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Solving the Federated Edge Learning Participation
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Abstract—An emerging computational paradigm, named fed-
erated edge learning (FEL), enables intelligent computing at the
network edge with the feature of preserving data privacy for
edge devices. Given their constrained resources, it becomes a
great challenge to achieve high execution performance for FEL.
Most of the state-of-the-arts concentrate on enhancing FEL from
the perspective of system operation procedures, taking few pre-
cautions during the composition step of the FEL system. Though
a few recent studies recognize the importance of FEL formation
and propose server-centric device selection schemes, the impact of
data sizes is largely overlooked. In this paper, we take advantage
of game theory to depict the decision dilemma among edge
devices regarding whether to participate in FEL or not given
their heterogeneous sizes of local datasets. For realizing both the
individual and global optimization, the server is employed to solve
the participation dilemma, which requires accurate information
collection for devices’ local datasets. Hence, we utilize mechanism
design to enable truthful information solicitation. With the help
of correlated equilibrium, we derive a decision making strategy for
devices from the global perspective, which can achieve the long-
term stability and efficacy of FEL. For scalability consideration,
we optimize the computational complexity of the basic solution
to the polynomial level. Lastly, extensive experiments based on
both real and synthetic data are conducted to evaluate our
proposed mechanisms, with experimental results demonstrating
the performance advantages.

Index Terms—Edge computing, federated learning, decision
making, game theory, mechanism design.

I. INTRODUCTION

As the amount of data generated at the network edge grows
explosively, the conventional cloud computing can hardly
afford the high bandwidth consumption or meet the low-
latency requirement of smart applications on mobile devices,
which leads to the emergence of mobile edge computing [1].
Based on a recent report [2], edge computing has achieved a
global market valuing $3.6 billion in 2020, which is estimated
to reach $15.7 billion by 2025 with an annual growth rate of
34.1%. Meanwhile, assisted by growing computation power of
devices, various machine learning (ML) algorithms running
on the edge becomes prevailing [3]. Specifically, federated
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learning (FL) framework has been widely deployed in this
scenario to address the privacy concerns of data owners, and
thus being named as federated edge learning (FEL), which
trains ML models by relying on the collaboration of distributed
edge devices conducting local training and submitting model
updates without explicitly disclosing their original data.

Considering that battery-powered devices are only available
to restrained resources for training ML models, the state-of-
the-art studies mostly focus on optimized control during the
learning process, including communication resource allocation
and scheduling [4]–[10], FL algorithm upgrade [11]–[15], etc.
Although the above optimization researches may perform well
for the given set of participating devices, the composition
step of FEL has long been overlooked. An inappropriate
formation of the FEL system can result in low convergence
speed and high computational cost. Being aware of this, a few
recent studies aim at improving the system performance prior
to the actual FEL procedures. Specifically, some researchers
[16], [17] select the appropriate set of devices to join FEL
under communication or computational cost constraints, and
others [18], [19] design incentive mechanisms to elicit device
participation in FEL based on the Stackelberg game. However,
the former type of studies fail to consider the heterogeneity
of devices’ local dataset sizes and select devices mainly
from the server’s perspective, challenging the efficiency and
sustainability of the formed FEL setup; while the latter ones
usually assume the availability of perfect information and
uniform data usefulness for all devices, which may not hold
in practice.

To address the above challenges, we study the problem of
FEL system composition given their various sizes of indi-
vidually collected datasets which are used for local learning.
The rationale is that for devices with small local datasets, the
necessary computational and communication consumption of
joining FEL may not be compensated commensurately with
the benefits brought by the finally returned ML models. This
can, on the one hand, discourage the continuous contribution
of devices in FEL, and on the other hand, degrade the cost-
efficiency of the whole FEL system. Thus, the main issue for
every device is to decide on whether to participate in an FEL
task with the current local dataset? From this perspective,
the profit of devices is considered thoroughly, which can
benefit the FEL systems with long-term stability and efficacy
maintenance.

However, there exists a major challenge for achieving op-
timal decision making that edge devices have no access to
the complete information about the current decision strategies
and results of other peering devices with respect to joining
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the current FEL or not. And in practice, it is the participation
decisions of all devices that jointly affect the performance
of the finally trained global model and further the overall
benefit of devices. To solve this concern, we take advantage
of the central location of the server in FEL to assist in
calculating the optimal decision strategies for all devices that
have various data sizes used for local training. Specifically,
an optimization problem based on the correlated equilibrium
of the participation game is formulated and resolved, where
the contribution of each device to the global model and the
corresponding cost of resource consumption are examined for
depicting individual profit.

As a critical parameter involved in the derivation of the par-
ticipation decision results, another challenge comes from the
integrity of data size information submitted from devices. Con-
sidering that the local datasets are invisible to the edge server,
devices may intentionally to report the false information of
their local dataset sizes due to their intrinsic selfishness and
potential attractions of making extra income with undisclosed
data. This obviously brings huge difficulty to the collection
of critical impact factors for decision making, which can
further invalidate the design and derivation of aforementioned
decision strategies. To get rid of this problem, we resort
to mechanism design for soliciting reliable submissions of
local data sizes from devices without knowing other private
information, such as the intentions of being malicious. By
this means, an optimal game rule can be configured by the
server and sent to each device, which is proved to be incentive-
compatible, thus leading to the truthful reports from devices
based on their real private information.

In summary, we make the following contributions (the first
two are inheriting from the preliminary version [20]):

• A participation game is formulated to describe the in-
tertwined conflict and collaboration among all devices,
which models the influence of devices’ local data sizes
on the global model and individual cost of joining FEL
for payoff definition.

• To prepare for solving the participation decision dilemma
in FEL, we utilize mechanism design theory to enable
truthful data size information collection from all devices,
where the detailed implementation process and optimality
analysis are provided.

• To jointly achieve the individual and global rationality, we
design a correlated equilibrium based scheme to address
the participation dilemma, which is further improved by
decreasing the running cost to a polynomial level.

• Real-world dataset is employed to generate experimental
parameters for practicality purpose, based on which ex-
tensive simulation experiments are conducted to evaluate
both the participation decision scheme and the truthful
data size information collection mechanism.

The rest of the paper is organized as follows. The related
work are investigated in Section II. We present the problem
formulation of participation decision in Section III and the spe-
cific solution in Section V. The mechanism design for truthful
data size collection is reported in Section IV. Experimental
evaluation of our proposed schemes is in Section VI, and the

whole paper is concluded in Section VII.

II. RELATED WORK

As a fresh concept emerging in the recent years, the
current research on FEL performance improvement can be
generally classified into in-operation optimization [4]–[15] and
beforehand planning [16]–[19].

For deploying FL at the network edge, substantial efforts
haven been made on resource allocation [4], [5], [9], [10],
transmission scheduling [6]–[8], and learning algorithm re-
finement [11]–[15]. In [4], the problem of resource allocation
was investigated in the proposed hierarchical FL framework
with devices clustered to train models before reaching to
the global aggregator. An energy-efficient radio resource al-
location scheme devised in [5] assigned more bandwidth to
FEL participants with lower computing power for the sake
of aggregation synchronization. Regarding a new paradigm
named hierarchical federated learning using the intermediate
model aggregation to achieve higher communication effi-
ciency, Lim et al. [9], [10] studied the dynamic resource
allocation with the help of game theoretical tools, including
the evolutionary game, Stackelberg game, and auction. Yang
et al. [6] studied three classes of transmission scheduling
mechanisms, i.e., random, round-robin, and proportional fair,
aiming at the optimal convergence rate for FL. To design better
scheduling policies for FEL, two comparable studies [7], [8]
were conducted to balance the channel conditions and local
model updates of participated devices. Concentrating more
on the FEL training performance, the authors [11] examined
the convergence bound of gradient descent to inspire the
best aggregation frequency of global model given limited
resources. And three similar research [12]–[14] took advantage
of the over-the-air computation, which relies on the feature of
multiple access channel superposition, to realize more efficient
global aggregation. Further, trade-offs between FL training
accuracy, latency and devices’ energy cost were accomplished
in [15] .

Rather than optimizing critical steps during the learning
process, several studies indicate that taking precautions in
composing the FEL system can bring more benefits, where
device selection for filtering out unqualified participants and
incentive mechanism design for attracting participation of
devices are two main types of research. For device selection in
FEL, a reputation based scheme to identify trustworthy devices
was proposed in [16], after which an incentive mechanism
based on the contract theory was designed to encourage
the submissions of high-quality data; and a novel scheme
named FedCS [17] was devised to embrace an extra step of
device selection considering the heterogeneity of computation
and communication resources. While for incentive mechanism
design, Zhan et al. [18], [19] utilized game theory and deep
reinforcement learning (DRL) to derive the optimal contribu-
tion for devices, i.e., the amount of contributed data in [19]
and the devoted CPU-cycle frequency in [18], and the best
payment policy for the edge server.

It is clear that most of the existing work concentrate on
the optimization during FEL process without considering the
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Fig. 1. The FEL system.

importance of FEL organization. Although a few recent studies
design server-centric device selection schemes and incentive
mechanisms before the beginning of FEL, they either fail to
consider the impact of data sizes from devices on learning per-
formance, or have strong assumption on complete information
availability and uniform data usefulness. To overcome these
shortages, we take advantage of mechanism design theory to
collect truthful data size information from devices, based on
which a correlated participation decision scheme is proposed
for devices with various generated data sizes.

III. PROBLEM FORMULATION

A. System Model

As illustrated in Fig. 1, an FEL system usually consists
of one edge server and n edge devices, denoted as d =
{d1, d2, · · · , dn}, with their available computation and com-
munication resources registered on the server. All participants
in this FEL system work collaboratively to train an accurate
ML model so as to to provide real-time and smart responses
to devices. Without the loss of generality, the ML model
trained in FEL is assumed to be a convolutional neural network
(CNN) based classifier. Here any device di desires to receive
a robust ML model from the edge server after the whole FL
training task finishes, where the model is trained based on the
heterogeneous data from all devices; while the edge server
coordinates with all devices using wireless networks to send,
receive and aggregate model parameters.

The above collaboration paradigm seems to operate well
most of the time; however, in the case of some devices gener-
ating too less amount of data to conduct local model training,
the FEL system formed above may not work efficiently. For
example, surveillance cameras can only capture still pictures
during late night, which cannot serve as a local dataset for
model training. In fact, the sizes of devices’ local datasets in
FEL can be diverse, where some of them may fail to satisfy
the minimum requirement for local model training, such as
only a few data samples. It is worth noting that even for the
case of non independent and identically distributed (non-IID)
data in FEL, a local dataset with too-small size is still not
favorable for conducting model training at the corresponding
device. Without taking any actions, directly involving these
devices in FEL can lead to huge wastes of computation and
communication resources for both the server and devices while
bring no benefit to the ML model. In the worst case, this can

even degrade the FEL efficiency since some meaningless local
model updates would also be aggregated to update the global
model. For simplicity, we can summarize this problem as

Problem III.1. How should each device di decide on whether
to participate in an FEL given its local data size si?

B. Participation Game Formulation

We denote the participation decision of di as pi ∈ {0, 1},
with 1 (or 0) denoting that di decides (or not) to join this
FEL system. Then the decision vector indicating all devices’
decisions can be expressed as p = (p1, p2, · · · , pn).

1) Total Incentive: Due to the fact that the final ML model
is holistically trained with the data from participated devices,
the model performance is jointly affected by the participation
decisions of all devices. To guarantee the long-term liveliness
of the FEL system, we consider that the server will provide
a total incentive (e.g., monetary reward), denoted as π, based
on the quality of the finally returned classification model. To
be specific, we can define π as

π(p) =

{
0,

∑n
i=1 pi = 0,

α(1− a(
∑n

i=1 pisi)
−b), o/w,

(1)

where α > 0 is a system parameter and a, b ≥ 0 are tuning
scalars of the power law function modeling the classification
error. In particular,

∑n
i=1 pisi in (1) reflects the effectively

total size of the training data contributed by all devices.
And the power law modeled error is inspired by [21], [22],
depicting the non-linear relationship between the classification
error and training data size, which reflects the feature of an
increasing total size of training data

∑n
i=1 pisi corresponding

to a lower classification error. The lower error can offer the
FEL system a better ML model, bringing a higher incentive
for all devices.

2) Participation Income and Cost: Then, the incentive of
every device can be fairly determined according to their
respective contribution. Although there exist some studies
proposing fancy mechanisms to quantify the contribution of
FL clients [23], [24], we consider the reward any device di will
receive is proportional to the size of its local dataset, which
has also been employed in some recent work [19]. Specifically,
we define the reward of di as follows:

Φi(p) =
pisi

δ +
∑n

j=1 pjsj
π(p), (2)

where δ is a positive but small number close to zero, which
is used to handle the special case of no device participating
FEL. In detail, if there is no device contributing to the training
process, we have

∑n
j=1 pjsj = 0, and the existence of δ makes

the the denominator of (2) never be zero and the definition of
reward meaningful. While once any device joins a round of
FEL, the impact of δ on reward distribution will be trivial
since the data size is much larger.

For any device di contributing to FEL, certain amounts of
computation and communication resources will be consumed.
According to [15], the computing cost will be positively
proportional to the local training data size si, while the
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communication cost is determined by the model size and
respective wireless channel conditions, denoted as wi. Thus,
we can calculate the cost for a participating device di as

Ωi = βisi + γiwi,

where βi, γi > 0 are constant scalars.
3) Profit and Game Definitions: Based on the previous two

subsections, the profit of any device di can be defined as
follows.

Definition III.1 (Device’s Profit). Given the decision vector
p, the profit of device di is

Vi(p) = Φi − piΩi.

Based on the above definition, the profit Vi consists of
the income gained from the server and the participation cost
consumed for local model training and updating.

As mentioned in Section III-B2, Φi is jointly affected by the
participation decisions of all devices. Meanwhile, the impact of
participation cost Ωi on the profit Vi is individually influenced
by the decision pi. Therefore, the profit of each device di is not
only determined by its own participation decision pi but also
collectively decided by the decisions of other devices, which is
denoted as p−i = (p1, · · · , pi−1, pi+1, · · · , pn) for simplicity.
And the following Participation Game can thus model the
intertwined relationship among all devices.

Definition III.2 (Participation Game). In this participation
game, any device di as a game player chooses a strategy pi
regarding whether to participate in an FEL system to get a
payoff of Vi(p).

In the participation game, any rational player di desires to
obtain the maximum profit Vi(p). However, as we can see
in the definition of Vi(p), without knowing others’ decisions
p−i, no player can easily achieve this goal in an individual
manner via choosing an optimal pi. To get rid of this dilemma,
the edge server, residing in a core position coordinating with
all devices in FEL, presents great potential to address this
challenge from a global viewpoint, which requires the reliable
collection of necessary information from devices. Apart from
the computation and communication resource parameters that
are critical for FEL training and updating processes, the local
data size si turns into an important factor for participation
decision making as presented in Problem III.1.

However, since the local datasets are not visible to the edge
server, there might exist some malicious devices deceiving
the edge server and other peering devices via providing fake
information of si. In particular, edge devices may intentionally
report either a lower or higher value than the real one of
si. Here the fake lower value could enable selfish devices to
avoid the participation of FEL for resource saving while the
intentionally-fabricated higher si may empower unqualified
devices to obtain abundant intermediate learning results for
other uses. Both types of fake information submission can
benefit the malicious devices at the cost of damaging the in-
terests of the edge server and other benign devices. Therefore,
we summarize this challenge as another problem:

Problem III.2. How can the edge server elicit the truthful
information of local data size si from any device di?

In the following sections, we will answer the above two
problems in reverse order since the accurate information
collection acts as a foundation for the optimal participation
decision making. In detail, we first solve Problem III.2 in
Section IV, based on which Problem III.1 can be addressed in
Section V.

IV. MECHANISM DESIGN FOR TRUTHFUL DATA SIZE
INFORMATION SOLICITATION

As mentioned above, edge devices may submit incorrect
information about their local data sizes, which can severely
affect the next-step calculation of participation decisions for
all devices. To characterize their malice in this process, we
define a probability Θi ∈ [0, 1] for each device di. In this
section, we resort to mechanism design theory [25] to eliminate
this undesirable phenomenon via enforcing their truth-telling
behaviors during the step of submitting si.

Technically, the mechanism design theory aims to find solu-
tions of incentive schemes to achieve desired goals in private-
information games using an objective-first manner, which
fundamentally relies on the sweeping result of revelation
principle. This principle advocates that for any incomplete-
information game, i.e., Bayesian game, each Nash equilibrium
is corresponding to another direct equilibrium achieved by an
incentive-compatible mechanism where every player honestly
reports the private information. Thus, we can easily solve the
Bayesian-Nash equilibrium of the mechanism design game
with incomplete information of the opponent’s real strategy,
via assuming every player tells the truth if we can guarantee
the incentive-compatibility of the proposed mechanism.

In our scenario, devices are reluctant to reveal the real si
with an probability Θi as the fabricated data size information
can bring them extra profit. Since Θi heavily impacts the
individual interest of every device, it is obvious that no one
would like to share this private information to others, including
the edge server. Hence, for the mechanism design game of
data size information collection, the objective of the server is
to elicit si from devices based on their truthful malice using
the power of reward policy development, without asking for
their private information Θi.

In the following, we will elaborate the mechanism design
problem and results to help the edge server collect data
size information from devices, thus facilitating the subsequent
participation decision making process discussed in Section V.
Considering that the designed mechanism will be conducted
between the server and every device, we omit the subscript i
for brevity.

A. Utility Functions

As mentioned above, the device needs to submit s for
obtaining decision making information and the finally well-
trained ML model to better serve users. Since these subsequent
outcomes are sent back from the edge server and significantly
affect the benefit of the device, we can regard this procedure
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as a reward policy, denoted by a coefficient r, which is deter-
mined by the edge server. And for the device, the controllable
strategy is its submitted data size information s.

Based on these definitions, we can express the expected
utility of the device, denoted by Ud, during a time period
[0, T ] as

Ud(r, s) =

∫ T

0

(rs+ x(Θ, s))dt, (3)

where the first term of the integrand indicates the normal
reward of the device obtained from the action of submitting
the data size information to the server, while x(Θ, s) denotes
the extra profit that the device can harvest via maliciously
reporting untruthful data size information. As the extra profit
is positively related to both the data size s and the probability
of exerting malice Θ, here we can define x(Θ, s) = AdΘs+Bd

as an example, with Ad, Bd being non-negative scalars.
Similarly, the expected utility of the edge server, denoted

by Ue, during [0, T ] can be represented by

Ue(r, s) =

∫ T

0

(R(r, s)− y(Θ, s))dt, (4)

where R(r, s) is the normal reward that the server can obtain
by collecting the data size information from the device, and
y(Θ, s) is the potential loss of the server when the device
maliciously hides the real data size information to obtain extra
profit, defined as y(Θ, s) = AeΘsr + Be with Ae, Be ≥ 0
being scalar parameters. Note that the definition of y(Θ, s)
is slightly different from that of x(Θ, s) since the impact of
reward coefficient on the server’s loss is considered here.

For the server’s reward R(r, s), considering that the larger
the data size of the device, the higher the benefit of the server,
while an unfitted reward coefficient can decrease the benefit
of the server, we model it as:

R(r, s) =
σ

1 + e−(s−s0)
− ρ(r − r0)

2, (5)

where σ, ρ > 0 are constant parameters; s0 and r0 are
respectively the expected values of the data size and reward
coefficient according to the historical and global information.
In particular, a sigmoid function is employed in the first part
of (5) to describe the influence of s on the server’s reward. To
be specific, when the submitted data size s < s0, the reward
of the server is limited but its gradient gradually increases;
while if s > s0, the reward asymptotically approaches the
largest value with a decreasing slope. This corresponds to
the fact that a smaller dataset is definitely not preferred for
the server, but a too-large dataset suffers from diminishing
marginal contribution to the server’s reward. Besides, the latter
part of (5) captures the feature that the server will not assign
a too-high or too-low r to the device, because a higher one
might decrease the server’s reward if the device contributes
less in FEL while a lower value of reward coefficient can hurt
the device’s interest and discourage its future contribution.
Remark: For (3) and (4), it is worth noting that the device’s
normal reward rs is not explicitly deducted from the server’s
reward, where the underlying reason is that the reward of the
device is not directly distributed by the server but closely
related to other environment parameters, such as the owner
satisfaction of the device.

B. Mechanism Design Process

With the above-defined utilities and the strategies of both
the device and server, we can depict the interaction process
in the mechanism design game in Fig. 2 and summarize the
general steps as follows:

• The server sends a game rule (i.e., mechanism) r∗(s) to
the device, which is usually designed to maximize its
expected utility Ue.

• With the received r∗(s), the device can derive the best
action s∗ based on the true private information Θ. Typ-
ically, the devices determines s∗(Θ) with the goal of
maximizing the expected utility Ud.

• According to the derived s∗ and the corresponding
r∗(s∗), the device can make a decision on whether to
accept this game rule. If it turns out to be beneficial, the
device will send back s∗ to the server; if not, the device
will keep silent.

• Once the server receives s∗ in a given time limit, the
specific value of r∗ can be obtained. And then the server
will proceed to the next step of calculating the decision
making vector for all devices as mentioned in Section V.

DeviceEdge server

Game rule: 
Calculate Calculate 

Fig. 2. Mechanism design process.

It is worth noting that the device may strategically report
another s̃ based on the fake private information Θ̃ in the third
step. However, under the function of revelation principle, the
incentive compatibility of the proposed mechanism r∗(s) will
enable the device to find out that truthful report is exactly the
optimal choice, which will be rigorously proved and analyzed
in Section IV-D.

C. Derivation of Optimal Strategies

To further study the results of the proposed mechanism
design process, we reveal the optimal strategies of both sides.
Based on the first step in the aforementioned mechanism
design process, the edge server needs to calculate a game
rule r∗(s) maximizing the utility Ue. Since the game rule
is a function instead of a pure variable, we may utilize
the calculus of variations method to derive r∗(s). In detail,
we first denote the integrand part in parentheses of (4) as
He = R(r, s)− y(Θ, s), then r∗(s) can be derived by solving
the associated Euler-Lagrange equation

∂He

∂r
− d

dt

∂He

∂r′
= 0, (6)

under the condition ∂2He

∂r2 < 0. Since He is not explicitly
related to r′, the above equation turns into ∂He

∂r = 0, which
derives

r∗(s) = r0 −
AeΘs

2ρ
. (7)
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Meanwhile, we can calculate ∂2He

∂r2 = −2ρ which is obviously
negative since ρ > 0. Therefore, we can confirm that the above
r∗(s) can maximize Ue.

Using the similar method, we can derive s∗ with the
calculated r∗(s) as

s∗ =
ρ(r0 +AdΘ)

AeΘ
,

which maximizes Ud defined in (3) under the condition
∂2Hd

∂s2 < 0. In fact, denoting the integrand of Ud as Hd, we
can calculate ∂2Hd

∂s2 = −AeΘ
ρ < 0 because Ae,Θ, and ρ are

all positive.

D. Truthfulness Analysis

To investigate the effectiveness of the mechanism design
for data size information collection, we theoretically analyze
the truthfulness of the device in the step of submitting s
under the function of the server’s designed game rule r∗(s).
In particular, we investigate that whether the proposed r∗(s)
satisfies the incentive-compatibility principle. To be specific,
as defined in [26], a mechanism is incentive-compatible if only
exerting actions based on the real preferences can realize the
optimal outcome for every player. In our case, this principle
compels that only when the device tells the truth about Θ, can
its expected utility be maximized, i.e., meeting the incentive-
compatibility constraint Ud(r(s), s(Θ)) ≥ Ud(r(ŝ), ŝ(Θ̂))
where Θ̂ represents any possible value of Θ and ŝ is the
corresponding report. By this means, the data size information
s can be solicited according to the truthful intention of the
device behaving maliciously.

The detailed analysis about the incentive compatibility of
the designed game rule r∗(s) is presented in the following
theorem.

Theorem IV.1. The server’s proposed game rule r∗(s) shown
in (7) is incentive-compatible.

Proof. Assuming that the device pretends to be malicious with
a different probability Θ̃ during the step of submitting its
local data size, which is not equal to Θ. Thereby, the device
will send back a newly best strategy s̃∗ based on Θ̃ once
receiving and accepting the game rule r∗(s), where s̃∗ ̸= s∗.
However, as we mentioned earlier, the device derives the best
strategy s∗ for maximizing its expected utility, so there will
exist Ud(s

∗) > Ud(s̃
∗). That is to say, if the device delivers s̃∗

based on Θ̃, there will be some room left to further increase
its expected utility, which contradicts the device’s goal of
submitting the optimal strategy for maximizing Ud. Therefore,
a rational device will only calculate the optimal strategy based
on the real private information, demonstrating the incentive
compatibility of the devised game rule.

V. CORRELATED EQUILIBRIUM FOR PARTICIPATION
DECISION

As mentioned in Section III, since it is challenging for
devices to achieve individual optimum in the participation
game, we consider to address Problem III.1 from a global
perspective. Specifically, the edge server located in FEL center

helps the calculation after collecting truthful size information
about local datasets from devices as reported in the above
section. In this section, the main concept of correlated equilib-
rium in the participation game is first illustrated to realize each
player’s individual rationality, based on which a Global Profit
Maximization (GPM) problem is defined to realize global
optimum in Section V-A. Then we conduct rigorous analysis
on the computational cost of the basic solution, which is
reduced by designing an approximation algorithm in Section
V-B.

A. Basic Solution

Formally, we define the strategy space of any player (device)
in the participation game as P = {0, 1} and its size is P = 2.
Thus, the calculated optimal decision vector p will come from
the space Pn, i.e., all the possible combinations of devices’
participation decisions. Recall that any player di in the partic-
ipation game has an objective of obtaining the optimal profit
Vi(p) defined in Definition III.1. To indicate different impacts
of strategies on each device’s profit, we rewrite Vi(p) into
Vi(pi,p−i). According to [26], Vi(pi,p−i) can be optimized
at the correlated equilibrium of the participation game, which
can be defined as follows.

Definition V.1 (Correlated Equilibrium of the Participation
Game). In the participation game, a probability distribution
over the space Pn, denoted as G(p), is termed as a correlated
equilibrium iff G(p) makes the following condition hold for
any strategy pi, p

′
i ∈ P ,∑

p−i∈Pn−1

G(pi,p−i)
(
Vi(pi,p−i)− Vi(p

′
i,p−i)

)
≥ 0.

In light of the above definition, we can tell that under
the correlated equilibrium G(p), there is no player with the
motivation to deviate from the assigned strategy pi given other
devices’ strategies p−i. In other words, only by playing the
game with the strategy pi in p sampled from the correlated
equilibrium G(p), can any player di optimizes the profit.

In fact, multiple different correlated equilibria might meet
the above condition. Considering that the edge server in FEL
derives the participation decisions based on the global utility,
i.e.,

∑
p∈Pn G(p)

∑n
i=1 Vi(p), we can calculate the best

correlated equilibrium of the participation game via solving
the following Global Profit Maximization (GPM) problem.

GPM Problem:

max :
∑

p∈Pn

G(p)
n∑

i=1

Vi(p) (8)

s.t. : G(p) ≥ 0, ∀p ∈ Pn, (9)∑
p∈Pn

G(p) = 1, (10)

∑
p−i∈Pn−1

G(pi,p−i)
(
Vi(pi,p−i)− Vi(p

′
i,p−i)

)
≥ 0,

∀pi, p′i ∈ P . (11)

Clearly, the optimization variable is G(p) in the above
GPM problem, with the optimization object in (8) to maximize
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the overall expected profit for all devices in the participation
game. The first constraint (9) is a natural requirement for the
probability distribution, the second one (10) represents that the
sum of all probability distribution over the strategy space Pn

equals to 1, and the last one (11) is the definition of correlated
equilibrium for individual profit maximization.

B. Improvement of Computational Cost

It can be seen that the above GPM problem is actually
a linear programming problem in terms of G(p) and might
be addressed with several efficient methods, e.g., simplex
and interior-point algorithms. Nevertheless, the overall com-
putational cost of the existing solutions is proportionally
related to the number of constraints and variables, making
the direct method of applying existing algorithms to solve the
GPM problem inefficient since the number of constraints is
Pn+P 2n+1 and the number of variables (G(p)) is Pn. For
clarity, we analyze the computational cost of direct applying
existing linear programming algorithms on the GPM problem
in the below theorem.

Theorem V.1. The computational complexity increases expo-
nentially with the number of devices n in the case of directly
using existing linear programming solutions to solve the GPM
problem.

Proof. Considering that the number of optimization variables
is Pn and that of constraints is Pn+P 2n+1, we can derive the
valued results in the GPM problem as 2n and 2n+4n+1 due
to the strategy space has a size of P = 2 in our scenario.
Thus, even adopting efficient solutions that can solve the
linear programming problem in polynomial time, when we
directly apply them on the GPM problem, the computational
complexity turns out to be O(2n).

In practical, the number of devices n can be large and extend
substantially sometimes, making the straight application of
existing polynomial-time algorithms without any change on
our problem inefficient. To solve this challenge, we enhance
the above basic solution to decrease the computational cost to
an acceptable level in the following.

Specifically, to decrease the computational complexity of
solving the GPM problem, the key step is to prevent the
changing trend that the numbers of variables and constraints
increase exponentially with the number of devices. In this
case, a rough idea to enhance the basic solution is controlling
the quantities of variables and constraints varying with n
in a polynomial manner, thus approaching an overall poly-
nomial complexity. Generally, we divide the whole set of
edge devices into several subsets, and then there exists a
smaller-scale participation decision problem, i.e., sub-GPM
(SGPM) problem, for devices in each subset. Suppose that
ξ small device subsets {d1, · · · ,dξ} are formed in light of
the communication order of devices reporting si to the server,
with the size of each subset being upper-bounded by n̄ ≪ n.
For simplicity, we denote the quantity of devices in subset dj

as nj , j ∈ {1, 2, · · · , ξ}. And now, we can have the SGPM
problem as follows,

SGPM Problem:

max :
∑

ps∈Pns

G(ps)

ns∑
i=1

Vs,i(ps)

s.t. : G(ps) ≥ 0, ∀ps ∈ Pns ,∑
ps∈Pn

s

G(ps) = 1,

∑
ps,−i∈Pns−1

G(ps,i,ps,−i)
(
Vs,i(ps,i,ps,−i)

− Vs,i(p
′
s,i,ps,−i)

)
≥ 0, ∀ps,i, p′s,i ∈ Pns .

According to the solutions of all SGPM problems in device
subsets, i.e., Gj(·)’s, an approximate answer of the GPM
problem can be derived.

Similarly, we can analyze the computational complexity of
the enhanced solution.

Theorem V.2. If the number of subsets ξ polynomially in-
creases with the number of devices n, the GPM problem can be
resolved with the enhanced solution in O(n) time complexity.

Proof. After splitting, the size of decision vector in any SGPM
problem is 2nj , and thus the number of variables and that
of constraints become O(2nj ), leading to the computational
cost of solving the SGPM using existing efficient linear
programming algorithms O(2nj ) as well. While considering
that nj has an upper bound of n̄ ≪ n, we can have the
complexity of solving each SGPM problem as O(2n̄) which
is unchanged with n. Thus, if ξ changes with n polynomially,
we can derive that the overall complexity of solving the GPM
problem is ξ · O(2n̄), which is clearly polynomial in n.

C. Overview of the Decision Making Process

As shown in Fig. 3, we can illustrate the specific working
process for participation decision making in FEL using our
proposed solutions. To begin with, the edge server registers
necessary equipment information during the registration step,
e.g., computation performance and communication condition
parameters. When an FEL task arrives, the device submits
the size information of its locally collected data, i.e., si,
following the well-designed game rule as proposed in Section
IV (Step 1 ); after the server receives all the size information
from devices to solve the GPM problem, the optimal decision
probability distribution G∗(p) can be calculated (Step 2 )
and sent back to the device (Step 3 ); based on the received
G∗(p), di can obtain the optimal p∗i (Step 4 ) which might
also be updated to the server (Step 5 ) for better arranging
the next FEL procedures. If a round of FEL task finishes, the
edge server will share the final ML model to all connected
devices for providing better services to users.

VI. EXPERIMENTAL EVALUATION

In this section, we conduct experiments to validate the effec-
tiveness and efficiency of our proposed participation decision
making scheme with the function of mechanism design for
eliciting truthful local data sizes from devices. All experiments
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① Submit 𝑠𝑠𝑖𝑖 following the game rule

Registration

Collect 
local data

② Calculate 𝐺𝐺∗(𝐩𝐩)
③ Send back 𝐺𝐺∗(𝐩𝐩)

④ Obtain 𝑝𝑝𝑖𝑖∗
based on 𝐺𝐺∗(𝐩𝐩) ⑤ Update 𝑝𝑝𝑖𝑖∗

Conduct the 
FEL task

Act 𝑝𝑝𝑖𝑖∗

Share the trained model

Edge server𝑑𝑑𝑖𝑖

…
…

Fig. 3. Interaction process of our proposed solution.

are implemented on a desktop with 3.59 GHz AMD six-
core processor and 16 GB memory running Windows 10
OS. For ML related experiments, Python 3.6 is utilized for
implementation and Matlab R2020a is used for others. Note
that all the experimental results reported in this section are
averaged from 30 times of repeated experiments for statistical
confidence.

A. Truthful Data Size Information Solicitation

We simulate the mechanism design process for truthful
data size information collection as presented in Section IV.
To conduct the simulation experiments, we set the default
values of parameters related to the device as Θ = 0.5
and Ad = Bd = 1, while those related to the server as
Ae = Be = 1, r0 = 50, s0 = 500, σ = 105, and ρ = 10,
unless they are specified otherwise.

To investigate the impacts of the device’s private informa-
tion Θ on the maximized utility of the device itself and that
of the server, we change Θ from 0.1 to 1 and the results
are reported in Fig. 4. It is obvious that with an increasing Θ,
both the device and the server obtain decreasing values of their
maximized utilities. This is definitely reasonable and achieves
our expectation. For a device with a higher probability of being
malicious to submit the data size information, the power of the
designed game rule enforces a lower expected utility for it; at
the same time, the profit of the server will also reduce. It
is worth noting that the difference between these two curves
is because the derived r∗(s) is linear to Θ while s∗ is not,
making the optimized utilities follow the similar trends. Then
we change the device’s scalar parameters Ad and Bd from 0
and 1 as well to study their impacts on the maximized utilities
of both sides. From Fig. 5, one can figure out that the impact
of Ad is obviously larger than that of Bd even both are in the
same range, where the maximized Ud is increasing with Ad

while the maximized Ue decreases with Ad.
Next, we evaluate how the server’s related parameters affect

their utilities. To begin with, we change Ae and Be in the
same range with the same interval as that of Ad and Bd,
which brings the utility results as reported in Fig. 6. For the
maximized utility of the device, the increase of Ae makes it

0 0.5 1

0

5

10

15
10

4

0 0.5 1

8.1

8.105

8.11

8.115

8.12

10
4

Fig. 4. Maximized utility changing with Θ.

Fig. 5. Maximized utility changing with Ad and Bd.

decrease in an inverse proportional fashion while the change
of Be brings no difference to it. This is because the definition
of Ud is not related to Be but indirectly affected by Ae due
to the expressions of r∗(s) and s∗. For the maximized utility
of the server, Ae brings no impact while the increasing Be

decreases the optimal value of Ue, where the potential reason
might be that the production of s and r in y(Θ, s) makes the
activity of Ae offsetting but Be still functions negatively for
Ue.

Then the impacts of σ and ρ are reported in Fig. 7 while the
experimental results of changing s0 and r0 are demonstrated
in Fig. 8. From Fig. 7, we can see, on one hand, σ does not
affect the value of maximized Ud while ρ presents negligible
influence on the value of maximized Ue; on the other hand,
the maximized Ud increases with ρ and the maximized Ue

arises with σ. From Fig. 8, it is clear that the change of s0
has no impact on both the maximized Ud and Ue, while the
increase of r0 makes Ud increase but Ue decrease. All these
phenomena are intelligible according to the expressions of Ud

and Ue, as well as r∗(s) and s∗, mentioned in Section IV.

B. Participation Decision Making

We then evaluate the performance of the proposed partici-
pation decision making scheme in Section V. Relevant scalar
parameters are set as α = 10, βi = 10−3, γi = 10−5, δ =
10−3, and w = 3.5 × 105. Other sets of parameters are

Fig. 6. Maximized utility changing with Ae and Be.
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Fig. 7. Maximized utility changing with σ and ρ.

Fig. 8. Maximized utility changing with s0 and r0.

also investigated, which produce similar results and thus are
omitted.

To begin with, we simulate the improved solution proposed
in Section V-B and compare it with the direct solution in
Section V-A in terms of both the time complexity and op-
timization objective. To implement this series of experiments,
we first derive error-related parameters a, b defined in (1) using
the MNIST dataset [27] with up to 6,000 samples to train
a 2-layer CNN classifier, generating the actual error results
in Fig. 9(a) which is fitted by the power-law function with
a = 13.2, b = 0.7 (95% confidence).

Next, we set the data size of any device with 50 or 500
randomly, change the number of devices n from 2 to 16,
and run both the direct and improved solutions, where the
improved solution is implemented with the number of small
device sets ξ = 2. The comparison results of computational
cost is presented in Fig. 9(b) and the maximized total profit is
reported in Table I. One can find that the improved solution
can bring approximate results as the direct one in terms of
maximizing the global profit but consume much less time
when n is larger, which indicates that the proposed improved
method can function effectively.

Besides, we change the number of small device sets in
the improved solution as ξ ∈ {2, 3, 4, 5} and study its
impact on the computational cost. As shown in Fig. 10, we
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Fig. 9. Error fitting and computational cost comparison.

TABLE I
COMPARISON OF MAXIMIZED TOTAL PROFIT.

Solution n=2 n=4 n=6 n=8 n=10 n=12
Direct 0.95 2.60 2.84 2.94 2.99 3.02

Improved 0.95 2.62 2.60 3.05 2.61 2.77
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Fig. 10. Computational cost of the improved solution with different number
of devices n and number of small sets ξ.

investigate four scenarios with different number of devices
n ∈ {10, 15, 20, 30}. For clear presentation, we report the
results for n = 10, 15, 20 and n = 10, 20, 30, separately. From
Fig. 10(a), we can see that for a given n, the larger the number
of small device sets ξ, the higher the computation cost of the
improved solution. This is because we simulate the operation
of solving SGPM problems in a serialized manner where each
SGPM takes some time to finish; while the number of devices
in each small set seldom affects the running time for these
given n. However, when we increase n to a larger value, such
as n = 30 in the right-side Fig. 10(b), the running cost for
ξ = 2 will be far larger than all other cases. This is because
every SGPM problem in the improved solution for n = 30 and
ξ = 2 is corresponding to the GPM problem in the direction
solution for n = 15, costing much more time than smaller n,
which can also been observed from the results in Fig. 9(b).
Despite this case, other results are still consistent with the
feature of larger time cost for larger ξ.

Further, we investigate the impact of data size si on both the
maximized total profit and participation decision results. In de-
tail, we take n = 8 as an example and select d1 as a test sample
with variable size s1 ∈ {50, 100, 200, 400, 600, 800, 1000}. To
broadly study this problem, we consider two representative
cases where all other devices have the same size of generated
data, denoted by s−1, as 50 and 500, and the experimental
results of two cases are reported in Figs. 11 and 12, re-
spectively. From Figs. 11(a) and 12(a), we can see that in
both cases, the maximized total profit of all devices increases
with s1, revealing that the more data contributed to the edge
server, the larger the total profit for all. This is reasonable
since more data can facilitate training a better ML model to
benefit all devices. While from Figs. 11(b) and 12(b), one
can see that the participation decision vectors in two cases
differ a lot. In particular, when s−1 = 50, p1 becomes 1
earlier at s1 = 100; but in the case of s−1 = 500, only
when s1 reaches 600, p1 = 1 happens. This phenomenon is
understandable as only when the data contribution of d1 is
large enough compared to others, should it take part in the
FEL to help train a better model; otherwise, there will only
be more resource consumption but nothing contributed to the
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model training.
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Fig. 11. Case of s−1 = 50.
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Fig. 12. Case of s−1 = 500.

VII. CONCLUSION AND FUTURE WORK

In this paper, we study the issue of FEL system composition
considering more about the interests of edge devices with
the aim of maintaining the efficiency and sustainability in
the long term. Different from most of the existing studies on
FEL performance improvement focusing on the optimization
and control during the learning process, we take precautions
to establish the best organization for FEL. Specifically, we
first quantify the impact of local training data sizes to define
a participation game sketching the relationships among all
devices. And a mechanism design based truthful data size
collection process is elaborated to prepare for the design and
operation of the game-theoretic decision scheme. Then the
correlated equilibrium is introduced to guarantee the individual
optimum, facilitating the game-theoretic solution for participa-
tion decision making. An improved method is further proposed
to reduce the computational complexity to polynomial time.
Finally, both proposed schemes are evaluated with real-world
data and simulation experiments.

For the future research, we will investigate the case of
lacking mutual trust between the edge server and devices
in FEL, where the server might also behave maliciously
for intentionally exploiting their contributions in learning.
Besides, as mobile devices massively participate in FEL,
their mobility results in more challenges for guaranteeing
the learning performance, where cross-edge scenarios will be
thoroughly explored.
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