
Network Embedding With
Completely-Imbalanced Labels

Zheng Wang, Xiaojun Ye , Chaokun Wang ,Member, IEEE,

Jian Cui, and Philip S. Yu , Fellow, IEEE

Abstract—Network embedding, aiming to project a network into a low-dimensional space, is increasingly becoming a focus of network

research. Semi-supervised network embedding takes advantage of labeled data, and has shown promising performance. However,

existing semi-supervised methods would get unappealing results in the completely-imbalanced label setting where some classes have

no labeled nodes at all. To alleviate this, we propose two novel semi-supervised network embedding methods. The first one is a shallow

method named RSDNE. Specifically, to benefit from the completely-imbalanced labels, RSDNE guarantees both intra-class similarity

and inter-class dissimilarity in an approximate way. The other method is RECT which is a new class of graph neural networks. Different

from RSDNE, to benefit from the completely-imbalanced labels, RECT explores the class-semantic knowledge. This enables RECT to

handle networks with node features and multi-label setting. Experimental results on several real-world datasets demonstrate the

superiority of the proposed methods.

Index Terms—Network embedding, graph neural networks, social network analysis, data mining
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1 INTRODUCTION

NETWORK analysis [1], [2], [3], [4] is a hot research topic in
various scientific areas like social science, computer sci-

ence, biology and physics. Many algorithmic tools for network
analysis heavily rely on network representationwhich is tradi-
tionally represented by the adjacency matrix. However, this
straightforward representation not only lacks of representative
power but also suffers from the data sparsity issue [5].

Recently, learning dense and low-dimensional vectors as
representations for networks has aroused considerable
research interest in network analysis. It has been shown that
the learned representations could benefit many network
analysis tasks, such as node classification [6], link predic-
tion [7], [8] and network visualization [9]. Commonly, learn-
ing network representation is also known as network
embedding [10]. The learned low-dimensional vectors are
called node embeddings (or representations).

One basic requirement of network embedding is to pre-
serve the inherent network structure in the embedding
space, as illustrated in Fig. 1a. Early studies, like IsoMap [11]
and LLE [12], ensure the embedding similarity among
linked nodes. Now, more research activities focus on pre-
serving the unobserved but legitimate links in the network.
For example, DeepWalk [6] exploits the node co-occurring
relationships in the truncated random walks over a

network. LINE [13], [14] considers both the first-order and
second-order proximities of a network. Unlike the above
two shallow methods, SDNE [15], a class of graph neural
networks (GNNs) [16], [17], uses multiple layers of non-lin-
ear functions to model these two proximities.

Semi-supervised network embedding methods, which
take advantage of labeled data, have shown promising
performance. Typical semi-supervised shallow methods
include LSHM [18], LDE [19], and MMDW [20]. Typical
semi-supervised GNNs are GCN [21], GAT [22] and
APPNP [23]. As illustrated in Fig. 1b, in these methods, a
classification model (e.g., SVM [24] and Cross-entropy [25])
will be learned to inject label information. Intuitively, in the
embedding space, the learned classification model would
reduce the distance between same labeled nodes and enlarge
the distance between different labeled nodes. Influenced by
this, the embedding results therefore become more discrimi-
native and have shown state-of-the-art performance.

1.1 Problem

Most semi-supervised network embedding methods [18],
[19], [20] assume the labeled data is generally balanced, i.e.,
every class has at least one labelednode. In this paper, we con-
sider a more challenging scenario in which some classes have
no labeled nodes at all (shown in Fig. 2), i.e., the completely-
imbalanced case. This problem can be formulated as follows:

Problem (Network Embedding With Completely-
Imbalanced Labels). Given a network G ¼ ðV; A; C; CsÞ
where V is the set of n nodes, A 2 Rn�n is the adjacency matrix,
C is the whole node class label set, and Cs�C is the observed label
set, our goal is to learn a continuous low-dimensional vector
ui 2 Rd (d�n) for each node vi, such that nodes close to each
other in the network structure and with the similar class labels
are close in the embedding space.
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This problem deserves special attention for two reasons.
First, it has many practical applications. For example, con-
sidering Wikipedia which can be seen as a set of linked
web pages on various topics [26], it is difficult to collect
labeled samples for every topic exactly and not miss any
one. Second, and more importantly, without considering
this issue, traditional semi-supervised methods would
yield unappealing results. To verify this, we carry out an
experiment on Citeseer dataset [27], in which the nodes
from unseen classes are excluded from the labeled data.
We test two typical semi-supervised methods (i.e., a shal-
low method LSHM and a GNN method GCN) on node
classification task. As shown in Table 1, their performance
declines noticeably compared with their counterparts
trained with the balanced labels. This decline might be
caused by the classification models used in these methods,
since general classifiers are very likely to get biased results
on imbalanced data [28]. We refer to Sections 5 and 6 for
more detailed discussion.

1.2 Contribution

To address this problem, in this paper, we first present a
novel shallow method termed RSDNE. The basic idea is
to guarantee both intra-class similarity and inter-class

dissimilarity in an approximate way, so as to benefit from
completely-imbalanced labels. Specifically, we relax
the intra-class similarity requirement by allowing the
same labeled nodes to lie on the same manifold in the
embedding space. On the other hand, we approximate the
inter-class dissimilarity requirement by removing the
known connections between the nodes with different labels.
As such, our method can reasonably guarantee these two
requirements and also avoid the biased results. We further
formalize these approximations into a unified embedding
framework, and give an efficient learning algorithm.

To leverage the power of deep neural networks [29], we
further propose RECT, a new class of GNNs. Comparing to
RSDNE, RECT can further leverage node features and deal
with the multi-label case [30]. In particular, to utilize the
completely-imbalanced labels, unlike RSDNE nor traditional
GNNs, RECT adopts a novel objective function which
explores the class-semantic knowledge. This is motivated by
the recent success of Zero-Shot Learning (ZSL) [31], which
has demonstrated the ability of recognizing unseen objects
via introducing class-semantic descriptions. In addition,
unlike the traditional ZSL methods, the class-semantic
descriptions used in RECT do not rely on human annotations
or any third-party resources, making RECT well suited for
practical applications.

In summary, our main contributions are as follows:

1) We study the problem of network embedding with
completely-imbalanced labels. To our best knowl-
edge, little work has addressed this problem.

2) We propose an effective shallow method named
RSDNE which can learn discriminative embeddings
by approximately guaranteeing both intra-class simi-
larity and inter-class dissimilarity.

3) We propose RECT, a new class of graph neural net-
works. Comparing to RSDNE, RECT can further
handle networks with node features and multi-label
setting.

4) We conduct extensive experiments on five real-world
datasets in both completely-imbalanced setting and
balanced setting to demonstrate the superiority of our
methods.

In addition, it is worth highlighting that in the balanced
label setting, our methods could still achieve comparable
performance to state-of-the-art semi-supervised methods,
although our methods are not specially designed for this set-
ting. Therefore, our methods would be favorably demanded
by the scenario where the quality of labels cannot be
guaranteed.

Fig. 1. Frameworks of existing unsupervised and semi-supervised net-
work embedding methods.

Fig. 2. Illustration of the network embedding with completely-imbalanced
labels. This toy network actually contains three classes of nodes, but
only two classes provide labeled nodes, i.e., blue and red nodes. The
remaining nodes (including all the nodes of Class 3) are unlabeled.

TABLE 1
Classification Performance on Citeseer

Here: We use Mðb) and M(-t) to denote the method M using the balanced
and completely-imbalanced labeled data with t unseen classes, respectively.
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The remainder of this paper is organized as follows. We
review some related work in Section 2. In Section 3, we elab-
orate our shallow method RSDNE with details. In Section 4,
we introduce the proposed GNN method RECT. Section 5
discusses the rationality of our methods, and further ana-
lyzes the relationship between the existing methods and
ours. Section 6 reports experimental results. Section 7 con-
cludes this paper.

2 RELATED WORK

2.1 Semi-Supervised Network Embedding

The goal of semi-supervised network embedding is to learn
the representations of both labeled and unlabeled nodes.
Existing shallow methods mainly share the similar idea,
that is, to jointly train a network structure preserving model
and a class classification model. For example, LDE [19] con-
siders the first-order proximity [13] of the network and
jointly trains a 1-nearest neighbor classification model [32].
Semi-supervised GNNs also will train a classification model
but implicitly preserve the network structure information.
In particular, most GNNs (like GCN [21], GAT [22] and
APPNP [23]) iteratively perform feature aggregations based
on the network structure [33]. We refer readers to a compre-
hensive survey [34] for more discussions.

However, these methods all assume the labeled data is
generally balanced (i.e., label information covers all classes),
otherwise would get unappealing results. In practice, the
quality of labeled data is hard to guarantee. Therefore, to
enhance the applicability, we investigate network embed-
ding in the completely-imbalanced label setting.

2.2 Imbalanced Data Learning

A training dataset is called imbalanced if at least one of the
classes are represented by significantly less number of
instances than the others. The imbalanced data are perva-
sively existed in multiple domains ranging from the physical
world to social networks, and to make proper use of such
data is always a pivotal challenge [35], [36]. This topic has
been identified in several vital research areas, such as classifi-
cation [37], clustering [38], and data streams [39]. We refer
to [28] and [40] for a comprehensive survey. However, in the
area of network embedding, little previous work considers
the imbalanced problem, not to mention the completely-
imbalanced problem [10].

2.3 Zero-Shot Learning

ZSL [41], [42], which is recently a hot research topic in com-
puter vision, aims to recognize the objects from unseen clas-
ses. To achieve this goal, it leverages some high-level
semantic descriptions (also called as attributes) shared
between both seen and unseen classes. For example, we can
define some attributes like “wing”, “climb” or “tail” for ani-
mals. Then we can train attribute recognizers using images
and attribute information from seen classes. After that, given
an image from unseen classes, we can infer its attributes. By
comparing the difference between the inferred attributes
and each unseen classes’ attributes, the final output is given
based on the score. Generally, attributes are human anno-
tated, which needs lots of human efforts. Another more

practical way is to use word embeddings generated by
word2vec tools [43] trained with large-scale general text
database. Despite of this, attributes collection still heavily
relies on third-party resources, limiting the use of ZSL meth-
ods in practical applications. Additionally, although various
ZSLmethods have been proposed [44], all these methods are
limited to classification or prediction scenario [45]. To our
best knowledge, there is little reported work considering the
unseen classes in the network embedding problem.

3 THE PROPOSED SHALLOW METHOD: RSDNE

In this section,we first introduce a network structure preserv-
ing model. Then, we present our method with another two
objective terms for completely-imbalanced labels. Finally, we
give an efficient optimization algorithm.

3.1 Modeling Network Structure With DeepWalk

To capture the topological structure of a network, DeepWalk
performs random walks over a network to get node sequen-
ces. By regarding each node sequence v ¼ fv1; . . . ; vjvjg as a
word sequence, it adopts the well-known language model
Skip-Gram [43] to maximize the likelihood of the surround-
ing nodes given the current node vi for all random walks
v 2 V:

X
v2V

"
1

jvj
Xjvj
i¼1

X
�r�j�r

logPrðviþjjviÞ
#
; (1)

where r is the radius of the surrounding window, and the
probability PrðvjjviÞ is obtained via the softmax:

PrðvjjviÞ ¼ expðuj � uiÞP
t2V expðut � uiÞ ; (2)

where ui is the representation vector of node vi, and � is the
inner product between vectors.

Yang et al. [46] has proved that DeepWalk actually factor-
izes a matrixM whose entryMij is formalized as:

Mij ¼ log ½eið �Aþ �A2 þ � � � þ �AtÞ	
.
t; (3)

where �A is the transition matrix which can be seen as a row
normalized network adjacency matrix, and ei denotes an
indicator vector whose ith entry is 1 and the others are all 0.
To balance speed and accuracy, [46] finally factorized the

matrixM¼ð �Aþ �A2Þ=2 instead, since sparsematrixmultiplica-

tion can be easily parallelized and efficiently calculated [47].
More formally, the matrix factorization model of Deep-

Walk aims to find a (node embedding) matrix U 2 Rn�d and
a (context embedding) matrix H 2 Rd�n via solving the fol-
lowing optimization problem:

min
U;H

JDW ¼ M � UHk k2F þ �ð Uk k2F þ Hk k2F Þ; (4)

where � is the regularization parameter to avoid overfitting.
In this paper, we adopt this model (i.e., Eq. (4)) as our basic
network structure preserving model.
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3.2 Modeling Intra-Class Similarity

In this completely-imbalanced setting, the labeled nodes all
come from the seen classes. Intuitively, we should ensure
the intra-class similarity, i.e., the nodes sharing the same label
should be close to each other in the embedding space. To
satisfy this, traditional semi-supervised methods employ
various classifiers to reduce the intra-class embedding vari-
ance. However, this would yield unappealing results with
completely-imbalanced labels (shown in Table 1).

To alleviate this, we relax this similarity requirement by
allowing the same labeled nodes to lie on the samemanifold,
i.e., a topological space which can be euclidean only
locally [12]. Although the underlying manifold is unknown,
we can build a sparse adjacency graph to approximate it [48].
In other words, each labeled node only needs to be close to k
(k � n, and k ¼ 5 in our experiments) same labeled nodes.
However, we do not know how to select the best k nodes,
since the optimal node alignments in the new embedding
space is unknown. A simple solution is to randomly select k
same labeled nodes, whichmay not be optimal.

In this paper, we solve this problem in an adaptive way.
For notational convenience, for a labeled node vi, we call the
selected k nodes as vi’s intra-class neighbors. Suppose we use
S2f0; 1gn�n to denote the intra-class neighbor relationship
among nodes, i.e., Sij ¼ 1 when node vj is the intra-class
neighbor of node vi, otherwise Sij ¼ 0. Mathematically, S can
be obtained by solving the following optimization problem:

min
U;S

J intra¼ 1

2

Xn
i;j¼1

ui � uj

�� ��2
F
Sij

s:t: 8i 2 L; s0i1 ¼ k; Sii ¼ 0

8i; j 2 L; Sij 2 f0; 1g; if Csi ¼ Csj
8i; j; Sij ¼ 0; if i =2 L or Csi 6¼ Csj ;

(5)

where L is the labeled node set, and si2Rn�1 is a vector with
the jth element as Sij (i.e., s

0
i, the transpose of si, is the row

vector of matrix S), and 1 denotes a column vector with all
entries equal to one, and Csi and Csj are the (seen) class labels
of node vi and vj respectively. In this paper, ð�Þ0 stands for
the transpose.

3.3 Modeling Inter-Class Dissimilarity

Although Eq. (5) models the similarity within the same class,
it neglects the inter-class dissimilarity, i.e., the nodes with dif-
ferent labels should be far away fromeach other in the embed-
ding space. Traditional semi-supervised methods employ
different classification models to enlarge the inter-class
embedding variance. Nevertheless, this would yield unap-
pealing results with completely-imbalanced labels (shown in
Table 1).

To alleviate this, we approximate this dissimilarity
requirement by removing the known connections between
the nodes with different labels. Since we adopt the matrix
form of DeepWalk (i.e., matrixM in Eq. (4)) to model the con-
nections among nodes, this approximation leads to the fol-
lowing optimization problem:

min
U

J inter ¼ 1

2

Xn
i;j¼1

ui � uj

�� ��2
F
Wij; (6)

whereW is a weighted matrix whose elementWij ¼ 0when
labeled nodes vi and vj belong to different categories, other-
wiseWij ¼ Mij.

3.4 The Unified Model: RSDNE

Withmodeling the network structure (Eq. (4)), intra-class sim-
ilarity (Eq. (5)) and inter-class dissimilarity (Eq. (6)), the pro-
posedmethod is to solve the following optimization problem:

min
U;H;S

J ¼ J DW þ aðJ intra þ J interÞ
s:t: 8i 2 L; s0i1 ¼ k; Sii ¼ 0

8i; j 2 L; Sij 2 f0; 1g; if Csi ¼ Csj
8i; j; Sij ¼ 0; if i =2 L or Csi 6¼ Csj ;

(7)

where a is a balancing parameter. Since both the relaxed
similarity and dissimilarity requirements of labels have
been considered, we call the proposed method as Relaxed
Similarity andDissimilarityNetwork Embedding (RSDNE).

A Light Version of RSDNE. For each labeled node vi, to
identify its optimal k intra-class neighbors, RSDNE needs to
consider all the nodes which have the same label with vi.
This would become inefficient when more labeled data
is available (some theoretical analysis can be found in
Section 5.2). Therefore, we give a light version of RSDNE
(denoted as RSDNE
). The idea is that: for a labeled node vi,
at the beginning, we can randomly select �k (k< �k � n) same
labeled nodes to gather vi’s intra-class neighbor candidate
set Oi. Based on this idea, this light version RSDNE
 is to
solve the following optimization problem:

min
U;H;S

J ¼ JDW þ aðJ intra þ J interÞ
s:t: 8i 2 L; s0i1 ¼ k; Sii ¼ 0

8i 2 L; j 2 Oi; Sij 2 f0; 1g
8i; j; Sij ¼ 0; if i =2 L or Csi 6¼ Csj :

(8)

3.5 Optimization

3.5.1 Optimization for RSDNE

The objective function in Eq. (7) is a standard quadratic pro-
gramming problem with 0/1 constraints, which might be
difficult to solve by the conventional optimization tools. In
this study, we propose an efficient alternative optimization
strategy for this problem.

Update U As Given H and S. When S is fixed, the objective
function in Eq. (5) can be rewritten as TrðU 0LsUÞ, where
Ls ¼ Ds � ðS þ S0Þ=2 and Ds is a diagonal matrix whose ith
diagonal element is

P
jðSij þ SjiÞ=2. Similarly, the objective

function in Eq. (6) can be rewritten as TrðU 0LwUÞ where
Lw ¼ Dw � ðW þW 0Þ=2 and Dw is a diagonal matrix whose
ith diagonal element is

P
jðWij þWjiÞ=2. As such, when H

and S are fixed, problem (7) becomes:

min
U

J U ¼ M�UHk k2F þ aðTrðU 0LsUÞ þ TrðU 0LwUÞÞ þ � Uk k2F :
(9)

The derivative of J U w.r.t. U is:

@J U

@U
¼ 2ð�MH 0 þ UHH 0 þ aðLs þ LwÞU þ �UÞ: (10)
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Update H As Given U and S. When U and S are fixed,
problem (7) becomes:

min
H

J H ¼ M � UHk k2F þ � Hk k2F : (11)

The derivative of J H w.r.t.H is:

@J H

@H
¼ 2ð�U 0M þ U 0UH þ �HÞ: (12)

Update S As Given U and H. When U and H are fixed,
problem (7) becomes:

min
S

J S ¼ a

2

Xn
i;j¼1

ui � uj

�� ��2
F
Sij

s:t: 8i 2 L; s0i1 ¼ k; Sii ¼ 0

8i; j 2 L; Sij 2 f0; 1g; if Csi ¼ Csj
8i; j; Sij ¼ 0; if i =2 L or Csi 6¼ Csj :

(13)

As problem (13) is independent between different i, we can
deal with the following problem individually for each labeled
node vi

1:

min
si;i2L

Xn
j¼1

ui � uj

�� ��2
F
Sij

s:t: s0i1 ¼ k; Sii ¼ 0

8j; Sij ¼ 0; if j =2 L
8j 2 L; Sij 2 f0; 1g; if Csi ¼ Csj :

(14)

The optimal solution to problem (14) is (proved in Section 5.1):

Sij ¼ 1; if vj 2 N kcðviÞ;
0; otherwise.

�
(15)

where setN kcðviÞ contains the top-k nearest and same labeled
nodes to vi in the current calculated embedding space.

For clarity, we summarize the complete RSDNE algorithm
for network embedding inAlgorithm 1.

3.5.2 Optimization for RSDNE


The optimization approach for RSDNE
 is almost the same
as Algorithm 1. The only difference is that: when updating
S as given U and H, for each labeled node vi, we only need
to sort the nodes in (it’s intra-class neighbor candidate set)
Oi to get the top-k nearest and same labeled neighbors, so
as to get the optimal solution of S.

4 THE PROPOSED GNN METHOD: RECT

It is inappropriate to directly adopt the objective function of
RSDNE (Eq. (7) or Eq. (8)) into traditional neural networks
(like multilayer perceptron) which are not suited for graph-
structured2 data. Moreover, simultaneously optimizingmul-
tiple objective terms is a challenging engineering task, and
usually results in a degenerate solution [50]. In this section,
we first give a brief introduction to GNN, and then propose a
novel effective and easy-to-implement GNNmethod.

4.1 Preliminaries: Graph Neural Network

GNN [17] is a type of neural network model for graph-
structured data. Generally, GNN models are dynamic mod-
els where the hidden representations of all nodes evolve
over layers. Given a graph with the adjacent matrix A, at
the tth hidden layer, the representation ztvi for node vi is
commonly updated as follows:

btvi ¼ F bðfztvj jvj 2 CvigÞ
ztþ1
vi

¼ F zðfbtvi ; ztvigÞ;
(16)

where btvi is a vector indicating the aggregation of messages
that node vi receives from its neighbors Cvi . Function F b is
a message calculating function, and F z is a hidden state
update function. Similar to the common neural networks,
F b and F z are feed-forward neural layers. By specifying
these two functional layers, we can get various GNN var-
iants, like Graph convolutional network (GCN) [21] and
Graph attention network (GAT) [22].

To inject label information, GNNs usually end up with a
softmax layer to train a classificationmodel. Once the training
of GNNs is completed, the outputs of any hidden layers can
be adopt as the final graph embedding results. However, as
shown in Table 1, this kind of methodswill yield unappealing
results in completely-imbalanced label setting. The funda-
mental cause is that the known supervised information
only reflects the knowledge of seen classes but ignores that
of unseen classes. Therefore, in the completely-imbalanced
setting, the key issue is: how to deduce the supervised infor-
mation, which contains both the knowledge of seen and
unseen classes, from the limited labeled nodes of seen classes.

Algorithm 1. RSDNE

Require: Matrix form of DeepWalkM, label information,
learning rate h, and parameters a and � ;

Ensure: The learned network node embedding result U ;
1: Initialize U ,H and S;
2: repeat
3: Update U by U ¼ U � h

JU
@U ;

4: UpdateH byH ¼ H � h JH
@H ;

5: Update S by solving problem (13) ;
6: Change the learning rate h according to some rules, such

as Armijo [49];
7: until Convergence or a certain number of iterations;
8: return U .

Fig. 3. Some words sampled from the documents of three seen classes
(i.e., AI, DB, and HCI) in Citeseer.

1. For an unlabeled node vi, the solution is s0i ¼ 0.
2. In the rest of paper, we use the term “graph” to refer to the linked

data structures such as social or biological networks, so as to avoid
ambiguity with neural network terminology.
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4.2 Deduce Supervised Information
for Unseen Classes

4.2.1 Observation

The recent success of ZSL demonstrates that the capacity of
inferring semantic descriptions (also known as attributes)
makes it possible to categorize unseen objects. Generally, the
attributes are human annotated or provided by third-party
resources (like the word embeddings learned from large-
scale general text database), limiting the use of ZSLmethods.
In addition, the quality of attributes can be a source of prob-
lems in practical applications.

For graph embedding, we propose to obtain class-semantic
descriptions in a more practical manner. To show its feasibil-
ity, we continue to use the citation graph Citeseer [27] as an
example. Fig. 3 shows some words sampled from the docu-
ments of AI, DB, andHCI classes in this dataset. Interestingly,
these words also reflect some knowledge of other three
(unseen) research areas (i.e., IR, ML and Agent). For example,
IR’s key words (like “human”, “search” and “data”) also
showup in the documents of the (seen) research areas DB and
HCI. This observation inspires us to generate class-semantic
descriptions directly from the original node features.

4.2.2 Generate Class-Semantic Descriptions

Automatically

Let matrix X 2 Rn�m denote the feature matrix, where
xi 2 Rm (the ith row of X) is the corresponding m-dimen-
sional feature vector of node vi. To obtain the semantic
descriptions for a seen class c, we can leverage a readout
function R, and use it to summarize a class-semantic
description vector (denoted as ŷc) from the labeled nodes,
i.e., ŷc ¼ Rðfxij8i Csi ¼ cgÞ.

For those graphs without node features, we can treat the
rows of adjacency matrix as node features. Intuitively, each
node can be seen as a word, and all nodes construct a
dictionary.

4.3 The Proposed Model: RECT

The architecture of RECT is illustrated in Fig. 4. In detail, we
first adopt GCN layers to explore graph structure informa-
tion. After propagating through all CGN layers, fully-
connected (FC) layers are used to project the outputs of
GCN layers into a semantic vector space, in which the loss

is computed. Here, we use FC layers rather than GCN
layers, because we hope to improve the robustness of the
learned embeddings by satisfying our objective function
without explicitly using the graph structure knowledge.

Our loss function consists of two parts. The first one is a
prediction loss in the semantic space, i.e., the loss between the
predicted and the actual class-semantic description vectors:

J semantic ¼
X
i2L

lossðŷ0Cs
i
; ŷCs

i
Þ; (17)

where ŷ0Cs
i
and ŷCs

i
are the predicted and the actual class-

semantic vector of the labeled node vi respectively, and
lossð�; �Þ is a sample-wise loss function. By using this loss,
our method can capture the class-semantic knowledge,
making the learned graph embeddings reflect the super-
vised information of both seen and unseen classes.

The second is a graph structure preserving loss. Unlike
GCN or other semi-supervised GNNs, we still propose to
explicitly preserve the graph structure knowledge. This is
because the above loss (Eq. (17)) actually indirectly preserves
the label discrimination, which would reduce the discrimi-
nation of learned embeddings (especially in the seen classes).
For simplicity, here we follow the similar idea of our shallow
method RSDNE. Specifically, the learned node embeddings
U (i.e., the outputs of the last layer) shouldminimize:

J graph neural ¼ lossðM;UU 0Þ: (18)

To learn powerful embeddings by considering both
parts, a simple and effective way we find in practice is to
train the model which considers these two parts separately
and then concatenate the embeddings trained by the two
parts for each node. A more principled way to combine
these two loss parts is to jointly train the objective functions
Eqs. (17) and (18), which we leave as future work.

For clarity, we summarize this method in Algorithm 2.
We refer this method as RElaxed GCNNeTwork (RECT), as
it utilizes GCN model and relaxes the original label discrim-
ination by preserving class-semantic knowledge.

5 ALGORITHM ANALYSIS

5.1 Optimization Algorithm Solving Problem (14)

Theorem 1. The optimal solution of problem (14) is Eq. (15).

Fig. 4. Architecture overview of RECT.

WANG ET AL.: NETWORK EMBEDDING WITH COMPLETELY-IMBALANCED LABELS 3639



Proof. By contradiction, suppose a labeled node vi has got-
ten its optimal intra-class neighbor setN kc which contains
a node vp not in vi’s top-k nearest and same labeled nodes.
As such, there must exist a node vq =2 N kc which is one of
vi’s top-k nearest and same labeled nodes. Then, we get
kui � upk2F > kui � uqk2F . Considering our minimization
problem (i.e., Eq. (14)), this inequation leads:

X
j2N kc

ui � uj

�� ��2
F
>

X
j2fN kcþvqgnvp

ui � uj

�� ��2
F
: (19)

This indicates that fN kcþvqgnvp is a better optimal solu-
tion thanN kc, a contradiction. tu

5.2 Time Complexity Analysis

Complexity of RSDNE. Following [51], the time complexity of
Algorithm 1 is as below. The complexity for updating U is
OðnnzðMÞdþ d2nþ nnzðLÞdÞ, where nnzð�Þ is the number
of non-zeros of a matrix. The complexity for updating H
is OðnnzðMÞdþ d2nÞ. The complexity for updating S is
OðjCsj‘2 log ‘Þ, where ‘ ¼ rnjCsj=jCj is the average number of
labeled nodes per class, and r is the label rate. As ‘ is linear
with n and nnzðLÞ is linear with nnzðMÞ, the overall com-
plexity of RSDNE is OðtðnnzðMÞd þ n2 lognÞÞ, where t is
the number of iterations to converge.

Complexity of RSDNE
. For the light version, i.e., RSDNE
,
the complexity of updating S becomes OðjCsj�k2 log �kÞ, and all
others remain the same. Hence, as �k � n, the overall com-
plexity becomes OðtðnnzðMÞd þ d2nÞÞ. As our method typ-
ically converges fast (t � 15 in our experiments) and
d � n, the complexity of RSDNE
 is linear to nnzðMÞ and
node number n.

Complexity of RECT. First of all, the time cost of the GCN
layer is linear in the number of graph edges [21]. Specifi-

cally, the time complexity is OðmjEjjdhjjCstcjÞ, where jEj is
the edge number and jdhj is the hidden layer dimension size
and jCstcj is the dimension of class-semantic description.
The complexity of calculating Eq. (17) is OðnjCstcjÞ. The com-
plexity of calculating Eq. (18) is Oðdn2Þ. Therefore, the total
complexity of RECT is OðmjEjjdhjjCstcj þ njCstcj þ dn2Þ. Note
we can directly reduce this complexity by adopting other
graph structure preserving objectives, like the objective of
DeepWalk (i.e., Eq. (1)). Then, the total complexity will

reduce to OðmjEjjdhjjCstcj þ njCstcj þ dn lognÞ, indicating the
similar complexity as DeepWalk and GCN.

5.3 The Proposed Methods Versus Traditional
Semi-Supervised Methods

5.3.1 Traditional Semi-Supervised Methods

To benefit from the discriminative information (e.g., class
labels), the most effective and widely used strategy is to guar-
antee both the intra-class similarity and inter-class dissimilar-
ity in the embedding space [52], [53]. For this purpose,
traditional semi-supervised graph embedding methods
reduce the intra-class embedding variance and enlarge the
inter-class embedding variance by optimizing various classifi-
cation models. However, as the unseen class nodes are
(partly) linked with the seen class ones (i.e., seen and unseen
class nodes are correlated), only optimizing over the seen clas-
ses is suboptimal for thewhole graph.

In those shallow methods (like LSHM), this suboptimal
strategy would impose lots of strict constraints (like the
“close-to” constraints between same labeled nodes) only on
seen classes, which may seriously mislead the jointly trained
graph structure preserving model and finally lead to very
poor results. Similarly in those GNNs which implicitly pre-
serve the graph structure, this suboptimal strategy would
also mislead the used message aggregation mechanism and
finally lead to very poor results.

5.3.2 The Relation of RSDNE

RSDNE actually relaxes these above-mentioned strict con-
straints in shallow methods. We show in the following that
the intra-class similarity loss defined in [52] is a special case
of our Eq. (5). This equivalence also explains the rationale of
our method.

Theorem 2. In each seen class c, let kc and lc denote the intra-
class neighbor number and the labeled node number in this
class, respectively. For each labeled class c, if we enlarge kc to
lc, Eq. (5) is equivalent to the intra-class similarity equation.

Proof. The intra-class similarity function in [52] is defined
to minimize:

Xn
i¼1

X
j:Cs

i
¼Cs

j

ui � uj

�� ��2
F
: (20)

In each seen class c, if we set kc ¼ lc, Eq. (5) actually
minimizes:

Xn
i;j¼1

ui � uj

�� ��2
F
Sij

s:t: 8i; j 2 L; Sij 2 f0; 1g; if Csi ¼ Csj
8i; j; Sij ¼ 0; if i =2 L or Csi 6¼ Csj :

(21)

As Eq. (21) equals Eq. (20), the conclusion is proved. tu
Similarly, in RSDNE, the objective function part formulated

in Eq. (6) actually relaxes the classical inter-class dissimilarity.
Specifically, in Eq. (6), Wij measures the similarity score
between node vi and vj. For two different labeled nodes vi and
vj, settingWij to a large negative number reflects the intuition
of inter-class dissimilarity. In sum, these two relaxation strate-
gies not only reasonably guarantee both intra-class similarity
and inter-class dissimilarity, but also avoid misleading the

Algorithm 2. RECT

Require: Graph information (i.e.,A andX), label informationL;
Ensure: The learned node embedding result U ;
1: Summarize the class-semantic descriptions of seen classes

through the readout functionR;
2: Obtain the embedding result U ð1Þ by optimizing RECT with

the objective function Eq. (17) ;
3: Obtain the embedding result U ð2Þ by optimizing RECT with

the objective function Eq. (18) ;
4: Obtain the final embedding result U by concatenating the

normalized U ð1Þ and U ð2Þ ;
5: return U .
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jointly trained graph structure preserving model. Conse-
quently, RSDNE would benefit from completely-imbalanced
labels, which is further verified in our experiments.

5.3.3 The Relation of RECT

RECT and traditional GNNs share the similar neural network
architecture. The fundamental difference is the objective
function. Traditional GNNs preserve the class-label discrimi-
nation. RECT aims to preserve the class-semantic knowledge.
As shown in related ZSL studies, class-semantic knowledge
enables the knowledge transfer from seen classes to unseen
classes, making the learned embeddings reflect the super-
vised knowledge of both seen and unseen classes. Intuitively,
RECT can also be seen as a relaxation of the class-label dis-
crimination by preserving the class-semantic knowledge.

6 EXPERIMENTS

Datasets. We conduct our experiments on five real-world
graphs, whose statistics are listed in Table 2. Citeseer [27] and
Cora [27] are citation graphs whose nodes are articles, edges
are citations, and labels are research areas.Wiki [54] is a set of
Wikipedia pages. In this dataset, nodes are web pages, edges
are hyperlinks among them, and labels are topics. PPI [7] is a
biological graph dataset, and Blogcatalog [55] is a social
graph dataset. Their labels are biological states anduser inter-
ests, respectively. Unlike the previous ones, the nodes in
these two graphs may havemultiple labels. In addition, these
two graphs do not have node features, and we use the rows
of their adjacencymatrices as node features.

Baseline Methods. We compare the proposed methods
against the following baselines:

1) NodeFeats is a content-only baseline which only uses
the original node features.

2) MFDW [46] is the matrix factorization form of Deep-
Walk [6]. This method is unsupervised.

3) LINE [13] is also a popular unsupervised method
which considers the first-order and second-order
proximity information.

4) LSHM [18] is a semi-supervised method which con-
siders the first-order proximity of a graph and jointly
learns a linear classification model.

5) LDE [19] is a semi-supervised method which also
considers the first-order proximity and jointly trains
a 1-nearest neighbor classification model.

6) MMDW [20] is a semi-supervised method which
adopts MFDWmodel to preserve the graph structure
and jointly trains an SVMmodel.

7) TADW [46] is an unsupervised method which incor-
porates DeepWalk and associated node features into
the matrix factorization framework.

8) DGI [56] is a recently proposed unsupervised GNN
method which trains a graph convolutional encoder
through maximizing mutual information.

9) GCN [21] is the most well-known GNN method.
This method is supervised.

10) APPNP [23] extends GCN with the idea of PageRank
to explore the global graph structure. This method is
also supervised.

Parameters. Following [20], the embedding dimension is
set to 200. In addition, for DeepWalk, we adopt the default
parameter setting i.e., window size is 5, walks per vertex is
80. For LINE, we first learn two 100-dimension embeddings
by adopting its first-order proximity and second-order
proximity separately, and then concatenate them as sug-
gested in [13]. To fully show the limitations of those semi-
supervised methods, we also tune their parameters by a
grid-search strategy from f10�2; 10�1; 100; 101; 102g and
report the best results. For these three GNNs (DGI, GCN
and APPNP), we all use the code provided by the authors
and adopt the default hyper-parameters. As GCN and
APPNP are end-to-end node classification methods, we
use the outputs of their hidden layer (whose hidden units
number is set to 200) as embedding results. Additionally,
as the original implementations of GCN and APPNP do
not support multi-label tasks, we replace their loss
functions by Binary Cross-entropy loss on PPI and Blogcata-
log datasets.

In contrast, in RSDNE and its light version RSDNE*, we
fix parameters a ¼ 1 and � ¼ 0:1 throughout the experi-
ment. In addition, we simply set the intra-class neighbor
number k ¼ 5 like most manifold learning methods [57],
and set the candidate number �k ¼ 20k for RSDNE
.

The settings of our RECT method and its two sub-meth-
ods are as follows.We use RECT-L to denote the sub-method
with the semantic preserving loss (i.e., Eq. (17)), and we use
RECT-N to denote the sub-method with the graph preserv-
ing loss (i.e., Eq. (18)). In RECT-L, we train a simple model
with one GCN layer and one FC layer. In addition, we use a
simple averaging function as its readout functionR; and we
apply SVD decomposition on the original node features to
get 200-dimensional node features, for the calculation
of semantic preserving loss. Like the compared GNN base-
lines, we also use the outputs of our hidden layer in
RECT-L as embedding results. In RECT-N, we train a simple
model with only one GCN layer. In both sub-methods, we
use the PReLU activation [58], mean squared error

TABLE 2
The Statistics of Datasets

Name Citeseer Cora Wiki PPI Blogcatalog

Type Citation graph Citation graph Hyperlink graph Biological graph Social graph
Nodes 3,312 2,708 2,405 3,890 10,312
Edges 4,732 5,429 17,981 76,584 333,983
Classes 6 7 17 50 39
Features 3,703 1,433 4,973 - -
Multi-label No No No YES YES
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(MSE) loss, and Xavier initialization [50]. We train all models
for 100 epochs (training iterations) using Adam SGD
optimizer [59] with a learning rate of 0.001. Unless
otherwise noted, all these settings are used throughout the
experiments.

6.1 Test With Completely-Imbalanced Label

Experimental Setting. Following [6], we validate the quality of
learned representations on node classification task. As this
study focuses on the completely-imbalanced label setting,
we need to perform seen/unseen class split and remove the
unseen classes from the training data. Particularly, for Cite-
seer and Cora, we use two classes as unseen. Thus, we have
C2

6 and C2
7 different seen/unseen splits for Citeseer and

Cora, respectively. As Wiki, PPI and Blogcatalog contain
muchmore classes, we randomly select five classes as unseen
classes and repeat the split for 20 times.

The detailed experimental procedure is as follows. First,
we randomly sample some nodes as the training set (denoted
as L), and use the rest as the test set. Then, we remove the
unseen class nodes from L so as to obtain the completely-
imbalanced labeled data L0. With the graph knowledge (i.e.,
A andX) and L0, we get the representations learned by vari-
ous methods. Note that no method can use the labeled data
from unseen classes for embedding. After that, we train a lin-
ear SVM classifier based on the learned representations and
the original label information L. At last, the trained SVM
classifier is evaluated on the test data.

6.1.1 Node Classification Performance

We vary the percentage of labeled data in ½10%; 30%; 50%	
and then use the labeled nodes of seen classes as supervi-
sion for graph embedding learning. We employ two widely
used classification evaluation metrics: Micro-F1 and Macro-
F1 [60]. In particular, Micro-F1 is a weighted average of F1-
scores over different classes, while Macro-F1 is an arithme-
tic mean of F1-scores on each label:

Micro�F1 ¼
PjCj

i¼1 2TP
iPjCj

i¼1ð2TPi þ FPi þ FNiÞ

Macro�F1 ¼ 1

jCj
XjCj
i¼1

2TPi

ð2TPi þ FPi þ FNiÞ ;
(22)

where jCj is the class number, TPi denotes the number of posi-
tives in the ith class, FPi and FNi denotes the number of false
positives and false negatives in the ith class, respectively.

The results are presented in Tables 3 and 4, from which
we have the following observations.3

First, our deep method RECT always achieves the best
results on all datasets including both single-label and multi-
label graphs. This can be explained by the performance of
RECT-L. We can clearly find that RECT-L always outper-
forms the compared semi-supervised GNNs (i.e., GCN and
APPNP) by a large margin (around 20 to 300 percent rela-
tively). This indicates that, by exploring the class-semantic
knowledge, RECT can effectively utilize the completely-
imbalanced labels.

Second, our shallow method RSDNE and its light version
both perform much better than all baselines which do not use
node attributes. For example, with 50 percent labeled data, our
two methods outperform the best baseline MMDW by 7–12
percent relatively in term of Micro-F1. The underlying princi-
ple is that our approximationmodels (i.e., Eqs. (5) and (6)) rea-
sonably guarantee both intra-class similarity and inter-class
dissimilarity, and meanwhile avoids misleading the jointly
trained graph structure preserving model. Besides, the light
version of our method RSDNE
 is competitive with RSDNE.
This means that we can reduce the intra-class neighbor candi-
date number tomake ourmethodmore efficient.

Third, our deep method RECT is more powerful than our
shallow method RSDNE. For example, in Citeseer with
30 percent labeled data, RECT outperforms RSDNE by
17.46 percent relatively in term of Micro-F1. The reason
mainly lies in two folds. On the one hand, benefiting from
the powerful GNN layers, RECT could utilize the attributes
of nodes. On the other hand, exploring the knowledge of
class-semantic descriptions (via a simple readout function)
enables RECT to handle multi-label setting.

Lastly, all compared semi-supervised baselines become
ineffective, and some of them even perform worse than
unsupervised ones. For example, LSHM and LDE achieve
lower accuracy than MFDW in most cases; GCN and
APPNP also perform worse than DGI almost all the time.
This is consistent with our theoretical analysis (Section 5.3)

TABLE 3
Micro-F1 Scores on Classification Tasks

The best result is marked in bold. In the case of no node features, the best result is marked with underline.

3. We do not test LDE, MMDW, RSDNE, and RSDNE* on PPI and
Blogcatalog, since these methods could not handle the multi-label case.
Some experiments tested on more label rates can be found in [61].
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that traditional semi-supervised methods could get unap-
pealing results in this completely-imbalanced label setting.

6.1.2 Graph Layouts

Following [13], we use t-SNE package [62] to map the
learned representations of Citeseer into a 2D space. Without
loss of generality, we simply adopt Citeseer’s first two

classes as unseen classes, and set the training rate to 50 per-
cent. (Due to space limitation, we only visualize the embed-
dings obtained by semi-supervised methods.)

First of all, the visualizations of our GNN methods
(RECT and its sub-methods), as expected, exhibit the most
discernible clustering. Especially, as shown in Fig. 5i,
RECT-L which utilizes label information successfully

TABLE 4
Macro-F1 Scores on Classification Tasks

The bold mark and underline mark have the same meanings as in Table 3.

Fig. 5. 2D visualization on Citeseer (50% label rate with two unseen classes, i.e.,{Agents, IR}).
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respects the six topic classes of Citeseer. In this visualiza-
tion, we also note that the clusters of different classes do
not separate each other by a large margin. This is consis-
tent with our analysis that the class-semantic preservation
can be seen as a relaxation of the classical classification
loss. Additionally, as shown in Fig. 5j, RECT obtains the
best visualization result, in which different topic classes
are clearly separated.

Additionally, the visualizations of our RSDNE and
RSDNE
 are also quite clear, with meaningful layout for both
seen andunseen classes. As shown in Figs. 5f and 5g, the nodes
of the same class tend to lie on or close to the same manifold.
Notably, the nodes from twounseen classes avoid heavilymix-
ing with the wrong nodes. Another surprising observation is
that: compared to RSDNE, the embedding results of its light
version (i.e., RSDNE*) seem to lie onmore compact manifolds.
The reason might be that RSDNE* has a stricter manifold con-
straint, i.e., a labeled node’s k intra-class neighbors are adap-
tively selected from a predetermined candidate set. The
similar observation can be found in traditional manifold learn-
ing methods [12] in which the neighbor relationships among
instances are predetermined.

In contrast, all the compared semi-supervised baselines
get unappealing visualizations. For example, as shown in
Figs. 5a and 5b, although LSHM and LDE better cluster
and separate the nodes from different seen classes, their
two kinds of unseen class nodes heavily mix together.
The similar observation can be found in the results of
semi-supervised GNNs (i.e., GCN and APPNP), as shown
in Figs. 5d and 5e. In addition, as shown in Fig. 5c,
MMDW also fails to benefit from the completely-imbal-
anced labels. This is because MMDW has to use a very
small weight for its classification model part to avoid
poor performance.

6.1.3 Effectiveness Verification

In the following experiments, we only show the results on
Citeseer, since we get similar results on the other datasets.

Effect of Seen/Unseen Class Number. Without loss of gener-
ality, we set the training rate to 50 percent, and vary the
seen class number from six to one on Citeseer. As shown
in Fig. 6, RSDNE and RECT can constantly benefit from the
completely-imbalanced labels. For example, even with only
one seen class, RSDNE still outperforms (its unsupervised
version) MFDW; RECT still outperforms (its unsupervised
version) RECT-N. Besides, the performance of RECT-L
declines smoothly when the unseen class number grows,
clearly demonstrating the effectiveness of exploring the
class-semantic knowledge for the studied problem.

Effect of Intra-Class Similarity and Inter-Class Dissimilarity
Modeling in RSDNE. To investigate the effect of these two
parts, we test the following settings of RSDNE:

1) J DW : only modeling the graph structure (Eq. (4)).
2) JDWþJ intra: modeling graph structure and intra-

class similarity (selecting intra-class neighbors adap-
tively (Eq. (5))).

3) JDWþ random(J intra): modeling graph structure
and intra-class similarity (selecting intra-class neigh-
bors randomly).

4) J DWþJ inter: modeling graph structure and inter-
class dissimilarity (Eq. (6)).

As shown in Fig. 7, when either eliminating the effect of
intra-class or inter-class modeling part, the performance
degrades. This suggests that these two parts contain com-
plementary information to each other for graph embedding.
Another interesting observation is that: although randomly
selecting intra-class neighbors (i.e., JDW þ random(J intra))
does not show the best result, it still outperforms modeling
graph structure alone (i.e., J DW ) significantly, especially
when the labeled dataset becomes larger. This again shows
the effectiveness of modeling the (relaxed) intra-class
similarity.

6.1.4 Sensitivity Analysis

Sensitivity of Parameter. In the proposed method RSDNE,
there is an important parameter awhich balances the contri-
butions of graph structure and label information. Fig. 8
shows the classification performance with respect to this
parameter on Citeseer (with the regularization parameter
� ¼ 0:1). It can be observed that our method is not sensitive
to a especially when a 2 ½10�2; :::; 101	.

Sensitivity of Embedding Dimension. We vary embedding
dimensions in {100, 200, 300, 400, 500}. As shown in Fig. 9, all
our methods are not very sensitive to the embedding dimen-
sion. In addition, we can find that RECT always outperforms

Fig. 6. Node classification performance w.r.t. the seen class number on
Citeseer (with 50 percent label rate).

Fig. 7. Node classification performance w.r.t. different settings of
RSDNE on Citeseer.

Fig. 8. The effect of parameter a in RSDNE on Citeseer.

3644 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 11, NOVEMBER 2021



its two sub-methods RECT-N and RECT-L. Another observa-
tion needs to be noted is that RECT still outperforms all base-
lines when the embedding dimension is set to 200. All these
observations demonstrate the superiority of ourmethods.

6.2 Test With Balanced Labels

We also test the situation where the labeled data is generally
balanced, i.e., the labeled data covers all classes. Fig. 10
shows the averaged classification performance (training
ratio also varies in ½10%; 30%; 50%	). We can get the follow-
ing two interesting observations.

The first and the most interesting observation is that our
methods have comparable performance to state-of-the-art
semi-supervised methods, although our methods are not
specially designed for this balanced case. Specifically,
RSDNE and RSDNE
 obtain comparable performance to
LSHM, LDE and MMDW; RECT obtains comparable (and
sometimes much superior) results to GCN and APPNP.
This suggests that our methods would be favorably
demanded by the scenario where the quality of the labeled
data cannot be guaranteed.

The second observation is that our deep method RECT is
more robust than the compared deep semi-supervised GNNs.
As shown in Fig. 10, GCN and APPNP perform poorly on two
multi-label datasets PPI and Blogcatalog. This may due to the
imbalance of labels in these two datasets. In contrast, our
method RECT is much more stable on all datasets. This might
indicate that the distribution of class-semantic descriptions
over various classes is more balanced than that of class labels.
All these observations show the general applicability of our
approximation models (i.e., Eqs. (5), (6), and (17)) which could
also be considered in other related applications.

6.3 Scalability Test

Following [20], we use random graphs to test the scalability.
Specifically, we create a random graph with n nodes and 2n

edges. We take the identity matrix as the input feature
matrix X. We give same label for all nodes, set training rate
to 10% and do not remove any labeled nodes.

We test RSDNE, RSDNE
 and together with different
implements of our RECT method: 1) RECT is the original
proposed GNN method; 2) RECT(DW) adopts the objective
of DeepWalk for graph structure preserving (i.e., Eq. 1); 3)
RECT-gpu is the GPU implementation of RECT; 4) RECT
(DW)-gpu is the GPU implementation of RECT(DW). Our
methods are written in Python 3.0 and PyTorch 1.0. All the
codes are running on a server with 16 CPU cores, 32 GB
main memory, and an Nvidia Titan V GPU. Fig. 11 shows
the running times. We can find that RSDNE
 is more effi-
cient than RSDNE, which is consistent with our theoretical
analysis. We also find that RECT(DW) is more efficient than
RECT, indicating we can adopt various graph structure pre-
serving objectives to accelerate our method. In addition, the
GPU implementation of GNN methods can largely acceler-
ate the training speed.

7 CONCLUSION

This paper investigates the graph embedding problem
in the completely-imbalanced label setting where the
labeled data cannot cover all classes. We first propose a
shallow method named RSDNE. Specifically, to benefit
from completely-imbalanced labels, RSDNE guarantees
both intra-class similarity and inter-class dissimilarity in an
approximate way. Then, to leverage the power of deep neu-
ral networks, we propose RECT, a new class of GNN.
Unlike RSDNE, RECT utilizes completely-imbalanced labels
by exploring the class-semantic descriptions, which enables
it to handle graphs with node features and multi-label

Fig. 9. The effect of embedding dimension on Citeseer with label rate
30 percent.

Fig. 10. Averaged node classification performance (Micro-F1) with balanced labels.

Fig. 11. Training time of our methods. We do not report the running time
when it exceeds 25 hours.
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setting. Finally, extensive experiments are conducted on
several real-world datasets to demonstrate the effectiveness
of the proposed methods. In the future, we plan to extend
our methods to other types of graphs, such as heteroge-
neous graphs and signed graphs.
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