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Abstract

Hypothesis: The Landau-Levich-Derjaguin (LLD) theory is widely applied to predict the
film thickness in the dip-coating process. However, the theory was designed only for flat
plates and thin fibers. Fifty years ago, White and Tallmadge attempted to generalize the
LLD theory to thick rods using a numerical solution for a static meniscus and the LLD
theory to forcedly match their numeric solution with the LLD asymptotics. The White-
Talmadge solution has been criticized for not being rigorous yet widely used in engineering
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applications mostly owing to the lack of alternative solutions. A new set of experiments
significantly expanding the range of White-Tallmadge conditions showed that their theory
cannot explain the experimental results. We then hypothesized that the results of LLD
theory can be improved by restoring the non-linear meniscus curvature in the equation.
With this modification, the obtained equation should be able to describe static menisci on
any cylindrical rods and the film profiles observed at non-zero rod velocity.

Experiment: To test the hypothesis, we distinguished capillary forces from viscous forces
by running experiments with different rods and at different withdrawal velocities and video
tracking the menisci profiles and measuring the weight of deposited films. The values of
film thickness were then fitted with a mathematical model based on the modified LLD
equation. We also fitted the meniscus profiles.

Findings: The results show that the derived equation allows one to reproduce the results of
the LLD theory and go far beyond those to include rods of different radii. A new set of
experimental data together with the White-Tallmadge experimental data are explained with
the modified LLD theory. A set of simple formulas approximating numeric results have
been derived. These formulas can be used in engineering applications for the prediction of
the coating thickness.

Keywords
Dip coating; lubrication flow; Landau-Levich-Derjaguin (LLD) theory; capillarity,

1. Introduction

The dip coating process schematically shown in Fig. 1, is a popular technological
process used in a variety of industrial fields [1]. An article of interest, say a cylinder in Fig.
1, is first immersed in a liquid reservoir and then is pulled out. As the substrate is moved
upward, it picks up some liquid film. This film can be further cured to make a solid coating.
In the case of deposition of solutions/dispersions/suspensions, the solvent evaporates,
leaving behind a solid deposit of interest. Due to its simple process and ease of control, the
dip coating is widely applied in industry and manufacturing [1].

It is used, for example, for making the energy-saving coating on architectural
glasses [2, 3], the biocompatible coating on medical implants [4], and the electrothermal
coating on micro-heaters [5]. Different substrates, such as plates, cylinders, fibers, and
articles of more complex shapes, can be dip-coated with different liquids [1, 6-24]. Fibers
deserve special attention because the deposited liquid films are subject to capillary action
when the surface tension of the cylindrical film forces the liquid to move back to the
reservoir [6-11, 25-40].

To tailor the electrical, mechanical, thermal, and chemical properties of coatings, it
is always important to control the thickness of the coating films [10-12, 32, 41-45]. The
importance of this technology called for the development of a theory, which after the
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seminal works of Landau, Levich [46] and Derjaguin [47, 48], became one of the crown
jewels of surface science, the Landau-Levich-Derjaguin (LLD) theory. As the technology
progresses and new coating materials and articles are developed, the demand for an
understanding of controlling means for new coatings remains high despite the great history
of this methodology [23, 44, 45].
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Circular cylinder

Free surface

(b)

Fig. 1. (A) Schematic of the dip coating process. A circular cylinder of radius R is withdrawn
vertically from a liquid reservoir at constant velocity U. z - is the cylinder axis, and R + h(z) is
the meniscus profile — the generator curve. The film thickness h(z) increases from he, at Z = © to
h — o as one moves to the horizontal air-liquid interface, z = 0. In the film, the flow is assumed
almost unidirectional and the film profile is shaped by the viscous, capillary, and gravitational
forces. (B) Definition of two radii of curvatures of meniscus at an arbitrarily chosen point A on the
film surface. An outward normal vector n at point A is continued toward the air and from the liquid
to make the straight line 0’ AO, where O’ is the point of intersection of this line with the z-axis. This
line makes angle @ with the z-axis. The quantity is called the inclination angle. Then the point O
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on this line is the center of curvature and |0A| = Ry is the radius of curvature of the generator

curve — meniscus profile at point A. The distance |0’A| = R, is the second principal radius of
curvature due to the rotation of this generator curve about the z-axis. Assuming that the arclength
s increases with z while h — decreases, the differential of the arclength ds of this profile R + h(z)
at point A is related to the differential dz as dz = ds sin @ and tanp = —dz/dh.

Landau and Levich [46] theoretically studied a dip coating process when a flat plate
is steadily withdrawn vertically from the liquid reservoir of viscosity 7 and surface tension
o at low speed U. When the capillary number Ca = U /0 < 1 is small, the flow does not
significantly affect the shape of the meniscus formed on the plate. Landau and Levich
subdivided the flow region onto three sub-regions: 1) the region of constant film thickness,
z — o0; 2) the region of static meniscus; 3) and an intermediate transition region, which
connects the region of constant thickness and the static meniscus, Fig. 1. The flow in the
coating film influences the meniscus shape only in the transition region situated near the
static contact line. This partitioning of the flow regions allowed Landau and Levich to
successfully solve this non-linear free boundary problem of fluid mechanics to predict the
thickness h, of a fluid film deposited on the plate:

2 (1)
he = Apiate *1"Ca3,  Apaee = 0.945, Ca=1U p/o,

where [ = ’ﬁ is the capillary length, p; is the density of the liquid, and g is the
l

acceleration due to gravity. The capillary length gives an estimate of the height of the
meniscus attached to a non-moving vertical plate. This Eq. (1) does not depend on any
plate dimensions, and hence the film thickness depends only on the physical properties of
fluids and velocity of the plate withdrawal.

However, when it comes to cylinders or fibers, the liquid-air interface becomes
axisymmetric and is subject to the capillary compression in the radial direction [30, 47,
48]. Derjaguin and later White and Tallmadge recognized this fact and modified the
Landau-Levich theory for thin fibers when the fiber radius R is small compared to the
capillary length | (R < 1) [30, 31, 47, 48]. The result is written as:

2
hoo = Afiper *R-Ca3,  Agiper = 1.34. (2)
The striking difference with the plate case is that the film thickness becomes directly
proportional to the cylinder radius: the thinner the cylinder, the thinner the coating film!

There is no direct connection between Eq. (1) and Eq. (2), and it is not possible to predict
what will happen with the deposited film when one increases the fiber radius. Intuitively,
one expects that as R increases, the effect of meniscus curvature should become less critical
and will not follow the case of a thin fiber. To study this problem, a dimensionless radius,
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R/, is naturally introduced. The coating scenario can now be divided into three cases [31]:
a) R/l > 1, when the cylinder radius is much greater than the height of meniscus attached
to a plate made of the same material; b) R/l < 1, when the cylinder is much thinner than
the height of meniscus attached to a plate made of the same material; ¢) R/l is close or
comparable to 1, i.e., the cylinder diameter is comparable with the meniscus height.

In the first case, there is a negligible curvature in the radial direction. Therefore, the coating
scenario should be similar to the case of a flat plate, and the thickness can be predicted by
Eq. (1), where the thickness is independent of the radius of the cylinder.

In the second case, the thickness can be predicted by Eq. (2). A great deal of research has
been performed to verify the dip-coating thickness in those two cases [1, 20, 29, 44, 48].
However, when the ratio of the cylinder radius to the capillary length goes to 1, which is
the case for many industrial applications with the cylinders of about 1 millimeter in
diameter, such as an optical fiber or a metal wire, one requires additional experimental
support for evaluation of the film thickness. This case has been studied by White and
Tallmadge [31, 49]. As noticed by Wilson[50, 51] and further discussed in Refs.[1, 44],
the White - Tallmadge approach to accommodate gravity lacks mathematical rigor and
hence cannot be used to predict the film thickness in a wide range of capillary numbers.

In this paper, we modify the LLD-model to include the full non-linear capillary pressure
term in the equation for a film flow over a circular cylinder. This modification guarantees
that the static meniscus is described exactly; thus the surface tension terms are correctly
taken into account [50-52]. We numerically evaluate the effect of gravity and cylinder
radius on the thickness of deposited films and verified theoretical results in experiments.
A large range of capillary numbers from 107> to 10™! was covered. These data
significantly enrich the set of results obtained by White and Tallmadge [31, 49] and
confirm the predictions of the modified LLD model.

2. Materials and Methods

2.1. Rods and liquids

Stainless steel and brass rods with six different radii (R = 0.165mm, 0.202mm, 0.255mm,
1.15mm, 1.54mm, 2.35mm) were used in experiments. Before coating, all the rods were
sonicated in an ultrasonic cleaner (VWR Ultrasonic Cleaner 97043-964, 35 kHz, 90 W) in
acetone for 2 hours and dried thoroughly in ambient conditions. The used stainless steel
and brass wires were smooth but unpolished. The spatial scale of the surface roughness is
much smaller than the typical film thickness. The contact angles between the fluids and the
high energy stainless steel and brass rods were very small, which can be verified in Fig. 6.
Thus, the fluids wetted the rods completely and hence adhesion between the fluids and the
rod surfaces was strong. Thus, a macroscale description of the fluid flow in the film is
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applicable where the nominal surface is assigned to have no-slip boundary condition for
flow.

The dip coater (KSV NIMA Dip Coater) was used for coating the rods. The rod was
attached to the dip coater holder by a clamp to ensure that the rod was fixed vertically.
Then the rod was lowered into the fluid reservoir at a velocity of 100mm/min. After dipping
to a certain targeted length, the rod was remained still for 15 seconds before withdrawing
from the reservoir at a certain velocity. Five withdrawal velocities, 20mm/min, 50mm/min,
100mm/min, 200mm/min, and 500mm/min were chosen to adjust the capillary number.
Purely viscous fluids such as glycerol (Fisher Scientific Inc.), hexadecane (Fisher Scientific
Inc.), the standard viscosity oil Conostan S60 (SCP Science), and Sylgard 184 (Dow
Corning), were used as the coating fluids; Sylgard 184 showed the Newtonian behavior up
to the shear rate 18 s! which are of interest to the dip coating conditions. The viscosity of
the fluids was measured by a viscometer (Brookfield DV3THBCIJO0). The density of the
fluids was calculated by measuring the weight of fluid in a fixed volume liquid pycnometer
(25ml) using an analytical balance (PI-214, Denver Instrument) at room temperature. The
surface tension was measured by a Kruss DSA10 drop shape analysis system and analyzed
by the DSA software. The dynamic menisci for a brass wire (R=0.202mm, R/1=0.13) drawn
at different velocities (20 mm/min, 50 mm/min, 100 mm/min, 200 mm/min, 350mm/min,
and 500 mm/min ) out of a bath of Sylgard 184 were recorded by a Xcsource 20X-800X
USB microscope camera.

All the properties were measured at 23°C. Based on the radii of rods and the capillary
lengths, the dimensionless radii R/l were calculated for each group of experimental data
and collected in Table 2.

Table 1. Fluid Properties at Room Temperature (23°C)

Description of the Viscosity Density p; | Surface tensionc | Capillary

fluid length, [
“‘ (mPa-s) | (kg/m?) (mN /m) enet
(mm)
Sylgard 184 5100 1030 233 1.52
93 w% Glycerol- 270 1241 64.1 2.29
water mixture
hexadecane 3.40 770 27.4 1.91
Conostan S60 102 869 30.9 1.91
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Table 2 Cylinder Radii and Dimensionless Radii

Cylinder number 1 2 3 4 5 6

Material Brass | Brass | Brass | Stainless Stainless Stainless
steel steel steel

Radius (mm) 0.165 | 0.202 | 0.255 1.15 1.54 2.35

Dimensionless radius R /1

Sylgard 184 0.11 | 0.13

93 w% Glycerol-water 0.11 - - -

mixture

Hexadecane 0.13 0.61 0.81 1.24

Conostan S60 - 0.61 0.81 1.24

2.2. The thickness of deposited film.

The following experimental protocol was developed to measure the coating thickness at
the given experimental conditions. First, as shown in Fig. 2A, the rods were weighed by a
semi-micro-balance (Sartorius LE 26D) before and after the dip-coating experiment when
the rods were coated over five different lengths (4 = 30mm, 40mm, 50mm, 60mm, 70mm).
The mass of the rod ma, was subtracted from the observed mass after the dip-coating
process, mwed4), to determine the mass gain m(4) =m,,, (1)—m,, . The mass gain 1is

shown to be a linear function of A: m(1) = i—’j;l +m, , where the first term is the mass of

the liquid film and my 1s the mass of the drop observed at the bottom of the withdrawn rod
as shown in Fig. 2B.

We did not observe any difference in the sizes of the end droplets for the rods submersed
in the liquid reservoir at different depths. Thus, the weight gain per unit length, Am /A4, is
proportional to the flux thickness ¢/U and does not depend on A. The ratio Am/AA can be
calculated from the slope of the weight gain vs. immersion length plots [31], Fig. 2C. The
uncertainty of the slope was evaluated by the LINEST function in Excel. The uncertainty
is shown in Table S1 of Supplementary Information. The average flux-based thickness g/U
was calculated based on the slope, liquid density p;, and the radius R of the coated rod as
shown below

q Q Q- At AV-p, 1 Am 1

U~ 2nRU _ 2mRU-At  2mRA-p, 2mR AL p,’
3)
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where At is the time of the rod withdrawal, AV = Q - At is the volume of the deposited
liquid, A = U - At is the length of the coated part of the rod, Q is the total flux in the annular
film. During the dip-coating process, the capillary number Ca varied from 3 X 107> to
7 X 1071 by adjusting the withdrawal velocities and using different fluids, see Table 1.

A

Semi-micro balance (1ug)

Computer controlled dip coater

T m=mwcl-rndry
_ Withdrawn at constant U _ ‘v
|:> AL :> :> m,, m,, n;p m,, my
—_— e
= Reservoir Ol qu
Weight before coating Choosing different U and fluids Weight after coating
mdry £ mwe( g
B Before dip coating After dip coating
End droplet m,
C Weight gain m (pg)
6000 | Slope= coating weight per unit length
””””””””””””””””””””””””””””””””” Am
_______________________________________________ | 0004 m(A)y="2+m, _*°
4000 | A4 e
' y) 3000 | .
""" 5 _
7777777777 1 ,14 2000 e y—6882x+164.2
) ‘ y) 3 1000 |
/u] 2
ey BNl e . . . 0

0 10 20 30 40 50 60 70 80
Coating length A (mm)

Fig. 2. (A) The schematic diagram explaining the flux thickness q/U measurements by a balance
during dip coating. The mass mar, of the dry rod was measured prior to the coating experiment,
and the mass mye of the coated road was measured after the coating experiment. The mass m =
Mywer — Mary IS the weight gain at the given depth of immersion A. (B) lllustration of an end droplet
formed after dip coating. The picture on the left is taken before the coating experiment, and the
picture with a drop is taken after the coating experiment. (C) To eliminate the influence of the end
droplet, a series of experiments were run with different depths of immersion of the rod. The
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incremental change of mass m_= My - May, was calculated for each rod and plotted as a function
of the depth of immersion 4;,1 <i <5.

3. Results and discussion

3.1. The lubrication flow model

Following the traditional scheme of the lubrication theory, we restrict ourselves to
the regimes of coating at small Reynolds numbers, Re = p;Uh,/ n < 1, where h, is the
film thickness; U is the withdrawal velocity; 1 is the viscosity of the fluid and p; is its
density. In our experiments, the smallest Reynolds number was 1.8 X 107> at R =
0.165mm, U = 20mm/min with Slygard 184; and the largest value was Re = 0.0058 at R =
0.235mm, U = 500 mm/min with hexadecane. Using the small slope approximation, one
infers that the pressure p(z) is uniform across the film of thickness h(z), and pressure and
the film thickness vary along the cylinder axis z. Assuming that the film is much thinner
than the cylinder radius, h << R, the no-slip boundary condition at the cylinder surface
moving with velocity U upwards and no shear stress condition at the air/liquid interface,
r = R + h, one writes the Stokes problem in cylindrical coordinates for the z-component
of velocity v as

d d2 d
‘(?Z)—plg+nd—r;’+——=0,u(R)=U, d—fIR+n=0- )

For thin films, h << R, the pressure gradient dp/dz is independent of the radial coordinate,
and the term (n/7r)(dv/dr) is much smaller than the other three. We neglect this term and
integrate (4) to infer that the velocity profile is the Poiseuillean parabolic profile [30, 46,
53]:

1/d
U=U+E(d—z+p1g>(r—R)((r—R)/2—h). (5)

Due to definition, the flow discharge through the thin film of thickness h(z) is

Q =2nR [F " vdr. (6)

R

Substituting Eq. (5) in Eq. (6) and integrating the result, one obtains [30, 46, 53]

h? dp pugh’
Q = 2nRhU — 2nRh (55) — 2nR 37 (7

Eq. (7) shows that the total flux Q(z) in the annular film at an arbitrary point z
along the cylinder is due to advection, 2ZrRhU, when the film of thickness h(z) is moving
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together with the cylinder, and due to the relative motion with respect to the cylinder
movement due to the pressure gradient and gravitational drainage.

When the flow is in its steady state, the flux Q should not depend on position z.
Therefore, calculating the flux at the zone of constant thickness where the film thickness
is hy, and dp/dz = 0, we have from Eq. (7):

heo®
Q = 2nR (hooU — &> = const.

37 3

We introduce the flux per unit length ¢ = Q/(2nR) of the cylinder circumference.
Then Eq.(8) is rewritten as the ratio

h.,}
9 _, _Pg ©)

u '  3nU "

We call this ratio q/U the flux-based thickness, it has units of length and is directly
measurable in experiments [31, 49]. When the gravitational drainage described by the term
—pP1 ghoo3 /3nU in Eq. (9) is negligible, this ratio gives the coating thickness h,, = q/U. In
the general case, h,, # q/U and the measurements of the flux have to be interpreted with
special care.

Eq. (9) suggests natural constraints on the applicability of expansions (1) and (2).
Plugging these expansions in Eq. (9) and assuming that the flux thickness is positive, one
obtains that

Ca<379, Ca<4.66p37 (10)

for plates and fibers, respectively, where [f = R’ p,8 / o is the Bond number.

At small capillary and Reynolds numbers, Ca, Re <<I, the distribution of pressure
p in the thin film (with respect to the pressure in the surrounding air) is quasi-stationary
and follows the Laplace equation of capillarity

1 1 1 dp 1 sing
p=0|—+— |, —=——", —= , (11)
R, R R, ds R R+h

where R, and R, are the two principal radii of curvature of the air/liquid interface, s is the
arclength along the generator curve, and ¢ is the inclination angle introduced in Fig. 1.
Assuming that s(z) increases while h(z) decreases with z, we write

%—sin — =—C0sS (12)
ds v ds v
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Solving Eq. (11) for d¢/ds, we have

dp __p  sing

— . 13
ds o R+h (13)

Substituting Eq. (8) in Eq.(7), and resolving the pressure gradient as dp/dz =
(dp/ds)(ds/dz) and using Eq. (12) to replace ds/dz in this last equation as dp/dz =
(dp/ds)/ sin @, we obtain the following differential equation for the pressure gradient
along the meridians

d h—he h3, .
% = <3nUT—p1g (1 _F)> sin . (14)

The system of Egs. (12)—(14) describes the profile of the air-liquid interface, and the
boundary conditions have to be introduced to integrate this system.

3.2. Dimensionless form of the governing equations and boundary conditions

Introducing the dimensionless height Z, arclength S, pressure in the film P, and local film
thickness H as

Z=z/R, S=s/R, P=pX, H=h/R H. =h IR
o

and the capillary number, Ca, the Bond number, 3, as

U R?
Ca=n—, =M’

g g

the system of Eqs. (12)—(14) is rewritten as

d—Z—sin (15)
as
dsS ds 1+H
dpP H-H, H ).
%z[?@aT—ﬂ{l—?j}sng. (17)

The film on the rod must be matched with the static meniscus far away from the
rod where the free surface is horizontal, and the pressure in the liquid is equal to the
atmospheric pressure. Thus, the boundary conditions are set as

12
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S—>-—w: P50, H—>wo, ¢—>0. (18)

At the positive infinity, the film is assumed uniform:
S—>+0:dp/dS—>0, dP/dS — 0.Substituting these conditions in Eq. (16) and

Eq. (17), we obtain the following boundary conditions
1
1+H,’

7
»= (19)

S—>+00: H=H_,, P —.
2
The non-linear problem Egs. (15)—(19) has to be solved within the infinite domain — oo <
S < + . This non-linear problem is autonomous, i.e., the right-hand sides of all
equations do not explicitly depend on S. Only the initial state, H, P, and ¢, given by Eq.
(18) or Eq. (19) specifies the overall solution to the problem. The solution does not depend
on the choice of the initial value of the independent argument S. Thus, if functions Z(S),
H(S), ¢(S),P(S) are the solutions then the functions Z(S + S;), H(S + Sy), (S +
So), P(S + S,) are also the solutions for any constant Sp to the same problem (15)—(19).
This translation invariance offers a degree of freedom in choosing the reference point S,
requiring a special care in formulating the boundary conditions and in the development of
the numerical method to solve this problem.

One observes that the right-hand sides of Eqgs. (16)—(17) for H, ¢, and P do not
depend on Z. Thus, they can be integrated first.

3.3. Asymptotic behavior of meniscus profile as it approaches uniform film

Formulating the coating problem, we assume that far away from the horizontal
liquid-air interface, as S — +oand Z — + oo, the film turns into a straight (¢ — 7/2)
cylindrical shell of thickness H = H,,. For any So and H,, the initial value problem Egs.
(15)~(17) with initial conditions Eq. (19) must have a unique solution. For numerical
integration of Egs. (15)—(17), one has to develop an asymptotic expansion of the system at
any fixed S=S5,>>1, Z=Z,>>1.

Consider the film profile as S —» + o0, Z — + oo where the film thickness is
assumed slightly deviating from its limiting thickness. Thus, we assume that
H(S) = Hy + &(S) where the perturbation is small: 0 < &(S)/H, < 1. This function
£(S) is unknown yet, and we should also assume that the angle ¢ deviates from /2 as
@(8) =n/2 —a(S), where 0 < a(S) « 1. Then the pressure also changes as P = 1/
(1 + Hy,) — 6(S), where 0 < §(S) < 1. To find functions £(S), a(S) and §(S), we
substitute these representations in Eqgs. (15)—(17) and Taylor expand the resulting equations
with respect to £(S5), a(S) and §(S), to obtain in the leading order approximation as

13
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de _da_ o d5:_3£Ca ﬂjg.

s ds as \H H. 20
Calculating the derivatives of the first and second equations of Egs. (20) as
d’c/dS’ =-d’a/dS*, —d’a/dS*=ds5/dS
we will have from the third equation of Egs. (20):
3
%z— e, 73:2—6£ﬂ3i—1]. 1)

Assume that the following physical conditions hold true (see Supplementary material
with the supporting experimental data)

y>0 = Ca>pBH.. (22)

When y takes on a real positive value, we can integrate Eq. (21) with the condition
e > 0atS —» +ootofind

H=H_+Cexp(—y(S—5,)). (23)

The other flow scenarios with negative y° are not considered here. The constant C = & (S)
completely specifies the solution at an arbitrarily chosen point S = S, and determines the
accuracy of the numerical solution of the given non-linear initial value problem.

Substituting Eq. (23) in Egs. (20), one obtains the required asymptotic expansions
for ¢ and P as

¢=§— yCexp(-7(S=5,)). (24)
1
P=————y*Cexp(-y(S-5,)).
A exp(~7(S-5,)) (25)

Thus, Egs. (23)—(25) specify the film behavior at the height far away from the horizontal
liquid-air interface.

3.4. Asymptotic behavior of meniscus profile as it approaches horizontal liquid-air
interface

The uniform film thickness is a function of Ca and B, i.e., H, = f(Ca,f), and thus,
cannot be fixed arbitrarily. For a given (Ca, f)-pair, it must be determined from the
condition that the film ultimately matches the flat air/liquid interface as § — - oo. Thus
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considering H,, as an unknown parameter, we apply a shooting method to solve Eq. (15)—
(17) with the initial conditions Eq. (23)—(25)at Z, = 0, S; = 0 as discussed below.

To implement the shooting algorithm, we need to study the asymptotic behavior of the
static meniscus as it approaches the horizontal liquid/air interface. This asymptotic solution
will then be used to select the matching condition for the shooting method.

Following Huh and Scriven [54], the leading order asymptotic behavior of the meridian
profile H(S) as it approaches the static meniscus is obtained by analyzing the system Egs.
(15)—(17) as S —» —-oo where ¢ - 0, H - + . We use the asymptotic formulas
sing =¢, cosp=1,¢ - 0,1/(H+1)~1/H,H — + oo and rewrite the system Eqgs.
(15)—(17) in the form

dzZ dH
— =0, —=-1, (26)
ds ds
d d
do__do__p o @
dsS dH H
dP
— = . 28
A4 (28)
Differentiating Eq. (27) with respect to H and substituting dP /dr from Eq. (28), we have
d (dop ¢
— |t |= . 29
dr (dH Hj po 29)
Eq. (29) is reduced to the modified Bessel equation by introducing x = H "2 and
multiplying Eq. (29) by x*:
d’¢ dp
XL x——(x*+1)p=0, —0, x—+oo. 30
= (¥ +1)p=0, ¢ (30)

The modified Bessel function of the second kind satisfies Eq. (30) with the required
conditionp — OQatx —» +oo:

o(H)=CK,(1+H)"), H—> -+, (31)

where C, is an integration constant. Substituting Eq. (31) in Eq. (27) and solving it for P,
we find
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1 1/2
m1<1((1+H)ﬁ ).

P(H)=C, ) , H—> o0, (32)
E(KO((HH),B”Z)+K2((1+H)ﬂ”2))
The ratio P(H) /¢ (H) does not depend on constant C:
1/2 1/2
s =PUD 1 o Ko(A+ BB )+ K, ((+ H)B ))H%}_ )

o(H) 1+H 2K, ((1+H)B")

This condition is used in our shooting method to correct the guess value of the film
thickness H,.

3.5. The idea of the shooting method for numerical integration of Eqs. (15)-(19)

For any pair of dimensionless parameters Ca and f satisfying inequality Eq. (22), the
problem (15)—(17) with the initial conditions (23)—(25) at Z, = 0, S; = 0 has a set of
solutions in the entire infinite interval —c0 < § < +o0. Each solution corresponds to a
particular positive value of the constant film thickness at infinity, H,,. However, to solve
the boundary value problem including conditions (29)—(33), one has to select a unique
value Hx(Ca, ) among the obtained solutions of the initial value problem that corresponds
to a particular overall film configuration. The latter is prescribed by the boundary
conditions Eq. (18) The developed shooting method numerically selects this unique
solution.

The algorithm is as follows. For the given Bond number £ and capillary number Ca, we
use Egs. (1) and (2) to find y. This will be our first guess. Using this y, one solves Eq. (21)
to obtain H,, and using Eqgs. (23)—(25), one obtains the initial conditions for H, P, and ¢.
To numerically integrate the obtained system (15)—(19), we take advantage of translational
invariance of the problem (15)—(19) and introduce an auxiliary system of coordinates with
Zy =0, S, =0.

At the given guess values of H. and y numerical integration of Eqgs. (15)—(17) is proceeded
along S toward the meniscus at negative infinity by putting C = 1078H,,. With this choice
of constant C, we guarantee a sufficiently accurate numerical solution of the problem, Eqgs.
(15)—(19). The goal is to distinguish such a unique film thickness H.(Ca, ) that the film
profile renders flat at S — —oo, i.e., the inclination angle ¢ and the pressure P become
vanishingly small. The interface profile is considered “numerically flat” when the angle ¢
reaches ¢, = 1078, At this point ¢ = ¢, and the corresponding S = S,, we obtain a set of
numeric values H = H,, P = P,, and Z = Z,. The film thickness H,, 1s considered the
final solution when the ratio B, = P,/¢@, and the value B(H~), calculated from Eq. (33)
become equal to one another.
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We thus, reduce the problem of finding the film thickness H. = Hx(Ca, ) to a problem of
minimization of the following function

J(H,)=(B(H.)~B.) - min, (34)

©

with respect to H at the fixed Ca and .

This minimization problem, Eq. (34), is solved with the use of the built-in MatLab function
fminsearch. Iteratively changing H,,, the MatLab implementation of Eq. (34) calls for
numerical integration of Egs. (15)—(19) at a new value y(Hx), and so the iteration process
continues until the condition, B(H, )= B, is met. However, at every H. at the fixed pair
Ca and p, a vanishingly small value ¢, = 1078 was not observed in the solution to the
problem (15)—(19). How we deal with this situation is discussed in Supplementary
Information.

Once the thickness H,, has been found, the shooting algorithm is considered completed
and the solution {H(S, Ca, B),P(S,Ca,B),p(S,Ca,B),Z(S,Ca, )} with the dependence
Hy (Ca,B) is reported. To bring all obtained profiles to the same horizontal liquid/air
interface, we subtract the obtained constant Z,(H ) from each Z and plot H = H(Z —
Z.,Hy). This way, the starting height of integration is shifted to Z = Z, atS = §,,.

3.6. Comparison with LLD theory and analytical approximation of the numerical
solutions for the film thickness

In order to compare our results with the LLD theory for fibers and plates, in Fig. 3 we plot
by dashed lines the pre-factors in Eq. (1) and Eq. (2), and by solid curves — the dependence

of heoI71C a_g on R/l calculated using the discussed algorithm. When the rod radius is
much smaller than the capillary length, R/l < 0.1, our calculations match the predictions
of the LLD theory for fibers, Eq. (2). At very small rod radii, the film thickness depends
on the rod radius linearly as predicted by Eq. (35). Increasing the rod radius, one expects
to form a thicker coating. However, at R/l > 0.1 we observe a divergence from the fiber
LLD theory and transition to the plate theory, Eq. (1). In the transition region, 0.1 < R/l <
10, the calculated film thickness is smaller than the film thickness predicted by the LLD
theory for fibers and for plates. The transition from the fiber-like to plate-like behavior
occurs as the rod radius approaches the capillary length, R~L. In this range of the rod radii,
the weight of the meniscus becomes important, and hence the film thickness changes
significantly.

2
The behavior of capillary number is more complex. The scaling h,, o Cas falls short as

the capillary number increases above Ca > 1072, the red curves in Fig. 3. The proposed
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model, Egs. (15)—(17), predicts that the coating thickness on fibers should be greater than
the LLD thickness, Eq. (2).

Thus, the modified LLD model in hands captures new phenomena and it is interesting to
compare it with the results of coating experiments.

A B
|
| =
5 z
(@]
< 11
g 10 ﬁ
13 > 5
< < Ca=10
— 10 <Ca<10? — 10 —10*<ca<10?
Ca=10" Ca=10"
10_2 2 | 1 | Il 2 10_8 2 | 1 | Il 2
10 10 10° 10 10 10 10 10° 10 10
R/l,— R/la_

Fig. 3. (A) The comparison of the LLD theory pre-factors Apiqte, AfiverR/L (the dashed lines)
defined by Eqs. (1)—(2) and the results of numerical analysis (the solid curves) of the model Egs.
(15)—(17) and (23)—(25) for 1072 < R/l < 102%. For small capillary numbers, Ca < 107, all
numeric results fall on the same curve suggesting a universal scaling with Ca number. (B) The
relative difference (the solid curves) between the approximate Eqs.(36)—(39) (APPR) and the
calculated ho-values (NUM) from (A) at different Ca numbers. Triangle — Ca = 107, circle — Ca
=107, square — Ca = 107?. The dashed line is the constant value 107!, showing the accuracy
of the approximate Egs.(36)—(39).

To approximate the dependence of 4, / (ICa*”) on a single dimensionless parameter f,

we use the scaled Langevin and Brillouin functions as

h, |B,(xp), B<107;

00

= 36
ICa® | L(x,), p>107% G0
where

1
L(x,)=4,,, [cotth ——j (37)

xL
B,(x,)=0.51 2‘”1coth[zj”xBj—icoth(x—Bj , J=0.14 (38)

2J 2J 2J 2J
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1/2

xL(ﬂ)=j;5ﬂ“'2, xy(B)=1.1 Ai . (39)

fiber fiber

The accuracy of this approximation is shown in Fig. 3B. The smaller the capillary number,
the better this approximation is. Below is an example of how to use Eq. (36)—(39) to predict
the coating thickness h,.

Assume the following physical parameters for the liquid/rod pair relevant for Conostan
S60: p; =869 kg/m3, 6=30.9 mN / m , R=1.15 mm, n=102 mPa-s , U= 0.00167 m /s .
Accordingly, Ca = 5.50x 107, and p=0.364 > 102, As shown in Eq (36), calculating the
Bond number B, we observe that the Langevin function should be used for this Bond
number, he,/ (ICa?/®) = L(x,). Substituting the calculated Bond number in the first
equality of Eq. (39), we obtain x; = 2.13, and calculating the Langevin function using Eq.
(37), we have L(2.13) =0.528. Using Eq. (36), with L(x.) = 0.528, we estimate the film
thickness for these physical conditions as o0 =31.3 um. The experimental thickness is 31.0
um (as shown in Table S1). Thus, the difference of the approximate thickness and the
experimental value is measured in 1%.

3.7. Comparison with experiments

In Fig. 4 we plot the flux-based film thickness as a function of capillary number Ca for
different rods and compare these data with different theories and experiments.

Within the whole range of investigated capillary numbers,107° < Ca < 107!, and
capillary lengths, 0.11 <R// < 1.7, the experimental data are crowded below the LLD theory
predictions for the plates, the red curves. The thin rods, R/l = 0.11, 0.13, can be treated as
the LLD fibers. For small capillary numbers, Ca < 10!, and R// < 0.13, the LLD theory for
fibers completely explains the experiments. For the rods R/l = 0.13, the White-Tallmadge
data[31] and our experiments cover a broad range of capillary numbers 10> < Ca < 10°.
All these data can be explained by the proposed model, suggesting that the flow under the
meniscus does not affect the coating thickness significantly. Even at the range of capillary
numbers Ca > 102 where the trend changes significantly from that of the classical LLD
theory, the proposed theory predicts the correct flux-based thickness g/U.

As the rod radius increases above R/l > 0.13, we start to observe deviations from the LLD
theory for fibers. The flux-based thickness predicted by the LLD theory is always greater
than that observed in experiments and predicted by the proposed model.

When the rod radius approaches the capillary length, R~[, the LLD predictions of the
coating thickness for plates become closer to the experimental data, yet overestimate them.
We expect that the LLD theory for plates should satisfactorily explain the experimental
data when the rod radius increases above R > 1.71.
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Fig. 4. Comparison of different theories with experimental data of White and Tallmadge[31]
(squares) and of this work (circles) measured at various R/l ratios (A) 0.11, (B) 0.13, (D) 0.42,
(E) 0.61, (F) 0.80, (G) 1.2, (H) 1.7. All points satisfy Eq. (20) based on the calculated value H,.
The flux-based thickness g/U calculated for the LLD fiber approximation based on Egs. (2) and (9)
turns negative at large § and Ca as indicated by the blue curve rapidly bending down in (F) and
(G). The second inequality (for fibers) in Eq. (10) is not satisfied for particular (Ca, p)
combinations. In every calculation the obtained H.-value satisfies the constraint (22).

Fig. 5 (A) summarizes the comparison of experimental data versus predictions of the
modified LLD theory. This graph confirms that the proposed model Egs. (15)—(17), (23)—
(25) does predict the coating thickness on cylinders with the dimensionless thicknesses of
R/1=1.7,12,0.80,0.61,0.42.0.13,0.11, for a broad range of capillary numbers
(107> < Ca < 1071). Fig. 5 (B) shows the relative difference between the theoretical
(NUM) and experimental (EXP) thickness as a function of the Bond number. The typical
difference does not exceed 30%, and the majority of points is crowded below 20%, while
for individual data points may reach up to 33%. The only outlier is a single point from the
White-Tallmadge experiment at R// = 0.13. In our experiments at small capillary numbers
when the coating thickness was very small, the evaluation of its weight was less accurate
compared to that obtained at the larger capillary numbers. The White-Tallmadge data
points for R/l = 1.7 at low capillary Ca ~ 10™3 numbers probably suffer the same
problem. To verify the White-Tallmadge data on the R/l = 0.13 rods at larger capillary
numbers, Ca > 1072, we repeated these experiments to show that the proposed theory does
explain the experimental data for Ca < 0.366 but for greater capillary numbers the
deviation from the theoretical trend becomes significant. Therefore, the behavior of
meniscus and the change of its shape with capillary number was studied. The results are
demonstrated in Fig. 6.
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Fig. 5. (A) The collected results of experiments and theoretical predictions of the coating
thickness at different conditions. The circles correspond to this work and the squares are
taken from the White and Tallmadge work. (B) The relative difference between the
numerical flux thickness (NUM) and the experimental one (EXP).
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Fig. 6. (A)-(F) Images of dynamic menisci for a brass wire (R=0.202mm, R/[=0.13) drawn at
different U out of a bath of Sylgard 184. (A°)-(F’) The binarized images of dynamic menisci and
the menisci contours predicted by the theory, Eqs. (15)—(19). The red squares show the coating film
thickness h. on the fiber predicted by Eq. (2). (A)(A’) U=20mm/min, Ca=0.0732, (B)(B’)
U=50mm/min, Ca=0.183, (C)(C’) U=100mm/min, Ca=0.366, (D)(D’) U=200mm/min, Ca=0.732,
(E)(E’) U=350mm/min, Ca=1.28, (F)(F’) U=500mm/min, Ca=1.83.

When the capillary number is small, Ca < 0.366, the theoretical profiles of menisci closely
follow the experimentally observed profiles. Eq. (2) for fibers also predicts the film
thickness /4. with acceptable accuracy. Thus, the lubrication theory captures the main
features of film flow in this regime of rod coating. This shows the model does a good job
capturing the fine features of menisci, which cannot be described by ignoring the non-
linear meniscus curvature at the transition region. Thus, the two-way experimental analysis
using the weight method and imaging of meniscus profiles confirms the proposed idea of
the importance of both principal curvatures of meniscus in film shaping in the transition
region and control of the coating thickness. However, as one increases the capillary number
above Ca > 0.366, the theoretical profiles of menisci move away from the experimentally
observed ones, overestimating the thickness /.. White and Tallmadge suspected that the
23
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size of liquid reservoir may influence the meniscus shape and hence the coating thickness
[31]. To evaluate this effect, two tubes of radii (R;=13.0 mm, 23.5 mm) were examined.
These tubes were filled with S60 to the same height. The rods of radii R=0.500 mm, 2.35
mm were coated from these tubes at velocity U=500 mm/min, and U=200 mm/min.

Table 3 summarizes the results of these experiments. Comparing Experiment No.1 against
Experiment No. 2, one observes that the flux-based thickness % remains nearly unchanged;
a pair of Experiment No. 3 and No. 4 confirms this observation. Thus, when the ratio of
the rod radius to the tube radius is small, the meniscus shape is not affected by the tube

size and hence the divergence of the observed experimental thickness from the LLD theory
cannot be explained by the effect of the flow confinement.

Table 3 Dimensionless flux-based thickness in different containers

Experiment No. 1 2 3 4
Capillary number 0.028 0.028 0.011 0.011
Rod radius (mm) 0.500 0.500 2.35 2.35
Reservoir radius (mm) 13.0 23.5 13.0 23.5
R./R 26 47 5.5 10
R/l 0.26 0.26 1.2 1.2
Flux-based thickness(um) 49.9 50.1 55.0 55.1

Conclusion
Summary of key findings. With the progress of fiber technology and new coating materials,
the demand for understanding of controlling parameters for the dip-coating method is high
[23, 44, 45]. In this paper, we study the effect of the rod radius, withdrawal velocity, surface
tension, viscosity, and density of liquid finishes used in the dip coating processes of
cylindrical articles. These data significantly enrich the available data set obtained earlier
by White and Tallmadge [31, 49]. To explain the experimental results, we developed a new
mathematical model; the theoretical predictions of the behavior of coating films on the
process parameters are given in Fig. 4 and Fig. 5. We showed that the classical LLD model
falls short of describing the experimental data on rods for capillary numbers greater than
2

Ca > 107%. While the LLD scaling h, & [Ca3 on capillary number Ca < 1 appears
2

useful, the ratio ho,l"1Ca™3 significantly deviates from the LLD predictions for rods
having the radii greater than R/l > 0.1. The film thickness is always smaller than that
predicted by the LLD theory.

Highlights of the hypothesis, new concepts, and innovations. We hypothesized that the
predictions of LLD theory can be improved by restoring the non-linear meniscus curvature
in the equation for the flow of a coating film. We used the Laplace equation of capillarity
in its full non-linear form. This modification allowed us to use the shooting method to
numerically solve the obtained set of non-linear differential equations with non-linear
boundary conditions. All the processing parameters were collapsed into the capillary
number Ca and the ratio of the rod radius to the capillary length, R/l. The model
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predictions were verified by experiments. A large range of capillary numbers from 10~°
to 1071 was covered to show that the proposed model does explain the experimental data
with a good accuracy. An approximate set of analytic Egs. (36)—(39) was derived to predict
the coating thickness h,.

Future developments and engineering and materials science applications. The developed
model and experimental protocols could be used in many applications dealing with coating
of different rods. While the numerical analysis of the dip coating problem using Navier-
Stokes equations with the free boundary [55-58] is very attractive as it sheds new light on
the flow phenomena, a significant benefit of the presented 1D model is in its practicality
and simplicity. The analytical representation of the film thickness dependence on capillary
and Bond numbers Eqgs. (36)—(39) allows one to straightforwardly use it for design of the
rod finishing protocols with the desired outcome. The paper provides a new insight on the
classical problem of dip coating of rods and significantly expands the library of
experimental data on different rods and finishes. The problem concerns not only engineers.
Mouth parts of many insects are fiber-like and the process of insect feeding somewhat
resembles a process of fiber dip coating[59]. Therefore, the results of this work can be used
for analysis of insect behavior during feeding.
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603

ki04 Table of parameters

Ca Capillary number Ca = %
g Acceleration due to gravity
h(z) The film profile
h, Coating thickness at the constant thickness region
l Capillary length I = \/%
mg Mass of the end droplet
Mdry Mass of the rod before dip-coating
Muwet Mass of the rod after dip-coating
mga) Mass gain with a coating of A
z Vertical coordinate in a moving system
P Pressure
q Circumferential flux of coating liquid on the rod
Q Flux of coating liquid on the rod
R Radius of the cylinder
R, Radius of the reservoir
Rg R, Two principal radii of curvature of the air/liquid interface
r Coordinate in the radial direction
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s Arclength along the generator curve of air/liquid interface
v Vertical component of fluid velocity distribution as a function of
radial coordinate
U Withdrawal velocity of the cylinder
z Coordinate in the vertical direction
P Density of coating fluid
A Coating length
B Bond number
o Surface tension of coating fluid
K Local curvature of the air/liquid interface
n Viscosity of coating fluid
Local inclination angle of the generator curve of air/liquid
4 interface
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