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Abstract 15 

Hypothesis: The Landau-Levich-Derjaguin (LLD) theory is widely applied to predict the 16 
film thickness in the dip-coating process. However, the theory was designed only for flat 17 
plates and thin fibers. Fifty years ago, White and Tallmadge attempted to generalize the 18 
LLD theory to thick rods using a numerical solution for a static meniscus and the LLD 19 
theory to forcedly match their numeric solution with the LLD asymptotics. The White-20 
Talmadge solution has been criticized for not being rigorous yet widely used in engineering 21 
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applications mostly owing to the lack of alternative solutions. A new set of experiments 22 
significantly expanding the range of White-Tallmadge conditions showed that their theory 23 
cannot explain the experimental results. We then hypothesized that the results of LLD 24 
theory can be improved by restoring the non-linear meniscus curvature in the equation. 25 
With this modification, the obtained equation should be able to describe static menisci on 26 
any cylindrical rods and the film profiles observed at non-zero rod velocity.   27 

Experiment: To test the hypothesis, we distinguished capillary forces from viscous forces 28 
by running experiments with different rods and at different withdrawal velocities and video 29 
tracking the menisci profiles and measuring the weight of deposited films. The values of 30 
film thickness were then fitted with a mathematical model based on the modified LLD 31 
equation. We also fitted the meniscus profiles. 32 

Findings: The results show that the derived equation allows one to reproduce the results of 33 
the LLD theory and go far beyond those to include rods of different radii. A new set of 34 

experimental data together with the White-Tallmadge experimental data are explained with 35 
the modified LLD theory. A set of simple formulas approximating numeric results have 36 
been derived. These formulas can be used in engineering applications for the prediction of 37 
the coating thickness.  38 

 39 
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1. Introduction 42 

The dip coating process schematically shown in Fig. 1, is a popular technological 43 
process used in a variety of industrial fields [1]. An article of interest, say a cylinder in Fig. 44 
1, is first immersed in a liquid reservoir and then is pulled out. As the substrate is moved 45 
upward, it picks up some liquid film. This film can be further cured to make a solid coating. 46 
In the case of deposition of solutions/dispersions/suspensions, the solvent evaporates, 47 
leaving behind a solid deposit of interest. Due to its simple process and ease of control, the 48 
dip coating is widely applied in industry and manufacturing [1].  49 

It is used, for example, for making the energy-saving coating on architectural 50 
glasses [2, 3], the biocompatible coating on medical implants [4], and the electrothermal 51 
coating on micro-heaters [5]. Different substrates, such as plates, cylinders, fibers, and 52 
articles of more complex shapes, can be dip-coated with different liquids [1, 6-24]. Fibers 53 
deserve special attention because the deposited liquid films are subject to capillary action 54 
when the surface tension of the cylindrical film forces the liquid to move back to the 55 
reservoir [6-11, 25-40]. 56 

To tailor the electrical, mechanical, thermal, and chemical properties of coatings, it 57 
is always important to control the thickness of the coating films [10-12, 32, 41-45]. The 58 
importance of this technology called for the development of a theory, which after the 59 
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seminal works of Landau, Levich [46] and Derjaguin [47, 48], became one of the crown 60 
jewels of surface science, the Landau-Levich-Derjaguin (LLD) theory. As the technology 61 
progresses and new coating materials and articles are developed, the demand for an 62 
understanding of controlling means for new coatings remains high despite the great history 63 
of this methodology [23, 44, 45]. 64 

 65 
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 66 

Fig. 1. (A) Schematic of the dip coating process. A circular cylinder of radius R is withdrawn 67 
vertically from a liquid reservoir at constant velocity U. z - is the cylinder axis, and 𝑅 + ℎ(𝑧) is 68 
the meniscus profile – the generator curve. The film thickness h(z) increases from ℎ∞ at 𝑧 → ∞ to 69 
ℎ → ∞ as one moves to the horizontal air-liquid interface, z = 0. In the film, the flow is assumed 70 
almost unidirectional and the film profile is shaped by the viscous, capillary, and gravitational 71 
forces. (B) Definition of two radii of curvatures of meniscus at an arbitrarily chosen point A on the 72 
film surface. An outward normal vector 𝒏 at point 𝐴 is continued toward the air and from the liquid 73 
to make the straight line 𝑂’𝐴𝑂, where 𝑂’ is the point of intersection of this line with the z-axis. This 74 
line makes angle 𝜑 with the 𝑧-axis. The quantity is called the inclination angle. Then the point 𝑂 75 
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on this line is the center of curvature and |𝑂𝐴| = 𝑅𝑔 is the radius of curvature of the generator 76 
curve – meniscus profile at point 𝐴. The distance |𝑂’𝐴| = 𝑅𝑟  is the second principal radius of 77 
curvature due to the rotation of this generator curve about the z-axis. Assuming that the arclength 78 
s increases with z while h – decreases, the differential of the arclength 𝑑𝑠 of this profile 𝑅 + ℎ(𝑧) 79 
at point A is related to the differential 𝑑𝑧 as 𝑑𝑧 = 𝑑𝑠 𝑠𝑖𝑛 𝜑 and 𝑡𝑎𝑛 𝜑 = −𝑑𝑧/𝑑ℎ . 80 

 81 

Landau and Levich [46] theoretically studied a dip coating process when a flat plate 82 
is steadily withdrawn vertically from the liquid reservoir of viscosity  and surface tension 83 
𝜎 at low speed 𝑈. When the capillary number Ca = U /𝜎 ≪ 1 is small, the flow does not 84 
significantly affect the shape of the meniscus formed on the plate. Landau and Levich 85 
subdivided the flow region onto three sub-regions: 1) the region of constant film thickness, 86 
𝑧 →  ∞; 2) the region of static meniscus; 3) and an intermediate transition region, which 87 
connects the region of constant thickness and the static meniscus, Fig. 1. The flow in the 88 
coating film influences the meniscus shape only in the transition region situated near the 89 
static contact line. This partitioning of the flow regions allowed Landau and Levich to 90 
successfully solve this non-linear free boundary problem of fluid mechanics to predict the 91 
thickness ℎ∞ of a fluid film deposited on the plate: 92 

 93 

 ℎ∞ = 𝐴𝑝𝑙𝑎𝑡𝑒  ∙ 𝑙 ∙ 𝐶𝑎
2

3 ,         𝐴𝑝𝑙𝑎𝑡𝑒 =  0.945,     Ca = U /𝜎, 
(1) 

 

where 𝑙 = √
𝜎

𝑔𝜌𝑙
 is the capillary length, 𝜌𝑙 is the density of the liquid, and 𝑔  is the 94 

acceleration due to gravity. The capillary length gives an estimate of the height of the 95 
meniscus attached to a non-moving vertical plate. This Eq. (1) does not depend on any 96 
plate dimensions, and hence the film thickness depends only on the physical properties of 97 
fluids and velocity of the plate withdrawal.  98 

However, when it comes to cylinders or fibers, the liquid-air interface becomes 99 
axisymmetric and is subject to the capillary compression in the radial direction [30, 47, 100 
48]. Derjaguin and later White and Tallmadge recognized this fact and modified the 101 

Landau-Levich theory for thin fibers when the fiber radius 𝑅 is small compared to the 102 

capillary length 𝑙 (𝑅 ≪ 𝑙) [30, 31, 47, 48]. The result is written as: 103 

 ℎ∞ = 𝐴𝑓𝑖𝑏𝑒𝑟 ∙ 𝑅 ∙ 𝐶𝑎
2
3, 𝐴𝑓𝑖𝑏𝑒𝑟 =  1.34. (2) 

The striking difference with the plate case is that the film thickness becomes directly 104 
proportional to the cylinder radius: the thinner the cylinder, the thinner the coating film! 105 

There is no direct connection between Eq. (1) and Eq. (2), and it is not possible to predict 106 
what will happen with the deposited film when one increases the fiber radius. Intuitively, 107 

one expects that as 𝑅 increases, the effect of meniscus curvature should become less critical 108 
and will not follow the case of a thin fiber. To study this problem, a dimensionless radius, 109 
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𝑅/𝑙, is naturally introduced. The coating scenario can now be divided into three cases [31]: 110 

a) 𝑅/𝑙 ≫ 1 , when the cylinder radius is much greater than the height of meniscus attached 111 

to a plate made of the same material; b) 𝑅/𝑙 ≪ 1 , when the cylinder is much thinner than 112 

the height of meniscus attached to a plate made of the same material; c) 𝑅/𝑙 is close or 113 
comparable to 1, i.e., the cylinder diameter is comparable with the meniscus height. 114 

In the first case, there is a negligible curvature in the radial direction. Therefore, the coating 115 
scenario should be similar to the case of a flat plate, and the thickness can be predicted by 116 
Eq. (1), where the thickness is independent of the radius of the cylinder.  117 

In the second case, the thickness can be predicted by Eq. (2). A great deal of research has 118 
been performed to verify the dip-coating thickness in those two cases [1, 20, 29, 44, 48]. 119 
However, when the ratio of the cylinder radius to the capillary length goes to 1, which is 120 
the case for many industrial applications with the cylinders of about 1 millimeter in 121 
diameter, such as an optical fiber or a metal wire, one requires additional experimental 122 
support for evaluation of the film thickness. This case has been studied by White and 123 
Tallmadge [31, 49]. As noticed by Wilson[50, 51] and further discussed in Refs.[1, 44], 124 
the White - Tallmadge approach to accommodate gravity lacks mathematical rigor and 125 
hence cannot be used to predict the film thickness in a wide range of capillary numbers.  126 

In this paper, we modify the LLD-model to include the full non-linear capillary pressure 127 
term in the equation for a film flow over a circular cylinder. This modification guarantees 128 
that the static meniscus is described exactly; thus the surface tension terms are correctly 129 
taken into account [50-52]. We numerically evaluate the effect of gravity and cylinder 130 
radius on the thickness of deposited films and verified theoretical results in experiments. 131 
A large range of capillary numbers from 10−5  to  10−1  was covered. These data 132 
significantly enrich the set of results obtained by White and Tallmadge [31, 49] and 133 
confirm the predictions of the modified LLD model.  134 
 135 

2. Materials and Methods 136 

 137 

2.1. Rods and liquids  138 

Stainless steel and brass rods with six different radii (𝑅 = 0.165mm, 0.202mm, 0.255mm, 139 
1.15mm, 1.54mm, 2.35mm) were used in experiments. Before coating, all the rods were 140 
sonicated in an ultrasonic cleaner (VWR Ultrasonic Cleaner 97043-964, 35 kHz, 90 W) in 141 
acetone for 2 hours and dried thoroughly in ambient conditions. The used stainless steel 142 
and brass wires were smooth but unpolished. The spatial scale of the surface roughness is 143 
much smaller than the typical film thickness. The contact angles between the fluids and the 144 
high energy stainless steel and brass rods were very small, which can be verified in Fig. 6. 145 
Thus, the fluids wetted the rods completely and hence adhesion between the fluids and the 146 
rod surfaces was strong. Thus, a macroscale description of the fluid flow in the film is 147 
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applicable where the nominal surface is assigned to have no-slip boundary condition for 148 
flow.  149 

The dip coater (KSV NIMA Dip Coater) was used for coating the rods. The rod was 150 
attached to the dip coater holder by a clamp to ensure that the rod was fixed vertically. 151 
Then the rod was lowered into the fluid reservoir at a velocity of 100mm/min. After dipping 152 
to a certain targeted length, the rod was remained still for 15 seconds before withdrawing 153 
from the reservoir at a certain velocity. Five withdrawal velocities, 20mm/min, 50mm/min, 154 
100mm/min, 200mm/min, and 500mm/min were chosen to adjust the capillary number. 155 
Purely viscous fluids such as glycerol (Fisher Scientific Inc.), hexadecane (Fisher Scientific 156 
Inc.), the standard viscosity oil Conostan S60 (SCP Science), and Sylgard 184 (Dow 157 
Corning), were used as the coating fluids; Sylgard 184 showed the Newtonian behavior up 158 
to the shear rate 18 s-1 which are of interest to the dip coating conditions. The viscosity of 159 
the fluids was measured by a viscometer (Brookfield DV3THBCJ0). The density of the 160 
fluids was calculated by measuring the weight of fluid in a fixed volume liquid pycnometer 161 
(25ml) using an analytical balance (PI-214, Denver Instrument) at room temperature. The 162 
surface tension was measured by a Kruss DSA10 drop shape analysis system and analyzed 163 
by the DSA software. The dynamic menisci for a brass wire (R=0.202mm, R/l=0.13) drawn 164 
at different velocities (20 mm/min, 50 mm/min, 100 mm/min, 200 mm/min, 350mm/min, 165 
and 500 mm/min ) out of a bath of Sylgard 184 were recorded by a Xcsource 20X-800X 166 
USB microscope camera.  167 

All the properties were measured at 23°C. Based on the radii of rods and the capillary 168 

lengths, the dimensionless radii 𝑅/𝑙 were calculated for each group of experimental data 169 
and collected in Table 2.  170 

 171 

Table 1. Fluid Properties at Room Temperature (23°𝐶) 172 

Description of the 

fluid 

Viscosity η 

(𝑚𝑃𝑎 ∙ 𝑠) 

Density 𝜌𝑙 

(𝑘𝑔/𝑚3) 

Surface tension σ 

(𝑚𝑁/𝑚) 

Capillary 

length, 𝑙 

(𝑚𝑚) 

Sylgard 184 5100 1030 23.3 1.52 

93 w% Glycerol-

water mixture 

270 1241 64.1 2.29 

hexadecane 3.40 770 27.4 1.91 

Conostan S60 102 869 30.9 1.91 

 173 
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Table 2 Cylinder Radii and Dimensionless Radii 174 

Cylinder number 1 2 3 4 5 6 

Material Brass Brass Brass Stainless 

steel 

Stainless 

steel 

Stainless 

steel 

Radius (mm) 0.165 0.202 0.255 1.15 1.54 2.35 

 Dimensionless radius 𝑅/𝑙 

Sylgard 184 0.11 0.13     

93 w% Glycerol-water 

mixture 

  0.11 - - - 

Hexadecane   0.13 0.61 0.81 1.24 

Conostan S60   - 0.61 0.81 1.24 

 175 

2.2. The thickness of deposited film.  176 

The following experimental protocol was developed to measure the coating thickness at 177 
the given experimental conditions. First, as shown in Fig. 2A, the rods were weighed by a 178 
semi-micro-balance (Sartorius LE 26D) before and after the dip-coating experiment when 179 
the rods were coated over five different lengths (𝜆 = 30mm, 40mm, 50mm, 60mm, 70mm). 180 
The mass of the rod mdry was subtracted from the observed mass after the dip-coating 181 
process, mwet(λ), to determine the mass gain ( ) ( )wet drym m m = − . The mass gain  is 182 

shown to be a linear function of λ: ( ) d

m
mm  


=


+


, where the first term is the mass of 183 

the liquid film and md is the mass of the drop observed at the bottom of the withdrawn rod 184 
as shown in Fig. 2B.  185 

We did not observe any difference in the sizes of the end droplets for the rods submersed 186 
in the liquid reservoir at different depths. Thus, the weight gain per unit length, 𝛥𝑚/𝛥𝜆, is 187 
proportional to the flux thickness q/U and does not depend on 𝜆. The ratio 𝛥𝑚/𝛥𝜆 can be 188 
calculated from the slope of the weight gain vs. immersion length plots [31], Fig. 2C. The 189 
uncertainty of the slope was evaluated by the LINEST function in Excel. The uncertainty 190 
is shown in Table S1 of Supplementary Information. The average flux-based thickness q/U 191 
was calculated based on the slope, liquid density 𝜌𝑙, and the radius 𝑅 of the coated rod as 192 
shown below 193 

𝑞

𝑈
=

𝑄

2𝜋𝑅𝑈
=

𝑄 ∙ Δ𝑡

2𝜋𝑅𝑈 ∙ Δ𝑡
=

ΔV ∙ 𝜌𝑙

2𝜋𝑅𝜆 ∙ 𝜌𝑙
=

1

2𝜋𝑅
∙

Δ𝑚

Δ𝜆
∙

1

𝜌𝑙
, 195 

          (3) 194 
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where Δ𝑡 is the time of the rod withdrawal, ΔV = 𝑄 ∙ Δ𝑡 is the volume of the deposited 196 
liquid, 𝜆 = 𝑈 ∙ Δ𝑡 is the length of the coated part of the rod, 𝑄 is the total flux in the annular 197 
film. During the dip-coating process, the capillary number Ca varied from 3 × 10−5 to 198 
7 × 10−1 by adjusting the withdrawal velocities and using different fluids, see Table 1. 199 

 200 

 201 

Fig. 2. (A) The schematic diagram explaining the flux thickness q/U measurements by a balance 202 
during dip coating. The mass mdry of the dry rod was measured prior to the coating experiment, 203 
and the mass mwet of the coated road was measured after the coating experiment. The mass m = 204 
mwet – mdry is the weight gain at the given depth of immersion λ. (B) Illustration of an end droplet 205 
formed after dip coating. The picture on the left is taken before the coating experiment, and the 206 
picture with a drop is taken after the coating experiment. (C) To eliminate the influence of the end 207 
droplet, a series of experiments were run with different depths of immersion of the rod. The 208 
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incremental change of mass m = mwet - mdry was calculated for each rod and plotted as a function 209 
of the depth of immersion  𝜆𝑖 , 1 ≤ 𝑖 ≤ 5.  210 

 211 

3. Results and discussion 212 

3.1. The lubrication flow model 213 
Following the traditional scheme of the lubrication theory, we restrict ourselves to 214 

the regimes of coating at small Reynolds numbers, 𝑅𝑒 = 𝜌𝑙𝑈ℎ∞/ 𝜂 ≪ 1, where ℎ∞ is the 215 

film thickness; 𝑈 is the withdrawal velocity; 𝜂 is the viscosity of the fluid and 𝜌𝑙  is its 216 

density. In our experiments, the smallest Reynolds number was 1.8 × 10−5  at R = 217 
0.165mm, U = 20mm/min with Slygard 184; and the largest value was Re = 0.0058 at R = 218 

0.235mm, U = 500 mm/min with hexadecane. Using the small slope approximation, one 219 

infers that the pressure 𝑝(𝑧) is uniform across the film of thickness ℎ(𝑧), and pressure and 220 
the film thickness vary along the cylinder axis z. Assuming that the film is much thinner 221 

than the cylinder radius, ℎ << 𝑅, the no-slip boundary condition at the cylinder surface 222 
moving with velocity U upwards and no shear stress condition at the air/liquid interface, 223 

𝑟 = 𝑅 + ℎ, one writes the Stokes problem in cylindrical coordinates for the z-component 224 
of velocity  as  225 

− (
𝑑𝑝

𝑑𝑧
) − 𝜌𝑙𝑔 + 𝜂

𝑑2

𝑑𝑟2 +
𝜂

𝑟

𝑑

𝑑𝑟
= 0, (𝑅) = 𝑈,   

𝑑

𝑑𝑟
|𝑅+ℎ = 0. (4) 

For thin films, ℎ << 𝑅, the pressure gradient dp/dz is independent of the radial coordinate, 226 

and the term (𝜂/𝑟)(𝑑/𝑑𝑟) is much smaller than the other three. We neglect this term and 227 
integrate (4) to infer that the velocity profile is the Poiseuillean parabolic profile [30, 46, 228 
53]: 229 
 230 

 = 𝑈 +
1

𝜂
(

𝑑𝑝

𝑑𝑧
+ 𝜌𝑙𝑔) (𝑟 − 𝑅)((𝑟 − 𝑅)/2 − ℎ). (5) 

Due to definition, the flow discharge through the thin film of thickness ℎ(𝑧) is  231 

𝑄 = 2𝜋𝑅 ∫ 𝑑𝑟
𝑅+ℎ

𝑅
.     (6) 232 

Substituting Eq. (5) in Eq. (6) and integrating the result, one obtains [30, 46, 53] 233 

 
𝑄 = 2𝜋𝑅ℎ𝑈 − 2𝜋𝑅ℎ (

ℎ2

3𝜂

𝑑𝑝

𝑑𝑧
) − 2𝜋𝑅

𝜌𝑙𝑔ℎ3

3𝜂
.          (7) 

 Eq. (7) shows that the total flux 𝑄(𝑧) in the annular film at an arbitrary point 𝑧 234 

along the cylinder is due to advection, 2𝜋𝑅ℎ𝑈, when the film of thickness ℎ(𝑧) is moving 235 
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together with the cylinder, and due to the relative motion with respect to the cylinder 236 
movement due to the pressure gradient and gravitational drainage.  237 

When the flow is in its steady state, the flux 𝑄 should not depend on position 𝑧. 238 
Therefore, calculating the flux at the zone of constant thickness where the film thickness 239 

is ℎ∞, and 𝑑𝑝/𝑑𝑧 =  0, we have from Eq. (7): 240 

𝑄 = 2𝜋𝑅 (ℎ∞𝑈 −
𝜌𝑙𝑔ℎ∞

3

3𝜂
) = 𝑐𝑜𝑛𝑠𝑡. 

 (8) 

We introduce the flux per unit length 𝑞 = 𝑄/(2𝜋𝑅) of the cylinder circumference. 241 
Then Eq.(8) is rewritten as the ratio  242 

 
𝑞

𝑈
= ℎ∞ −

𝜌𝑙𝑔ℎ∞
3

3𝜂𝑈
. (9) 

We call this ratio 𝑞/𝑈  the flux-based thickness, it has units of length and is directly 243 
measurable in experiments [31, 49]. When the gravitational drainage described by the term 244 

−𝜌𝑙𝑔ℎ∞
3/3𝜂𝑈 in Eq. (9) is negligible, this ratio gives the coating thickness ℎ∞ ≈ 𝑞/𝑈. In 245 

the general case, ℎ∞ ≠ 𝑞/𝑈 and the measurements of the flux have to be interpreted with 246 
special care. 247 

 Eq. (9) suggests natural constraints on the applicability of expansions (1) and (2). 248 
Plugging these expansions in Eq. (9) and assuming that the flux thickness is positive, one 249 
obtains that 250 

 337.9, 4.66Ca Ca  −    (10) 251 

for plates and fibers, respectively, where 
2 /lR g  =  is the Bond number. 252 

At small capillary and Reynolds numbers, Ca, Re <<1, the distribution of pressure 253 

𝑝 in the thin film (with respect to the pressure in the surrounding air) is quasi-stationary 254 
and follows the Laplace equation of capillarity  255 

 
1 1 1 1 s n

,,
i

g r g r

d
p

RR ds RR R h

 

 

+= = =



−
 +

, (11) 256 

where Rg and Rr are the two principal radii of curvature of the air/liquid interface, s is the 257 
arclength along the generator curve, and φ is the inclination angle introduced in Fig. 1. 258 

Assuming that 𝑠(𝑧) increases while ℎ(z) decreases with 𝑧, we write 259 

 ,sin cos
dz dh

ds ds
 = = − . (12) 260 
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Solving Eq. (11) for 𝑑𝜑/𝑑𝑠, we have 261 

 
sind p

ds R h

 


= − +

+
. (13) 262 

Substituting Eq. (8) in Eq. (7), and resolving the pressure gradient as 𝑑𝑝/𝑑𝑧 =263 

(𝑑𝑝/𝑑𝑠)(𝑑𝑠/𝑑𝑧) and using Eq. (12) to replace 𝑑𝑠/𝑑𝑧 in this last equation as 𝑑𝑝/𝑑𝑧 =264 

(𝑑𝑝/𝑑𝑠)/ sin 𝜑, we obtain the following differential equation for the pressure gradient 265 
along the meridians 266 

 
𝑑𝑝

𝑑𝑠
= (3𝜂𝑈

ℎ−ℎ∞

ℎ3
− 𝜌𝑙𝑔 (1 −

ℎ∞
3

ℎ3
)) sin 𝜑. (14) 267 

The system of Eqs. (12)–(14) describes the profile of the air-liquid interface, and the 268 
boundary conditions have to be introduced to integrate this system. 269 

 270 

3.2. Dimensionless form of the governing equations and boundary conditions  271 

Introducing the dimensionless height Z, arclength S, pressure in the film P, and local film 272 
thickness H as  273 

/ , / , , / , /
R

Z z R S s R P p H h R H h R


 = = = = =  274 

and the capillary number, Ca, the Bond number, 𝛽, as 275 

 Ca =
𝜂𝑈

𝜎
, 𝛽 =

𝜌𝑙𝑔𝑅2

𝜎
,  276 

the system of Eqs. (12)–(14) is rewritten as 277 

 sin
dZ

dS
= , (15) 278 

 
sin

cos ,
1

dH d
P

dS dS H

 
= − = − +

+
, (16) 279 

 

3

3 3
3 n1Ca si

dP H H

dS H

H

H
  

  −
= − −  

  
. (17) 280 

 The film on the rod must be matched with the static meniscus far away from the 281 
rod where the free surface is horizontal, and the pressure in the liquid is equal to the 282 
atmospheric pressure. Thus, the boundary conditions are set as 283 
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 :   0, , 0S P H →− → → → . (18) 284 

At the positive infinity, the film is assumed uniform: 285 

:  / 0, / 0dSS d dP dS→ + → → . Substituting these conditions in Eq. (16) and 286 

Eq. (17), we obtain the following boundary conditions 287 

 
2

1
,

1
:    ,S H H P

H






= =
+

→ + = . (19) 288 

The non-linear problem Eqs. (15)–(19) has to be solved within the infinite domain − ∞ <289 

𝑆 <  + ∞ . This non-linear problem is autonomous, i.e., the right-hand sides of all 290 

equations do not explicitly depend on 𝑆. Only the initial state, H, P, and φ, given by Eq. 291 
(18) or Eq. (19) specifies the overall solution to the problem. The solution does not depend 292 

on the choice of the initial value of the independent argument S. Thus, if functions 𝑍(𝑆),293 

𝐻(𝑆), 𝜑(𝑆), 𝑃(𝑆)  are the solutions then the functions 𝑍(𝑆 + 𝑆0), 𝐻(𝑆 + 𝑆0), 𝜑(𝑆 +294 

𝑆0), 𝑃(𝑆 + 𝑆0) are also the solutions for any constant S0 to the same problem (15)–(19). 295 

This translation invariance offers a degree of freedom in choosing the reference point 𝑆0 296 
requiring a special care in formulating the boundary conditions and in the development of 297 
the numerical method to solve this problem. 298 

 One observes that the right-hand sides of Eqs. (16)–(17) for H, φ, and P do not 299 
depend on Z. Thus, they can be integrated first.  300 

 301 

3.3. Asymptotic behavior of meniscus profile as it approaches uniform film 302 

 Formulating the coating problem, we assume that far away from the horizontal 303 

liquid-air interface, as 𝑆 →  + ∞ and 𝑍 →  + ∞, the film turns into a straight (φ → π/2) 304 

cylindrical shell of thickness 𝐻 =  𝐻∞. For any S0 and 𝐻∞, the initial value problem Eqs. 305 
(15)–(17) with initial conditions Eq. (19) must have a unique solution. For numerical 306 
integration of Eqs. (15)–(17), one has to develop an asymptotic expansion of the system at 307 

any fixed 
0 01, 1S S Z Z=  =  . 308 

 Consider the film profile as 𝑆 →  + ∞, 𝑍 →  + ∞ where the film thickness is 309 
assumed slightly deviating from its limiting thickness. Thus, we assume that 310 

𝐻(𝑆) =  𝐻∞ +  𝜀(𝑆) where the perturbation is small: 0 < 𝜀(𝑆)/𝐻∞ ≪ 1. This function 311 

𝜀(𝑆) is unknown yet, and we should also assume that the angle 𝜑 deviates from 𝜋/2 as 312 

𝜑(𝑆) = 𝜋/2 − 𝛼(𝑆), where 0 < 𝛼(𝑆) ≪ 1. Then the pressure also changes as 𝑃 =  1/313 

(1 +  𝐻∞) −  𝛿(𝑆) , where 0 < 𝛿(𝑆) ≪ 1. To find functions 𝜀(𝑆), 𝛼(𝑆) and 𝛿(𝑆), we 314 
substitute these representations in Eqs. (15)–(17) and Taylor expand the resulting equations 315 

with respect to 𝜀(𝑆), 𝛼(𝑆) and 𝛿(𝑆), to obtain in the leading order approximation as 316 
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 3

Ca
, , 3

d d

dS dS dS H

d

H

   
  

 

=


−


 


− = =


− − . (20) 317 

Calculating the derivatives of the first and second equations of Eqs. (20) as 318 

3 3 2 2 2 2/ /,/ /d dS dS dS dSd d d   = − − =  319 

we will have from the third equation of Eqs. (20): 320 

 

3
3 3

3 2

3
1,

Cad

dS HH

 
  

 

= − − 
 

= 
 

. (21) 321 

Assume that the following physical conditions hold true (see Supplementary material 322 
with the supporting experimental data) 323 

 
2Ca .0  H     (22) 324 

When γ takes on a real positive value, we can integrate Eq. (21) with the condition 325 

𝜀 →  0 𝑎𝑡 𝑆 →  + ∞ to find 326 

 ( )0exp )(H CH S S + −= − . (23) 327 

The other flow scenarios with negative γ3 are not considered here. The constant 𝐶 = 𝜀 (𝑆0) 328 

completely specifies the solution at an arbitrarily chosen point 𝑆 = 𝑆0 and determines the 329 
accuracy of the numerical solution of the given non-linear initial value problem.  330 

Substituting Eq. (23) in Eqs. (20), one obtains the required asymptotic expansions 331 
for φ and P as 332 

 ( )0exp )(
2

C S S


  −= − − , (24) 333 

 ( )2

0

1
exp )

1
(S SP C

H
 



= − −−
+

. (25) 334 

Thus, Eqs. (23)–(25) specify the film behavior at the height far away from the horizontal 335 
liquid-air interface. 336 

3.4. Asymptotic behavior of meniscus profile as it approaches horizontal liquid-air 337 
interface 338 

The uniform film thickness is a function of 𝐶𝑎 and 𝛽 , i.e., 𝐻∞ =  𝑓(𝐶𝑎, 𝛽), and thus, 339 
cannot be fixed arbitrarily. For a given (Ca, β)-pair, it must be determined from the 340 

condition that the film ultimately matches the flat air/liquid interface as 𝑆 →  –  ∞. Thus 341 



15 

 

considering 𝐻∞ as an unknown parameter, we apply a shooting method to solve Eq. (15)–342 

(17) with the initial conditions Eq. (23)–(25) at 𝑍0 =  0, 𝑆0 =  0 as discussed below.  343 

To implement the shooting algorithm, we need to study the asymptotic behavior of the 344 
static meniscus as it approaches the horizontal liquid/air interface. This asymptotic solution 345 
will then be used to select the matching condition for the shooting method. 346 

Following Huh and Scriven [54], the leading order asymptotic behavior of the meridian 347 

profile 𝐻(𝑆) as it approaches the static meniscus is obtained by analyzing the system Eqs. 348 

(15)–(17) as 𝑆 →  – ∞  where 𝜑 →  0, 𝐻 →  + ∞ . We use the asymptotic formulas 349 

sin 𝜑 ≅ 𝜑, cos 𝜑 ≅ 1, 𝜑 →  0, 1/(𝐻 + 1)~1/𝐻, 𝐻 →  + ∞ and rewrite the system Eqs. 350 
(15)–(17) in the form 351 

 0, 1
dZ dH

dS dS
= = − ,  (26) 352 

 
d d

P
dS dH H

  
= − = − + , (27) 353 

 
dP

dH
= . (28) 354 

Differentiating Eq. (27) with respect to 𝐻 and substituting 𝑑𝑃/𝑑𝑟 from Eq. (28), we have 355 

 
d d

dH dH H

 


 
+ = 

 
.  (29) 356 

Eq. (29) is reduced to the modified Bessel equation by introducing 
1/2x H=  and 357 

multiplying Eq. (29) by x2: 358 

 ( )
2

2 2

2
0, 0,1x x

d d
x

d
x

r dr

 
 − + →++ = → . (30) 359 

The modified Bessel function of the second kind satisfies Eq. (30) with the required 360 

condition 𝜑 →  0 𝑎𝑡 𝑥 →  + ∞ : 361 

 ( ) ( )1/2

2 1 (1 ) ,HH HC K = + →+ , (31) 362 

where 𝐶2 is an integration constant. Substituting Eq. (31) in Eq. (27) and solving it for 𝑃, 363 
we find 364 
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( )

( ) ( )( )

1/2

1

2

1/2 1/2

0 2

1
(1 ) ...

1
( ) ,  .

1
(1 ) (1 )

2

H
H

P

K

H H

K H K H

C



 

 
+ − +

= → 
 + + + 
 

    (32) 365 

The ratio 𝑃(𝐻)/𝜑(𝐻) does not depend on constant 𝐶2:  366 

 
( ) ( )

( )

1/2 1/2

0 21/2

1/2

1

(1 ) (1 )( ) 1
( ) ,  .

1 (1 )( ) 2

K H K HP H
B H

H
H

HKH

 


 

+ + +
 = − →

+ +
 (33) 367 

This condition is used in our shooting method to correct the guess value of the film 368 

thickness 𝐻∞. 369 

3.5. The idea of the shooting method for numerical integration of Eqs. (15)–(19)  370 

For any pair of dimensionless parameters 𝐶𝑎 and 𝛽  satisfying inequality Eq. (22), the 371 

problem (15)–(17) with the initial conditions (23)–(25) at 𝑍0 =  0, 𝑆0 =  0 has a set of 372 

solutions in the entire infinite interval – ∞ <  𝑆 <  +∞. Each solution corresponds to a 373 

particular positive value of the constant film thickness at infinity, 𝐻∞. However, to solve 374 
the boundary value problem including conditions (29)–(33), one has to select a unique 375 
value H∞(Ca, β) among the obtained solutions of the initial value problem that corresponds 376 
to a particular overall film configuration. The latter is prescribed by the boundary 377 
conditions Eq. (18) The developed shooting method numerically selects this unique 378 
solution.  379 

The algorithm is as follows. For the given Bond number 𝛽 and capillary number Ca, we 380 

use Eqs. (1) and (2) to find 𝛾. This will be our first guess. Using this 𝛾, one solves Eq. (21) 381 

to obtain 𝐻∞ and using Eqs. (23)–(25), one obtains the initial conditions for H, P, and φ. 382 
To numerically integrate the obtained system (15)–(19), we take advantage of translational 383 
invariance of the problem (15)–(19) and introduce an auxiliary system of coordinates with 384 

𝑍0 =  0, 𝑆0 =  0.  385 

At the given guess values of H∞ and γ numerical integration of Eqs. (15)–(17) is proceeded 386 

along 𝑆 toward the meniscus at negative infinity by putting 𝐶 =  10–8𝐻∞. With this choice 387 

of constant 𝐶, we guarantee a sufficiently accurate numerical solution of the problem, Eqs. 388 
(15)–(19). The goal is to distinguish such a unique film thickness H∞(Ca, β) that the film 389 
profile renders flat at S → –∞, i.e., the inclination angle φ and the pressure P become 390 

vanishingly small. The interface profile is considered “numerically flat” when the angle 𝜑 391 

reaches 𝜑∗ = 10−8. At this point 𝜑 = 𝜑∗ and the corresponding 𝑆 = 𝑆∗, we obtain a set of 392 

numeric values 𝐻 =  𝐻∗, 𝑃 =  𝑃∗,  and  𝑍 =  𝑍∗. The film thickness 𝐻∞ is considered the 393 

final solution when the ratio 𝐵∗  =  𝑃∗/𝜑∗ and the value B(H*), calculated from Eq. (33) 394 
become equal to one another. 395 
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We thus, reduce the problem of finding the film thickness H∞ = H∞(Ca, β) to a problem of 396 
minimization of the following function 397 

 ( )
2

* *( ) ( ) min
H

J H B H B


 →= − , (34) 398 

with respect to H∞ at the fixed Ca and β. 399 

This minimization problem, Eq. (34), is solved with the use of the built-in MatLab function 400 
fminsearch. Iteratively changing 𝐻∞, the MatLab implementation of Eq. (34) calls for 401 
numerical integration of Eqs. (15)–(19) at a new value γ(H∞), and so the iteration process 402 

continues until the condition, * *( )B H B= is met. However, at every H∞ at the fixed pair 403 

Ca and β, a vanishingly small value 𝜑∗ = 10−8 was not observed in the solution to the 404 
problem (15)–(19). How we deal with this situation is discussed in Supplementary 405 
Information. 406 
Once the thickness 𝐻∞ has been found, the shooting algorithm is considered completed 407 

and the solution {𝐻(𝑆, 𝐶𝑎, 𝛽), 𝑃(𝑆, 𝐶𝑎, 𝛽), 𝜑(𝑆, 𝐶𝑎, 𝛽), 𝑍(𝑆, 𝐶𝑎, 𝛽)} with the dependence 408 

𝐻∞ (𝐶𝑎, 𝛽)  is reported. To bring all obtained profiles to the same horizontal liquid/air 409 

interface, we subtract the obtained constant 𝑍∗(𝐻∞) from each 𝑍  and plot 𝐻 = 𝐻(𝑍 −410 

𝑍∗, 𝐻∞). This way, the starting height of integration is shifted to 𝑍 = 𝑍∗  at 𝑆 =  𝑆0.  411 

 412 

3.6. Comparison with LLD theory and analytical approximation of the numerical 413 

solutions for the film thickness 414 

 415 

In order to compare our results with the LLD theory for fibers and plates, in Fig. 3 we plot 416 
by dashed lines the pre-factors in Eq. (1) and Eq. (2), and by solid curves – the dependence 417 

of ℎ∞𝑙−1𝐶𝑎−
2

3 on 𝑅/𝑙 calculated using the discussed algorithm. When the rod radius is 418 

much smaller than the capillary length, 𝑅/𝑙 < 0.1, our calculations match the predictions 419 
of the LLD theory for fibers, Eq. (2). At very small rod radii, the film thickness depends 420 
on the rod radius linearly as predicted by Eq. (35). Increasing the rod radius, one expects 421 

to form a thicker coating. However, at 𝑅/𝑙 > 0.1 we observe a divergence from the fiber 422 
LLD theory and transition to the plate theory, Eq. (1). In the transition region, 0.1 < R/l < 423 
10, the calculated film thickness is smaller than the film thickness predicted by the LLD 424 
theory for fibers and for plates. The transition from the fiber-like to plate-like behavior 425 

occurs as the rod radius approaches the capillary length, 𝑅~𝑙. In this range of the rod radii, 426 
the weight of the meniscus becomes important, and hence the film thickness changes 427 
significantly.  428 

The behavior of capillary number is more complex. The scaling ℎ∞ ∝ 𝐶𝑎
2

3 falls short as 429 

the capillary number increases above 𝐶𝑎 > 10−2, the red curves in Fig. 3. The proposed 430 
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model, Eqs. (15)–(17), predicts that the coating thickness on fibers should be greater than 431 
the LLD thickness, Eq. (2).  432 

Thus, the modified LLD model in hands captures new phenomena and it is interesting to 433 
compare it with the results of coating experiments. 434 

   435 

Fig. 3. (A) The comparison of the LLD theory pre-factors 𝐴𝑝𝑙𝑎𝑡𝑒, 𝐴𝑓𝑖𝑏𝑒𝑟𝑅/𝑙 (the dashed lines) 436 
defined by Eqs. (1)–(2) and the results of numerical analysis (the solid curves) of the model Eqs. 437 
(15)–(17) and (23)–(25) for 10−2 ≤ 𝑅/𝑙 ≤ 102.  For small capillary numbers, Ca < 10–2, all 438 
numeric results fall on the same curve suggesting a universal scaling with Ca number. (B) The 439 
relative difference (the solid curves) between the approximate Eqs.(36)–(39) (APPR) and the 440 
calculated h∞-values (NUM) from (A) at different Ca numbers. Triangle – Ca = 10–2, circle – Ca 441 

= 10–3, square – Ca = 10–4. The dashed line is the constant value 10–1, showing the accuracy 442 
of the approximate Eqs.(36)–(39). 443 

To approximate the dependence of 
2/3/ ( Ca )h l

 on a single dimensionless parameter β, 444 

we use the scaled Langevin and Brillouin functions as 445 

 

2

2/3 2(

10

10

( ), ;

Ca ), ;

J B

L

B xh

l L x





−



−


=







 (36) 446 

where 447 

 
1

( ) cothL plate L

L

L x A x
x

 
= − 

 
  (37) 448 

 
2 1 2 1 1

( ) 0.51 coth coth , 0.14
2 2 2 2

B
J B B

J J x
B x x J

J J J J

 + +    
= − =    

    
  (38) 449 
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and 450 

 

1/2

1/2.24.5
( ) , ( ) 1.1L B

fiber fiber

x x
A A


  

 
= =   

 
. (39) 451 

The accuracy of this approximation is shown in Fig. 3B. The smaller the capillary number, 452 
the better this approximation is. Below is an example of how to use Eq. (36)–(39) to predict 453 

the coating thickness ℎ∞.  454 

Assume the following physical parameters for the liquid/rod pair relevant for Conostan 455 

S60: ρl =869 𝑘𝑔/𝑚3, σ=30.9 𝑚𝑁 / 𝑚 , R=1.15 mm, η=102 𝑚𝑃𝑎∙𝑠 , U= 0.00167 𝑚 / 𝑠 . 456 
Accordingly, Ca = 5.50× 10-3, and β=0.364 > 10-2. As shown in Eq (36), calculating the 457 
Bond number β, we observe that the Langevin function should be used for this Bond 458 

number, ℎ∞/  (𝑙𝐶𝑎2/3) = 𝐿(𝑥𝐿) . Substituting the calculated Bond number in the first 459 

equality of Eq. (39), we obtain 𝑥𝐿 = 2.13, and calculating the Langevin function using Eq. 460 

(37), we have 𝐿(2.13) =0.528. Using Eq. (36), with 𝐿(𝑥𝐿) = 0.528, we estimate the film 461 

thickness for these physical conditions as ℎ∞ =31.3 𝜇𝑚. The experimental thickness is 31.0 462 

𝜇𝑚 (as shown in Table S1). Thus, the difference of the approximate thickness and the 463 
experimental value is measured in 1%. 464 

3.7. Comparison with experiments  465 

In Fig. 4 we plot the flux-based film thickness as a function of capillary number 𝐶𝑎 for 466 
different rods and compare these data with different theories and experiments.  467 

Within the whole range of investigated capillary numbers , 10−5 < 𝐶𝑎 < 10−1 , and 468 
capillary lengths, 0.11 ≤ R/l ≤ 1.7, the experimental data are crowded below the LLD theory 469 

predictions for the plates, the red curves. The thin rods, 𝑅/𝑙 = 0.11, 0.13, can be treated as 470 
the LLD fibers. For small capillary numbers, Ca < 10–1, and R/l ≤ 0.13, the LLD theory for 471 

fibers completely explains the experiments. For the rods 𝑅/𝑙 = 0.13, the White-Tallmadge 472 

data[31] and our experiments cover a broad range of capillary numbers 10−5 < 𝐶𝑎 < 100. 473 
All these data can be explained by the proposed model, suggesting that the flow under the 474 
meniscus does not affect the coating thickness significantly. Even at the range of capillary 475 

numbers 𝐶𝑎 > 10−2 where the trend changes significantly from that of the classical LLD 476 
theory, the proposed theory predicts the correct flux-based thickness q/U. 477 

As the rod radius increases above 𝑅/𝑙 > 0.13, we start to observe deviations from the LLD 478 
theory for fibers. The flux-based thickness predicted by the LLD theory is always greater 479 
than that observed in experiments and predicted by the proposed model.  480 

When the rod radius approaches the capillary length, 𝑅~𝑙, the LLD predictions of the 481 
coating thickness for plates become closer to the experimental data, yet overestimate them. 482 
We expect that the LLD theory for plates should satisfactorily explain the experimental 483 

data when the rod radius increases above 𝑅 > 1.7𝑙.  484 
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 489 

Fig. 4. Comparison of different theories with experimental data of White and Tallmadge[31] 490 
(squares) and of this work (circles) measured at various 𝑅/𝑙 ratios (A) 0.11, (B) 0.13, (D) 0.42, 491 
(E) 0.61, (F) 0.80, (G) 1.2, (H) 1.7. All points satisfy Eq. (20) based on the calculated value 𝐻∞. 492 
The flux-based thickness q/U calculated for the LLD fiber approximation based on Eqs. (2) and (9) 493 
turns negative at large β and Ca as indicated by the blue curve rapidly bending down in (F) and 494 
(G). The second inequality (for fibers) in Eq. (10) is not satisfied for particular (Ca, β) 495 
combinations. In every calculation the obtained H∞-value satisfies the constraint (22). 496 

Fig. 5 (A) summarizes the comparison of experimental data versus predictions of the 497 
modified LLD theory. This graph confirms that the proposed model Eqs. (15)–(17) , (23)–498 
(25) does predict the coating thickness on cylinders with the dimensionless thicknesses of 499 

𝑅/𝑙 = 1.7, 1.2, 0.80, 0.61, 0.42. 0.13, 0.11 , for a broad range of capillary numbers 500 

(10−5 < 𝐶𝑎 < 10−1). Fig. 5 (B) shows the relative difference between the theoretical 501 
(NUM) and experimental (EXP) thickness as a function of the Bond number. The typical 502 
difference does not exceed 30%, and the majority of points is crowded below 20%, while 503 
for individual data points may reach up to 33%. The only outlier is a single point from the 504 
White-Tallmadge experiment at R/l = 0.13. In our experiments at small capillary numbers 505 
when the coating thickness was very small, the evaluation of its weight was less accurate 506 
compared to that obtained at the larger capillary numbers. The White-Tallmadge data 507 

points for 𝑅/𝑙 = 1.7  at low capillary 𝐶𝑎 ≈ 10−3  numbers probably suffer the same 508 

problem. To verify the White-Tallmadge data on the 𝑅/𝑙 = 0.13 rods at larger capillary 509 

numbers, 𝐶𝑎 > 10−2, we repeated these experiments to show that the proposed theory does 510 

explain the experimental data for 𝐶𝑎 < 0.366  but for greater capillary numbers the 511 
deviation from the theoretical trend becomes significant. Therefore, the behavior of 512 
meniscus and the change of its shape with capillary number was studied. The results are 513 
demonstrated in Fig. 6. 514 

 515 
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 516 

Fig. 5. (A) The collected results of experiments and theoretical predictions of the coating 517 
thickness at different conditions. The circles correspond to this work and the squares are 518 
taken from the White and Tallmadge work. (B) The relative difference between the 519 
numerical flux thickness (NUM) and the experimental one (EXP). 520 
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 521 

 522 

Fig. 6. (A)-(F) Images of dynamic menisci for a brass wire (R=0.202mm, R/l=0.13) drawn at 523 
different U out of a bath of Sylgard 184. (A’)-(F’) The binarized images of dynamic menisci and 524 
the menisci contours predicted by the theory, Eqs. (15)–(19). The red squares show the coating film 525 
thickness h∞ on the fiber predicted by Eq. (2). (A)(A’) U=20mm/min, Ca=0.0732, (B)(B’) 526 
U=50mm/min, Ca=0.183, (C)(C’) U=100mm/min, Ca=0.366, (D)(D’) U=200mm/min, Ca=0.732, 527 
(E)(E’) U=350mm/min, Ca=1.28, (F)(F’) U=500mm/min, Ca=1.83. 528 

When the capillary number is small, 𝐶𝑎 < 0.366, the theoretical profiles of menisci closely 529 
follow the experimentally observed profiles. Eq. (2) for fibers also predicts the film 530 
thickness h∞ with acceptable accuracy. Thus, the lubrication theory captures the main 531 

features of film flow in this regime of rod coating. This shows the model does a good job 532 
capturing the fine features of menisci, which cannot be described by ignoring the non-533 
linear meniscus curvature at the transition region. Thus, the two-way experimental analysis 534 
using the weight method and imaging of meniscus profiles confirms the proposed idea of 535 
the importance of both principal curvatures of meniscus in film shaping in the transition 536 
region and control of the coating thickness. However, as one increases the capillary number 537 

above 𝐶𝑎 > 0.366, the theoretical profiles of menisci move away from the experimentally 538 
observed ones, overestimating the thickness h∞. White and Tallmadge suspected that the 539 
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size of liquid reservoir may influence the meniscus shape and hence the coating thickness 540 

[31]. To evaluate this effect, two tubes of radii (𝑅𝑡=13.0 mm, 23.5 mm) were examined. 541 

These tubes were filled with S60 to the same height. The rods of radii 𝑅=0.500 mm, 2.35 542 
mm were coated from these tubes at velocity U=500 mm/min, and U=200 mm/min.  543 

Table 3 summarizes the results of these experiments. Comparing Experiment No.1 against 544 

Experiment No. 2, one observes that the flux-based thickness 
𝑞

𝑈
 remains nearly unchanged; 545 

a pair of Experiment No. 3 and No. 4 confirms this observation. Thus, when the ratio of 546 
the rod radius to the tube radius is small, the meniscus shape is not affected by the tube 547 
size and hence the divergence of the observed experimental thickness from the LLD theory 548 
cannot be explained by the effect of the flow confinement. 549 

Table 3 Dimensionless flux-based thickness in different containers 550 

Experiment No. 1 2 3 4 

Capillary number 0.028 0.028 0.011 0.011 

Rod radius (mm) 0.500 0.500 2.35 2.35 

Reservoir radius (mm) 13.0 23.5 13.0 23.5 

𝑅𝑡/𝑅 26 47 5.5 10 

𝑅/𝑙 0.26 0.26 1.2 1.2 

Flux-based thickness(μm) 49.9 50.1 55.0 55.1 

 551 

Conclusion 552 

Summary of key findings. With the progress of fiber technology and new coating materials, 553 
the demand for understanding of controlling parameters for the dip-coating method is high 554 
[23, 44, 45]. In this paper, we study the effect of the rod radius, withdrawal velocity, surface 555 
tension, viscosity, and density of liquid finishes used in the dip coating processes of 556 
cylindrical articles. These data significantly enrich the available data set obtained earlier 557 
by White and Tallmadge [31, 49]. To explain the experimental results, we developed a new 558 
mathematical model; the theoretical predictions of the behavior of coating films on the 559 
process parameters are given in Fig. 4 and Fig. 5. We showed that the classical LLD model 560 
falls short of describing the experimental data on rods for capillary numbers greater than 561 

Ca > 10−2 . While the LLD scaling  ℎ∞ ∝ 𝑙𝐶𝑎
2

3  on capillary number 𝐶𝑎 < 1  appears 562 

useful, the ratio ℎ∞𝑙−1𝐶𝑎−
2

3   significantly deviates from the LLD predictions for rods 563 
having the radii greater than 𝑅/𝑙 > 0.1. The film thickness is always smaller than that 564 
predicted by the LLD theory. 565 
Highlights of the hypothesis, new concepts, and innovations. We hypothesized that the 566 
predictions of LLD theory can be improved by restoring the non-linear meniscus curvature 567 
in the equation for the flow of a coating film. We used the Laplace equation of capillarity 568 
in its full non-linear form. This modification allowed us to use the shooting method to 569 
numerically solve the obtained set of non-linear differential equations with non-linear 570 
boundary conditions. All the processing parameters were collapsed into the capillary 571 

number 𝐶𝑎  and the ratio of the rod radius to the capillary length, 𝑅/𝑙 . The model 572 



25 

 

predictions were verified by experiments. A large range of capillary numbers from 10−5 573 

to 10−1 was covered to show that the proposed model does explain the experimental data 574 
with a good accuracy. An approximate set of analytic Eqs. (36)–(39) was derived to predict 575 

the coating thickness ℎ∞. 576 

Future developments and engineering and materials science applications. The developed 577 
model and experimental protocols could be used in many applications dealing with coating 578 
of different rods. While the numerical analysis of the dip coating problem using Navier-579 
Stokes equations with the free boundary [55-58] is very attractive as it sheds new light on 580 
the flow phenomena, a significant benefit of the presented 1D model is in its practicality 581 
and simplicity. The analytical representation of the film thickness dependence on capillary 582 
and Bond numbers Eqs. (36)–(39) allows one to straightforwardly use it for design of the 583 
rod finishing protocols with the desired outcome. The paper provides a new insight on the 584 
classical problem of dip coating of rods and significantly expands the library of 585 
experimental data on different rods and finishes. The problem concerns not only engineers. 586 
Mouth parts of many insects are fiber-like and the process of insect feeding somewhat 587 
resembles a process of fiber dip coating[59]. Therefore, the results of this work can be used 588 
for analysis of insect behavior during feeding. 589 
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 603 

Table of parameters  604 

𝑪𝒂 Capillary number 𝑪𝒂 =
𝑼𝜼

𝝈
 

g Acceleration due to gravity 

𝒉(𝒛) The film profile 

𝒉∞ Coating thickness at the constant thickness region 

𝒍 Capillary length 𝒍 = √
𝝈

𝝆𝒈
 

md Mass of the end droplet 

mdry Mass of the rod before dip-coating 

mwet Mass of the rod after dip-coating 

m(λ) Mass gain with a coating of λ 

𝒛 Vertical coordinate in a moving system 

𝒑 Pressure 

q Circumferential flux of coating liquid on the rod 

𝑸 Flux of coating liquid on the rod 

𝑹 Radius of the cylinder 

𝑹𝒕 Radius of the reservoir 

Rg, Rr Two principal radii of curvature of the air/liquid interface 

𝒓 Coordinate in the radial direction 
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