, a rank 2 complex vector bundle isomorphic to its complex conjugate, so its total Chern
class has the form 1 — x, where x € H*(HP?;Z); we call x the quaternionic first Pontrjagin class.
Restrict to HP!' C HP? and fix a non-zero quaternionic functional H? — H to define a section of
L* — HP'! which vanishes transversely at a single point. It follows that x generates H*(HP?;7Z).
Now L ®y; L* splits off a trivial real line bundle, and the orthogonal rank 3 bundle is the real adjoint
bundle of the complex 2-plane bundle underlying L* — HIP?; the first Pontrjagin class of the real
adjoint bundle is 4x. Therefore, from (5.8)

(1+x)°
(1+4x)

(See [9, Section 15.5] for an alternative derivation.) It follows that

p(HP?) = =14 2x+ 7% (5.9)

AMHP?) =x,  wy(HP?) =%, (5.10)
where X € H*(HP?;Z/27) is the mod 2 reduction of x.

REMARK 5.1 As mentioned above, a quaternionic line bundle L — X has a quaternionic first Pon-
trjagin class pt!(L) € H*(X;Z) which equals minus the second Chern class after restricting scalars
to C C H. We can also restrict scalars to R C H to obtain a rank 4 real vector bundle Lg — X, whose
first Pontrjagin class satisfies py (Lg) = 2p'(L). The following general formula is useful, and can be
used in the derivation of (5.9). Suppose R, L — X are right and left quaternionic line bundles with
quaternionic first Pontrjagin classes r, £ € H*(X;Z). Then R @y L — X is a real 4-plane bundle with
total Pontrjagin class 1 +2(r+¢) + (r — £)2.

Use x> € H}(HP?;Z) =2 Z to orient HIP?: choose the fundamental class such that (x?, [HP?]) = 1.

5.3. Bott manifold

The bordism group mgM Spin is free abelian of rank two: there is an isomorphism

mgM Spin — Z B Z
. (5.11)
[M] — (A(M), o (M))
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which maps a closed spin 8-manifold to its A-genus and its signature. The quaternionic projective
plane has A(HP?) = 0, o (HP?) = 1. A closed spin manifold B with A(B) = 1 is called a Bott mani-
fold. We need not insist on vanishing signature, as that can always be achieved by connected sum with
copies of HIP? or its orientation-reversal, and indeed the Bott manifold we use has signature —224.

We do not know of an elementary construction of a Bott manifold. One possibility is a Rie-
mannian manifold B of special holonomy Spin, C Sping, which necessarily satisfies A(B) =1and
is simply connected (see [34, Section 10.6]). Closed 8-manifolds with Spin; holonomy were first
produced by Joyce. A more topological approach leans on the work of Kervaire and Milnor [42],
[36]. The Bott manifold B so constructed is also simply connected, so admits a unique spin struc-
ture. Briefly, plumb together eight copies of the disk bundle of the tangent bundle to §* according
to the Eg Dynkin diagram. The resulting compact 8-manifold N has a boundary which is an exotic
7-sphere. The Kervaire-Milnor results imply that a connect sum of 28 copies of the exotic sphere
bounds a ball, hence we define B as the boundary connect sum of 28 copies of N and cap off with
a standard ball (see [32, Section 6.5]) for details. The manifold B is almost parallelizable, that is,
admits a trivialization of the tangent bundle away from a point. This implies that p;(B) =0, and from
a computation with the signature we deduce the total Pontrjagin class

p(B) = 1 — 14400, (5.12)

where b € H3(B;Z) = 7 is the positive generator. Note A(B) = 0 and w4(B) = 0. Then

. 792 — 4
A(B) = <p;760p2,[3]> (5.13)

implies A(B) = 1. We use this Bott manifold in the sequel.

5.4. Real projective spaces

Let L — RP" be the tautological real line bundle. Arguing as in the second paragraph of Section 5.2
we deduce that the tangent bundle to RIP" is stably equivalent to

(n+1)L— 1. (5.14)
Then if o € H'(RP";Z/27) = 7./27. is the generator, we conclude
w(RP") = (14 )" (5.15)

Projective 4-space RIP* has w, = 0, so admits a pin* structure, in fact two distinct ones which are
opposite in the sense of Proposition 3.10. Of course, w; (]RP4) = o so that RP* is not orientable, so
not spin either. Also, wy(RP*) = o* is non-zero, and we fix a w;-twisted lift égps € H*(RP*; Z) ~7
which is a generator.

For n =12 we compute from (5.15) that RP'? is not orientable; is pin™ with two opposite pin™
structures; that W4(RIP’12) = o*; and since H4(RIP12;Z) = 0 it does not admit an m, structure.

The n-invariants of RP* and RP'? are computed in [50, Corollary 5.4]. The results are reciprocal
for the two opposite pin™ structures (Proposition 3.10), and we use the 7-invariant to pin down a
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choice. Stolz’s result follows from Proposition 3.12 (see (3.19) for notation):

2mi

Tppt = EXP (24> (5.16)
2mi

TR]P}IZ = €xXp (28) . (517)

For later use we quote from [38] the position of these real projective spaces in pin* bordism. In
dimension 4 we have

myMTPin™ = 7,/2°7, (5.18)

and RP* represents a generator. In dimension 12 we have, as already quoted in (3.12),
TaMTPin™ 2 7/2%7 & 7/2'Z ® Z/2°Z (5.19)

and RP'? represents a generator of the first factor. Proposition 8.11 below proves that
mMw. =7, O 7/2°7. (5.20)

The pair (RP4, Crpt) Tepresents a generator of the infinite cyclic summand. The connected sum
RIF’4#RIF’4 has order 8 in (5.18) and has vanishing wy (since its value on the fundamental class
is the mod 2 Euler number). The pair (RIE”“#RIE”“, 0) represents a generator of the second summand
in (5.20).

REMARK 5.2 Stolz uses Proposition 3.12 to compute (5.16) and (5.17). These results also follow from
the topological formula (3.20), stated for pin™ 12-manifolds but with an extension to pin™* (8k + 4)-
manifolds, k € Z=°. (Zhang uses the n-invariant of real projective spaces to prove Theorem 3.9, so
logically we are only illustrating the theorem here, not using it to derive (5.16) and (5.17).) For exam-
ple, let v: RP'? — RP? be a linear embedding, and H — RP? the tautological real line bundle. The
normal bundle to 7 is the restriction of H®® — RP? to RP'?, and RP'? is the 0-set of a section of
H®® 5 RP? (8 linearly independent linear functions). It follows that «(1) is the KO Euler class of
H®® — HP?°, which we compute to be 8(1 — [H]) after multiplication by the Bott class. (The Euler
class is associated with the difference of the half spin representations of Sping, which restricted to
the diagonal Z /27 C Sping is 8(1 — €), where € is the sign representation.) It remains to observe that

8(1 — [H]) has order 2% in KO(RP™).

5.5. Three special manifolds

We define three 12-dimensional manifolds Wy, Wy, W, which appear in Theorem 6.1 below. Each of
Wi, Wy is presented as the quotient of its orientation double cover by a free involution.
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W Set
W) = S§* x (HP24HP?), (5.21)

the Cartesian product of the 4-sphere and the connected sum of two quaternionic projective planes.
As an explicit model of the connected sum, fix a line through the origin in real affine space A%,
remove two small antipodal balls from S¥ C A which are exchanged by the half-turn about that line,
and glue in two identical copies of HIP? \ B%. Then (5.21) has a free orientation-reversing involution
which is the Cartesian product of the antipodal involution of S* and the half-turn of HP?#HP?
with its two fixed points. The quotient is the manifold Wj,. Since W}, is simply connected, we have
71 Wy = 7,/27 and hence H'(W};Z/27) = 7./27.. Since the involution is free on $*, the manifold
W, fits into a fiber bundle

HP*#HP? — W), — RP*. (5.22)

The simply connected manifold HP?#HIP? has a unique spin structure, and so the half-turn lifts to
a spin automorphism. Its square is either the identity or the spin flip; we show it is the identity by
computing at a fixed point on S3. The differential of the half-turn is the linear map —1 on the eight-
dimensional tangent space. The linear map —1 lifts to the volume form in Sping, which squares
to +1. Therefore, the vertical tangent bundle of (5.22) is spin, and so wi(W()), i=1,2, are pulled
back from RP*. Using (5.15) we see that W}, is pin™: it admits two opposite pin™ structures.

The cohomology ring of the connected sum is

H® (HP*#HP* Z) = Zlx, x3]/ (x1x0, 61 —x3),  degx; = degx, = 4. (5.23)

Let t € H*(S*;Z) denote a positive generator. Then under the antipodal involution the class 2t
descends to the generator ¢ € H4(RIP’4;Z) (see Lemma 4.8). Recalling (5.10) and the fact that
W4(RIP’4) = o*, as mentioned following (5.15), we deduce that ws(W}) = o* +X; + X», where X; is
the mod 2 reduction of x;. The class X; + X, is invariant under the involution of HP?>#HP? and
descends to wy of the vertical tangent bundle in (5.22). Define the w;-twisted integer lift ¢j, €

H*(W};Z) of wa(W},) by

Ty =2t +x1 — X, (5.24)
where 7: VAVé) — W, is the orientation double cover.
Wy . Let Kg — S* = HP! be the underlying real 4-plane bundle of the quaternionic line bundle K —

§* with pt(K) € H*(S*;Z) a positive generator. Define W) = P(K3” @ R) as the total space of the
real projective bundle

RP* — P(KP? @ R) 25 5% (5.25)

Let L — W{ be the tautological real line bundle. Since the stable tangent bundle to S* is trivial, the
stable tangent bundle to W{ is the stable tangent bundle along the fibers, which is
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(L-R)+ (p*K3*®L). (5.26)

This comes from the short exact sequence 0 — L — p* (ng ®R) — O — 0 of real vector bundles
over Wy (compare (5.6)). Using (5.26) we compute w; (W) = wi (L) and w, (W) = 0: it suffices to
restrict to a fiber of (5.25) since that restriction induces an isomorphism on H'(—;Z/2Z), i=1,2.
The orientation double cover is an S®-bundle over $*, which is simply connected. Hence W; admits
two opposite pin™ structures.

The bundle p*Kgr ® L has total Stiefel-Whitney class of the form 1+ w4, and it follows easily
from the Whitney formula applied to (5.26) that ws (W) = 0.

W;. The projective group PSp; =2 SO; acts on HIP? via (see (5.5) for notation)
Xlg'd 1=’ A Al A e Sp (5.27)

So a principal SO3-bundle has an associated fiber bundle with fiber HIP?. The action (5.27) lifts to the
spin bundle of frames of HIP2. To see this, choose a basepoint [1,0, 0] and write HIP? = Sp;/Sp; x
Sp». The principal Sping-bundle of frames is associated with the principal (Sp; x Sp,)-bundle Sp; —
HP? via the representation

Sp1 X Spa = Spin; x Sping — Sping. (5.28)

The PSp; action fixes the basepoint, and the ‘diagonal’ map Sp; — Sp; x Sp» — Sping descends
to PSp;. The induced map PSp; — Sping gives the desired lift. Define W, as the fiber bundle

HP?> — W, —s CP' x CP! (5.29)

obtained from the principal SO3-bundle of oriented orthonormal frames of the real 3-plane bundle
O(1,1)g ®R — CP' x CP', where O(1,1) — CP' x CP' is the tensor product of the hyperplane
line bundles on the factors. The manifold W, is simply connected, hence orientable. The stable
tangent bundle to CP' x CP' is trivial, and the vertical tangent bundle is spin, hence W/ is spin with
a unique spin structure refining each orientation.

To compute the Pontrjagin classes of the vertical tangent bundle of (5.29), we use the PSp; action
to construct a fiber bundle

HP? — E — CP*® (5.30)

from the rank three real vector bundle O(1)gr ® R — CP*°. The squaring map T — T induces a
degree two map f on BT = CP*°; the pullback f* (O(1)r ® R) = O(2)g & R is the adjoint bundle of
a principal Sp; = SU,-bundle we write as the quaternionic line bundle K — CP°°. Then the pullback
of (5.30) under f is the projectivization of the rank three quaternionic vector bundle K3 — CP>°. Let
a € H*(CP*°;Z) be a generator; then the quaternionic Pontrjagin class of K — CP™ is p{(K) = a”.
Let L — P(K®?) be the tautological quaternionic line bundle. Using the technique in Section 5.2,

including Remark 5.1, we compute the total Pontrjagin class of the vertical tangent bundle to
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E' =P(K®?) — CP*™ as
[142(x+a?) + (x—a*)?]

=1+ (2x+6a%) + (7x* — 6a*x) + (12a*x*) + ---

p(E'/CP>) =

where x = pi'(L) € H*(E';Z). Grothendieck’s formula for projective bundles implies
X =3d’x* —3a*x+d°. (5.32)

(A quick explanation: Let V — X be a vector bundle of rank >0 (over R, C, or H), P(V) L Xits
projectivization, and L — P(V) the tautological line bundle. Over P(V) there is a short exact sequence
0— L—p"V— Q-0 of vector bundles, where Q — P(V) has rank r — 1. Grothendieck’s formula
expresses the vanishing of its rth Chern or Pontrjagin class.) Use the pullback diagram

r—t .p

ﬂfl f y

CP® — Cp® (5.33)

of fiber bundles to compute 7+ of the degree 12 Pontrjagin classes ps, p1pa, p} of the vertical tangent
bundle to E/CP; they pull back under fto the corresponding Pontrjagin classes of E'/CP*°. Note
fa="2a. Thus

frps =l f ps = (128°3) = 124 (5.34)
from which
Tp3 = 3d°. (5.35)
Similarly,
Tpipr = 184> (5.36)
T.p; = 24d> (5.37)
and hence

A =342 (5.38)
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Finally, we pull back by the degree (1,1) map CP' x CP' — CP> to compute the corresponding
quantities on W;. After evaluating on the fundamental class [CP' x CP'] we find

(p3(W1), [Wi]) =6
(p1p2(Wh), [Wi]) = 36 -
J(W), [Wh]) =48 (5.39)

(N (Wy), [Wh]) =6.

6. The anomaly cancellation

In this section we state the main computational result, Theorem 6.1, which provides generators for the
dimension 12 bordism of manifolds which occur in M-theory. We give the proof in Section 8. Here,
in six subsections, we use this bordism computation to prove the Anomaly Cancellation Theorem 2.2
by computing the invariants oy, o~ for a generator of each factor. We organize the presentation by
Adams filtration (see Section 8.4). Two of the six generators are represented by spin manifolds, so
in these cases the anomaly cancellation is already proved in Theorem 4.17. Nonetheless, we check
directly by computing the invariants.

Since our invariants take values in a finite abelian 2-group (see Corollaries 3.4 and 4.13), it suffices
to compute after completing at the prime 2. (The structure of the bordism group at odd primes is much
simpler, but we do not treat it here.) Let Z, denote the 2-adic numbers.

6.1. The bordism group

Recall that Mm, denotes the bordism spectrum of m.-manifolds. We use the manifolds and coho-
mology classes defined in Section 5. The cohomology class A of a spin manifold is the canonical
integer lift of wy.

THEOREM 6.1 The following six m.-manifolds generate the group mioMm, ® Zj:

(Wo,cp),  (W",0), (Wi, A)

(6.1)
(KxHP%N),  (RPY &) x B, (RP*#RP*0) x B.

Note that W; and K x HIP? are spin manifolds.

6.2. Computations
As explained in (2.3), the Anomaly Cancellation Theorem 2.2 is a consequence of Theorem 6.1 and

the following.

THEOREM 6.2 For each of the pairs (W,¢) listed in (6.1) the anomaly cancellation condition
aps(W)a (W) = 1 holds.

The proof of Theorem 6.2 is divided into six parts, one for each generator. It occupies the remainder
of Section 6. Recall that gy is defined in (3.11) and o in (4.41). Strictly speaking, we do not rely
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634 D. S. FREED AND M. J. HOPKINS

on the particular wi-twisted integer lift ¢ of w4 since the mod 2 cubic invariant o is independent of
the choice (Lemma 4.12). For convenience, we summarize the computations in the following chart:

(W,¢) ars(W) (W)
(Wh, &) +1 +1
(Wg,0) +1 +1
(Wi, A) +1 +1 (6.2)
(K x HIP?, \) -1 —1
(RP*, &) +1 +1
(RP*#RP*, 0) +1 +1

Adams filtration 4
To compute the Rarita—Schwinger anomaly partition function of RP* x B, we apply Propositions 3.8
and 3.11:

ing ind Dg(TB
TrRP* (TR]P4) 4Ds Tﬂgpzt »(T5) 63
2ind Dy . (6.3)

RP*

tgs(RP* X B) = Tps o s (TRP* + TB —2) =

From (5.14) the stable tangent bundle to RP* is 5L — 1. Proposition 3.10 implies that as far as 7-
invariants are concerned, tensoring with L induces a change of sign. Hence using Proposition 3.8
and (5.17)

Tps (TRPY) = 7ps (5L — 1) = Tps (—6) = exp <37”) i (6.4)

An alternative computation uses the four-dimensional analog of Proposition 3.12 in which the
denominator of 2% in (3.27) is replaced by 2*. Bound the orientation double cover $* by the closed 5-
ball D3 with its antipodal involution. The pullback of TRP* extends over D as TD’—1. The trace Tf
at the unique fixed point is —5 — 1 = —6, and we recover (6.4) from (3.27). Still another computa-
tion uses a variant of Theorem 3.9 for pin™ 4-manifolds: replace RP*® with RP'? and 2! in (3.20)
with 27. Following the notation in Remark 5.2 with these replacements we compute

Y (TRP*) =, (v* (5[H] - 1))
= (5[H] — 1)7:(1) 6.5)
= (5[H] — 1)8(1 — [H])
= —48(1 — [H]),

and now (6.4) follows from the adapted (3.20). For the index computation on the Bott manifold we
use the Atiyah—Singer index theorem and (5.12):

ind Dg(TB) = A(B)ch(TB)[B] = (1 - 13’; 0) (8 - %) [B] = 248. (6.6)
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Combining (5.16), (6.3), (6.4), (6.6) and ind Dg =1 (see (5.13)) we conclude

6737ri/4 e™i

The C-field anomaly partition function is the exponential of the mod 2 reduction of the cubic
form (4.47). As in Section 6.2 the class p(RP* x B) = p(B) = —720b. Evaluating on the generator
trpt € HY(RP*, Z) we find

~3 o —~
(W) [RP* x B] = 30. 6.8)

Since this is even, o (RP* x B) = 1.

Adams filtration 5

The Rarita—Schwinger partition function only depends on the image of (RP4#RP4) x B in pin™
bordism. The connected sum RP*#RP* represents twice RP* in pin™ bordism, and the same
is true after crossing with the Bott manifold. (See Section 5.4.) Thus we deduce from (6.7)
that cvgs ((RP*#RP*) X B) = cpg(RP* x B)? = 1. Since ws ((RP*#RP*) x B) = 0 we can take the
wi-twisted integer lift to vanish, and hence o ((RP*#RP*) x B) = 1.

Adams filtration 3

The manifold W5 = K x HIP? is spin, so by Proposition 3.5 the Rarita—Schwinger anomaly partition
function is the mod 2 reduction of an integer RS(W3) defined in (3.15). Using (5.3) and (5.9) we
compute

%A(Wg)ch(TW3 —2) = ~A(K)A(HP?) (ch(7K) + ch(THP?) — 2)

(1420 (1- %) ((4—48k) + (8+2x— 2%) _2> 6.9)

:_kx2+...

= N —

Therefore, RS(W3) =—1 and azg(W3) = —1.
The C-field anomaly partition function is computed from the cubic form

M —p\  (x—24k)® — (3x* — 24xk) (x — 24k)
24 24

=k - (6.10)

Evaluating on the fundamental class and exponentiating we deduce a.(W3) = —1.

Adamis filtration 1
The spin manifold W, is defined in Section 5.5.3; it is an HP2-bundle over CP' x CP'. We
plug (5.39) into (3.17) to compute apg(W;) = 1 and into (4.47) with ¢ = A to compute o -(W;) = 1.
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Adams filtration 0, part 1
The manifold W is an (HP?#HP?)-bundle over RP* (see (5.22)). We claim that its Rarita—
Schwinger anomaly partition function is trivial: cgg(W;) = 1. To prove this we apply Proposi-
tion 3.12. The total space (5.21) of the orientation double cover bounds D’ x (HP?#HP?) with
the antipodal involution on D’ times the half-turn about an axis through S® C A acting on the con-
nected sum. There are two fixed points: the center of D3 times antipodal points p, p’ € S8 In (3.27)
the traces 7, = 7/, and we claim i, = —i,. To prove this choose the center of S® as the origin of A?,
so identify the affine space A? with the vector space R°. The half-turn is implemented on spinors
by the element w = y'+2---~® in Cliff, 9, where we choose the axis to be the last coordinate. But
the standard basis vectors ey, e, ..., es form an oriented basis of exactly one of TpSS, T,,/SS; it is
negatively oriented at the other point. So the action of frames at the other point is by the conjugate
e]wel_l = —w. Multiply by the volume element of Cliff s, which gives the action of the involution
on pin™ frames at the center of D>.

For the C-field anomaly partition function we compute the cubic form on the orientation double
cover using (4.44). Use the w-twisted integer lift ¢ specified in (5.24) via its lift ¢ to W;,. Use (5.9)
to compute that p(W))) = 3(x? 4+ x2). Thus

S —pe _ 126x% — 12252

% T =0, 6.11)

since x* = x7 = x3 in H® (HP*#HP?) (see (5.23)). Therefore, ao (W) = 1.

Adams filtration 0, part 2
The manifold W) = P(2Kg ® R), defined in (5.25) as an RP®-bundle over $*. Recall that K — $* is
the quaternionic line bundle with pil(K) € H*(S*;Z) the positive generator. We use Theorem 3.9 to
compute ag(Wy) = 1.
—~ 4 —~0
As a preliminary define ;1 € KO (§*) as ¢«(1) for ¢: pt — §*, and A € KO (§*) as the KO-class
—~ 4

[Kg] — 4, where K — S* is the real 4-plane bundle underlying K — S*. Identify KO (S*) as the

Grothendieck group of quaternionic vector bundles over S* of virtual rank zero; then p = [K] — [H].
Let : S* — pt be the unique map. Then we claim

Au=0 (6.12)
AH] = 4p (6.13)
T =1 (6.14)
T [H] = 0. (6.15)

Since we can trivialize Kr — S* away from a point, we can arrange representatives of \, ;1 with
disjoint support, from which (6.12) follows. For (6.13) we observe that if M is any quaternionic line,
then there is a natural isomorphism
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MP* — My @p H

4 (6.16)
(€L606.6) — > 6@ 1 +E&i®i+ )+ LAk

s=1

of quaternionic vector spaces. Equation (6.14) is immediate: 7.t = (7 0¢). (1) = 1. Finally, H — §*
is pulled back from H — pt, so .. [H] = [H]7.(1) = 0 since 1 € KO°(S*) extends over the 5-ball.

Another preliminary: If Mr — Y is the real 4-plane bundle underlying a quaternionic line bundle
M — Y, then its KO-theory Euler class is

[H] - [M] € KO'(¥). 6.17)

Proof: M — Y is associated with a principal Sp;-bundle via (i) the embedding Sp; — Spin, = Sp; X
Sp1 onto the second factor and (ii) the action of Sp; x Sp; on H in which the first factor acts trivially
and the second by right multiplication. Then the KO-Euler class is pulled back from the vector bundle
associated with the difference of the quaternionic half-spin representations.

Let J — S* be the quaternionic line bundle with pi'(J) = —2pf(K). Then KL @ Jg — S$* is
trivializable. Define

v: Wi =P(KE* O R) S PR OR @ Jg) = $* x RP2 S RP'? L5 RPY, (6.18)

where 7 is the projection onto the second factor and j is a linear embedding as in Remark 5.2. Let
L — P(K$* @ R@ Jg) be the tautological real line bundle. Then L = 7*H = 7*j*H for H — RP*
the tautological line bundle, and "L is also isomorphic to the tautological line bundle. We identify
L*=L. The normal bundle to i is the quotient of tangent bundles (see (5.26)):

[("L-R) ® K2 @i'L ® Jrp@i*L] | [(*L-R) ® K2 @i"L] £ Jp ®i*L 6.19)
~ " (Jg ®L). '
There is a canonical section of

Jr ® L= Hom(L,Jg) — P(KE? SR @ Jg) (6.20)

given by projection KD%Z @R & Jr — Jg, and its zero set is the image of i. It follows that i«(1) is the
KO-Euler class of (6.20), which we compute using (6.17):

i(1) = [H] - Ve L] = (1 - [L])[H] + 2[L}p

(6.21)
— = {(1— [H])[H] + 2[H]}.
Using (5.26) we find
[TWy] —2 = i*{2[H]A +9[H] 4 1}. (6.22)
Combining (6.21) and (6.22) with (6.12)—(6.15) we calculate
mi. (TWg] —2) = m.{ (2IHIA+9[H) + 1) (1 — [H)) (] + 2(H)1) } 69

— 10[H] + 10.
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Now j. (1) = 8(1 — [H]) is computed in Remark 5.2, and so

j=([H)) = [H]j. (1) = 8[H](1 - [H]) = —j.(1), (6.24)
from which
Y ([TWG] = 2) = jummain ([TWy] —2) = 0. (6.25)

Then oy (W) = 1 follows immediately from (3.20).

The C-field anomaly is also trivial—a(W() = 1—since w4(W() =0 and we can choose the
wi-twisted integer lift ¢ in (4.41) to be zero.

7. Ambiguities in the M-theory action

As mentioned in the introduction, to define an M-theory action it is not sufficient to demonstrate the
cancellation of anomalies; we must also give a trivialization of the product agg® o, a so-called
setting of the quantum integrand. The ratio  of two trivializations is an invertible 11-dimensional
field theory. Unitarity of M-theory requires that 3 be reflection positive. If 3 were to depend on the
metric or the field strength of the C-field, then it would be detected locally. Since the local physics
is fixed by considerations other than anomaly cancellation, we restrict 5 to be a topological field
theory. As explained in Section 2 a reflection positive invertible 11-dimensional topological field
theory of m.-manifolds is determined by a homomorphism 7;Mm. — C/Z. (Reflection positivity
imposes a restriction, which is satisfied here by all such homomorphisms, since they take values
in {£1} C C/Z.) The following conjecture describes the group of these theories.

Let X be the Klein bottle. It has four pin™ structures of which two are non-bounding [39, Propo-
sition 3.9]; fix one of those. Also, let S denote the circle with its non-bounding string structure (see
Remark 8.1). Define the 11-manifold

N=S'xY xB, (7.1)

where B is the Bott manifold (Section 5.3). The following is based on computations to appear in
[31], and out of an abundance of caution we state it here as a conjecture, a more precise version of
Conjecture 2.3.

CONJECTURE 7.1 The group miiMm. is cyclic of order 2. The bordism class of the pair (N, 0) rep-
resents the generator. The mod 2 index of the pin™ Dirac operator is an isomorphism wiMm,. —
Z]27.

See Section 8.5.4 for a justification of Conjecture 7.1 using the Adams spectral sequence.

REMARK 7.2 Index invariants of pin* n-manifolds correspond to index invariants of spin (n — 1)-
manifolds (see [26, Section 9.2.3]). Hence the mod 2 indices of spin manifolds in dimensions 9, 10
correspond to mod 2 indices of pin™ manifolds in dimensions 10, 11. Let P be a pin™ 10-manifold.
Then the mod 2 index of the product S! x P'? equals the mod 2 index of P. We use product formulas
analogous to Proposition 3.11 to compute that the mod 2 index of ¥ x B is non-zero.
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8. The bordism computation

In this section, we present the computations which prove Theorem 6.1 and justify Conjecture 7.1.
We begin in Section 8.1 by constructing the Thom spectrum Mm,. In Section 8.2, we discuss some
characteristic classes of m.-manifolds and their behavior under transfer maps from the orientation
double cover. We compute the values of some m,-characteristic classes on two special manifolds
in Section 8.3. The Adams spectral sequence is introduced in Section 8.4. A crucial input is the
structure of the mod 2 cohomology of Bm,, which is discussed in Appendix C. The main work in
this section occurs in Section 8.5. We present arguments to determine the facts we need about m,-
bordism groups in dimensions 11 and 12, and along the way compute low dimensional m.-bordism
groups.

8.1. The Thom spectrum

Our aim in this section is to justify the claim that the manifolds listed in Theorem 6.1 generate
the bordism group of m.-manifolds (Definition 2.1). We begin by identifying the relevant Thom
spectrum.

Suppose that (X, ¢) is a space X equipped with a stable vector bundle ¢ of virtual dimension O,
which one may think of as a map ¢ : X — BO from X to the classifying space of the infinite orthogonal
group. Write Thom(X, ¢) for the Thom spectrum of (. The homotopy group 7, Thom(X, () is the
bordism group of triples (M, f, ¢) consisting of an m-manifold M equipped with a map f: M — X,
and an isomorphism

T ffC AR —TM

of virtual vector bundles. Put more colloquially it is the bordism group of manifolds whose stable
normal bundle has an (X, ¢)-structure. The bordism group of manifolds whose stable tangent bundle
has an (X, ¢)-structure is the homotopy group 7, Thom(X,—().

We are interested in manifolds M whose whose stable tangent bundle has a pin* structure and
which are equipped with a w-twisted integer lift of w4. We therefore consider the space Bm, defined
by the homotopy pullback square

Bm,——— F7/2 x K(Z,4)
J{ Z/2
BPint ———— BZ/2 x K(Z/2,4),
(w1,wa) 8.1)
let ¢ be the virtual vector bundle classified by the pullback

Bm,. — BPinT — BO,

and write Mm, = Thom(Bm,, —(¢). The homotopy groups 7.Mm, are then the bordism groups of
manifolds equipped with a tangential pin™-structure and a w;-twisted integer lift of wy.
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As in Definition 2.1, an m.-manifold is a pair (M, ¢) in which M is a pin*-manifold and c is a
wi-twisted integer lift of tangential w4. A Spin-manifold M gives rise to an m.-manifold by taking ¢
to be the tangential characteristic class A.

REMARK 8.1 Given two m.-manifolds (M}, ¢;) and (M}, c;) it is tempting to imagine that the product
(M| X My, ¢1 + ¢;) is an m.-manifold. While it is true that wy (M| X M) = wa(M,) + w4(M;), the
sum c; + ¢, does not really make sense as the two summands lie in different twisted cohomology
groups. The expression does make sense if w; (M;) = 0 and ¢, =0, and in particular, if M, is a Spin-
manifold equipped with a trivialization of A (a String-manifold). The ‘Bott manifold’ B of Section 5.3
is a String-manifold so if (N, ¢) is an m.-manifold, then (N x B, wj¢c) is also an m.-manifold.

8.2. Characteristic classes

To describe bordism invariants of m.-manifolds we will require some cohomology classes in Bm,.
First note that under the equivalence

BO, x BSO-25BO

the characteristic class w; pulls back to (0, w,). Passing to the homotopy fiber of the classifying map
to K(Z/2,2) gives an equivalence

BO,; x BSpin — BPin™.

From this one sees that a pin™-structure on a vector bundle 7 may be identified with an equivalence
T ~ L ® V of stable vector bundles, in which L is a line bundle and V is a Spin-bundle.

Suppose M is a pin* manifold and, using the above, regard the pin™ -structure as giving a stable
isomorphism TM ~ L @ V with L a real line bundle and V a Spin-bundle. Set

a=w(TM) =w;(L),
w; = wi(TM) = wy(V), 1<i<4,

and, as in Section 4.3, write
A=X\V)

for the characteristic class of Spin-bundles, twice which is p;. The mod 2 reduction of A is wy, so
every pinT-manifold has an untwisted integer lift of wy.

Now suppose that (M, ¢) is an m.-manifold. The total space of the orientation double cover 7 :
M—Misa Spin-manifold, and in fact ™ is equipped with a stable isomorphism TM ~ 7*V. The
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class ¢ = m*c is an untwisted integer lift of W4(TM). This specifies a class
L€ HY(M;Z)
satisfying
2u=A-c¢ (8.2)

REMARK 8.2 The fact that ¢ is specified uniquely and not just up to elements of order two follows
from the fact that both \ and ¢ are integer lifts of w,4. The integer lifts of a fixed mod 2 cohomology
class of dimension k form a torsor for integer cohomology in dimension k, under the action in which
an integer cohomology class ¢ changes an integer lift ¢ to ¢ + 2¢. See [33, Section 2.5] for a more
systematic discussion of this from the point of view of cocycles. It is also not difficult to show (for
example using (8.1)) that the classifying space BSpin(Sws) for Spin bundles with an integer lift
of wy is homotopy equivalent to BSpin x K(Z,4) and in particular has torsion free H*. So in fact
equation (8.2) specifies ¢ uniquely as a cohomology class in BSpin(8wy).

Transfer
We will make use of the additive and multiplicative transfers

tr: HY(M;Z/2) — H"(M;Z,/2)

P:H(M;7/2) — H*(M;Z)2).

Most computations of the additive transfer can be made in terms of M: for y € H*M one has

/M tr(x)y = /M (xm*y).

Computing the map P can be a little tricky, however there are some useful methods in special cases.
For one thing, the map P is quadratic:

P(x+y) = P(x) + P(y) + tr(x7(y)),

where 7 is the cohomology homomorphism induced by the involution. One can also compute P(x)
in terms of characteristic classes, when x itself is a characteristic class. The following, which is all
we need, is a special case of [35, Theorem 1.1].

Lemma 8.3 Suppose that p : X — X is a double cover and W is a Spin-vector bundle on X of
dimension d. If x = wq(W) € H*(X;Z/2) then

P(x) = wg(p.W —p.RY) € H(X;Z/2)
where, for a vector bundle V, p,\V = X x (Ve V). O
7.2
REMARK 8.4 In the situation of Lemma 8.3, if W = p*U for some vector bundle U on X then p, W =
U (U®L) where L=X x R, with Z/2 is acting on R by the sign representation. In that case
7.)2

P(x) =ws(U+U®L— L)
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8.3. Two examples

Two characteristic classes play an important role in our computation of m,Mm,. They are tr(:> +
*wy) and o*P(1).

ExaMPLE 8.5 Recall from Section 5.5.1 the pair (W, ¢{,) in which

Wy =S* x HP?#HP.
7)2

The orientation double cover is
W) = §* x HP*#HP?> 5 5* x HP?#HP?
7./2
and the involution of HIP?#HIP? exchanges the two summands, is orientation preserving, and has
two fixed points. The w;-twisted cohomology class ¢ satisfies
7T*Z'(/) =2t+x; — xo.

Since A = x1 4+ x; (see (5.10)) we have

=xp—t

e L2W4 = x%t

and so

/ tr(e® + 2wy) :/ (2 + Pwy) :/ (30 =1
Wy W, W5

REMARK 8.6 One can check that fw’ a*P(1) = 0, though we will not make use of this fact.
0

ExaMPLE 8.7 Consider the manifold W) = P(KE* @ R) described in Section 5.5.2. Since the
Stiefel-Whitney classes of K%z vanish on S$*, the projective bundle formula gives

H* (W 7)2) = 7./2[t, o] / (£, a°)

where 7 is the generator of H*(S*). The orientation double cover is S (K]%2 ®R) and the mod 2
reduction of

is t = wy4(Kg). Since the map
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is an isomorphism, we have
B4 L2W4 =0,

and so
/ tr(¢® + 12wy) = 0.
wy/

For the characteristic number o*P(1) we first appeal to Lemma 8.3 and compute
P(1) = wg(p.Kgr — p.R?).

Since Kp is pulled back from W{ we are in the situation of Remark 8.4. Writing L,, for the real line
bundle with w; (L, ) = a we are led to the total Stiefel-Whitney class

w(Kg + Kg @ Lo —4Lo) = (1+0)(1 +t4+a*)(1+a)™*
=142 +a*+0[9]=1+a*t+0[9]

Thus
P(1) = a’t

and

/ AP(1) = 1.
Wy

8.4. The Adams spectral sequence

Our aim is to identify generators for ;M m,. Since our main concern is the comparison of two differ-
ent homomorphisms from 7, Mm, to a finite abelian 2-group, it suffices to do so after completing
at 2. For this we can appeal to the Adams spectral sequence, and this can be done by computer
calculation. For the purposes of this paper the authors used Mathematica to determine the mod 2
cohomology of Bm, as a module over the mod 2 Steenrod algebra, and Rob Bruner’s program [10]
for computing the E,-term of the Adams spectral sequence, as well as the map of Adams spec-
tral sequences induced by the map from M Spin to Mm,. The results are displayed in Figs 1 and 2.
Appendix C contains much more information about the cohomology of Bm,.. In [31], a more detailed
version of this computation is described, as well as means of doing it by hand.
The Adams spectral sequence begins with

ES' = Bxty'(H*Mm,, Z/2) = Ext} (H*"'"Mm,,Z/2),

with A the mod 2 Steenrod algebra, and converges to the homotopy groups of the 2-adic completion
Mm, of Mm,. Since the homology groups of Bm, are each finitely generated, the homotopy groups
of Mm, are each finitely generated and so m;_ M m, is just the 2-adic completion of 7,_ M m,.
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ReMARK 8.8 For the remainder of this section all bordism groups will be 2-adically completed.
Except for the appearance of the symbol Z, for the 2-adic numbers, this will not be indicated in the
notation.

The differential d, of the Adams spectral sequence goes from bidegree (s, ) to bidegree (s + r, t +
r—1). It is customary to display the Adams spectral sequence with the horizontal axis numbered by
(t — s) and the vertical axis s. With this convention the differential d, goes one square to the left and
r-squares upward. The groups contributing to a given homotopy group lie in a column.

The ‘s’ in the Adams spectral sequence direction corresponds to a decreasing filtration of stable
homotopy groups known as the Adams filtration.

DEFINITION 8.9 A map f: X — Y of spectra has (mod 2) Adams filtration greater than or equal to n
if there is a factorization

X=Xox, I s x, =Y
in which each f; induces the zero map in mod 2 cohomology.

The Adams filtration is natural in both variables, in the sense that composition with a map X’ — X
or Y — Y’ sends maps of Adams filtration greater than or equal to n to maps of Adams filtration greater
than or equal to n.

DEFINITION 8.10 A map has Adams filtration n if it has Adams filtration greater than or equal to n
but not greater than or equal to (n + 1).

The maps in Adams filtration greater than or equal to n appear in the Adams charts with
s-coordinate greater than or equal to .

The Adams spectral sequence for 7, X is a module over the Adams spectral sequence for the stable
homotopy groups 7,.S° of spheres. The element 2 € 7,S° has Adams filtration 1 and is represented
by a class traditionally denoted

ho € Exty'(Z/2,2,/2).

Multiplication by A in any Adams spectral sequence is indicated in the chart by a vertical line.
Similarly, the Hopf map 7 € 7,5 is represented by the element

h € Ext3'(2/2,7./2)

and multiplication by #; is indicated by a (1, 1) diagonal line. A little care must be used in draw-
ing conclusions from these notations. For example, Fig. 1 shows the Adams spectral sequence for
m«Mm,. From the chart it appears that m4Mm, = Z/8 & Z,, with the generator of the Z/8 appearing
in Adams filtration 1. However all that the chart implies is that 8 times the apparent generator in
filtration 1 has Adams filtration greater than 4. Some additional argument is needed to conclude that
there is an element of order 8 in filtration 1. One can conclude from the chart that 74 is generated by
2 elements and has rank 1. The computation of m4Mm, will be given in detail in Section 8.5.2.
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The s =0 line of the Adams spectral sequence consists of the groups
homy (H'X, HS®) C H/X.

The kernel of the higher differentials pick out the image of the Hurewicz homomorphism in
H,X. When X =Thom(B, V) is a Thom spectrum it is often useful to label an element x € Eg” =
homy (H'X, HS) with a cohomology class 3 € H'(B) whose image under

Thom iso
—

H'(B) H'(X) -5 H(S) =7/2 (8.3)

is non-zero. This can be a little perilous as there can be many cohomology classes having a non-
zero image under given class, and some care must be taken to ensure that the labeled cohomology
classes are linearly independent on the image of the Hurewicz homomorphism. In the end it provides
useful information. If x survives the Adams spectral sequence and is represented by a manifold M,

/
M

Such labels therefore provide a means of identifying specific manifolds as representing a basis of the
image of the Hurewicz homomorphism. The class 3 is a characteristic class of some kind.

8.5. Computations

Armed with these spectral sequences, we first turn to the computation of 7, M m, in low degrees and
then proceed to m,M m,.. We remind the reader of Remark 8.8, that all homotopy groups have been
2-adically completed.

Dimension less than 4
The homotopy fiber of the map Bm, — BPin™ is the Eilenberg—MacLane space K(Z, 4). It follows
easily from this that the map

m.Mwm, — 7, MTPin"
is an isomorphism for * <4 and an epimorphism when * = 4. From [38] one concludes that

ToMm, =7/2 generated by a point
mM me, = 0
mMm, =7Z/2 generated by (%, 0)

where X is a Klein bottle in a non-bounding pin™ -structure, and
mMm, =17/2 generated by S' x ¥,

where S! is given the non-bounding String-structure (on S' a String structure is equivalent to a Spin-
structure).
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8
Bott manifold
6
4 K3-surface
2
Klein bottle I
0 e 8 ip 3,9
point wi 2 Wawe a'P() tr(e? + Pwy)
0 2 4 6 8 10 12

Figure 1. The Adams spectral sequence for 7« Mm,

Dimension 4
We define a homomorphism e : maqMm, — Z, by

e(M,c):/Mc.

Forgetting the twisted lift of w4 gives a map
u:mMm. — . MTPin*.

By [38], the group m4MTPin™ is cyclic of order 16, with generator RP*. Combined, these two
homomorphisms give a map

maMm, 7, ©7/16. (8.4)

PROPOSITION 8.11 The map above gives an isomorphism of maMm,. with the set of elements (a,b) €
Z, ®7/16 witha=b mod 2. The group msMw, is generated by (RP*, égps ) and (RP*#RP*,0).

Proof. By definition, the map

M.~ 7, — 7./2
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is given by [, w4, and the map
mMm, — T,MTPin™ — m,MTPin" @ Z/2 =7/2

is given by [ wi. Since Sq*: H*(M;Z/2) — H*(M;Z/2) is zero, the fourth Wu class (4.20)
vanishes. Therefore, [, (w4 +wiws + ws+wi) = |, (s + w?) = 0. This implies

/ Wélt - / -
M M

so the image of (8.4) is contained in the subgroup of elements (a, b) witha = b mod 2. On the other
hand, the Adams spectral sequence shows that the kernel of e has order at most 8. The M m.-manifold
(RP*#RP*, 0) is in the kernel of e. Its image in myMTPin* = Z/16 is 2[RP*]. Since [RP*] generates
m4MTPin™, the image of (RIP’4#RIP’4, 0) actually has order 8. The assertion about generators follows
from the computation

(RP*,&;) — (1,1)
(RP*#RP*,0) — (0,2).

This completes the proof. ]
ExaMpLE 8.12 If M is a Spin-manifold of dimension 4 then under (8.4) one has
(M, \) = (A(M), \(M)).
It follows that (M, \) = A\(M)(RP*, ). In particular
(K, \] = —24[RP*, ]
when K is a Kummer surface.

Dimension 12
Our main result in dimension 12 is the following restatement of Theorem 6.1.

PROPOSITION 8.13 The group mioMwm, is generated (over Z,) by the six manifolds

(Wo€0).  (W5,0), (Wi, )
(KxHP%N),  (RPY &) x B, (RP*#RP*0) x B.

O

The proof makes use of the following fact about Spin-bordism, which we prove in Appendix B.
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PROPOSITION 8.14 The group m1,M Spin is free of rank 3, and generated by K x B, K x HP?, and
the manifold W, described in Section 5.5.3, sitting in the fibration sequence

HP? — W, — CP' x CP'.
O

Proof. Proof of Proposition 8.13 We begin by extracting some facts from the Adams spectral
sequence. First of all, the map

TMm, — 723 7,2 (8.5)

with components

/a4P(L) and /tl‘(b3+L2W4)
M M

gives an isomorphism of the quotient of ;M m. by the elements of positive Adams filtration with
a subgroup of Z/2 ¢ Z/2. The computations of examples 8.5 and 8.7 show that this subgroup is in
fact all of Z/2 & Z /2. The kernel of this map contains the image of 7,M Spin and the image of
multiplication by B. This follows from a consideration of Adams filtrations, but it is easily checked
directly. Indeed if M is a Spin-manifold, then M is oriented, o =0, and f I a*P(1) = 0. Also, since
the orientation double cover of M is M 11 M, one has

/ tr(e® + Pwy) = / (1 4 Pwy)
M MIIM
= 2/ (® +2wy) = 0.
M

In the case (M, ¢) = (N4, ¢’) x B all of the characteristic classes to be integrated are pulled back from
H8(Ny4) =0.

Let J/ C mMm, be the subgroup generated by the image of 7,M Spin and the image of
multiplication by B, and let

C= 7T12Mmc/.]/.
A portion of the Adams spectral sequence for computing the map 7, M Spin — m,Mm, is shown
in Fig. 2. The map, which is part of the (machine) computation of Ex?, can also be determined by

composing with the map 7, Mm, — T12MTPin™. From it one can read off that the map (8.5) gives
an isomorphism

CRZL2~T/20Z)2.

Since C is finitely generated, Nakayama’s Lemma and the computations of Examples 8.5 and 8.7
show that C is generated by (W, ¢;) and (W{/,0).
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Let J C mjoMm, be the subgroup generated by
(W, \), (KxHPLN), (RPY¢pp) x B, and (RP*#RP*0) x B.

We are done if we can show that the manifolds (Wj,¢;) and (W, 0) generate m,Mm,./J. Note
that by Proposition 8.11, the subgroup J contains J': it contains image of multiplication by B and
by Proposition 8.14 it contains the image of m,M Spin. By the above discussion, the manifolds
(Wi, ¢y) and (Wy,0) generate mioMm,./J', so they certainly generate oM m,./J. This completes
the proof. ]

Dimension 11

The ambiguity of the M theory action has to do with the group 7;;Mm,. In this section, we offer
a tentative evaluation of this group. Since the ambiguity involves the entire group, we drop the
convention that groups have been completed at 2.

PROPOSITION 8.15 The group mi1Mwm, is a finite abelian 2-group.

Image of Image of
Bx(-) Bx(-)
(1) ) [ ) [ [
(1) * [ X) [ [
(1) * 1Y) [ *
(1} 0/ [ 1) 10 °
Bx K
(1) LX) (1) [
(1) [ ) (1) *
(1) [X) ® [
HP? x K ©® \m ®
[ ® %0
0 ]
04_/\'/_/ e 1Y)
\
HP? — W; — CP' x CP! (i + 2wy) 00 a*P(1)
w12 MSpin 128

Figure 2. The map from Spin bordism to M m,-bordism in dimension 12
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Proof. From the theory of Serre classes, one knows that 7; M m, is finitely generated. It therefore
suffices to show that

71'1]Mmc®Z[1/2] =0.

The homotopy fiber of the map Bm. - K(Z/2,1) is BSpin x K(Z,4), representing Bm, as the
homotopy quotient of an action of Z/2 on BSpin x K(Z,4). A map T — BSpin x K(Z,4) classifies
a pair consisting (V, ¢) consisting of a Spin bundle V — T and an element . € H*(T;Z). The pullback
of the universal w-twisted integer lift ¢ of wy is

c=AV)—2
(see (8.2)), and the generator of the Z/2-action sends (V, ¢) to
(V,A\(V) —0).

By passing to Thom spectra, this depicts Mm, as the homotopy quotient of the Z/2 spectrum
MSpin AK(Z,4) AS'~7, where o is the sign representation of Z /2. This means that after inverting
2, the map

mMSpin ANK(Z,4)+ — m.Mm,

is projection to a summand. The claim now follows from Stong’s Theorem [51], which states that
F]]MSPiH/\K(Z,“-)_;,. =0. O

From the discussion in the above proof, it is an easy matter to compute
TeMm. ® Q.

Let J = (jy, ..., ) run through the sequences of non-negative integers, almost all of which are 0, and
write

Wl =j1+ 204ty e

P =piph-.

PROPOSITION 8.16 The group mp,Mm, ® Q is zero if m is not divisible by 4. The map

(M, C) / c2k+1p1
M
gives an isomorphism

774an¢ ® @ — H Q

2k+1+|J|=n

For example, this implies that the group mj,Mm, has rank 3, corresponding to the indices
(k,J)=1(0,(2,0)), (0,(0, 1)), (1,(0)). This implies that there must be non-trivial differentials in the
chart (Fig. 1) from dimension 13 to dimension 12.
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REMARK 8.17 In [51] (note after Item 6), Stong also shows that for * < 12 the groups
TMSpin AK(Z,4)+ ® Z[1/2]

are torsion free. In fact his argument for dimension 8 can also be adapted to dimension 12 to establish
the same conclusion for * = 12. So the above also provides an evaluation of the groups

T Mm@ Z[1/2], * < 12,

Because of Proposition 8.15, the group m;;Mm, can be determined from the Adams spectral
sequence, which is displayed in Fig. 1. The E,-term provides an upper bound and shows that the
group has order at most 8. In the table, there are two ds-differentials indicated, originating in Adams
filtrations 1 and 2. These should be regarded as tentative at the moment and will appear in [31].
Assuming them, the Adams spectral sequence shows that after 2-completion, the group 7 Mm, is
cyclic of order 2 and that an isomorphism is given by the mod 2 index of the pin*-Dirac operator.
We state the outcome of this argument as a restatement of Conjecture 7.1.

CONJECTURE 8.18 The map
TuMm, — Z/2
given by the mod 2 index of the pin™ Dirac operator is an isomorphism.

REMARK 8.19 Let M be the product of the Bott manifold, S' in its non-bounding String-structure
and (X, 0) where X is the Klein bottle in a non-bounding pin*-structure (see Section 8.5.1). The mod
2 index of the pin™ Dirac operator on M is 1 and so the above conjecture implies that ;M m, is
generated by M.
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Appendix A On the anomaly theory of a spinor field

In an n-dimensional field theory F, the partition function of a spinor field on a closed n-dimensional
Riemannian manifold is the pfaffian of a Dirac operator, which is an element of a Pfaffian line,
as reviewed in Section 3. The Pfaffian line is the quantum state space of the associated anomaly
theory, which is an invertible (n + 1)-dimensional theory «, but initially truncated to manifolds of
dimension <n, since such manifolds form the domain of F. To extend « to an (n + 1)-dimensional
theory, we must define the partition function of a closed (n + 1)-manifold, as well as an element
in the state space of the boundary of a compact (n 4 1)-manifold with boundary, and these ele-
ments must satisfy a gluing law. The results in [17] imply that an exponentiated n-invariant works
as the partition function: on a compact (n + 1)-manifold with boundary, it takes values in the Pfaf-
fian line. But to define it, we must construct a Riemannian Dirac operator in (n 4 1)-dimensions
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from the n-dimensional Lorentzian data which define the spinor field. The construction was given in
[26, Section 9.2.5], but only in passing; in this appendix, we give more detail. We discuss the base
case of spin manifolds (no time-reversal symmetry) in Section A.1. In Section A.2, we specialize to
11 dimensions and the pin module relevant to M-theory.

A.1. The spin case in general dimensions

A spinor field in a relativistic quantum field theory is specified by [16, Section 6], a real spin represen-
tation S of the Lorentz spin group Spin; , — | together with a symmetric positive Spin; ,  j-invariant
map

I'ses— RN (A1)

the positivity condition is that I'(s, s) lie in the closure of the forward timelike vectors in R~
Thus, S is an ungraded module over the even subalgebra Cliff,?fl’1 of the Clifford algebra, with
n — 1 generators squaring to +1 and a single generator squaring to —1. The pair (S, T') Wick rotates to
define a Dirac operator on a Riemannian spin n-manifold X as follows. First, the complexification S¢
is a module over the complex algebra Cliff,? (C), so restricts to a representation of the compact spin
group Spin,. Also, I complexifies to a Spin,-equivariant morphism

Te: (C)* ®Se — Sk (A2)

Let S — X be the complex vector bundle on X associated with the Spin, representation Sc. Then as
usual the Dirac operator on X is the composition

Dy =ToV:C*(X;S) — C(X;5"), (A3)

where V is the covariant derivative on sections of § — X. The operator Dy is complex skew-adjoint.
(The metric on § — X is constructed in the next paragraph.) For X closed this operator appears in the
Dirac form (3.6), and its pfaffian is the fermionic path integral (3.4).

The construction of a Dirac operator on a Riemannian spin (n + 1)-manifold W from the
data (S,T') uses the Clifford linear Dirac operator [40, Section II.7] and Morita equivalence of
Clifford algebras. By [16, Corollary 6.2], the data (S, I") determine a unique Z /27Z-graded Cliff,, _ 1 ;-
module structure on S ® S*. Let 4° denote the Clifford generator with (7°)? = —1, acting as an odd
endomorphism of S®S*, and ~',...,+"! the Clifford generators with (7/)?> = +1. Fix an inner
product on S & S* such that the finite group consisting of products of the v, 4 =0, 1,...,n— 1 acts
orthogonally. (It follows that Spin,, acts unitarily on S¢, which induces the hermitian metric on § — X
used in (A3).) Now

Cliff  (,11) ® (S®S*) (A4)

is a real super vector space which carries a left action of Spin,  ;—by left multiplication on
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Cliff , 4 1) tensored the identity on the second factor—and a commuting left action of the real super
algebra

A = CIiff_ (1 1) © CIiff, . (AS)

Elements of Cliff |, 1y act by right multiplication on the first factor of (A4), tensored with the
identity on the second factor, which is equivalent to a left action of Cliff_, 1 1), the opposite super
algebra. Elements of Cliff,, _ ; act by the identity on the first factor of (A4) tensored with the action
above on the second factor. Now the left Spin,, 1 | action on (A4) defines a bundle of real A-modules
over W as well as a Dirac operator on its sections which commutes with the action of A. We claim
this solves the problem of defining an (n + 1)-dimensional Riemannian Dirac operator from (S,T")
which can be used in the anomaly theory «. To verify that claim we must (i) define the exponentiated
n-invariant of this operator and (ii) identify the induced operator in n dimensions with (A3).

For (i) we use a (super) Morita equivalence of A with Cliff_3, ‘canceling’ the last n — 1 gen-
erators of Cliff_, ;1) with the n — 1 positive generators of Cliff, _; ;. (The cancellation identifies
Cliff_(,_) ® Cliff . (,_) with the super algebra of endomorphisms of the vector space Cliff ; — 1),
which is Morita trivial.) Under the Morita isomorphism, left A-modules are identified with left
Cliff_3-modules, and so the A-module (A4), rewritten as

Cliff, (4 1) ® (S®S*) = Cliffy (,_1) ® Cliff 1, ® (S®S*), (A6)

is identified with

E=Homeyg, | scir (Cliff (1) , Cliff,(,_1) ® Cliff1, ® (S®S*)) A
>~ Cliff 1, ® (S&S¥).

Let &', 6% be the generators of Cliff,,, and 7° as above the (negative) generator of the Cliff, _ | ;-
action on S @ S*. Then the Cliff_3 which acts on E is generated by +°,d', 62, with §', §? acting
by right multiplication on Cliff,, tensored with the identity on S & S*. Furthermore, Spin,, | C
CIiff | (,4.1) acts on [E using left multiplication by ¢ 1,62 on Cliff ,, tensored with the identity on S @
S*, and by 4!, ...,7"~! acting on S @ S*, tensored with the identity on Cliff,. The latter actions
determine an odd skew-adjoint Dirac operator D on sections of the real vector bundle E = E° ® E' —
W associated with the representation E of Spin,, 4 ;. The operator D commutes with the left Cliff_;-
action on E. Now 0'6% € Cliff_3 acts as a complex structure on E and %0 € Cliff_3 acts as a
complex antilinear operator which squares to —idg. Thus E has a quaternionic structure. (More
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simply, the ungraded algebra Cliff% is isomorphic to the quaternion algebra.) The even self-adjoint
operator

D" :=~%'6’D: C>*(W;E®) — C*(W;E") (A8)

commutes with this quaternionic structure. Assume W is compact without boundary. Then D° is
elliptic, so has a discrete spectrum and the eigenspaces EY are finite dimensional quaternionic vector
spaces. Let @ € R be in the complement of the spectrum. Define

Na(s) = Zsign()\ —a) (dimc EY) |\|* — sign(a)dimckerD°, Re(s) >> 0, (A9)
A0

where the sum is over the non-zero eigenvalues of D and s is a complex number. According to the
results of [4-6] the sum converges to a holomorphic function of s if the real part of s is sufficiently
large, it has a meromorphic continuation to C, and s =0 is a regular point. Then

a(W) = eXP(Zﬁim(O)/“) (A10)

is independent of a. It is the partition function of the anomaly theory.

We now verify (ii) above, namely that the Dirac operator in n dimensions induced from (A8)
(see [4, (3.1)]) can be identified with (A3). Let X be an n-dimensional Riemannian spin manifold
and consider W = R x X with the product Riemannian metric and spin structure. Then W has a Dirac
operator (A8), which we view as complex since it commutes with the complex structure §'§2. Choose
alocal orthonormal framing on X, with basis numbered 0, 1, ...,n — 1, and a global coordinate  on R.
Order the Clifford generators of Cliff , (, 4 1y as 6%, ~!,...,7"~!, as in the previous paragraph. Then
the Dirac operator D° on W can be written locally as

D° =4%'52 (6lgt+62vo+~yiv,»>, (Al1)

where the sum over i runs from 1 to n — 1. The symbol of D, evaluated on dt, is induced from the
algebraic operator

Jxox)=—(-)M'xs'0>®+%,  xeClff,, yeSaS*, (A12)

where |x| € Z/27Z is the parity of the homogeneous element x. Then J commutes with the complex
structure §' 62, anticommutes with D°, and J?> =—id. According to [17, Section 1] the induced Dirac
operator DY on X is the operator (A11) restricted to functions on R x X which are invariant under
translation in ¢, mapping the ++/— I-eigenspace of J to the —+/—1-eigenspace of J. Thus, if now
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X ® y is a section of E’—X, we compute
DY(x®x) = —(=D)M(82Vo ++'V,) (x6' 6% @ 1°x). (A13)

Write the ++/—1 eigenbundles of J as Ei — X, and recall the complex vector bundle § — X
associated with Sc. Then there are isomorphisms

S—EY
(A14)
and
" — E°
(A15)

A VAN = 127N + 50N — @\ + 66 @4°N

A straightforward computation demonstrates that these isomorphisms intertwine the operators DY
in (A13) and Dy in (A3), where the latter is

Dy = V=110 477V, (a16)

in the local moving frame on X. The factor v/ —1 comes from Wick rotation when passing from (A1)
to (A2).
As a companion to (A8) we have the operator

D':=+"5'6’D: C*(W;E") — C®(W;E") (AT

of the odd subspace of E = D° @ E'. Note that swapping S and S* swaps the even and odd parts of E
(see (A7)).

PROPOSITION A.1 The exponentiated n-invariant formed with D' is the reciprocal of the exponenti-
ated n-invariant (A10) formed with D°.

Proof. From the definition of D following (A7), since Cliff 3 graded commutes with CIiff 1, + 1)
it follows that w = 705 152 satisfies wD =—Dw, and then since D' = wD, i =0, 1, we deduce wD° =
—D'w. Therefore, the spectrum of D' is the negative of the spectrum of D°. Then, distinguishing the
n-functions (A9) for D°, D', we have n0(s) = —n' ,(s) for all 5. The desired conclusion follows by
analytic continuation. ]

The exponentiated 7-invariants are the partition functions of invertible field theories a’, o', and
the stronger version of Proposition A.1 is that o’ and o' are inverse theories. If both are topological,
which is the case for the application to M-theory, then the stronger assertion follows from Proposi-
tion A.1 since the partition function determines the isomorphism class of the theory. Here we will not
attempt to justify the stronger assertion in the non-topological case, nor the conjecture that o® ® o
admits a canonical trivialization.
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A.2. The pin case in dimension 11

We describe the relevant pin representation and check that (A11) produces the Dirac operator in
12 dimensions which appears in [S0].

We follow [26, Section 9.2] in which the Pin™ case is described by a parameter s =— 1. The point
is to use the embeddings [26, Lemma 9.25] and [26, (9.44)], which specialize to

Pin}, — CIiff?
S (A18)
Y=y

and

Pin,,, —> CIliff},,
i o (A19)
Y=Y,

where (y7)2=—1 and i=1,2,...,12. These give embeddings of groups Pin/, — Spin,, and
Pinq, < Spin,,,. The starting data are a real representation of Pin, ; obtained by restriction from
an ungraded real Cliff?m—module. There are isomorphisms

Cliff,g,, = Cliff g ® Cliff,, = End(M° & M") ® End(Cliff ) (A20)

where Ml is a real vector space of dimension 8. A minimal real Cliff?o,z—module is the even subspace

S =M ® Cliff),, & M' ® Cliff',, (A21)

of (MO @ M‘) ® Cliffy,, which has real dimension 32. (We could as well take the odd subspace (see
Proposition A.1.)) The restriction of S to Cliffﬂl1 - Cliff?ojz, or equivalently to Spin;q; C Spiny,,
is irreducible. (The Cliff g in (A20) splits off and one simply checks for Cliff, ; C Cliff,,.) By [16,
Theorem 6.1] there is a Spinjg -invariant pairing (A1), unique up to a positive scalar, and it is then
automatically Pinyg j-invariant. This defines the starting data (S,T").

The Wick rotation on 12-manifolds, carried out in the second paragraph of Section A.l, is
modified in the first instance by tensoring (A4) with Cliff_; and using the embedding (A18), of
course setting n=11. Then the commuting super algebra (AS5) is Cliff| ;, ® Cliff;g,, which as
before is Morita equivalent to Cliff_35. Then E = Cliff;, ® (S@®S*) is as in (A7), but is a left
Cliff|,,; ® Cliff_3-module: the last Clifford generator in Cliff, | acts via the action of the last Clif-
ford generator on the Cliff}(;-module S @ S*. The even subspace E° C E has real dimension 128 and
carries a quaternionic structure, so is a 32-dimensional quaternionic vector space. The resulting rep-
resentation of Pinf’2 agrees with the one described at the end of [50, Section 3]. (Stolz distinguishes
between two representations of Pin?g, but they are isomorphic when restricted to PinE.)

Appendix B Spin bordism in dimension 12

The purpose of this appendix is to give a proof of Proposition 8.14, which asserts that after 2-adic
completion the group M Spin, = m,M Spin is freely generated by the bordism class of the manifolds
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K x B, K x HP? and W,. Here B is a Bott-manifold, K is a K3-surface, HP? is quaternionic projec-
tive space and W is the manifold described in Section 5.5.3. This is done by direct application of
the computation of Anderson, Brown and Peterson [3]. The material in the section owes much to
conversations with Meng Guo.

Following Anderson, Brown and Peterson [2, Section 4], associated with an oriented vector
bundle V over a space X is the total KO-Pontrjagin class

m(V) =) _a" (V)" € KO°(X)[1].

It is uniquely determined by the following properties:

(1) (Naturality) If f: ¥ — X is a continuous map then 7;(f*V) = f*m,(V).
(2) For vector bundles V and W one has (V@& W) = m,(V)m(W).
(3) If V is an oriented 2-plane bundle then 7,(V) = 1 +#(V —2).

Because of property (2) the total KO-Pontrjagin class 7,(V) can be defined for virtual oriented
vector bundles V.

In practice one often computes m,(V) by following the splitting principle and finding a map
f:Y—X for which KO*f is a monomorphism and f*V is isomorphic to the oriented real vector
bundle underlying a sum of complex line bundles L;. In this case one has

m(f V) =[J(1 + 1L —2)) € KO°(Y) and
m(f V)@ C=[(1+(Li+L " —2)) eK°(v),

in which the notation W" is being used for the real vector bundle underlying a complex vector
bundle W.

For a Spin-manifold M of dimension d, and a sequence J = (j1, /2, . . ., ), of non-negative integers
ji» with j; =0 for i >> 0, one defines the KO-Pontrjagin number /(M) € KO, to be the index of the
Clifford linear Dirac operator on M coupled to the virtual bundle

(x' (TM))"* (x2(TM)) " - -

Anderson, Brown and Peterson showed that the map

! (M), w¥
mspin, " "2 Y [T ko, x [ 2/2 (BI)
J N
is an isomorphism after completion at 2. Here J runs over the sequences (jj, ...) with j; =0 and

e _faya n(J) even
n(J) = (i +22+3j3+ )<{(d+2)/4 n(J) odd.

The invariants w” (M) are certain Stiefel-Whitney numbers of M, and do not occur in dimension
less than 20. Both sides of (B1) are finitely generated abelian groups, so that the property of being
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an isomorphism after 2-adic completion is equivalent to being an isomorphism after localization at
2 and also to being an isomorphism after reducing mod 2. For further information see [1, Corol-
lary 1.4], [3, Theorem 2.2] or the Manifold Atlas [41]. We alert the reader consulting these sources
that our convention associating Pontrjagin numbers to sequences J differs from the one used in these
references.

For the purpose of writing down KO-Pontrjagin numbers it is helpful to choose a basis of KOu
that is compatible with multiplication. We do this by identifying KO4; with its image in K. Writing
v1 € K, for the Bott periodicity class, a basis for the image of KO, consists of the elements

{vflik’ 2V2]§k+4 }

For convenience we will use the same names for basis elements of KOy4;, with the reminder that the
element 2V € KOg; 14 is not divisible by 2.

We are interested in dimensions d =4, 8, 12 where the KO-Pontrjagin numbers one encounters
are those for which J is the zero sequence, in which case 7/ (M) (which we denote 7O(M)) is the
index of the Clifford linear Dirac operator on M, or the sequence J; whose only non-zero entry is a 1
in the ith spot. In this latter case 7/ (M) is the index of the Clifford linear Dirac operator on M with
coefficients in 7/(TM). We write

and note that sending M to the total class

m(M) = Zwi(M) ¢

i>0
defines a ring homomorphism
M Spin, — KO.[1].

REMARK B.1 Hopefully our notation will not be confusing to the reader. The symbol 7,(—) has a
meaning that depends on the mathematical type of the argument. For a vector bundle V over a space
X, m:(V) is an element of KO°(X)[[#]]. If M is a Spin-manifold of dimension d then (M) is an element
of KO,[[#]. One has

m(M) = fum,(TM)
where f is the unique map from M to a point, and f; is the pushforward in KO-theory.

By [2, Theorem 4.6], when M has dimension d = 4i the KO-Pontrjagin number /(M) is the same
as the ordinary Pontrjagin number p;(M)

7' (M) = pi(M)WV?, (B2)
Note that in terms of our chosen basis for KOy4;, when i is odd, (B2) means that

(M) = (2v%i) p,(TM)
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We now turn to our specific manifolds. In dimension 4 we have (by (B2))

2 pP1 | D1 )
(M) = ——+=1).
(M) = (27) ( 48 2
For a K3-surface one has p; =—48 (see (5.3)), and so

m(K) = (2v])(1 — 241).

In the Anderson, Brown, Peterson isomorphism for d = 4, only the zero sequence J occurs, and the
map

7' (M) : MSpin, — KOy
is an isomorphism after completing at 2. Since 7°(K) = (2v?) the composition
K . w0
Z — M Spin, — KO,
is an isomorphism, and so
K .
Z — M Spin,

is an isomorphism after completing at 2. Less formally, the 2-adic completion of M Spiny is freely
generated (2-adically) by K.
In dimension 8, a little calculation gives

T2 —4py  pP—4py
M) = 1 ! t 2 ) M. B3
(M) V‘( 560+ aq tpr )M (B3)

For the Bott manifold, p% =0 and p, =—1440 (see (5.12)), and so
7(B) = vi(1 4 240t — 1440¢%).
For HP? one can plug the values of the Pontrjagin classes from (5.9) into (B3) to get
m(HP?) = vi(—1+7¢),

though it is a little more instructive to work through the splitting principle approach (after all, that
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was what was used to determine the Pontrjagin classes in the first place). Let f: CP° — HIP? be the
map

s /u(1) — st /su(2).

As described in Section 5.2, the KO class of f*THIP? is the KO class underlying the virtual complex
bundle

3(0(1)4+0(—1)) = (O2) + 1).

This means that

(1+1(O0(1)u —2))*(

(1410

_ (1 +10(1), —2))°
(1+2(0(2). —2))

_.
-
.
=
S
—~
I
L
=
=
|
[\
)
=
=
(98]

f*ﬂz(TH]P)z) =

—~

2)14 - 2))

since O(n), = O(—n),.
We need to complexify the above and compute the Chern character. Complexifying gives

(1 +1(0(1) +0(=1) =) _

frm(THP?) ® C = 1 +1(0Q2)+0(—2)—2))

(CP°)

and so
FA(THP?) = (v/(e"2 = e77%)) (2y/ (& = 7))
ch(f m(THP?)) = (14 1(e" + ¢ =2))°/(1 +1(e” + 7> ~2))
FA(THE eh(m(THE)) = 14 2 (~1 4 240)x 4 (1 +72) &

in which y = ¢ (O(1)) is the generator of H>(CP*) and x = y*. From the coefficient of x> we recover
the formula

m(HP?) = vi(—t+77). (B4)
In dimension 8 the Anderson, Brown, Peterson map is
(7% %) : MSping — (KOg)?.
The matrix of the composite

70

Z[B ]H[]P’Z] ) 2 )
7Z*" — ~MSpin, (KOg)
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1 0
—1440 7

which is the identity modulo 2. This implies that after 2-adic completion, (or even just localization
at 2), M Sping is freely generated by {B, HIP?}.

Now for dimension 12. The invariants are 7°, 72 and 7>, and we need to calculate them on K X B,
K x HIP? and W,. Using the fact that 7,(M) is multiplicative in the Spin-manifold M we find

I

(K x B) = (2v§)(1 — 24¢)(1 + 240z — 14407%)
= (2v9)(1 + 216t + —72007 + 345601 )

and

(K x HP?) = (2v9)(1 — 241)(—t +71%)
= (20%)(—1+ 31 — 168¢).
We also know from (5.39) that p3(W;) = 6 so that
m3(W1) =65 = (25)(3).
The matrix of the composition
70
2
J[KxB KxHP?* W] ™ ;
Z — MSpinlz — (KO]Q)
is therefore

1 0 *
—7200 31 *
34560 —168 3

which reduces modulo 2 to

(=R
(= ]
*

which is clearly invertible. This shows that {K x B,K x HP? W,} freely generate the 2-adic
completion of M Spin;,, which is the assertion of Proposition 8.14.
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Appendix C Cohomology of M m,

As explained earlier, the Adams spectral sequence chart in Section 9 was determined by specifying
a basis for H*(Mm,) and then using a Mathematica program to encode the action of the Steenrod
operations in this basis and generate the input for Bruner’s program [10] for computing the coho-
mology of the Steenrod algebra with coefficients in a given module. In this appendix, we describe
the cohomology ring H* (Bm,.), the module H*(Mm,) and the action of the Steenrod algebra. Using
this, the interested reader should be able to reproduce the computation of the E>-term of the Adams
spectral sequence.

Throughout this appendix all cohomology will be with coefficients in Z /2.

We begin with the cohomology of BSpin. For a number n = Y ¢,2%, € € {0, 1} write a(n) = > €;.

ProposITION C.1 (Thomas [53]) The map BSpin—BSO induces an isomorphism

Z2lw; | a(i—1) > 1] =Z/2][wa, we, ...] =~ H*(BSpin). (C1)

REMARK C.2 The kernel of the map
H*(BSO) =7Z/2[wa, w3, ...| — H"(BSpin)
is the regular ideal with generators
Sq%'Sq® -+ Sq' wa. (C2)

Itis not generated by the classes w; with a(i — 1) = 1. The first place these ideals differ is in dimension
17. In H*(BSpin) one has

Wi7 = W7Wio + WeWi1 + Wawi3.
Consider the fibration sequence
BString — BSpin —- K(Z, 4). (C3)
ProposiTiON C.3 (Stong [52]) The map BString— BO induces an isomorphism
Z2lw; | a(i—1) > 2] =Z/2][ws, wia, ...] =~ H" (BString).

REMARK C.4 The kernel of H*(BSpin) — H*(BString) is the regular ideal generated by the elements
Sq'wy in which I = (i1, i, ..., i) is a sequence of non-negative integers satisfying
ip>2iy 1<i<k
(i1 —2i) + -+ (kem1 —20) + ik < 4
i > 1.

The first condition is called admissibility and the quantity on the left side of the second inequality is
the excess of the sequence. The kernel is not the ideal generated by the w; with a(i — 1) =2.
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The Leray—Hirsch theorem applied to (C3) implies
ProPOSITION C.5 The map BSpin — K(7Z,4) induces an isomorphism
H (K(Z,4))[w; | a(i—1) > 2] = H(K(Z,4))[ws, w12, . . .| = B (BSpin). (C4)
]
ReEMARK C.6 To work out the action of the Steenrod operations under the above isomorphism, one

must use the relations setting the terms (C2) equal to zero, and the Wu formulae. This can get
complicated. For example one has

Sq'wie = w17
= WiW1i0 + WeW11 + Wawi3
= (Sq*Sq*w4)(Sq*wa) + (Sq°Sq’wa) (Sq*ws)
+(S4°Sq’wa) (wa) + (Sq*wa) (Sq*ws) wa.

From (C3) one constructs a fibration sequence

BString — BSpin x K(Z,4) “ "5 K(7,4) x K(Z, 4). (C5)

in which the rightmost map is equivariant when K(Z,4) x K(7Z, 4) is given permutation Z /2-action.
For a space X write

Dy(X) =EZ/2 x (X?)
)2

in which X? = X x X is equipped with the permutation action. Passing to homotopy orbits from (C5)
gives the fibration sequence

BString — Bm, — D,(K(Z,4)).
As before the Leray—Hirsch theorem leads to an isomorphism
H* (Dz(K(Z, 4)) [Wg, W12, ... ] i>[’]* (Bmc)

To go further we must describe the cohomology of D,(X). The computation of the cohomology
ring of D,(X) is due to Dyer and Lashof [19], and the action of the Steenrod operations was deter-
mined by Nishida [43]. To describe the computation we first recall the additive and multiplication
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transfers described in Section 8.2.1. Suppose that
mM—=M
is a double cover, classified by
acH' (M;Z)2),

and write

T H* (M) — H*(M)
for the map induced by the deck transformation. There are additive and multiplicative transfers
tr: H'(M;Z,/2) — H*(M;Z/2)
P=P,:H'(M;Z/2) — H*(M;Z/2)

which are natural in the sense that they commute with base change in M. They satisfy the following

properties (for x,y € H*(M), z € H*(M))
(D) tr(x+y) = tr(x) +tr(y)
(2) tr(x)z=tr(x7*(2))
3) 7 tr(x) = x+ 7(x)
(4) P(xy)=Px)P(y)
(5) P(x+y) = P(x) + P(y) + tr(x7(y))
(6) ™ P(x) =x7(x).

Note that property (2) implies that tr(x)a = 0.

We will refer to the additive transfer tr simply as the transfer and the multiplicative transfer P as
the norm.

The transfer map commutes with Steenrod operations

Sqttr(x) = tr(Sq*x).

Suitably interpreted, the norm also commutes with the Steenrod operations. Let 3 € H'(BZ/2) be
the non-zero element and for x € H"(X) write

SqP (x) = ZSq"ii(x)ﬁ" =x* +B8Sq" ' (x) + -+ B"x € H"(BZ/2 x X).

As Nishida [43] observed, the values of the Steenrod operations on the norm P(x) are determined
by the formula

Sq”(P(x)) = P(Sq” (x)). (C6)

ProposiTioN C.7 ([19], Proposition 2.2) Suppose X is a space and {e;} is a basis of H*(X;Z/2).
The vector space H*(D,(X)) has basis

{tr(e;@e)) | i<jU{a/P(e;@1)|j>0}.
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To relate the elements P(x) and tr(x) to other naturally occurring elements, it is useful to exploit
both the covering map

m:EZ/2 x X x X — Dy(X))
and the diagonal map
A:BZ/2 x X — Dy(X),

the latter obtained by passing to homotopy orbits from the diagonal inclusion (denoted by the same
symbol)

A:X—>XxX
From the definition of Steenrod operations, one has
A*(P(x)) = Sq” (x)

where o € H'(BZ/2) is the non-zero element. From naturality and the pullback square,

EZ)2 x X —— E7/2 x X x X

| |

B7Z/2 x X ——— Dy(X),

one also sees that
A*(tr(x)) = tr(A*(x)) =0.
The next result also follows from [19, Proposition 2.2]
ProposITION C.8 If 7*(x) = 0 and A*(x) = 0 then x=0.

In practice, it is easier not to separate out the factor of D,K(Z, 4) but rather to work directly with
BSpin x K(Z,4). In these terms, the diagonal inclusion corresponds to the map

BSpin(ws) “““X” BSpin x K(Z, 4) (C7)
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in which BSpin({w,) is defined by left square in the diagram of homotopy pullback squares

BSpin(uws) —L K(Z,4) —— «

| k]
BSpin —— K(Z,4) — K(Z/2,4) . (C8)

Since the right square in (C8) is a homotopy pullback square, the space BSpin(w,) can is canonically
equivalent to homotopy fiber of the map

BSpin "5 K(Z,/2,4).

The left square in (C8) gives a cohomology class \/2 € H*(BSpin(w,)) with the property that 2(\/2)
is the restriction of \.
One arrives at (C7) by considering first

BSpin x K (Z,4) 22 K (2,4

l(L,—)\—L)

)
K(Z,4)Tag>K(Z,4) XK(Z,4)HK(Z,4)

to identify the homotopy pullback of the left horizontal and vertical maps with the homotopy fiber
of the map (2¢ + A), and the homotopy pullback square

BSpin x K (Z,4) = K (7, 4)

| l

to identify the fiber of (2¢ + A) with BSpin(wa).
Passing to homotopy orbits from

BSpin(w4) — BSpin x K(Z,4) — BSpin
one sees that the composition
BZ/2 x BSpin{w,) — Bm, — BPin" ~ BZ /2 x BSpin

is the product of the identity map and the map BSpin(w4) — BSpin. It follows that the virtual vector
bundle classified by

BZ/2 x BSpin(ws) — Bm, — BO
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is the sum of the pullback of the tautological line bundle L on BZ/2 and the pullback of the virtual
vector bundle V classified by

BSpin{w4) — BSpin — BO.

See Section 8.2. With this in hand, one can appeal to the pullback square

BSpin{ws) ——— BSpin x K (Z,4)

| |

BZ7/2 x BSpin{ws) ——  Bm,

and Proposition C.8 to conclude that the map from H*(Bm,) to the pullback of

H*(BSpin x K (Z,4))

l

H*(BZ/2) x BSpin{w,y —— H*(BSpin{wy))

is a monomorphism and identify classes like tr(e) and P(e) in terms of Stiefel-Whitney classes when
possible.

ExampLE C.9 Consider the class #r(¢). The restriction of tr(¢) to H*(BSpin X K(Z,4)) is
t+7() =t+ (L +ws) = wa

This suggests that 7r(t) = wy4. To verify this, one needs to only check that the restriction of wy to
BZ/2 x BSpin{wy) is zero. For this, one computes

wa(L® V) =wa(V) +w;(L)w3(V) =0.
It follows that tr(Sq’s) = Sq’ (w).
REMARK C.10 For the interested reader, the map
H*(BSpin) — H*(BSpin{wy))
factors uniquely as

H*(BSpin) — H* (BString) — H* (BSpin{ws)).
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Using this, the pullback square

BSpin{ws) — K(Z,4)

| |

BSpin — K (Z,4)
and the Eilenberg—Moore spectral sequence imply that the map
H*(BString) ® H*(K(Z,4)) — H*(BSpin{ws)) (C9)
is an isomorphism of algebras over the Steenrod algebra.

To put this all together, let {e;} be the basis of H*(K(Z,4)) consisting of monomials in the admis-
sible Steenrod operations on ¢ and {w;} be the basis of monomials in the Stiefel-Whitney classes

{wi|a(i—1)>2}.
Then, a basis of H*(Bm,) is given by
{witr(eiT(e))) | i < j} U{wia/P(e;)}. (C10)

The Steenrod operations, products and the relation with the Stiefel-Whitney classes are as described
above.

The module H*(Mm,) is a free module over H*(Bm,) on the Thom class U of the vector bundle
classified by the negative of the map

Bm, — BPint — BO
As described in Section 8.2, we use the equivalence
BZ/2 x BSpin ~ BPin™"

obtained by writing a stable Pin* bundle in the form L& V and write o = w1 (L), w; = w;(V). With
these conventions, the Thom formula for the total squaring operation on U gives

Sq,(U) = (1+1ta) " (1 +wy+--)7'U. (C11)

For the computations reported in this paper, the authors restricted to dimensions less than 16 and
used the basis consisting of the product of the basis elements in (C10) with the Thom class U.
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