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Abstract Transition metals, such as zinc, are essential micronutrients in all organisms, but also
highly toxic in excessive amounts. Heavy-metal transporting P-type (P;z) ATPases are crucial for
homeostasis, conferring cellular detoxification and redistribution through transport of these ions
across cellular membranes. No structural information is available for the P4,-ATPases, the subclass
with the broadest cargo scope, and hence even their topology remains elusive. Here, we present
structures and complementary functional analyses of an archetypal Pg,-ATPase, sCoaT from
Sulfitobacter sp. NAS14-1. The data disclose the architecture, devoid of classical so-called heavy-
metal-binding domains (HMBDs), and provide fundamentally new insights into the mechanism and
diversity of heavy-metal transporters. We reveal several novel P-type ATPase features, including

a dual role in heavy-metal release and as an internal counter ion of an invariant histidine. We also
establish that the turnover of Pg-ATPases is potassium independent, contrasting to many other
P-type ATPases. Combined with new inhibitory compounds, our results open up for efforts in for
example drug discovery, since Pz4-ATPases function as virulence factors in many pathogens.

Editor's evaluation

This paper presents crystal structures of sCoaT, a heavy metal transporting P-type ATPase. These
structures and complementary functional data define the overall fold of this protein and provide
insight into several mechanistic features, including a conserved histidine proposed to act as a
novel counter-ion during transport. This work will be of interest to biochemists and microbiologists
interested in the transport of transition metals, structural biology of membrane proteins and drug
development.

Introduction

The ability to adapt to environmental changes in heavy-metal levels is paramount for all cells, as
these elements are essential for a range of cellular processes and yet toxic at elevated concentrations
(Waldron et al., 2009; Kozlowski et al., 2009). Transition metal transporting P-type (Pg) ATPase
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elLife digest Heavy metals such as zinc and cobalt are toxic at high levels, yet most organisms
need tiny amounts for their cells to work properly. As a result, proteins studded through the cell
membrane act as gatekeepers to finetune import and export. These proteins are central to health
and disease; their defect can lead to fatal illnesses in humans, and they also help bacteria infect other
organisms.

Despite their importance, little is known about some of these metal-export proteins. This is
particularly the case for P 4-ATPases, a subclass found in plants and bacteria and which includes,
for example, a metal transporter required for bacteria to cause tuberculosis. Intricate knowledge of
the three-dimensional structure of these proteins would help to understand how they select metals,
shuttle the compounds in and out of cells, and are controlled by other cellular processes.

To reveal this three-dimensional organisation, Grenberg et al. used X-ray diffraction, where high-
energy radiation is passed through crystals of protein to reveal the positions of atoms. They focused
on a type of PIB-4-ATPases found in bacteria as an example.

The work showed that the protein does not contain the metal-binding regions seen in other classes
of metal exporters; however, it sports unique features that are crucial for metal transport such as an
adapted pathway for the transport of zinc and cobalt across the membrane. In addition, Grenberg et
al. tested thousands of compounds to see if they could block the activity of the protein, identifying
two that could kill bacteria.

This better understanding of how PIB-4-ATPases work could help to engineer plants capable of
removing heavy metals from contaminated soils, as well as uncover new compounds to be used as
antibiotics.

proteins are critical for cellular heavy-metal homeostasis, providing efflux of for example copper,
zinc, and cobalt from the intracellular milieu. Indeed, malfunctioning of the human Pjz-members,
ATP7A and ATP7B, cause the fatal neurological Menkes disease and Wilson disease (Bull et al.,
1993; Vulpe et al., 1993). The Pg-ATPases belong to the P-type ATPase superfamily of integral
membrane proteins, which exploit energy from ATP hydrolysis for transport of cargo across cellular
membranes. These proteins share an overall mechanism described by the so-called Post-Albers
cycle (Albers et al., 1963; Post and Sen, 1965), as established by decades of structural and func-
tional investigations of primarily Ca®*-, Na*/K*-, and H*-specific P-type ATPases (Toyoshima et al.,
2000; Toyoshima and Nomura, 2002; Toyoshima et al., 2004; Olesen et al., 2004; Olesen et al.,
2007, Winther et al., 2013; Toyoshima et al., 2013; Morth et al., 2007, Shinoda et al., 2009). In
summary, four cornerstone states, E1-E1P-E2P-E2, provide alternating access and affinity for the
transported ions (and counterions, if present). Inward facing (e.g. cytosolic) E1 and outward facing
(e.g. extracellular) E2P conformations are coupled to ATP-dependent phosphorylation (yielding
ion-occluded E1P) and dephosphorylation (to occluded E2) of an invariant catalytical aspartate,
respectively.

Pz-ATPases are subdivided into groups based on conserved sequence motifs and the selectivity
towards transported transition metal ions (Smith et al., 2014, Argiiello, 2003; Zielazinski et al.,
2012, Zhitnitsky and Lewinson, 2014). Whereas Cu*- and Zn?*-transporting P ; and Pg, ATPases are
relatively well characterized, little is known regarding the P, proteins, which comprise some of the
simplest and shortest proteins within the entire P-type ATPase superfamily (Smith et al., 2014). They
are present in plants, archaea, and prokaryotes, and have been assigned a role as virulence factors in
pathogens, as for example the Pg,-ATPase MtCtpD is required for tuberculosis infections (Sassetti
and Rubin, 2003; Joshi et al., 2006), and therefore represent attractive targets for novel antibiotics.

The P4-ATPases are classically referred to as cobalt transporters. However, the metal specificity of
the Pjz4-ATPases remains elusive as some members have a confirmed cobalt specificity, while others
seemingly have broader or altered ion transport profiles, also transporting ions such as Zn*, Ni?*, Cu*,
and even Ca?* (Zielazinski et al., 2012; Raimunda et al., 2012; Moreno et al., 2008; Scherer and
Nies, 2009, Seigneurin-Berny et al., 2006). Thus, the P ,-ATPases appear to have the widest scope
of transported ions of the Pg-ATPases, and it is possible that further subclassification principles and
sequence motifs will be identified. Due to the broad ion transport range, they have been proposed to
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serve as multifunctional emergency pumps that can be exploited under extreme environmental stress
to maintain heavy-metal homeostasis (Smith et al., 2017).

Hitherto, the available high-resolution structural information of full-length Pg-ATPases is limited
to two structures each of ion-free conformations of the Cu*-transporting Pg.,-ATPase from Legio-
nella pneumophila (LpCopA) (Gourdon et al., 2011b; Wang et al., 2014), and the Zn**-transporting
Pgo-ATPase from Shigella sonnei (SsZntA) (Wang et al., 2014). Thus, the principal architecture of
the Pg4-ATPases remains debated, as sequence analyses have proposed different topologies for the
N-terminus: with or without (1) the so-called HMBDs, and (2) the first two transmembrane helices,
MA and MB (Smith et al., 2014; Andersson et al., 2014; Rosenzweig and Argiiello, 2012; Drees
et al., 2015), which both are present in other Pg-ATPases (Figure 1—figure supplement 1a). These
represent structural features that have been suggested to be important for ion-uptake and/or regu-
lation in other P-ATPases (Gourdon et al., 2011b; Wang et al., 2014, Gonzalez-Guerrero and
Argiiello, 2008; Mattle et al., 2013), raising questions if similar levels of protein control are absent
or replaced in the Pg, group. In addition, despite a shared overall architecture, the P, and Pg.,
structures suggested significantly different types of entry and exit pathways, hinting at unique trans-
location mechanisms for each P group (Sitsel et al., 2015). However, it remains unknown if similar
molecular adaptions have taken place in Pjg4,-ATPases to handle the unique array of cargos. To address
these fundamental questions, we determined structures of a Pg,-ATPase in different states and vali-
dated our findings using in vitro functional characterization.

Results and discussion

Metal specificity

We employed the established P, model sCoaT (UniProt ID A3T2G5) to shed further light on the
structure and mechanism of the entire Pg4-class. As the metal ion specificity of the Pj,-ATPases is
known to be wide, the ATPase activity was assessed in vitro in lipid-detergent solution using the
so-called Baginski assay, in the presence of a range of different heavy metals. The protein exhibited
clear Zn**- and Cd**-dependent ATPase activity, while Co®* only stimulated ATP hydrolysis at high
ion concentrations (Figure 2—figure supplement 1). This is in partial agreement with the ion range
profile previously reported for sCoaT, as higher Co?" sensitivity has been detected using different
functional assays and different experimental conditions (Zielazinski et al., 2012, Figure 2—figure
supplement 1).

The fact that the Ky, value for the Co?"-dependent sCoaT activity reported previously is lower than
measured in this study is unexpected (Figure 2—figure supplement 1b; Zielazinski et al., 2012). We
therefore assessed if this observation relates to lower available concentration of Co®* consequent to
chelation by buffer solution components, or if this metal interferes with the colour development in the
ATPase assays determining P; concentrations (Figure 2—figure supplement 1c). However, Co*" and
Zn?* display similar Baginski colour development as determined by calibration with separate standard
curves. Moreover, neither exclusion of azide and molybdate to avoid possible Co?* binding of these
compounds, nor supplementation of the reducing agent TCEP (to avoid possible oxidation of Co®*
from molecular oxygen) has a significant effect on turnover. We also investigated if the type of assay
may affect the outcome (Figure 2—figure supplement 1c). However, employment of the alterna-
tive Malachite Green Phosphate Assay essentially reproduced the relative activity in the presence
of Zn?* and Co?, respectively (Lanzetta et al., 1979). sCoaT is purified in a buffer containing 5 mM
B-mercaptoethanol, and even following dilution into the assay buffer the concentration is still approx-
imately 100 pM, and as thiols can act as ligands for Co?" it may explain part of the differences in the
Ky values. However, this still does not explain why Zn?*- and Cd?*-dependent ATPase activity has not
been observed for sCoaT in the previously study (Smith et al., 2017), although other P, ,-members
have been associated with Zn?* activity. While not detected, the reported K, and V.., may neverthe-
less be influenced by numerous environmental factors not tested for here, such as lipids, detergents,
presence/absence/location of metal-binding his-tags, or other settings.

Despite that higher sensitivity has been measured for Zn?* compared to Co?*, it cannot be excluded
that Co?, rather than Zn%', is the preferred cargo in vivo as the relative intracellular availability of Co*
is more than three orders of magnitude higher than that of Zn?* in certain bacterial cells (Osman et al.,
2019).
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Structure determination

We determined structures of sCoaT in metal-
free conditions supplemented with two different
phosphate analogues, BeF;™ and AlF,”, respec-
tively, which previously have been exploited to
stabilize E2 reaction intermediates of the trans-

Table 1. Data collection and refinement

statistics.

Statistics for the highest resolution shell are
shown in parentheses.

port cycle of Pg-ATPases (Wang et al., 2014; E2-BeF;” E2-AlF,
Gourdon et al., 2011b; Andersson et al., 2014). Data collecti
. ata collection
The structures were determined at 3.1 and 3.2 A
resolution, using molecular replacement (MR) as Wavelength (A) 1.0 1.0
phasing method and SsZntA as search model, space group P21212 P21212
and the final models yielded R/R;.. of 24.4/26.8 . i
Cell dimensions
and 21.8/25.5 (Table 1). The two crystal forms
were obtained using the HiLiDe method (crys- a b, c(A) 89.0 94.5 89.6 93.7
tallization in the presence of high concentra- 1288 1283
tions of detergent and lipids) (Gourdon et al., a b, g(°) 90 90 90 90 90 90
2011a). Surprisingly however, the crystal packing  gesolution (A) 47.3-3.1 45.6-3.3
for both structures reveal only minor contacts (3.22-3.11) (3.37-3.25)
be'Eween adjafc.ent membrane-spanning regions, o @) 114 (276.3) 15.5 (246)
which are critical for the crystals obtained of
most other P-type ATPase proteins (Wang et al., /sl 17.8(1.12) 8.5(0.98)
2014; Gourdon et al., 2011b; Serensen et al., CC,, 1(0.475) 0.99 (0.37)
2006; Figure 1—ﬁgure.supplefnent ?). Hence, Completeness (%) 97.3(99.8) 99.2 (99.9)
some crystal forming interactions likely take
place through lipid—detergent molecules. To our Redundancy 13.3(138) 6.1(6.6)
knowledge, this is the first time that type | crys-
tals with unrestrained transmembrane domains Refi
. ) efinement
are reported, but a consequence is that periph- .
eral parts of the membrane domain are less Resolution(A) g'232_33'1”) ?35'367_33325)
well resolved (Figure 1—figure supplement 3). g - g g
While this caused difficulty in modelling some No. reflections 19,643 (1963) 17,466 (1714)
transmembrane (TM) helices, satisfying solutions g, /R... (%) 24.4/26.8 21.8/25.5
were found with the aid of the software ISOLDE No. of at
. . O. Oor atoms
(Croll, 2018) due to its use of AMBER forcefield
which helped to maintain physical sensibility in Protein 4,695 4,695
the lowest resolution regions. In addition, root Ligand/ion 5 6
means square deviation, secondary structure as
Water 10 0
well as centre-of-mass of the transmembrane
helices, only showed minor variation over time Average B-factors
in MD simulations, indicative of a stable struc- protein 135.91 152.54
ture (Figure 1—figure supplements 4 and 5).
. Ligand/i 84.15 86.47
The TM helices also showed lowered backbone ~—22"!'"
root mean square fluctuation compared to more  Solvent 79.62
dynamic regions, such as the soluble domains g m s deviations
and loop regions (Figure 1—figure supplement o
4b) P reg (Fig 9 PP Bond lengths (A) 0.004 0.003
Bond angles (°) 0.77 0.83
Overall structure, without classical ., ...ndran
HMBD statistics
Examination of the structures reveals that the Pg4- Favoured (%) 97.8 96.9
ATPase archltecturt.e is reminiscent t<? that of.other Allowed (%) 29 31
P-type ATPases, with three cytosolic domains, A
fdahind _ Outliers (%) 0.0 0.0
(actuator), N (nucleotide-binding), and P (ph.os Clashecore 105 789
phorylation), as well as a membrane-spanning  \olProbity score 0.85 1.62
M-domain (Figure 1a). Furthermore, the core of
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Figure 1. Overall architecture and reaction cycle. The sCoaT structures reveal that P -ATPases comprise soluble A-, P-, and N-domains, shown

in yellow, blue, and red, respectively, as well as a transmembrane domain with eight helices: MA and MB, in cyan, and M1-Mé, in grey, and that

the P-topology lacks classical so-called heavy-metal-binding domain. The transport mechanism of P-type ATPases depends on ATP-dependent
phosphorylation and auto-dephosphorylation, and includes four principal conformations, E1, E1P, E2P, and E2, where P denotes phosphorylation.
The determined structures are trapped in two transition states following ion release — an occluded late E2P (E2P*) and an occluded transition state of
dephosphorylation, E2.P..

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Topology comparison.

Figure 1 continued on next page
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Figure supplement 2. Crystal packing of sCoaT E2-AlF,” compared to the E2-BeF;™ crystal form of ZntA from Shigella sonnei (SsZntA, PDB ID: 4UMV).

Figure supplement 3. Electron density quality.

Figure supplement 4. Stability of the M-domain.

Figure supplement 5. Secondary structure stability of the M-domain.

the soluble portions, including the nucleotide-binding pocket and catalytic phosphorylation site at
D369, are well conserved.

The topology of Pz 4-ATPases has been a conundrum as sequence analyses have proposed different
arrangements, with variable number of transmembrane segments and different sizes of the N-termini
(Smith et al., 2014; Gourdon et al., 2011b; Wang et al., 2014; Rosenzweig and Argiiello, 2012,
Drees et al., 2015, Andersson et al., 2014). However, our data unambiguously demonstrate that
Pis.4-ATPases possess eight transmembrane helices, MA and MB followed by M1-Mé. As previously
observed for Pg ;- and Pg,-ATPases, MB is kinked by a conserved Gly-Gly motif (G82 and G83),
forming an amphipathic ‘platform’, MB’, immediately prior to M1, see further below (Figure 1—figure
supplement 3).

Are then HMBDs present in Pg4-ATPases as in the other Pz subclasses? As only the first 47 resi-
dues remain unmodelled in the final structures (Table 1), it is clear that many Pg4-ATPases including
sCoaT are lacking a classical HMBD ferredoxin-like fold (typically 70 residues long). In agreement with
this observation, the cysteine pair (CGIC in the sequence) in the N-terminus of sCoaT is rather posi-
tioned in MA, facing M1 (Figure 1—figure supplements 1 and 3), in contrast to the surface-exposed,
metal-binding CXXC hallmark-motif detected in classical HMBDs. Functional analysis of mutant forms
lacking these cysteines in vitro also support that they are unimportant for function (Figure 2a). We
note that there are Ppg,-ATPases with extended N-termini that, in contrast to sCoaT, may harbour
HMBDs (Smith et al., 2014). Conversely, the sCoaT N-terminus is rich in metal-binding methionine,
cysteine, histidine, aspartate, and glutamate residues, and this feature is conserved among Pjg.4-
ATPases (Figure 2—figure supplement 2). We therefore explored the role of this N-terminal tail
through assessment of an sCoaT form lacking the first 33 residues. However, in vitro characterization
suggests only minor differences compared to wild-type, indicating that the residues upstream of MA
are not essential for catalytic activity (Figure 2a). Aggregated, this hints at that no classical HMBD is
present, and hence that this level of regulation is absent in many Pg_4-ATPases, although it cannot be
excluded that the N-termini are important in vivo.

Interestingly, it has been shown that the in vivo transport specificity of the sCoaT homolog from
Synechocystis PCC 6803 (CoaT) can be switched from Co*" to Zn*" by exchanging the N-terminal
region to that of the Zn?* transporting Pz, ATPase ZiaA from same organism (Borrelly et al., 2004).
This demonstrates that P 4,-ATPases not only in vitro (our data), but also in vivo are able to transport
Zn?*, if the M-domain gain access to the metal. One possible explanation for the change of specificity
for the CoaT chimeric construct is that the N-terminal peptide tail, as also suggested for ATP7B (Yu
et al., 2017), prevents ATP hydrolysis through binding to the soluble domains, and this inhibition
is then released upon binding of the cognate metal to the N-terminal and/or HMBD. However, it is
also possible that the role of the N-terminal region of Py, proteins is to impair Zn** acquisition, an
ability that is lost when exchanged with the N-terminal part of ZiaA. Preliminary assessment of the
metal specificity influence of the N-terminal tail of sCoaT suggests it has little or no effect on distin-
guishing between Co?" and Zn?* in vitro (Figure 2—figure supplement 1d). From this it is clear that
further studies are needed to shed light on the function of the N-terminal region in Pg-ATPases, also
in Pg4-ATPases.

Associated, this raises questions also on the role of the above-mentioned MB' platform, which
has been proposed to serve as an interaction site for HMBDs in Pjg;- and Pg,-ATPases, and for the
Cu*-ATPases as a docking site for metal delivering chaperones (Gourdon et al., 2011b; Wang et al.,
2014; Gonzélez-Guerrero and Argiiello, 2008; Morin et al., 2009). As there are no known zinc/
cadmium chaperones for P g ,-ATPases, and because classical HMBDs appear to be missing in at least
some proteins of the group, the MB’ function may need to be revisited. Alternatively, the N-ter-
minus may have merely been maintained through evolution without conferring functional benefits or
disadvantages.
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Figure 2. Mechanistic insight into the function of P,z ,-ATPases. (a) Functional ATPase assay in lipid—detergent solution with targeted residues in
sequential order. The wild-type (WT)-specific activity using the employed experimental conditions in the presence of 50 uM metal is 1.00 = 0.01 pmol
mg~" min~" with Zn?" and 2.80 + 0.06 pmol mg™' min™" with Cd?*, comparable to the activity previously measured for P ,-ATPases. For biological
averages and SD, see Figure 2—figure supplement 1e. (b) Comparisons of E2-AlF,” and E2-BeF;™ structures of sCoaT and the equivalent of SsZntA
(PDB ID of SsZntA structures: 4UMV and 4UMW). All superimpositions were performed based on the P-domain, and the RMSD values for the overall

Figure 2 continued on next page
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structures are indicated. (c) Identified cavity (wheat) in the E2-BeF;™ structure using the software HOLE. The E2-BeF;™ and the E2-AIF,” (not shown)
structures are occluded, lacking continuous connection between the ion-binding site to the outward environment. (d) The conformational changes that
likely allow for closure of the release pathway, as illustrated from the E2-BeF;™ structure of SsZntA to the E2-AlF,” structures of sCoaT or SsZntA. (e=h)
Close views of ion-binding and -release residues in the M-domain of sCoaT and SsZntA. (e) The orientation of E658 is incompatible with high-affinity
binding, and is likely contributing to ion release. (f) Release likely takes place via E658 and E120. (g) The sandwiched position between S325 and C327 of
H657, including the final 2Fo-Fc electron density (blue). (h) The position of H657 in sCoaT overlaps with the one of K693 in SsZntA, and both likely serve

as in-built counterions.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Metal selectivity screening and reproducibility.

Figure supplement 2. Sequence alignment of selected Pjg-ATPases.

Figure supplement 3. Comparison of E2 states overall and close views of the phosphorylation site.

Figure supplement 4. A-domain differences.

Structures in a transition state of dephosphorylation

The classical view of P-type ATPases is that the E2P state is outward open and that the following tran-
sition state of dephosphorylation, E2.P;, is occluded, and that these conformations can be stabilized
using the phosphate analogues employed here for structure determination, BeF;™ and AIF,, respec-
tively. Furthermore, distinct ion-release pathways have been proposed among P;-ATPases (Gourdon
et al., 2011b; Wang et al., 2014; Andersson et al., 2014; Mattle et al., 2015), including a narrow
exit pathway lined by MA, M2, and M6 that remains open also in the E2.P; state for the Pg;-ATPases.
In contrast, a wide opening extending from the location of the bound metal in the M-domain of ion-
occluded states to the non-cytoplasmic side has been observed for the P ,-ATPases, and this group
becomes reoccluded with the E2P to E2.P; shift.

Surprisingly however, analysis of the two obtained structures suggests that the anticipated signif-
icant domain reorientations are absent in sCoaT (Figure 2b), and the models are in contrast rather
similar. The compact assembly of the soluble domains and the position of the A-domain near the
P-domain, placing the conserved TGE motif responsible for dephosphorylation towards the phos-
phorylation site, are typically associated with commencement of dephosphorylation, indicating that
the two structures are trapped in an E2.P, like transition state (Figure 2—figure supplement 3a, c,
e). This observation differs from the equivalent structures of the other structurally determined Ps-
ATPases, in which the phosphorylation site of the E2P state (stabilized by BeF;") is shielded from the
TGE loop as also observed for the well-studied sarcoendoplasmic reticulum Ca?*-ATPase (SERCA)
(Figure 2—figure supplement 3d).

Notably, analogous highly similar BeF;™- and AlF,-stablized structures have recently also been
observed for the Ca?*-specific P-type ATPase from Listeria monocytogenes (LMCA1) (Hansen, 2020).
It was proposed that LMCA1 preorganizes for dephosphorylation already in a late E2P state (E2P*%,
stabilized by BeF;”), in accordance with its rapid dephosphorylation. Favoured occlusion and activa-
tion of dephosphorylation directly upon ion release may thus also be the case for sCoaT, and conse-
quently the E2-BeF;™ structure captured here may represents a late (or quasi) E2P state (E2P*).

Comparisons of the sCoaT structures to the equivalent structure of SsZntA (E2.P) revealed a
unique arrangement of the A-domain (Figure 2—figure supplement 4). The TGE-loop region super-
poses well with the corresponding area in SsZntA, but the rest of the A-domain is rotated towards
the P-domain — approximately 14° and 5.3 A (Figure 2—figure supplement 4). However, it cannot
be excluded that this rotation is due to crystal contacts as the two peripheral B-sheets of the A-do-
main are interacting tightly with parts of a neighbouring molecule. Additionally, we noticed that
the A-domain of sCoaT possesses a surface-exposed extension similar to SERCA, but this feature
is not present in Pjg;- and Pg,-ATPases and it is not a conserved property in the P, group either
(Figure 2—figure supplements 2 and 4). Conversely, the M-domains of the two sCoaT structures
are overall similar and appear outward occluded (Figure 2c), as also supported by comparisons
with the equivalent structures of SsZntA, again contrasting to the situation observed in Pg;- and
Ps.o-ATPases.
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Next, to shed light on ion release, we compared the sCoaT structures to the E2P state of SsZntA,
in which the extracellular ends of M5 and Mé shifts away from the proposed metal-binding site,
allowing an exit pathway to be formed (Figure 2d). Considering that Pj,- and Pg,-ATPases have
overlapping cargo range, share overall topology and that they release ions in free form to the extra-
cellular environment, in contrast to their Pjg; counterparts, we find it likely that they employ similar
exit pathways, lined primarily by M2, M4, M5, and Mé (Figure 2d; Wang et al., 2014; Andersson
et al., 2014).

The high-affinity-binding site in P;g4-ATPases has previously been suggested to be formed by resi-
dues from the conserved SPC- (starting from S325) and HEGxT- (from H657) motifs of M4 and M6,
based on X-ray absorption spectroscopy and mutagenesis studies (Zielazinski et al., 2012; Patel
et al., 2016). An outstanding remaining question is, however, how the ion is then discharged to
the extracellular site? Among the resides that likely constitute the high-affinity-binding site, remark-
ably E658 of Mé is pointing away from the ion-binding region around the SPC motif (Figure 2e and
Figure 1—figure supplement 3). We anticipate that E658 rotates away from its ion-binding configu-
ration in the E1P to E2P transition, thereby assisting to lower the cargo affinity to permit release via
the M2, M4, M5, and Mé cavity (Figure 2e). The conserved E120 of M2 (sometimes replaced with
an aspartate in Pg,-ATPases) is located along this exit pathway. The residue also overlays with the
conserved E202 in SsZntA (Figure 2f), which has been suggested to serve as a transient metal ligand,
stimulating substrate release from the CPC motif of P ,-ATPases (Wang et al., 2014). We propose
a similar role for E120 in sCoaT as further supported by the decreased activity of E120A sCoaT form
(Figure 2a).

A unique internal counterion principle

Many P-type ATPases couple ion- and counter transport, and hence the reaction cycle cannot be
completed without counterions. The importance of the counter transport has been demonstrated in
for example Ca?*/H*- (such as SERCA), Na*/K*-, and H*/K*-ATPases (Moller et al., 2010; Faxén et al.,
2011; Abe et al., 2018; Dyla et al., 2020). In contrast, the absence of counter transport has been
proposed for P ,-ATPases (Wang et al., 2014), H*-ATPases (Pedersen et al., 2007), and P4-ATPases
(Nakanishi et al., 2020), which rather exploit a built-in counterion. Specifically for the P;z,-ATPases,
a conserved lysine of M5 (K693 in SsZntA) serves as the counterion, through interaction with the
conserved metal-binding aspartate of M6 (D714 in SsZntA) in E2 states. Similarly, Pi_,-ATPases are not
Cu*/H" antiporters, but a likely built-in counterion residue is not conserved in the group (Abeyrathna
et al., 2020). Instead, it is possible that the requirement for counterion translocation is prevented by
the narrow exit pathway, preventing backtransfer of the released ion and perhaps rendering complete
occlusion unnecessary (Abeyrathna et al., 2020). For the Pjg,-ATPases, biochemical studies have
proposed an ion-binding stoichiometry of one (Zielazinski et al., 2012, Raimunda et al., 2012,
Smith et al., 2017; Patel et al., 2016), however no information is available regarding the presence or
absence of counter transport.

In the E2-BeF;™ sCoaT structure, we identify a tight configuration of HEGxT-motif H657, being
sandwiched between the SPC residues, distinct from the M5 lysine-Mé6 aspartate interaction observed
in Pp,-ATPases (Figure 2g, h). Despite the packing issues of the generated crystals, clear electron
density is visible for H657, indicating a rigid conformation (Figure 2g). Moreover, activity measure-
ments of an alanine substitution of H657 demonstrate that it is crucial for function (Figure 2a). In
light of these findings and an earlier report suggesting that a mutation of the equivalent of H657 in
MtCtpD leaves the ion affinity unaffected (Patel et al., 2016), we suggest this histidine serves as an
internal counterion, similarly as for the invariant lysine in SsZntA, perhaps preventing backtransfer of
released ions and for charge stabilization, however we cannot exclude that H657 is also part of the
high-affinity-binding site in sCoaT.

The rigid conformation observed for H657 in the E2-BeF;™ structure is also observed in the
E2-AIF,” structure (Figure 1—figure supplement 3b). In contrast, for SsZntA the interaction
between K693 and D714 is only detected in the E2.P; state. Thus, the interaction pattern is consis-
tent with the idea that sCoaT preorganizes for dephosphorylation already in the (late) E2P state,
with the associated occlusion and internal counter—ion interaction taking place earlier than for
SsZntA.
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Figure 3. Regulation and inhibition. (a-c) Close views of the regulatory point-of-interaction between the A- and P-domains in the E2-AIF,” structures of
sCoaT, SsZntA, and SERCA (PDB IDs 4UMW and 1XP5) with the corresponding 2Fo-Fc electron density shown at g = 1.0 (blue mesh). (a) sCoaT (coloured
as in Figure 1) with interaction between D601 and R273. (b) SsZntA (shown as panel a) with interaction between D657 and R340. (c) SERCA (shown as

in panel a) with bound K* (purple) between E732 and Q244. (d) Functional ATPase assay in lipid—detergent solution of sCoaT (wild-type and D601K

Figure 3 continued on next page
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forms) as well as SsZntA (wild-type), using protein samples purified in the absence of K and Na* (see Methods). The mean + SD of technical replicates
is shown (n = 3). KCl leaves the function of sCoat and SsZntA essentially unaffected in the presence of Zn** (cyan) or Cd*" (grey). The equivalent form of
sCoaT D601K has previously been exploited to demonstrate K" dependence in the Na,K-ATPase (Schack et al., 2008). Collectively, these data suggest
that the P-/A-domain site regulation is K* independent in Pg-ATPases, in contrast to classical P-type ATPases. (e-h) Evaluation of the effect on selected
identified novel inhibitors on activity of protein, as well as survival of mycobacteria and primary human macrophages. (e) Effect of two inhibitors (300 pM)
on the activity of sCoaT assessed in lipid-detergent solution in the presence of Zn**. For comparison, the commonly used P-type ATPase inhibitor AlF,~
(500 pM) is included. (f) The structure of inhibitors 1 and 2. (g) The minimal inhibitory concentration to kill 0% (MICs) of mycobacteria for inhibitors 1
and 2. The mean MICy, value for inhibitor 1 is 18.75 uM, while for inhibitor 2 it is over 50 uM. The values are based on four separate experiments. (h) The
cytotoxic effect of different concentrations of inhibitors 1 and 2 on primary human macrophages (ATP assay). The standard error of mean (SEM) of nine

replicates is shown (n = 9).

A more potent A-domain modulatory site

A conserved K* site, which cross-links between the A- and P-domains in E2 states and thereby
allosterically stimulates the E2P to E2 process (Serensen et al., 2004, Schack et al., 2008), has been
suggested to be present also in Pjg-ATPases (Serensen et al., 2004). However, our new E2 structures
and available structures of Pz ;- and P ,-ATPases suggest that the A-/P-domain linker is maintained
without K* in Pg-ATPases, and instead is established directly between R273/D601 in sCoaT, as also
supported by potassium titration experiments monitoring sCoaT ATPase activity (Figure 3a-d). Never-
theless, the A-/P-domain point-of-interaction appears critical for P,z-ATPases, as functional characteri-
zation of R273A, D601A, and D601K result in a marked reduction of turnover (Figure 2a). This differs
from similar mutations of classical P-type ATPases, where only minor effects are observed (Serensen
et al., 2004; Schack et al., 2008). Furthermore, substitution of D601 with glutamate suggests that
even the A-/P-domain distance is critical (Figure 2a). It is possible that Pg-ATPases are more reliant
on this particularly tight, ion-independent stabilization, as the A-M1/A-domain linker is absent, and
because many other P-type ATPases also have a complementary A-/P-domain interaction (Figure 1—
figure supplement 1c). Thus, our data indicate that this regulation is a general feature of many P-type
ATPase classes, yet featuring unique properties for Pg-ATPases.

New metal-transport blockers

P>~ and P4-ATPases serve as virulence factors and are critical for the disease caused by many micro-
bial pathogens, as underscored by the frequent presence of several redundant genes (Sassetti and
Rubin, 2003; Joshi et al., 2006; Botella et al., 2011; Pi et al., 2016). In this light and because
these P-type ATPases are missing in humans, they represent putative targets for novel antibiotics. The
shared mechanistic principles identified here suggest that compounds can be identified that inhibit
both P groups, for example directed against the common release pathway, thereby increasing effi-
cacy. Indeed, screening of a 20,000-substance library using a complementary in vitro assay, uncovers
several compounds that abrogate function of sCoaT and SsZntA (Figure 3e, f, data only shown for
sCoaT). Furthermore, initial tests of two of these suggest they have a potent effect against mycobac-
teria, which previously have been shown to be Pz, dependent for infection (Patel et al., 2016); 90%
of the mycobacteria were killed at mean concentrations of 18.75 and above 50 pM, respectively, using
either of these two separate molecules (Figure 3g). In contrast, investigation of cytotoxic effects on
primary human macrophages at concentrations up to 25 pM demonstrated considerably less impact
on cell survival for both blockers (Figure 3h). Evidently downstream in-depth studies, ranging from
investigations of the target specificity, the detailed effect on human cells as well as antibiotic potency
in human, are required to fully understand the value of these putative Pj,- and Pz, inhibitors. Never-
theless, the substances outlined here represent promising leads for drug-discovery efforts or to aid
the development of tools to manipulate heavy-metal accumulation in plants to prevent accumulation
or for enrichment.

Conclusion

Collectively, the first structure of a Pig4-type ATPase reveals the topology of P 4-ATPases, displaying an
eight helix M-domain configuration, and likely no HMBDs, at least in members without extended N-termini.
Major findings include the observation of an ion-release pathway similar as in the related Pg_,-ATPases, a
previously not observed counterion principle for P-type ATPases, and a unique potassium-independent
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Figure 4. Putative ion-release and reocclusion mechanism of Pz ,~ATPases. Schematic model illustrating the transmembrane domain (the soluble
domains have been removed for clarity) of two separate states, an E2P and an occluded E2P* conformation as the determined structure (E2-BeF;),
respectively. Zinc or cadmium release from the high-affinity-binding site in the M-domain is likely permitted through re-orientation of E658 (1) in the
E1P to E2P transition, thereby lowering the affinity for the occluded ion. E120 serves as a transient linker between the high-affinity-binding site and the
outward environment (2). Following ion-release (3) H657 shifts to a sandwiched position between S325 and C327 (4), acting as a built-in counter ion,
preventing backtransfer of the released ion, and allowing completion of the reaction cycle.

regulation of the Pg-transport cycle (Figure 4). Thus, our results significantly increase the understanding
of heavy-metal homeostasis in cells. The novel identified putative inhibitors and the partially overlap-
ping mechanistic principles of Pg,- and Pg4-ATPases also open up a novel avenue for development of
compounds accessible from outside the cell against these P groups, to combat global threats such as
multidrug resistance and/or tuberculosis or for biotechnological purposes.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information
Gene (Sulfitobacter
sp. (strain NAS-14.1))  NAS141_02821 Synthetic Uniprot: A3T2G5
Cell line (Escherichia Chemically
coli) C41(DE3) Sigma-Aldrich competent cells
Cell line
(Mycobacterium bovis) BCG Montreal ATCC 35735
https://www.

Software, algorithm  Phenix RRID:SCR_014224 phenix-online.org/

https://doi.org/

10.1107/S20597 https://isolde.cimr.
Software, algorithm ISOLDE 98318002425 cam.ac.uk/

Continued on next page
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Source or reference Identifiers Additional information

Software, algorithm

https://www.cgl.ucsf.

UCSF ChimeraX RRID:SCR_015872 edu/chimerax/

Software, algorithm

COOT

http://www2.mrc-Imb.cam.ac.uk/
personal/pemsley/
RRID:SCR_014222 coot/

Software, algorithm

Pymol

RRID:SCR_000305 http://www.pymol.org/

Overproduction and purification of sCoaT

Forms of the 72 kDa sCoaT from Sulfitobacter sp. NAS14-1 (UniProt ID A3T2G5) were transformed
into E. coli (C41 strain) cells. The cells were cultured in LB medium at 37°C with shaking at 175 rpm in
baffled flasks until the optical density (600 nm) reached 0.6-1, cooled to 18°C, and then induced with
1 mM IPTG for 16 hr. Harvested cells were resuspended in buffer A (1 g cells per 5 ml buffer) containing
20 mM Tris=HClI, pH = 7.6, 200 mM KClI, 20% (vol/vol) glycerol and frozen at —80°C until further use.
Cells were disrupted by two runs in a high-pressure homogenizer (Constant System) at 25,000 psi
following addition of 5 mM of fresh B-mercaptoethanol (BME), 5 mM MgCl,, 1 mM phenylmethane-
sulphonyl fluoride, 2 pg/ml DNase | and Roche protease inhibitor cocktail (1 tablet for 6 | cells). The
sample was kept at 4°C throughout the purification. Cellular debris was pelleted via centrifugation at
20,000 x g for 20 min. Membranes were isolated by ultracentrifugation for 3 hr at 185,500x g, and
resuspended in 10 ml buffer B (20 mM Tris-HCI, pH = 7.6, 200 mM KCI, 1 mM MgCl,, 5 mM BME, and
20% [vol/vol] glycerol) per g membranes and frozen at —80°C until further use. The protein concen-
tration in the membranes was estimated using the Bradford, 1976 assay. Proteins were solubilized
through supplementation of 1% (wt/vol) final concentration n-dodecyl-B-D-maltopyranoside (DDM)
and 3 mg/ml final total protein concentration in buffer B with gentle stirring for 2 hr. Unsolubilized
material was removed by ultracentrifugation for 1 hr at 185,500 x g. The supernatant was supple-
mented with imidazole to a final concentration of 30 mM and solid KCI (500 mM final concentration),
filtered (0.22 mm), and then applied to 5 ml HiTrap Chelating HP columns (GE Healthcare, protein from
6 | cells per column) charged with Ni** and equilibrated with four column volumes of buffer C (20 mM
Tris—HCI, pH = 7.6, 200 mM KCI, 1 mM MgCl,, 5 mM BME, 150 mg/ml octaethylene glycol mono-
dodecyl ether [C;,E;] and 20% [vol/vol] glycerol). Proteins were eluted using a gradient, ending with
buffer C containing 500 mM imidazole. Eluted protein was assessed using sodium dodecyl sulphate—
polyacrylamide gel electrophoresis (SDS-PAGE), and the fractions containing sCoaT concentrated
to approximately 20 mg/ml using VivaSpin concentrators (MWCO = 50 kDa). 10 mg concentrated
protein was subjected to size-exclusion chromatography using a Superose six gel-filtration column
(GE-Healthcare), pre-equilibrated with 50 ml buffer E (20 mM Tris—=HCI, pH = 7.6, 80 mM KCI, 1 mM
MgCl,, 5 mM BME, 150 mg/ml C;,Es and 20% [vol/vol] glycerol). Fractions containing purified sCoaT
were pooled, and concentrated to approximately 10 mg/ml, flash frozen in liquid nitrogen, and stored
at —80°C until further use. For the experiments to assess K* dependence, the buffer E was replaced
with 20 mM Tris=HCI, pH = 7.5, 1T mM MgCl,, 5 mM BME, 0.15 mg/ml C;,Eg, and 20% (vol/vol) glycerol.

Crystallization

10 mg/ml sCoaT was supplemented with 3 mg/ml (final concentration) DOPC and 6 mg/ml (final
concentration) C;,Eg, incubated at 4°C and stirring for 16-48 hr (modified HiLiDe method Gourdon
et al., 2011a). Aggregates and insoluble DOPC were then removed by ultracentrifugation at 50,000
xg for 10 min. 2 mM AICl; or BeSO,, 10 mM NaF, and 2 mM EGTA (final concentrations) were supple-
mented and incubated on ice for 30 min. Crystals were grown using the hanging drop vapour diffu-
sion method at 19°C. E2-AlF,” crystals were grown with a reservoir solution containing 200 mM
MgCl,, 14% (vol/vol) PEG1500, 10 mM tris(2-carboxyethyl)phosphine, 10% (vol/vol) glycerol, 3%
2-methyl-2,4-pentanediol, and 100 mM sodium acetate, pH = 5.0. The E2-BeF;™ crystals were grown
with a reservoir solution containing 200 mM magnesium formate, 14% (vol/vol) PEG5000, 100 mM
sodium acetate, pH = 4.0, and 0.5% (vol/vol) 2-propanol was added as an additive. Crystals were
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fished using litholoops (Molecular Dimensions), flash cooled in liquid nitrogen, and tested at synchro-
tron sources. Complete final data sets were collected at the Swiss Light Source, the Paul Scherrer
Institute, Villigen, beam line X06SA.

Structure determination and refinement

Collected data were processed and scaled with XDS (Table 1). For the E2-AIF,” structure, initial
phases were obtained by the MR method using software PHASER (McCoy et al., 2007) of the
Phenix package (Liebschner et al., 2019), and using the AlF, -stabilized structure of SsZntA (PDB ID:
4UMW) as a search model. The E2-BeF;™ structure was solved using the generated E2-AlF,” structure
as a MR model. Both crystal forms display poor crystal packing between the membrane domains
(Figure 1—figure supplement 2), deteriorating the quality of the electron density maps in these
regions (Figure 1—figure supplement 3). In this light, model building of the membrane domains was
executed with particular prudence, taking into consideration the connectivity to the well-resolved
soluble domains, distinct structural features as well as sequence and structure conservation patterns.
Examples of such include the conserved GG motif that forms the kink in MB helix, which is clearly
identified also at low length, the SPC motif that twists the M4 helix and the conserved and functionally
important well-resolved residue H657 that assisted assigning nearby residues.

Initial manual model building was performed primarily using COOT (Emsley et al., 2010). ISOLDE
(Croll, 2018) in ChimeraX (Goddard et al., 2018) was employed for model building and analysis, and
was critical for obtainment of the final models with reasonable chemical restraints and low clash score.
In particular, ISOLDE's interactive register shifting tool was instrumental in determining the register
of the most weakly resolved TM helices. Secondary structure restraints were applied in some flexible
regions, also taking into consideration homology to sCoaT and other models.

During final refinements with phenix.refine (Afonine et al., 2012), the geometry was restrained in
torsion space to ISOLDE's output. Molprobity was exploited for structure validation (Williams et al.,
2018). The final models are lacking the first 40 residues only, which is shorter than a classical MBD of
67 amino acids. All structural figures were generated using Pymol (DeLano, 2002). Statistics for the
final models were 96.70, 3.30, 0.20, and 0,74 for E2-BeF;™ and 93.24, 6.13, 0.63, and 8.31 for E2-AlF,~
in Ramachandran favored and allowed regions, and for rotamer outliers and clash score, respectively.

Activity assay sCoaT forms were functionally characterized using the Baginski method to assess
the amount of released inorganic phosphate (Baginski et al., 1967). Briefly, 0.5 ug of purified sCoaT
mixed with reaction buffer containing 40 mM MOPS-KOH, pH = 6.8, 5 mM KCI, 5 mM MgCl,, 150 mM
NaCl, 0.3 mg/ml C;,Eg, 0.12 mg/ml soybean lipid, 5 mM NaN;, and 0.25 mM Na,MoQ, in a total
volume of 50 pl. For metal stimulation assays, different heavy-metal ions or EGTA were supplemented
the reaction buffer to a final concentration of 50 uM. For inhibitor screening (see how inhibitors were
identified below), different concentrations of inhibitors were added to the reaction buffer containing
50 pM ZnCl,. The samples were then incubated at 37°C with 500 rpm shaking for 5 min, and then
supplemented with 5 mM ATP (final concentration) to start the reaction, and incubated at 37°C with
1000 rpm shaking for 10 min. 50 pl freshly prepared stop solution containing 2.5% (wt/vol) ascorbic
acid, 0.4 M (vol/vol) HCI, and 1% SDS was then supplemented to stop the reaction and start colour
development. 75 pl colour solution (2% [wt/vol] arsenite, 2% [vol/vol] acetic acid, and 3.5% [wt/vol]
sodium citrate) was added to the mixture following 10-min incubation at room temperature. Absor-
bance was measured at 860 nm after another 30-min incubation at room temperature. For the exper-
iments to assess K* dependence, the reaction buffer was replaced with 40 mM Tris=HCI, pH = 7.5,
5 mM MgCl,, 3.0 mg/ml C;,Eg, and 1.2 mg/ml soybean lipid in a total volume of 50 pl.

Inhibitor screening

The inhibitor screening experiments were initially carried out on the zinc transporting Pj.,-type
ATPase ZntA from Shigella sonnei (SsZntA). SsZntA was produced and purified as described previ-
ously (Wang et al., 2014) and the inhibitory effect of approximately 20,000 compounds was assessed
by the Chemical biology Consortium Sweden (CBCS). Briefly, the ATPase activity of 0.7 pM highly pure
protein was measured in the presence of 50 uM inhibitor through the release of inorganic phosphate
(P) by the Baginski assay (Baginski et al., 1967) in a total volume of 200 nl as reported earlier (Wang
et al., 2014). The inorganic phosphate was detected with Malachite Green reagent (0.005% Carbinol
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hydrochloride, 1.7% sulfuric acid, 0.14% ammonium molybdate, 0.025% Triton-X) at an absorbance
of 620 nm.

Minimum inhibitory concentration

Mycobacterium bovis bacillus Calmette-Guerin (BCG) Montreal containing the pSMT1-luxAB plasmid
was prepared as previously described (Snewin et al., 1999). Briefly, the mycobacteria were grown in
Middlebrook 7H9 broth, supplemented with 10% ADC enrichment (Middlebrook Albumin Dextrose
Catalase Supplement, Becton Dickinson, Oxford, UK) and hygromycin (50 mg/l; Roche, Lewes, UK),
the culture was washed twice with sterile PBS, and resuspended in broth and then dispensed into vials.
Glycerol was added to a final concentration of 25% and the vials were frozen at —80°C. Prior to each
experiment, a vial was defrosted, added to 9 ml of 7H9/ADC/hygromycin medium, and incubated
with shaking for 72 hr at 37°C. Mycobacteria were then centrifuged for 10 min at 3000 x g, washed
twice with PBS, and resuspended in 10 ml of PBS. Resazurin microtiter assay was used to determine
the minimum inhibitory concentration (MICy) for the inhibitors against the mycobacterial strain. The
inhibitors (10 pl) were added to bacterial suspensions (90 pl) on a 96-well plate at a concentration
range between 0.4 and 50.0 pM. MIC was determined by the colour change using resazurin (1:10 vol/
vol, PrestoBlue Cell viability reagent, Thermo Scientific). MIC was determined after 1 week by adding
10 pl resazurin followed by incubation overnight, corresponding to 90% inhibition.

Human cytotoxicity assays

Human venous blood mononuclear cells were obtained from healthy volunteers using a Lymphoprep
density gradient (Axis-Shield, Oslo, Norway) according to the manufacturer’s instructions. To obtain
pure monocytes, CD14 microbeads were applied to the cell suspension, washed, and passed through
a LS column according to the manufacturer’s description (130-050-201, 130-042-401, Miltenyi Biotec,
USA). The monocytes were counted (Sysmex), diluted in RPMI 1640 supplemented with 5% FCS,
NEAA, 1 mM sodium pyruvate, 0.1 mg/ml gentamicin (11140-035, 111360-039, 15710-49, Gibco, Life
Technologies) and 50 ng/ml GM-CSF (215 GM, R&D Systems) and seeded in 96-well plates (10%/well)
for a week to differentiate into macrophages. Infection experiments were performed in RPMI 1640
without Gentamicin. The medium was replaced with fresh medium containing 6.3, 12.5, 25, or 50 uM
inhibitor or DMSO and incubated 24 hr in 5% CO, atmosphere. For cytotoxicity measurement, 10 pl
3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide solution (Sigma) was added to each well
according to the manufacturer’s instructions and analysed in a spectrophotometer at 580 nm. NZX
cytotoxicity was further examined by ATPlite assays. Primary macrophages were treated with 6.3,
12.5, 25, or 50 uM inhibitor or DMSO (Sigma) for 24 hr. Cell viability was assessed with cellular ATP
levels using ATPlite kit (6016943, Perkin Elmer) compared to untreated controls, according to the
manufacturer’s instructions.

MD simulation

The two crystal structures, E2-AlF,” and E2-BeF;~, were inserted into a DOPC (1,2-dioleoyl-sn-glycero
-3-phosphocholine) membrane patch using the CHARMM-GUI membrane builder (Wu et al., 2014).
The membrane positions were predicted by the Orientations of Proteins in Membranes (OPM) server
(Lomize et al., 2012). During the simulation equilibration phase, position restraints were gradually
released from the water and lipids for a total of 30 ns followed by 500 ns non-restrained production
runs. Each protein state was simulated in independent repeat simulations starting from a different set
of initial velocities, adding up to a sampling total of 500 ns x 4. A Nose-Hoover temperature coupling
(Nosé and Klein, 2006) was applied using a reference temperature of 310 K. A Parrinello-Rahman
pressure coupling (Parrinello and Rahman, 1981) was applied with a reference pressure of 1 bar
and compressibility of 4.5e—5 bar™ in a semi-isotropic environment. The TIP3P water model was
used and the system contained 0.15 M NaCl. The E2-AlF,” system was composed of 256 lipids and
29,429 water molecules while E2-BeF;™ system was composed of 254 lipids and 30,535 water mole-
cules. The systems were equilibrated and simulated using the GROMACS-2021 simulation package
(Abraham et al., 2015) and CHARMM36 all-atom force fields (Best et al., 2012) for the protein and
lipids. The membrane domain was used as alignment reference for the root means square devia-
tion and centre-of-mass calculations, and the protein backbone was used as alignment reference for
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calculating the root mean square fluctuation. The secondary structure was assessed with the do_dssp
tool in GROMACS-2021 (Abraham et al., 2015).

Atomic coordinates and structure factors for the sCoaT AlF, - and BeF; -stabilized crystal struc-
tures have been deposited at the Protein Data Bank (PDB) under accession codes 7QBZ and 7QCO.
The authors declare no competing financial interests. Correspondence and requests for materials
should be addressed to PG. (pontus@sund.ku.dk).
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Figure 1. Overall architecture and reaction cycle. The sCoaT structures reveal that P -ATPases comprise soluble A-, P-, and N-domains, shown

in yellow, blue, and red, respectively, as well as a transmembrane domain with eight helices: MA and MB, in cyan, and M1-Mé, in grey, and that

the P -topology lacks classical so-called heavy-metal-binding domain. The transport mechanism of P-type ATPases depends on ATP-dependent
phosphorylation and auto-dephosphorylation, and includes four principal conformations, E1, E1P, E2P, and E2, where P denotes phosphorylation.
The determined structures are trapped in two transition states following ion release — an occluded late E2P (E2P*) and an occluded transition state of

dephosphorylation, E2.P,.
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Figure 1—figure supplement 1. Topology comparison. Topological differences between Ps-ATPases and classical P-type ATPases such as sCoaT and
SERCA, respectively. (a) Schematic topology of P-type ATPases showing features unique to Pg-ATPases (the so-called heavy-metal-binding domain,
HMBD, and transmembrane helices MA-MB in cyan) and SERCA (an extended A-domain, an additional A-domain linker, and M7-M10 transmembrane
helices in green). Location of key residues in the M-domain for Pjg-ATPases are highlighted. (b) The structure of SERCA (PDB ID 3BA4), coloured as the
schematic topology highlighting the additional linker to the A-domain. (¢) Topology of the Pjg4-ATPase sCoaT. The present work discloses the presence
of helices MA, MB, MB’, and that the core of P ,-ATPases is devoid of classical HMBD, representing a previously elusive matter. The cysteine pair (CGIC
in the sequence) in the N-terminus of sCoaT is rather positioned in MA. The N-terminus of sCoaT is rich in methionine, cysteine, histidine, aspartate,

and glutamate residues (shown as purple circles), amino acids that can bind metal.
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Figure 1—figure supplement 2. Crystal packing of sCoaT E2-AlF,” compared to the E2-BeF; crystal form of ZntA from Shigella sonnei (SsZntA, PDB
ID: 4UMV). The domains are coloured as in Figure 1b. (a) sCoaT E2-AIF,” (P2,2,2, with one molecule per asymmetric unit). Left: view of the membrane
layer. Right: 90° rotation view (compared to panel to the left) showing only the transmembrane domains. Equivalent views of the sCoaT E2-BeF;™ (P2,2,2)
(b) and the SsZntA E2-BeF;™ (P12,1) (c) crystal forms. Note the loose packing of the sCoaT crystals compared to that of SsZntA E2-BeF; .
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Figure 1—figure supplement 3. Electron density quality. Final, sharpened, 2Fo-Fc electron density at 0 = 1.0 (blue mesh) if not otherwise stated. The
overall resolution is indicated and the structures are coloured as in Figure 1. (a) E2-BeF;™ and (b) E2-AIF,". The quality of the maps differs between

structures and domains. The A-, P-, and N-domains are well resolved in both structures. The M-domain is in general less well resolved than the soluble
domains, and the domain is somewhat more well resolved in the E2-BeF;™ structure than in E2-AIF,” structure. Nevertheless, it is still clear that MA and

Figure 1—figure supplement 3 continued on next page
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Figure 1—figure supplement 3 continued

MB are present and that C50 and C53 in the N-terminus are membrane embedded and not part of a heavy-metal-binding domain (HMBD). This is
relevant, as CXXC is otherwise a pattern typically linked to a solvent-exposed metal-binding site in HMBDs of other P groups.
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Figure 1—figure supplement 4. Stability of the M-domain. Molecular dynamics (MD) simulations were performed to assess the stability of the M-
domain. (a) Root mean square deviation of the M-domain in AIF,” (black), AlF, -repeat (red), BeF;™ (green), and BeF; -repeat (blue) simulations. (b)
RMSF of the M-domain in the AlF,” and AlF, -repeat simulations (upper) and BeF;™ and BeF; -repeat simulations (lower) across the C, atoms. The
transmembrane (TM) helices region are marked in transparent grey. Evolution of the centre-of-mass of TM helices in the (c) AlF,", (d) AlF, -repeat, (e)
BeF;", and (f) BeFs-repeat simulations. The TM helices are shown in different colours: MA (black), MB (red), M1 (green), M2 (blue), M3 (magenta), M4
(orange), M5 (dark green), and Mé (cyan).
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Figure 1—figure supplement 5. Secondary structure stability of the M-domain. MD simulations were performed to assess the secondary structure
stability of the M-domain. Total structure (black), helix (blue), and coil (red) secondary structural elements in the (a) AlF,~, (b) AlF, -repeat, (c) BeF;~, and
(d) BeF; -repeat simulations.
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Figure 2. Mechanistic insight into the function of P,z ,-ATPases. (a) Functional ATPase assay in lipid—detergent solution with targeted residues in
sequential order. The wild-type (WT)-specific activity using the employed experimental conditions in the presence of 50 uM metal is 1.00 = 0.01 pmol
mg™" min~" with Zn?" and 2.80 = 0.06 umol mg™ min~" with Cd?*, comparable to the activity previously measured for Pz ,~ATPases. For biological
averages and SD, see Figure 2—figure supplement 1e. (b) Comparisons of E2-AlF,~ and E2-BeF;™ structures of sCoaT and the equivalent of SsZntA
(PDB ID of SsZntA structures: 4UMV and 4UMW). All superimpositions were performed based on the P-domain, and the RMSD values for the overall

Figure 2 continued on next page
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Figure 2 continued

structures are indicated. (c) Identified cavity (wheat) in the E2-BeF;™ structure using the software HOLE. The E2-BeF;™ and the E2-AIF,” (not shown)
structures are occluded, lacking continuous connection between the ion-binding site to the outward environment. (d) The conformational changes that
likely allow for closure of the release pathway, as illustrated from the E2-BeF;™ structure of SsZntA to the E2-AlF,” structures of sCoaT or SsZntA. (e=h)
Close views of ion-binding and -release residues in the M-domain of sCoaT and SsZntA. (e) The orientation of E658 is incompatible with high-affinity
binding, and is likely contributing to ion release. (f) Release likely takes place via E658 and E120. (g) The sandwiched position between S325 and C327 of
H657, including the final 2Fo-Fc electron density (blue). (h) The position of H657 in sCoaT overlaps with the one of K693 in SsZntA, and both likely serve
as in-built counterions.
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Figure 2—figure supplement 1. Metal selectivity screening and reproducibility. (a) Screen of different transition
metals, tested at 50 uM each. There is clear metal-dependent ATPase activity with Zn* (1.0 = 0.01 umol mg™" min™)
and Cd** (2.8 + 0.05 umol mg™ min™"), comparable to the activity previously measured for Pz ,-ATPases and also to
Zn?**-dependent activity of SsZntA (0.59 + 0.02 pmol mg™' min™") Wang et al., 2014. In contrast, only low ATPase

Figure 2—figure supplement 1 continued on next page
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Figure 2—figure supplement 1 continued

activity (about 5% of the wild-type, corrected for the background observed with no metal added) was detected
with Co?* for sCoaT. (b) Titration of zinc and cobalt. Co?"-induced ATPase activity predominates above 1 mM, while
at lower concentrations Zn?* stimulates activity at a faster rate. The data yield K, values of 1.3 mM and 4.1 uM for
Co?" and Zn?, respectively. The corresponding for the SsZntA related pump EcZntA is 10 uM with Zn?** (Mitra and
Sharma, 2001). (c) Screening of assay conditions and assay type. (d) The effect of the N-terminal tail on the ion
specificity. Relative activity in the presence of Co?* and Zn** (100% is equal to the activity measured for wild-type at
every measured metal type and concentration), respectively, at five different metal concentrations, suggesting that
the tail is no major determinant for metal specificity. (e) Biological and technical replicates exploited to generate

the error bars in Figure 2a.
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Figure 2—figure supplement 2. Sequence alignment of selected Pjg-ATPases. Sequence alignment of four Pjg.
+~ATPases, sCoaT from Sulfitobacter sp. NAS-14.1 CmCzcP from Cupriavidus metallidurans, BsZoa from Bacillus
subtilis and MtCtpD from Mycobacterium tuberculosis. The Pz 1-ATPase LpCopA from Legionella pneumophila
and the Pg,-ATPase SsZntA from Shigella sonnei are also included for comparison.
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Figure 2—figure supplement 3. Comparison of E2 states overall and close views of the phosphorylation site. The TGE loop in the E2-BeF; -stabilized
sCoaT (E2P*) is preorganized for dephosphorylation, which is not the case for SsZntA and LpCopA. (a) The overall E2P* structure of sCoaT showing

the region of focus in panels b-d. (b), Comparison of the TGE loop in the two sCoaT structures, with only minor differences. (c) Comparison of sCoaT
E2.P; with the equivalent structures of SsZntA and LpCopA (PDB ID: 4UMW and 4BYQ). (d) Comparison of sCoaT E2P* with the equivalent structures of
SsZntA and LpCopA (PDB ID: 4UMV and 4BBJ). (e) Comparisons of E2-AlF,” and E2-BeF;™ structures of sCoaT and SsZntA (PDB ID of SsZntA structures:
4UMV and 4UMW). All superimpositions were performed based on the P-domain, and the RMSD values based on the overall structure are listed

below the structural alignments. Alignment of the E2-BeF;™ and E2-AlF,” structures of sCoaT demonstrates that they are very similar RMSD = 1.1),

and comparison to the equivalent structures of SsZntA support the conclusion from (a—d) that both structures have been captured in occluded E2.P,

transition states.
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Figure 2—figure supplement 4. A-domain differences. Superimposition of the E2-AlF,” structures of sCoaT (determined here, shown in green)

and SsZntA (PDB ID 4UMW, purple) and the E2-BeF;™ structure of SsZntA (PDB ID 4UMV, blue). The overall structures are shown to the left. The inset
represents a close-view of the A-domain, showing that the sCoaT structure is more alike the SsZntA E2-AlF,” structure. The peripheral part of the A-
domain in sCoaT is shifted closer to the P-domain, whereas the area around the conserved TGE motif (the Glu of the TGE motif is visualized as a sphere)
superposes well with SsZntA. Like SERCA, the A-domain of sCoaT possesses a surface-exposed extension which is however not present in Pjg4- and
Piso-ATPases.
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Figure 3. Regulation and inhibition. (a—c) Close views of the regulatory point-of-interaction between the A- and P-domains in the E2-AlF,” structures of
sCoaT, SsZntA, and SERCA (PDB IDs 4UMW and 1XP5) with the corresponding 2Fo-Fc electron density shown at g = 1.0 (blue mesh). (a) sCoaT (coloured
as in Figure 1) with interaction between D601 and R273. (b) SsZntA (shown as panel a) with interaction between D657 and R340. (c) SERCA (shown as

in panel a) with bound K* (purple) between E732 and Q244. (d) Functional ATPase assay in lipid—detergent solution of sCoaT (wild-type and D601K

Figure 3 continued on next page
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Figure 3 continued

forms) as well as SsZntA (wild-type), using protein samples purified in the absence of K and Na* (see Methods). The mean + SD of technical replicates

is shown (n = 3). KCl leaves the function of sCoat and SsZntA essentially unaffected in the presence of Zn* (cyan) or Cd** (grey). The equivalent form of
sCoaT D601K has previously been exploited to demonstrate K" dependence in the Na,K-ATPase (Schack et al., 2008). Collectively, these data suggest
that the P-/A-domain site regulation is K independent in Pg-ATPases, in contrast to classical P-type ATPases. (e~h) Evaluation of the effect on selected
identified novel inhibitors on activity of protein, as well as survival of mycobacteria and primary human macrophages. (e) Effect of two inhibitors (300 uM)
on the activity of sCoaT assessed in lipid-detergent solution in the presence of Zn?*. For comparison, the commonly used P-type ATPase inhibitor AlF,”
(500 puM) is included. (f) The structure of inhibitors 1 and 2. (g) The minimal inhibitory concentration to kill 0% (MICs) of mycobacteria for inhibitors 1
and 2. The mean MICy, value for inhibitor 1 is 18.75 uM, while for inhibitor 2 it is over 50 uM. The values are based on four separate experiments. (h) The
cytotoxic effect of different concentrations of inhibitors 1 and 2 on primary human macrophages (ATP assay). The standard error of mean (SEM) of nine
replicates is shown (n = 9).
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Figure 4. Putative ion-release and reocclusion mechanism of Pjg,-ATPases. Schematic model illustrating the transmembrane domain (the soluble
domains have been removed for clarity) of two separate states, an E2P and an occluded E2P* conformation as the determined structure (E2-BeF;),
respectively. Zinc or cadmium release from the high-affinity-binding site in the M-domain is likely permitted through re-orientation of E658 (1) in the
E1P to E2P transition, thereby lowering the affinity for the occluded ion. E120 serves as a transient linker between the high-affinity-binding site and the
outward environment (2). Following ion-release (3) H657 shifts to a sandwiched position between S325 and C327 (4), acting as a built-in counter ion,
preventing backtransfer of the released ion, and allowing completion of the reaction cycle.
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