
LIME: Low-Cost and Incremental Learning for
Dynamic Heterogeneous Information Networks
Hao Peng , Renyu Yang ,Member, IEEE, Zheng Wang , Jianxin Li , Lifang He ,Member, IEEE,

Philip S. Yu , Fellow, IEEE, Albert Y. Zomaya , Fellow, IEEE, and Rajiv Ranjan, Senior Member, IEEE

Abstract—Understanding the interconnected relationships of large-scale information networks like social, scholar and Internet of

Things networks is vital for tasks like recommendation and fraud detection. The vast majority of the real-world networks are inherently

heterogeneous and dynamic, containing many different types of nodes and edges and can change drastically over time. The

dynamicity and heterogeneity make it extremely challenging to reason about the network structure. Unfortunately, existing approaches

are inadequate in modeling real-life dynamical networks as they either have strong assumption of a given stochastic process or fail to

capture the heterogeneity of network structure, and they all require extensive computational resources. We introduce LIME, a better

approach for modeling dynamic and heterogeneous information networks. LIME is designed to extract high-quality network

representation with significantly lower memory resources and computational time over the state-of-the-arts. Unlike prior work that uses

a vector to encode each network node, we exploit the semantic relationships among network nodes to encode multiple nodes with

similar semantics in shared vectors. By using many fewer node vectors, our approach significantly reduces the required memory space

for encoding large-scale networks. To effectively trade information sharing for reduced memory footprint, we employ the recursive

neural network (RsNN) with carefully designed optimization strategies to explore the node semantics in a novel cuboid space. We then

go further by showing, for the first time, how an effective incremental learning approach can be developed – with the help of RsNN, our

cuboid structure, and a set of novel optimization techniques – to allow a learning framework to quickly and efficiently adapt to a

constantly evolving network. We evaluate LIME by applying it to three representative network-based tasks, node classification, node

clustering and anomaly detection, performing on three large-scale datasets. We compare LIME against eleven prior state-of-the-art

approaches for learning network representation. Our extensive experiments demonstrate that LIME not only reduces the memory

footprint by over 80 percent and the processing time over 2x when learning network representation but also delivers comparable

performance for downstream processing tasks. We show that our incremental learning method can boost the learning time by up to

20x without compromising the quality of the learned network representation.

Index Terms—Network representation learning, heterogeneous information networks, incremental learning, memory optimization

Ç

1 INTRODUCTION

HAVING the ability to understand the interconnected rela-
tionships of large-scale network structures, such as

social, transport, IoT and scholar networks, is crucial for
many important applications like fraud and anomaly detec-
tion [1], link prediction [2], recommendation [3], etc. In a
real-life setting, many networks – including social media [4],

scholar networks [5], patient and drug networks [6] and IoT
networks [7] – are heterogeneous data structures. These hetero-
geneous information networks (HINs) contain multiple
types of objects and links, having millions or even billions
of vertices [8]. The scale and complexity of real-world HINs
make automated machine learning a highly attractive tech-
nology for capturing and reasoning about the relationships
or semantics hidden in a large and complex structure.

The difficulty for applying machine learning to HINs,
however, is that it requires the network to be represented as
a set of features or embeddings that serve as inputs to a
machine learning tool. Given that real-life HINs like social
networks are unbounded, dynamically evolving graphs and
that there is an infinite number of these potential features,
finding the right representation for a large and evolving
HIN is not trivial [3].

Efforts have been devoted to extracting useful network
representations. This is now an active research field known
as Network Representation Learning (NRL) [3]. The goal of
NRL is to map nodes of a large-scale network to a low-
dimensional embedding space. By doing so, each vertex of
the network can then be represented as a low-dimensional
vector of numerical values, whilst much important informa-
tion of the global and local network structures can be pre-
served. The extracted network representations can then be

� Hao Peng and Jianxin Li are with the Beijing Advanced Innovation Center
for Big Data and Brain Computing and the State Key Laboratory of Soft-
ware Development Environment, Beihang University, Beijing 100083,
China. E-mail: {penghao, lijx}@act.buaa.edu.cn.

� Renyu Yang and Zheng Wang are with the School of Computing, Univer-
sity of Leeds, LS2 9JT Leeds, U.K. E-mail: {r.yang1, z.wang5}@leeds.ac.uk.

� Lifang He is with the Department of Computer Science and Engineering,
LehighUniversity, Bethlehem, PA 18015USA. E-mail: lih319@lehigh.edu.

� Philip S. Yu is with the Department of Computer Science, University of
Illinois at Chicago, Chicago, IL 60607 USA. E-mail: psyu@uic.edu.

� Albert Y. Zomaya is with the University of Sydney, Camperdown, NSW
2006, Australia. E-mail: albert.zomaya@sydney.edu.au.

� Rajiv Ranjan is with the Computing Science and Internet of Things, New-
castle University, NE1 7RU Newcastle upon Tyne, U.K.
E-mail: raj.ranjan@newcastle.ac.uk.

Manuscript received 20 May 2020; revised 13 Oct. 2020; accepted 31 Jan.
2021. Date of publication 11 Feb. 2021; date of current version 11 Feb. 2022.
(Corresponding author: Jianxin Li.)
Recommended for acceptance by S. Ha.
Digital Object Identifier no. 10.1109/TC.2021.3057082

628 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 3, MARCH 2022

0018-9340 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on February 19,2022 at 17:25:27 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7422-630X
https://orcid.org/0000-0001-7422-630X
https://orcid.org/0000-0001-7422-630X
https://orcid.org/0000-0001-7422-630X
https://orcid.org/0000-0001-7422-630X
https://orcid.org/0000-0001-6334-4925
https://orcid.org/0000-0001-6334-4925
https://orcid.org/0000-0001-6334-4925
https://orcid.org/0000-0001-6334-4925
https://orcid.org/0000-0001-6334-4925
https://orcid.org/0000-0001-6157-0662
https://orcid.org/0000-0001-6157-0662
https://orcid.org/0000-0001-6157-0662
https://orcid.org/0000-0001-6157-0662
https://orcid.org/0000-0001-6157-0662
https://orcid.org/0000-0001-5152-0055
https://orcid.org/0000-0001-5152-0055
https://orcid.org/0000-0001-5152-0055
https://orcid.org/0000-0001-5152-0055
https://orcid.org/0000-0001-5152-0055
https://orcid.org/0000-0001-7810-9071
https://orcid.org/0000-0001-7810-9071
https://orcid.org/0000-0001-7810-9071
https://orcid.org/0000-0001-7810-9071
https://orcid.org/0000-0001-7810-9071
https://orcid.org/0000-0002-3491-5968
https://orcid.org/0000-0002-3491-5968
https://orcid.org/0000-0002-3491-5968
https://orcid.org/0000-0002-3491-5968
https://orcid.org/0000-0002-3491-5968
https://orcid.org/0000-0002-3090-1059
https://orcid.org/0000-0002-3090-1059
https://orcid.org/0000-0002-3090-1059
https://orcid.org/0000-0002-3090-1059
https://orcid.org/0000-0002-3090-1059
mailto:penghao@act.buaa.edu.cn
mailto:lijx@act.buaa.edu.cn
mailto:r.yang1@leeds.ac.uk
mailto:z.wang5@leeds.ac.uk
mailto:lih319@lehigh.edu
mailto:psyu@uic.edu
mailto:albert.zomaya@sydney.edu.au
mailto:raj.ranjan@newcastle.ac.uk

used to characterize the target network and serve as input to
decision models for a wide range of downstream processing
tasks [9], [10].

While promising, existing approaches for NRL [8], [11],
[12], [13], [14], [15], including graph-based learning meth-
ods [16], [17], are primarily concerned about static net-
works, assuming the network does not change over time.
By ignoring the dynamicity of networks, they are inade-
quate in modeling many real-life networks like social net-
works that are constantly evolving. Some of the most
recent studies try to address the dynamicity of networks:
Stochastic-based approaches [18], [19], [20], [21] strongly
assume the network change follows a certain stochastic
process, which hardly stands in realistic networks. Tem-
poral random walks based approaches [22], [23], [24] fail
to capture the heterogeneity of network structure and
thus deliver low quality NRL. Most importantly, existing
approaches all require extensive memory resources and
long training time to learn an effective embedding model.
These drawbacks limit the practicality and the scale the
technique can operate.

We present LIME
1, a better approach for learning repre-

sentation for dynamic HINs. LIME is designed to learn repre-
sentations for a large and dynamically changing HIN with
significantly lower computational and memory overhead
compared to state-of-the-art NRL techniques. To reduce the
computational resource requirement, LIME maps the input
HIN to a cuboid structure consisting of three directional
components: rows, columns and pages, where nodes within
a directional component share the same component-level
embedding vector. In this way, a vertex is jointly repre-
sented by three components: a row vector, a column vector
and a page vector. Since nodes in each row, column or page
share the same component vector, we use only 3

ffiffiffi
n3

p
vectors

to represent a network of n vertices. In real terms, this
means we need as few as 300 vectors to represent a graph of
1M nodes. Compared to prior work that requires one
embedding vector for representing each vertex, our strategy
thus significantly reduces the number of vectors and the
associated computational resources for representing large
networks. As the computation is performed on a much
smaller number of vectors, our approach speeds up the
training time considerably.

At the core of LIME is a Recursive Neural Network (RsNN)2

that traverses the relationships (or edge links) of network
topology. Unlike NRL methods based on the Recurrent
Neural Network (RNN) [25], our approach explicitly mod-
els and exploits the different relationship types to constraint
the errors of learning network embeddings. By formulating
the embedding learning problem in a cuboid structure and
using the RsNN to exploit the cuboid space, we can effec-
tively trade information sharing for saving in memory and
computation overhead. Our evaluation shows that our static
embedding scheme has little impact on the learning

performance and can even improve the performance of the
downstream process task in certain scenarios.

To adapt to a dynamic network where new nodes and
edges constantly emerge, LIME does not retrain the embed-
ding network from scratch on the entire network because
doing so would be too slow and resource expensive.
Instead, it incrementally calibrates the learned network
embeddings based on the changed network structures.
One of the key challenges for our incremental learning
strategy is how to minimize the error of the objective func-
tion as we only perform computation on a subset of nodes
and relationships of a vast network. To this end, we first
formulate the objective function for incremental learning,
so that we can apply the widely used stochastic gradient
descent (SGD) training method to effectively calibrate and
minimize the error of incremental learning of local nodes.
We then go further by showing how the global, network-
wide optimization problem can be translated into a stan-
dard minimum weight perfect matching problem [26]. This
enables us to apply the well-established dynamic mini-
mum cost maximum flow (MCMF) algorithm to further
optimize the loss function globally across a large network.
We note that LIME is the first attempt in applying incremen-
tal learning and the dynamic MCMF algorithm to address
NRL for dynamic HINs.

We demonstrate the benefits of LIME by applying it to
three large-scale datasets, including two scholar networks
and a cyber-physical network. We evaluate LIME by using it
to support three representative downstream tasks, node
classification, node clustering and anomaly detection, and
compare it against eleven state-of-the-art NRL techni-
ques [8], [11], [12], [13], [18], [20], [22], [23], [27], [28], [29].
Experimental results show that LIME is highly effective and
resource-efficient in learning representations for both static
and dynamic HINs. Compared to prior NRL techniques,
LIME reduces the memory footprint by 4 to 6 times. It cuts
down the static and incremental learning time by up to 2
and 20 times, respectively. We show that such great advan-
tages in the memory usage and computation time do not
come at the cost of lower performance for the downstream
processing task. Instead, in certain scenarios, LIME can
improve the performance of the subsequent task by up to 3
percent over the best-performing NRL baseline. As a result,
LIME represents a new way of learning network representa-
tions, which exhibits a better scalability with less memory
and computational cost over existing NRL techniques.

This paper makes the following contributions:

� It proposes a novel resource-efficient NRL model
based on RsNN for learning static embeddings of
HINs (Section 4).

� It presents the first incremental embedding scheme
for dynamic HINs based on changed network struc-
tures (Section 5). LIME advances prior works by
showing how efficient incremental learning can be
achieved by formulating the optimization space and
by applying the dynamic MCMF algorithm.

� It demonstrates how static and incremental NRL
techniques can be combined together to effectively
support a wide range of network-related tasks
(Section 7).

1. LIME=Low-cost and Incremental network eMbedding Engine.
2. Not to be confused with a Recurrent Neural Network (RNN) (rb.

gy/m93yqi). A Recursive Neural Network (RsNN) (rb.gy/picdx4) is a
hierarchical network where the input is processed hierarchically in a
tree fashion. This is different from an RNN where the network unfolds
over time, which is used for sequential inputs where the time factor is
the main differentiating factor between the elements of the sequence.

PENG ET AL.: LIME: LOW-COST AND INCREMENTAL LEARNING FOR DYNAMIC HETEROGENEOUS INFORMATION NETWORKS 629

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on February 19,2022 at 17:25:27 UTC from IEEE Xplore. Restrictions apply.

rb.gy/m93yqi
rb.gy/m93yqi
rb.gy/picdx4

LIME is open-sourced and can be downloaded from
https://github.com/RingBDStack/LIME.

2 BACKGROUND

In this section, we introduce HINs and NRL and formulate
the scope of this work.

2.1 Information Networks

LIME is a general framework for learning network represen-
tations. In this work, we target HINs that have heteroge-
neous structures and are dynamically evolving.

Example information networks include scholar networks
like DBLP, social networks like Twitter, and cyber-physical
systems and Internet of Things (IoT) networks. Real-life
information networks have different structures consisting
of multi-typed entities and relationships. Herein, a relation-
ship refers to the link between entities in a network system
such as the interconnection between an IoT sensor and an
edge device, interactions between social network users, col-
laborations among co-authors in a scholar community, etc.
For example, the Twitter network contains multiple entities
(or node types) like users, tweets, hashtags and terms, etc.,
as well as relationships encompassing follows among users,
posts between users and tweets, replies between tweets, etc.

Many information networks are dynamic structures,
because new entities and relationships can be added to the
network over time. A typical real-life network can have mil-
lions or billions of entities. For example, there are over 2.2M
authors and over 5M papers in DBLP. The interconnections
of entities in DBLP, in turn, lead to hundreds of millions of
relationships among entities. The massive scale and the
dynamically changing behavior of an information network
make it extremely challenging to extract and ascertain the
subtle interconnected relationships of the network.

2.2 Network Representation Learning

To extract knowledge from a large network, we need to find
ways to capture the essential characteristics and structures
of the network. This is typically done by representing the
network using a fixed-length vector or matrix of numerical
values. The idea is to encode the network vertices using
latent, low-dimensional representations (or embeddings),
which can highly summarize informative characteristics of
the network and preserve information like the network
topology structure, node content, and other neighborhood
information. Due to the high computational complexity of
traditional network representation learning, a popular
method is to use random walk method to obtain an approxi-
mation of the network structure [3]. This line of research is
known as network representation learning (NRL).

After the new node embeddings are learned, network
analytic tasks (such as graph visualization, node classifica-
tion and clustering, and link prediction, etc.) can then be
performed by applying vector-based machine learning algo-
rithms to the new representation space. NRL allows us to
apply many well-established machine learning algorithms
to a large, complex graph structure. Our work develops a
new approach to learn network representations for
dynamic, heterogeneous information networks, aiming to

provide better scalability with lower memory and computa-
tional cost for NRL.

2.3 Preliminaries

In this work, we follow the terminologies used in the semi-
nar work of [13], [31] to define a dynamic HIN and the net-
work embedding.

2.3.1 Dynamic Heterogeneous Information Networks

A dynamic HIN is a temporal graph GðtÞ ¼ ðV; E;A;RÞ
with an entity type mapping f : V ! A and a relationship
type mapping c : E ! R, where V and E represent entity
set and link set, respectively, whileR and A denote the type
set of corresponding entities and links. Here, t denotes the
current time-stamp. As illustrated in Fig. 1a, at a given
moment t, a scholar network (e.g., DBLP), G, consists of
three node types: Author, Paper and Venue, and three types
of links (or relationships): “an author writes a paper”, “a paper
cites another paper”, and “a paper is published in a venue”.

In real world settings, there may exist multiple types of
entities and relationships, i.e., jAj > 1 and jRj > 1. Most
notably, each entity and link are annotated by chronological
addition. For example, at time-stamp tþ 1, the network can
be expressed as Gðtþ 1Þ ¼ ðV þ DV; E þ DE;A;RÞ, where
DV and DE represent the recently-added entities and links,
respectively. Our current implementation assumes that the
types of a given entity and its relationships do not change,
but new entities and relationships can be added into the net-
work. For example, in a scholar network, an authoring
entity and its existing relationships, such as “author X writes
paper Y ”, would rarely change, but new authors or newly
published papers can be added into the network over time.

It is worth noting that the abstract concepts of an entity
and a link are literally instantiated by a node and an edge
respectively in a HIN instance. To aid clarity, we use node
and edge to represent the HIN objects in the rest of the
paper.

2.3.2 Dynamic Meta-Path Guided RandomWalks

Since our neural network (i.e., RsNN) works on a sequential
sequence, we need to translate the graph structure of a net-
work to a linearized sequence. We achieve this by applying
meta-path-based random walks to the target network. This
technique is proven to be effective in prior HIN embedding
studies [13], [32].

In the context of NRL, a meta-path is a path that connects
a pair of network nodes. It describes the semantic

Fig. 1. A simple scholar schema (a) and two possible meta-paths (b) of a
network under this schema. Diagrams are reproduced from [30].

630 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 3, MARCH 2022

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on February 19,2022 at 17:25:27 UTC from IEEE Xplore. Restrictions apply.

https://github.com/RingBDStack/LIME

relationship between nodes, and the mining of this semantic
relationship is the cornerstone of subsequent tasks. Take a
simple scholar network shown in Fig. 1a as an example.
This network consists of three types of nodes, authors (A),
papers (P), and venues (V), and three types of edges, “author
X writes paper Y ”, “paper X cites paper Y ”, and “paper X pub-
lished in venue Y ”. Fig. 1b shows two possible meta-paths,
where P1: “A-P-V-P-A” represents papers published by two
authors in the same venue, and P2: “A-P-A-P-A” describes
that two authors share the same co-author. Here, write�1

and publish�1 represent a backward edge on the network.
Since we are dealing with a very large graph, it is prohib-

itively expensive to exhaustively enumerate all meta-paths
of a network. Instead, existing techniques [13], [32] typically
perform meta-path-guided random walks to sample node
pairs, hoping that a carefully designed random sampling
scheme would capture much of the semantic and structural
correlations between different node pairs. In this work, we
apply meta-path-guided random walks to dynamic HINs.

Given dynamic HINs GðtÞ and Gðtþ 1Þ, a dynamic meta-
paths-guided random walk aims to continuously generate
sequences of heterogeneous nodes (paths of multiple types
of nodes) to feed recursive neural network, that contain the
newly added nodes v 2 DV and edges e 2 DE, guided by
meaningful meta-paths. We first assume that the length of
node sequences generated by the dynamic meta-path guided
random walk at t time-stamp is T , and the length of node
sequences generated at tþ 1 time-stamp is DT . We guaran-
tee that T þ DT is equivalent to the length of node sequen-
ces generated by cold start of meta-paths guided random
walk on the HIN Gðtþ 1Þ. Moreover, we assume that the
probability of a certain meta-path m during the walking is
�m and ensure that the same probability is used when walk-
ing in both GðtÞ and Gðtþ 1Þ in order to obtain an unbiased
meta-paths-guided random walk. In practice, we set an
equal probability �m for each meta-path to avoid introduc-
ing any bias among meta-paths. In this paper, we use
dynamic meta-paths-guided random walks to assist the
incremental learning described in Section 5.

3 SYSTEM OVERVIEW

LIME performs NRL using a two-step approach. It first learns
the node embeddings of a static network. It then applies
incremental learning to update the node embeddings for a
changed network.

3.1 Cuboid Abstraction Structure

A key innovation of our approach is how we encode the
node information. In this work, we map the input network
nodes into a cuboid space with three directional compo-
nents, rows, columns and pages. Fig. 4 gives an example
cuboid of a scholar network. Using our approach, nodes
within the same directional component will share the same
embedding vector assigned to that component. For exam-
ple, nodes in the ith row will share the same row embed-
ding vector, xr

i . Similarly, nodes in the jth column and kth
page will share the same column and page embedding vec-
tors, xc

j and xp
k respectively. As a result, a network node in

the ith row, jth column and kth page will be jointly repre-
sented by three components, ðxr

i ; x
c
j; x

p
kÞ. We call this a

3-component (3-C) node representation. By sharing the
embedding vector among nodes in the same directional
component for a network with n nodes, we need only 3

ffiffiffi
n3

p
unique vectors for encoding the node embeddings. Since
existing NRL methods [3] require at least n unique vectors
for n network nodes, our cuboid representation thus signifi-
cantly reduces the number of vectors and the memory stor-
age space for node embeddings. Note that we use the same
cuboid structure to encode the output node representation
given by our learning framework.

3.2 Learning Frameworks

The proposed learning framework for static network
embeddings, namely HETERRSNN, is based on the RsNN
because RsNN can better model complex hierarchical
structures over the RNN alternative. However, native
RsNN is a supervised model and merely operates on
homogeneous network. We also do not use the graph neu-
ral network (GNN) as it requires significantly more mem-
ory resource for representing the graph structure and for
learning graph embeddings, which hence does not scale
well to large networks [3]. HETERRSNN exploits the cuboid
representation to reduce the memory and computation
overhead for learning node representation. Its goal is to
map all HIN nodes into a 3-dimensional cuboid while
maintaining the pertaining attributes and relationships.
This is achieved by using a carefully designed objective
function to maximize the network probability in predicting
the right node of a network path, by considering the multi-
ple node and edge types. Like other mainstream heteroge-
neous network embedding models [13], [32], we employ
meta-path-guided random walks (see also Section 2.3.2) to
capture both semantic and structural relationship among
different nodes and construct heterogeneous neighborhood
for each node. We describe HETERRSNN in more details
in Section 4.

To adapt to changing network structures, we extend
HETERRSNN with the capability to perform incremental
learning, for which we refer to as HETERRSNN++. This net-
work is designed to update the node representation
obtained for the previous network observed at a previous
time epoch t (i.e., a month before), by taking into consider-
ation the changed network structures (i.e., new nodes and
edges) observed at the current update epoch tþ 1. A nota-
ble novel aspect of HETERRSNN++ is that it employs the
dynamic minimum cost maximum flow (MCMF) algorithm
to adjust the node mapping in the cuboid space to minimize
the error of incremental learning. HETERRSNN++ is the first
work in performing incremental NRL for HINs. We
describe this network in more details in Section 5.

Our work can be applied to arbitrary HINs, be it a dense
or sparse graph. In this paper, we focus on tackling the het-
erogeneity of nodes and edges of a large-scale HIN. We
implement LIME as a service platform. Fig. 2 depicts the
architecture of the LIME engine and the underpinning mod-
ules. A request for HIN embedding is handled and dis-
patched by the LIME Engine as an embedding task. The
processed results will be aggregated and sent back to the
user. We execute the HETERRSNN and HETERRSNN++ as
instances in Docker Container. Job dispatch and resource
management are also coordinated by the LIME Engine.

PENG ET AL.: LIME: LOW-COST AND INCREMENTAL LEARNING FOR DYNAMIC HETEROGENEOUS INFORMATION NETWORKS 631

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on February 19,2022 at 17:25:27 UTC from IEEE Xplore. Restrictions apply.

4 LEARNING STATIC NETWORK EMBEDDINGS

Existing embedding learning approaches designed for
memory-efficient [25] typically use an RNN for embedding
learning. As a significant departure from prior work,
HETERRSNN employs the RsNN and maps all nodes in a
HIN into a cuboid space to learn node embeddings. In Sec-
tion 7.2 we show that our RsNN-based approach signifi-
cantly outperforms the RNN alternative.

4.1 Overview of HETERRSNN

With HETERRSNN, NRL is performed in a cuboid space
described in Section 3.1. We initialize the shared row, col-
umn and page vectors with random values, and network
nodes are first randomly assigned to the cuboid space. At
each training epoch, we update the shared embedding vec-
tor for each directional component, and the node location in
the cuboid. To update the embedding vector, we fix the
node location in the cuboid (Section 4.2). Then, we re-adjust
the node locations in the cuboid based on the learned
embedding vectors (Section 4.3). When training terminates,
HETERRSNN outputs the node embeddings (in a cuboid
structure) as the representation of the target network.

Working Example.Weuse the scholar network given in Fig. 1
as a working example to explain how HETERRSNN learns the
component vectors (i.e., the network representation) as
depicted in Fig. 3. Here, HETERRSNN takes as input a node vec-
tor (Section 3.1) of e.g., an author (A) or a paper (P) node in the
P1meta-path of Fig. 1b, “A-P-V-P-A”. It then uses an encoder-
decoder scheme to predict the probability of each paper node
to be the next node when seeing A, or the probability of each
venue to be the next node when seeing P of the meta-path P1.
In other words, for the meta-path, P1, HETERRSNN predicts,

given an author nodeA, which paper this author is likely to be
a co-author; similarly, it also predicts, given an input relation-
ship “authorAwrites paper P”, which venue, V , is likely to be
the publication venue of paper P . In essence, HETERRSNN tra-
verses a given meta-path to find node representation that can
maximize the probability to predict the right node given a par-
tially seen network path. We note that the same learning strat-
egy applies to any other meta-paths of the same network or
other types of networks. As outlined in Section 2.3.2, the node
sequences are generated by applying dynamic meta-path-
guided randomwalks to the target network.

4.2 Learning Component Embeddings

4.2.1 Training Objective

Our training goal is to maximize the likelihood of correctly
predicting the next node in ameta-path, given a partially seen
meta path. In other words, we want to minimize the negative
log-likelihood of the next node in the node sequence. This is
equivalent to optimizing the cross-entropy between the target
probability distribution and the predicted one given by
HeterRsNN. The probability is determined by its rowprobabil-
ityPr, column probabilityPc and page probability with given
node type Ppja. Hence, the overall negative log-likelihood
(NLL) can be formalized as follows:

NLL ¼
XT
t¼1

�logPrðNtÞ � logPcðNtÞ � logPpjaðNtÞ; (1)

where T is the length of node sequences, and Nt refers to tth
node in the node sequences.

The negative log-likelihood can be also expanded with
respect to nodes, i.e., NLL ¼ PjVj

v¼1 NNLv, where jVj refers
to the total number of unique nodes in HIN, and NLLv is
the negative log-likelihood for a node v in the HIN. Mean-
while, from the perspective of our cuboid structure, NLLv is
equal to lðv; rðvÞ; cðvÞ; pðvÞÞ, where ðrðvÞ; cðvÞ; pðvÞÞ is the position
of the node v in the cuboid. In this context, the negative log-
likelihood for a node v can be expressed as:

NLLv ¼
X

pos2Sv
�logPrðNposÞ � logPcðNposÞ � logPpjaðNposÞ

¼ lrðv; rðvÞÞ þ lcðv; cðvÞÞ þ lpðv; pðvÞÞ;
(2)

Fig. 2. System Architecture of the LIME Engine

Fig. 3. Applying HETERRSNN to the P1 meta-path (“A-P-V-P-A”) shown in Fig. 1b. Here xr, xc, xp and a denote the row vector, column vector, page
vector and a node type of the target network. Unlike an RNN where weights are passed as a linear pipeline (e.g., the V edge from hr

i�1 to hc
i�1),

HETERRSNN enables information propagation in a hierarchical tree fashion (e.g., the V edge from hr
i�1 to hp

i�1).

632 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 3, MARCH 2022

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on February 19,2022 at 17:25:27 UTC from IEEE Xplore. Restrictions apply.

where lr, lc and lp refer to the row loss, column loss and
page loss, and Sv is the position set of node v in the node
sequences.

4.2.2 Embedding Learning

Using the working example for predicting P given an input
author node A, the problem of learning node representation
for a paper node Pi can be formulated as follows. Let n be
the dimension of a row, column or page input vector, andm
be the dimension of a hidden state vector of HETERRSNN.
We use a to denote the type of a network node, whether it is
an author, paper, or venue in our working example (Fig. 1).
For the input node Ai�1 of meta-path P1, “A-P-V-P-A”, we
wish to exploit the column vector xc

i�1 2 Rn, page vector
xp
i�1 2 Rn, and row vector xr

i 2 Rn, hidden state vectors
hc
i�1 2 Rm; hp

i�1 2 Rm, and hr
i 2 Rm as well as the state value

of node type a to estimate the probability of node Pi (i.e.,
the second node of the “A-P-V-P-A” meta-path). In reality,
the column, row and page vectors are derived from input-
embedding matrices Xc, Xr and Xp 2 Rn�

ffiffiffiffiffi
jVj3

p
, respectively.

As a result (see Fig. 3), the three hidden state vectors
hc
i�1; h

p
i�1; h

r
i can be produced by applying the following

recursive operations:

hc
i�1 ¼ sðWWxci�1 þ VV hr

i�1 þ bÞ
hp
i�1 ¼ sðWWxpi�1 þ VV hr

i�1 þ bÞ
hr
i ¼ sðWWxri þ UUðhc

i�1 þ hp
i�1Þ þ bÞ;

(3)

where WW 2 Rm�n; UU 2 Rm�m; VV 2 Rm�m; b 2 Rm are param-
eters of affine transformations, and s is a non-linear activa-
tion sigmoid function. Obviously, by using different
parameters VV and UU and their combinations, the above
operations form a recursive neural network, not the tradi-
tional recurrent neural network.

Meanwhile, the probability PðNiÞ of node Ni is deter-
mined by its row probability PrðNiÞ, column probability
PcðNiÞ and page conditional probability PpjaðNiÞ with the
same type a as Pi:

PrðNiÞ ¼
expðhc

i�1 � yrrðNiÞÞP
i2Sr expðhc

i�1 � yri Þ

PcðNiÞ ¼
expðhp

i�1 � yccðNiÞÞP
i2Sc expðhp

i�1 � yciÞ

PpjaðNiÞ ¼
expðhr

i � yppðNiÞÞP
i2Spja expðhr

i � ypi Þ
;

(4)

PðPiÞ ¼ PrðNiÞ � PcðNiÞ � PpjaðNiÞ; (5)

where rðNiÞ, cðNiÞ and pðNiÞ are the row index, column
index, and page index of Ni, respectively. y

r
i 2 Rm is the ith

vector of Y r 2 Rm�
ffiffiffiffiffi
jVj3

p
while yci 2 Rm is the ith vector of

Y c 2 Rm�
ffiffiffiffiffi
jVj3

p
and ypi 2 Rm is the ith vector of Y p 2 Rm�

ffiffiffiffiffi
jVj3

p
.

Sr, Sc, and Sp denote the set of rows, columns, and pages of

node cuboid, respectively. We note that a similar learning

process is applied to estimating the probability PðViþ1Þ of

node Viþ1 when seeing Pi as the model input in Fig. 3.
Unlike a RNN, HETERRSNN enables information propa-

gation in a hierarchical tree fashion (e.g., the VV edge from

hr
i�1 to hp

i�1 and the UU edge from hc
i�1 to hr

i) of Fig. 3. This
allows us to better learn and aggregate the semantical and
structural information among the three components of our
cuboid structure.

As shown in Fig. 3, given the input column vector xci�1

and page vector xp
i�1 of the i� 1-th node, we first infer the

row probability PrðNiÞ and the column probability PcðNiÞ
of the ith node. Next, we choose the indexes of the row
and column with the largest probabilities of PrðNiÞ and
PcðNiÞ to look up the next input row vector xr

i and hetero-
geneous type a. We can therefore infer the largest condi-
tional page probability PpjaðNiÞ of the ith node. Therefore,
the computational complexity of this forward training can
be proved Oð ffiffiffiffiffiffijVj3

p
T Þ, where T is the length of the gener-

ated node sequences.

4.3 Node Placement Optimization

Since nodes in the same directional component, be it a row,
column or page, share a single component-level vector, we
can further optimize the loss function by adjusting the
placement of nodes in the cuboid. Our intention is to group
nodes with similar semantics, e.g., authors who tend to pub-
lish in the same venue, in the same component. Doing so
can reduce the information lost when trading the number of
node vectors for memory footprint.

As an example, consider the cuboid shown in Fig. 4 for a
scholar network. During training, we move publication-
venue node HPCA from its initial position at the jth column
to sit at the cross-section defined by the column that is
shared by other systems-related venues like TC, TPDS,
SOSP, and FAST. Likewise, node SDM can be moved from
its initial position at the jth column to sit together with
data-mining venues like TKDE, KDD, ICDM, and WSDM.
By so doing, we group nodes that are likely to share similar
semantics together so that we can use a single shared com-
ponent vector across all nodes in a directional component.

4.3.1 Training Objective for Node Placement

Assume we want to move node v from its initially assigned
location ðrðvÞ; cðvÞ; pðvÞÞ to a new location, ði; j; kÞ, in the
cuboid. We can independently calculate (i.e., by fixing the
other two directions when moving node v in one direction,
and keeping other nodes unchanged) the loss for the row

Fig. 4. Adjusting node location in the cuboid space. Our goal is to group
nodes with similar semantics in the same directional component so that
they can share the same embedding vector of that component.

PENG ET AL.: LIME: LOW-COST AND INCREMENTAL LEARNING FOR DYNAMIC HETEROGENEOUS INFORMATION NETWORKS 633

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on February 19,2022 at 17:25:27 UTC from IEEE Xplore. Restrictions apply.

lrðv; iÞ, column lcðv; jÞ and page lpðv; kÞ. According to the
loss function given in Eq. (2), the total loss, lðv; i; j; kÞ, of the
new location, ði; j; kÞ, for node v, due to this movement is
lrðv; iÞ þ lcðv; jÞ þ lpðv; kÞ. Here, each term of the total loss
would have already been computed when learning the com-
ponent embeddings. This is because to predict the next node
we need to compute the probability (i.e., in Eq. (4),
hr;c;p
i�1 � yrðPiÞ) of all the nodes in the node sequences.

As a result, lrðv; iÞ is the sum of �logð expðhc
t�1

�yr
rðnÞÞP

i2Sr expðh
c
t�1

�yr
i
ÞÞ over

all the occurrences of node v in the node sequences seen
during learning component embeddings; lcðv; iÞ and lpðv; iÞ
are computed in the same way. Hence, after we calculate
lðv; i; j; kÞ for all possible new locations, ði; j; kÞ, we can
translate the node reallocation into the following optimiza-
tion problem:

ming

X
ðv;i;j;kÞ

lðv; i; j;kÞgðv; i; j; kÞ subject to

X
ði;j;kÞ

gðv; i; j;kÞ ¼ 1 8v 2 V;
X
v

gðv; i; j; kÞ ¼ 1 8i 2 Sr; j 2 Sc; k 2 Sp;

gðv; i; j; kÞ 2 f0; 1g; 8v 2 V; i 2 Sr; j 2 Sc; k 2 Sp;

(6)

where gðv; i; j; kÞ ¼ 1 indicates node v is assigned to ði; j; kÞ
in the cuboid, and Sr, Sc and Sp denote the set of nodes in
the row, column and page directions, respectively.

4.3.2 Solving Node Placement Optimization

Inspired by [25], we convert the above optimization prob-
lem to the standard minimum weight perfect matching
(MWPM) problem [26]. This is done by defining a weighted
bipartite graph3 BG ¼ ðV; EÞ with V ¼ ðV; Sr � Sc � SpÞ, in
which the weight of the edge in � connecting a node v 2 V
and location/node ði; j; kÞ 2 Sr � Sc � Sp is the loss
lðv; i; j; kÞ of node v. Specifically, we intend to find a set of
edges so that all vertices in graph BG are matched, and the
sum of the edge weights (and hence the loss) of the edge
subset can be as small as possible. Here, a matching is a set
of edges, no two sharing a vertex and a matching is perfect if
all vertices are matched.

The MWPM problem has been extensively studied in the
literature, and one of the widely used solutions is the mini-
mum cost maximum flow (MCMF) algorithm. However,
the computational complexity of MCMF is OðjVj3Þ, which
would still be expensive for a large network. To reduce the
computational overhead, we leverage linear-time approxi-
mation [33], [34], with respect to the edge number of the
bipartite graph, i.e., jEj ¼ jVj2, to find a nearly-good solu-
tion. To this end, we employ an Improved Path Growing
Algorithm (IPGA’) [34] to solve the node reallocation. We
choose IPGA’ because it is shown to be more computation-
ally efficient and more accurate [34], [35] than the other
alternative used in prior embeddings learning work tuned
for resource usage [25].

4.4 Time Complexity of HETERRSNN

The time complexity of training HETERRSNN comes from
two parts, learning on the component embeddings and per-
forming node reallocation using IPGA’. The complexity of
the former and the latter are Oð ffiffiffiffiffiffijVj3

p
T Þ (see Section 4.2.2)

and OðjVj2Þ respectively, where jVj is the total number of
nodes in the HIN, and T is the total length of node sequen-
ces. Putting together, the overall time complexity of
HeterRsNN model is Oðð ffiffiffiffiffiffijVj3

p
T þ jVj2ÞKÞ, where K is the

number of training epochs. This is determined by the larger
one between

ffiffiffiffiffiffijVj3
p

T and jVj2.

5 INCREMENTAL LEARNING

5.1 Modeling Network Changes

Weperiodically update the existing node embeddings by con-
sidering the new nodes and edges added into the target net-
work. This is done by first applying dynamic meta-paths-
guided random walks (Section 2.3.2) to break down the new
nodes and edges seen at time tþ 1with respect to the network
observed at the previous timestamp t. Specifically, we formu-
late the newnode set V0 and the new length of node sequences
T 0 at time tþ 1 using increments (D)4, V0 ¼ V þ DV and T 0 ¼
T þ DT with respect to the ones seen at time t.

Furthermore, due to the introduction of new network
nodes, we also need to update the cuboid structure used for
learning node embeddings. We decompose the overall loss
function for learning representation for the changed net-
work, Gðtþ 1Þ, as:

NLL0 ¼
XT
t¼1

�logP ðNtÞ þ
XTþDT

t¼Tþ1

�logP ðNtÞ; (7)

where Nt refers to t�th node in generated node sequences.
Here, we leverage the learned parameters of HETERRSNN
and component embedding vectors obtained from GðtÞ to
compute the first term,

PT
t¼1 �logP ðNtÞ, of the loss function.

We describe this strategy in the next subsection.
Like learning static embeddings, at each training iteration,
we perform two optimizations: learning the component
embeddings (Section 5.2) and adjust the node placement in
the cuboid (Section 5.3).

5.2 Design of HETERRSNN++

To reduce the training overhead for NRL for a changed net-
work, HETERRSNN++ leverages the parameters and node
vectors of HETERRSNN that was trained on an early version
of the target network to update the node embeddings in
each directional component (i.e., row, column and page).
We achieve this using a two-step approach described as
follows.

Step-1: Inheriting Parameters and Vectors. We inherit all the
parameters and vectors for the target network,GðtÞ, observed
at the previous timestamp, t, which have been trained in using
the loss function defined in Eq. (2). More specifically,
the parameters and vectors to be inherited include
WW 2 Rm�n; UU 2 Rm�m; VV 2 Rm�m; b 2 Rm;Xr 2 Rn�

ffiffiffiffiffi
jVj3

p
;

3. A graph is bipartite if its vertices can be colored with two colors
such that each edge has ends (or vertices) of different colors.

4. DV and DT can be generally referred to as adding or removing
network nodes and the node sequences corresponding to those nodes.
Namely, the negative delta indicates the removal of the node’s contri-
bution to the loss function.

634 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 3, MARCH 2022

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on February 19,2022 at 17:25:27 UTC from IEEE Xplore. Restrictions apply.

Xc 2 Rn�
ffiffiffiffiffi
jVj3

p
;Xp 2 Rn�

ffiffiffiffiffi
jVj3

p
; Y c 2 Rm�

ffiffiffiffiffi
jVj3

p
, Y r 2 Rm�

ffiffiffiffiffi
jVj3

p

and Y p 2 Rm�
ffiffiffiffiffi
jVj3

p
. We use these parameters to initialize the

newly-added vectors with the same settings in the function
Eq. (2).

Step-2: Calibration. Simply using the inherited parameters
and embedding vectors for the first term of Eq. (7) will inev-
itably introduce large errors. To minimize the loss function
defined in Eq. (7), we calculate the difference in the loss,
DNLL0, due to accumulated computation errors. We cali-
brate and reduce DNLL0 using a standard SGD method. To
do so, we also breakdown DNLL0 into three directional
components, corresponding to rows, columns and pages in
our cuboid structure:

DNLL0 ¼
����
XT
t¼1

�
log

X
i2S0

r

expðhc
t�1y

r
i Þ þ log

X
i2S0

c

expðhp
t�1y

c
iÞ

þ log
X
i2S0

p

expðhr
ty

p
i Þ
�
� logRCP

����;
(8)

where

R ¼
XT
t¼1

X
i2Sr

expðhc
t�1y

r
i Þ; (9)

C ¼
XT
t¼1

X
i2Sc

expðhp
t�1y

c
iÞ; (10)

P ¼
XT
t¼1

X
i2Sp

expðhr
ty

p
i Þ: (11)

The breakdown allows us to update some of the parame-
ters and vectors, i.e., yci 2 S

0
c, yri 2 S

0
r, and ypi 2 S

0
p, using

SGD, while keeping others inherited vectors and affining
transformation parameters unchanged. By only learning
and updating a subset of the inherited parameters and vec-
tors, we can accelerate the process for learning and update
component embedding vectors. We can therefore merely
update partial parameters yci 2 S

0
c, y

r
i 2 S

0
r, and ypi 2 S

0
p vec-

tors with SGD in Eq. (8) whilst fixing the others inherited
vectors and affining transformations parameters to acceler-
ate the procedure above.

Beside from the inherent errors introduced from the
parameter inheritance, we also need to consider the incre-
mental portion (i.e., changed network structures) in the sec-
ond term of Eq. (7). To this end, we use the newly generated
corpus DT to train and update all parameters and vectors
again with SGD.

Fault Tolerance. Since the network is dynamically
evolved, fault tolerance should not be ignored. Our incre-
mental learning scheme offers a way to rapid recovery from
the backward embedding vectors. Accordingly, different
portions of the loss Function (7) can be rebuilt if parts of the
network data get lost.

5.3 Node Placement for Dynamic Networks

We now describe how to adjust the node placement in the
cuboid during incremental learning, like what we do for
learning static embeddings (Section 4.3).

As discussed in Section 4.3.2, we translate the prob-
lem of node placement optimization into an MWPM
problem builds around a weighted bipartite graph, for
which we solve by using an MCMF algorithm with lin-
ear-time approximation. Algorithms for solving MWPM
within a bipartite graph are based on the idea of aug-
menting paths defined as follows. In graph theory, a
matching is a set of edges, no two sharing a vertex (see
also Section 4.3.2), and an alternating path is a path
whose edges are alternately in and out of the matching.
An augmenting path is an alternating path that starts
from and ends on unmatched vertices.

Existing linear-time approximation methods, like
LAM [33] used in [25] and IPGA’ [34], [35] used for static
embeddings in this work, cannot solve the MWPM problem
for a dynamic bipartite graph. Alternative MCMF algo-
rithms, like the zkw algorithm [36] and the Kuhn-Munkres
algorithm, are not applicable to our problem either, because
they cannot effectively limit the range of finding augment-
ing paths when new nodes are added to the graph. We also
cannot use the Dijkstra’s shortest path algorithm to find the
augmenting path in our weighted bipartite graph, because
it cannot handle edge with a negative weight.

To address the above limitations, we employ a
Edmonds-Karp algorithm based the shortest path faster algo-
rithm (SPFA) [37], namely EK-SPFA. This algorithm is a
good fit for our problem as it can effectively find aug-
menting paths in a dynamic, weighted directed bipartite
graph with negative-weight edges. With EK-SPFA in
place, we then apply the optimization strategy as in Sec-
tion 4.3 for node placement optimization, but this time
we use a new objective function for incremental learning
(Eq. (7)). Incremental learning is achieved by breaking
down the changes in the node sets in each row, column
and page of the cuboid, i.e., S0

r ¼ Sr þ DSr, S
0
c ¼ Sc þ DSc,

and S0
p ¼ Sp þ DSp, where Sr, Sc and Sp respectively

denote the set of nodes in the row, column and page
component. We use these to compute DT in the second
term of the loss function given in Eq. (7).

5.4 Time Complexity of HETERRSNN++

The worst-case running time of SPFA is OðjVEjÞ, where
jEj is number of bidirectional edges. However, experi-
ments suggest the average running time of SPFA is
OðkjEjÞ, where k is the number of times each node enter-
ing a queue and generally meets k � 2. Since the step for
finding augmenting paths runs less than jVj times, and
each step theoretically takes OðjVEjÞ with an average of
OðkjEjÞ, the time complexity of our node placement algo-
rithm for incremental learning is OðjV2EjÞ in theory and
OðkjVEjÞ on average in practice. Here, E equals 2jVj2 þ
4jVj in our problem. Putting together, for our solution,
the time complexity is bounded to OðjVj4Þ in theory and
OðkjVj3Þ on average. It is worth noting that jVj is same
with the scale of the vertices of the entire dynamic bipar-
tite graph BG, rather than the scale of the incremental
vertices 2DjVj in the bipartite graph. Since the EK-SPFA
algorithm is naturally compatible with dynamic network
evolution, a smaller increment can help to significantly
reduce the time complexity.

PENG ET AL.: LIME: LOW-COST AND INCREMENTAL LEARNING FOR DYNAMIC HETEROGENEOUS INFORMATION NETWORKS 635

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on February 19,2022 at 17:25:27 UTC from IEEE Xplore. Restrictions apply.

6 EXPERIMENTAL SETUP

6.1 Hardware and Software

We evaluate the LIME Engine using a 16-node GPU cluster,
where each node consists of a 64-core Intel Xeon CPU E5-
2680 v4@2.40GHz with 512GB RAM and four NVIDIA Tesla
P100 GPUs. The server nodes run Ubuntu 20.04 LTS with
Linux kernel v.5.4.0. We implement LIME using Tensorflow
v1.4.0. In the experiment, we dispatch each network embed-
ding tasks to run on a lot of server nodes.

6.2 Model Training

For all embedding methods, we use the same set of hyper-
parameters, including the learning rate (0.01), mini-batch
size (64), and the multi-threading number (32) and the num-
ber of negative samples per positive (5). For random walks
(Section 2.3.2), we set the number of walks per node, the
max walk length to form a node sequence, and the neigh-
borhood size to be 1,000, 100, 7, respectively. As a result, a
mini-batch size of 64 represents a batched training on a
sequence of 64�1,000 nodes.

6.3 Datasets

We use three heterogeneous networks, including the DBLP
dataset,5 Aminer Computer Sciences (CS) dataset [38] and
an cyber-physical datastream, described as follows.

DBLP. This dataset consists of over 6.5 million nodes of
four types: 2,251,371 authors (A), 2,476 organizations (O),
and 4,314,846 papers (P) from 5,744 publication venues (V).
There are three types of relationships: organization affiliates
authors (O–A), authors writes papers (A–P), and papers pub-
lished in venues (P-V). This dataset contains data up to 2018.
We construct the heterogeneous information network fol-
lowing [13] and use 4 types of meta-paths. We assign each
month’s new nodes and edges to a new time epoch based
on combinations of a publication venue, papers, new
authors and new organizations.

AMiner. This scholar network dataset consists of over 4
million nodes of three types: 1,693,531 authors (A) and
3,194,405 papers (P) from 3,883 publication venues (V) held
until 2016. We use AMiner heterogeneous collaboration net-
work constructed by [13] and use 3 types of meta-paths.
This dataset contains two types of relations: authors writes
papers (A-P), and papers published in venues (P-V). We fol-
low [13] to match the eight research fields (or categories6)
for publication venues grouped by Google Scholar7 with
those in AMiner dataset to get labeled venues. We assume
that a specific researcher belongs to a particular area if the
researcher has over ten papers were published in corre-
sponding venues of that area.

CTI. This Cyber Threat Intelligence (CTI) dataset
includes 639,450 records from 612 security reports pub-
lished between January 2008 and June 2019. We covert this

dataset to a HIN by following the methodology
described [7]. This dataset includes four types of nodes: IP
Address (I), Domain Name (D), Malware Hash (M) and E-
mail Address (E), and five types of relationships (edge
types): “domain name is resolved to ip address (D–I)”,
“domain name is visited by malware hash (D–M)”, “domain
name is registered by email address (D–E)”, and “ip address
connects to an email address (I–E)”. We involve 7 types of
meta-paths for the random walks. We assign each month’s
new nodes and edges to a new time epoch based on combi-
nations of a complete security report.

6.4 Competitive Methods

To evaluate the advancement of LIME, we first compare
HETERRSNN with the NRL methods below:

Metapath2Vec. This is the state-of-the-art NRL method for
HINs [13]. It leverages predefined meta-path-guided ran-
dom walks to construct the heterogeneous neighborhood of
a node and then applies RNN-based skip-gram with nega-
tive sampling technology to perform node embedding.

DeepWalk. This method [11] learns d-dimensional vectors
by capturing node pairs within w-hop neighborhood via
uniform random walks. It is a typical homogeneous net-
work embedding model.

Node2Vec. This model is generalized from DeepWalk,
which learns d-dimensional node vectors by capturing node
pairs within w-hop neighborhood via parameterized random
walks [12]. In thiswork,we use the suggested parameters, p ¼
4 and q ¼ 1, given in the source publication for comparison.

LINE. This model preserves first-order and second-order
proximities between nodes [8]. We use two d=2-dimensional
vector representations for the first-order and second-order
proximities, and then concatenate them as the node
representation.

GraphSAGE. This is a inductive NRL framework for
dynamic homogeneous networks [27]. It samples node neigh-
borhoods to generate vertex embeddings for unseen data.

PTE. This approach [28] decomposes a HIN to a set of
bipartite networks by edge types and learns d-dimensional
node vectors by capturing 1-hop neighborhood of the
resulting bipartite networks.

We further compare HETERRSNN++ against the following
5 representative dynamic NRL methods:

HTNE-a. This employs a multivariate hawkes process
and attention mechanism to learn homogeneous temporal
network embeddings [18].

DyRep. This method employs time-scale dependent mul-
tivariate point process model to learn homogeneous tempo-
ral network embeddings [20].

DNE. This method extends homogeneous network
embedding methods built around RNN-based skip-gram
models to handle dynamic networks [23].

CTDNE. This employs temporal random walk-based con-
tinuous-time dynamic network embedding to learn homoge-
neous and time-preserving network representations [22].

DyHAN. This method uses node-, edge- and temporal-
level attention to learn dynamic heterogeneous network
embedding [29].

HeterRNN. This is a variant of HETERRSNN. Instead of
using the RsNN, it uses an RNN to learn component
embeddings.

5. https://dblp.uni-trier.de/
6. The eight categories include: Computational Linguistics, Com-

puter Graphics, Computer Networks and Wireless Communication,
Computer Vision and Pattern Recognition, Computing Systems, Data-
bases and Information Systems, Human Computer Interaction, Theoret-
ical Computer Science.

7. https://scholar.google.com/citations?view_op=top_venues&hl=
en&vq=eng

636 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 3, MARCH 2022

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on February 19,2022 at 17:25:27 UTC from IEEE Xplore. Restrictions apply.

https://dblp.uni-trier.de/
https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng
https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng

6.5 Evaluation Methodology

We evaluate all approaches for efficiency and effectiveness.
Efficiency. We measure the resource usage (particularly

the memory footprint), execution time and the speedup
of training time in both static and dynamic network sce-
narios. To compute the speedup, we use metapath2vec as
the baseline.

Effectiveness. We evaluate the quality of the learned node
representation by feeding it to standard machine learning
tools to support downstream processing tasks. We consider
three tasks: node clustering, node classification, and anom-
aly detection. For node clustering, we apply k-means to
scholar networks to group nodes of authors and venues,
and use normalized mutual information (NMI) [39] to quantify
the clustering effectiveness. For node classification, we con-
sider both multi-class and multi-label classification. We feed
the embedding results into a logistic regression classifier
and use Macro-F1 and Micro-F1, two high-is-better metrics
[40], to evaluate the classification performance. For anomaly
detection, we apply a logistic regression classifier to perform
node classification on the CTI dataset and use Macro-F1 and
Micro-F1 to evaluate the performance. For the three tasks,
we set the embedding size to 129 (which is a multiple of 3
as required by LIME’s 3-component representation). To
observe the convergence of error and bias in our SGD solu-
tion, we also measure the difference of the objective function
(error) under different incremental scenarios. This indicates
the bias introduced from the parameter inheritance.

Performance Report. To minimize the noise, we repeat each
experiment 10 times independently and compute the aver-
age running time or accuracy. For a fair comparison, we
vary the hyper-parameters for each competing method for
each task, and use the best-performing settings.

7 EXPERIMENTAL RESULTS

This section demonstrates that LIME is efficient by using the
least amount of memory resources and computational time
(Section 7.1), and effective by delivering comparable or
even better performance for downstream processing tasks
(Section 7.2).

7.1 Efficiency Evaluation

In this experiment, we apply NRL methods to the DBLP
dataset in both static and dynamic settings. To evaluate the
impact of network size on resource and computational effi-
ciencies, we sample the entire DBLP datasets to construct
networks of different sizes. Specifically, we choose a subset
of publication venues, which are then used to choose the
associated nodes like authors and organizations. We use
five sample rates to choose the venues, 20, 40, 60, 80, and
100 percent, and a sample rate of 100 percent means we use
the entire DBLP dataset. We empirically use the meta-path
”O-A-P-V-P-A-O” to guide random walks in the dataset.
We set the dimension of node embedding vectors to be 513
(so that it can be divide exactly by 3 since LIME uses a 3-com-
ponent vector representation).

7.1.1 Static Embedding Learning

Table 1 reports the memory footprint and training time for
learning node embeddings for a static DLBP dataset. LIME

delivers the fastest training time by using the least amount
of memory. Metapath2Vec is the best-performing alternative
method for HIN embedding, but it requires at least 4x (up
to 6.3x) more memory space and is 2x slower than LIME. It is
to note that some memory space (i.e., 0.7GB to 0.9GB) is
used to store the node sequences generated by random
walks – this is a cost must be paid by all methods. By
excluding this overhead, LIME only requires less than 90MB
to store the node vectors. By comparison, alternative meth-
ods at least 2GB (up to 10GB) for storing the node vectors,
which thus incurs significantly larger memory overhead. By
using a fewer number of node vectors, LIME also speeds up
the training time considerably, because doing so also
reduces the number of computational operations and mem-
ory accesses. DeepWalk, Node2Vec, LINE, PTE and Meta-
path2Vec have similar time and space consumption due to
their similar inherent mechanism of randomwalk and nega-
tive sampling. Overall, LIME reduces the memory footprint
required for learning static network embeddings by at least
4x (up to 10x) and speeds up the training time by at least 2x
(up to 16x) over competing methods. This lower memory
resource requirement and faster processing time mean that
LIME can scale better to larger network for a given process-
ing hardware platform.

7.1.2 Dynamic Embedding Learning

In this experiment, we consider the DBLP data generated
between 1936 to 2017 as the starting, or genesis network, i.e.,
GðtÞ; t ¼ 0. We then incrementally add data from January
2018 onwards into the genesis network on a daily, weekly,
monthly, seasonally, and yearly basis, to form a changing
network, Gðtþ 1Þ, with different time scales. The average
number of new nodes introduced by the different time scales,
i.e., the daily, weekly, monthly, seasonally, and yearly basis,
is 1,753, 11,255, 42,960, 108,983, and 304,633, respectively.
The changed network is used to evaluate the performance of
our incremental learning strategy (Section 5). As no prior
work in heterogeneous information network embedding
supports effective incremental learning, we adopt Metapath2-
Vec – the best performer of prior work in static embedding
learning – together with other 5 representative baselines to
evaluate the performance of dynamic NRL. Specifically, we
compare to the ’cold-start’ Metapath2Vec that learns embed-
dings from scratch on a changed network.

TABLE 1
Time and Memory Overhead for Different Sized DBLP Networks

PENG ET AL.: LIME: LOW-COST AND INCREMENTAL LEARNING FOR DYNAMIC HETEROGENEOUS INFORMATION NETWORKS 637

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on February 19,2022 at 17:25:27 UTC from IEEE Xplore. Restrictions apply.

Fig. 5 depicts the comparison of raw processing time. By
leveraging the changing network structures and the previ-
ously learned embeddings of the target network, LIME accel-
erates the learning time by 5� 20x compared with the
Metapath2Vec. It is worth noting that the processing time of
Metapath2Vec is relatively stable because of the number of
new nodes is small compared to the ones in the genesis net-
work. We can observe that LIME has a larger advantage over
Metapath2Vec when processing under a smaller changing
scale (e.g., one day or one week). This is because the fewer
the changes in the network, the smaller number of optimiza-
tion operations needed to be performed during the incre-
mental learning process. We consider this a benefit of LIME

as it allows us to update node representation more fre-
quently so that the downstream processing model can catch
up with the evolution of a network quicker. Compared with
continuous random walk based approaches such as CTDNE
and DNE, LIME significantly benefits from the shared vector
mechanism and thus obtains higher computational effi-
ciency. DyRep and HTNE-a models spend more time on
modeling the temporal process and DyHAN consumes the
longest time because the 3-layer self-attention units are
extremely computation intensive, making it unrealistic for
handling evolving networks.

7.2 Effectiveness Evaluation

We now evaluate the quality of the learned representation
by feeding the node embeddings to standard machine learn-
ing algorithms for three downstream processing tasks: node
clustering, node classification, and anomaly detection.

7.2.1 Node Clustering

In this experiment, we use nodes of authors and publication
venues gathered the eight research fields (categories) in the
AMiner dataset to evaluate how the representation learned
by different embedding methods perform on node cluster-
ing. The goal of node clustering is to group authors and ven-
ues in the same research field into the same cluster. To label
the research field of an author, we select the category in
which the author has the most article records.

In addition to static network embedding models, we also
compare our approach against other dynamic NRL base-
lines. We use 80 percent of venues related node and edges

as the starting network and the remains as new nodes
added into the initial network. We apply the k-means algo-
rithm (k ¼ 8 as we target eight research fields) to cluster the
author and venue nodes using the learned node embed-
dings. We then evaluate the performance of the clustering
results by computing the NMI.

Table 2 gives the NMI scores for static and dynamic learn-
ing. While using significantly fewer number of node vectors,
HeterRsNN andHeterRsNN++ employed by LIME outperform
all other comparative methods. This is because LIME can bet-
ter discover the internal semantic relationships among nodes
in the HIN due to its novel node placement optimization
scheme (Sections 4.3 and 5.3). When performing author clus-
tering for the static network, HeterRsNN gives an improve-
ment of 3 percent on NMI over the best-performing
comparative method, Metapath2vec and an improvement of
13-28 percent over others. For author clustering in the
dynamic network, improves HTNE-a and DNE by 9 and 22
percent respectively. For venue clustering, our approach
also gives the highest NMI score, with a 1-8 percent improve-
ment over others. Considering LIME is designed to trade node
embedding quality for reduced computational resources,
any improvement it achieves would be a bonus. Owing to
the beneficial strategy of grouping nodes that may share sim-
ilar semantics together, LIME achieves the best performance
in node clustering tasks. Therefore, the improved NMI score
given by LIME is remarkable.

7.2.2 Node Classification

This task predicts which of the eight research fields in the
AMiner dataset, an author or venue node is likely to be
based on other training labeled nodes. As an author can
contribute into multiple research fields, we formulate the
author node classicization a multi-label classification prob-
lem. Here, we learn node embeddings for all authors and
venues and feed the labeled nodes (as introduced in Sec-
tion 6) into a logistic regression classifier. We use 10, 30, 50,
70 to 90 percent of the data to train the classifier and the
remaining for testing. To evaluate dynamic embedding
learning, we use the AMiner dataset by a monthly step and
compare HeterRsNN++with dynamic NRL baselines.

For all training-test-split ratios, LIME outperforms most
baselines with an average 0.5 percent-6 percent improvement

Fig. 5. Comparing LIME’s incremental learning strategy against the best
alternative static embedding method and the mainstream learning mod-
els for dynamic network representation. The x-axis shows the granularity
for applying incremental learning to a changed network. LIME is signifi-
cantly faster in learning embeddings for an evolving network.

TABLE 2
Normalized Mutual Information (NMI) for Node Clustering

This is a higher-is-better metric.

638 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 3, MARCH 2022

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on February 19,2022 at 17:25:27 UTC from IEEE Xplore. Restrictions apply.

for author node classification in Table 3 and an average 1 per-
cent-17 percent for venue classification in Table 4. In some test
settings, LIME gives marginally lower performance (between
0.5 percent and 2 percent) over the best-performing HINNRL
method Metapath2vec for static embedding, but with signifi-
cantly less computational resources. The comparable perfor-
mance suggests that LIME is effective in capturing an ensemble
of semantic and structural correlations of heterogeneous net-
works. The vector sharingmechanism adopted by LIME allows
multiple nodes to share component vector(s), which inher-
ently result in an increased correlation among these nodes. If
we consider the RNN variant of LIME (e.g., replacing the
RsNNwith an RNN), we see that HeterRNN does not deliver
the state-of-the-art performance, suggesting that an RNN is
less effective in modeling network structures. Finally, we also
observe that the scores of HeterRsNN (that operates on the
entire dataset) and HeterRsNN++ are close. This suggests the
effectiveness of incremental learning approach.

7.2.3 Anomaly Detection

In this task, we train a logistic regression classifier to take as
input the node embeddings to predict potential anomalies
of the CTI dataset. Like node classification (Section 7.2.2),
we vary the training ratios from 10 to 90 percent with a step
of 20 percent. Because a security report can be attributed
with multiple catalogue tags, we formulate this as a multi-
label classification problem. Similarly, we grow the CTI
dataset by a monthly basis to evaluate dynamic embedding
learning.

Table 5 gives the Macro-F1 and Micro-F1 scores for each
approach. Like node classification, HETERRSNN and
HETERRSNN++ outpeform all but Metapath2vec. However,
the performance gap between HETERRSNN/HETERRSNN++
and Metapath2vec is small, between 0.1 and 0.8 percent. We
also observe that HETERRSNN ++ delivers similar

performance over HETERRSNN, albeit it applies a incremental
learning strategy that has lower memory footprint and faster
training time. This experiment shows that LIME can extract
high-quality network representation for anomaly detection.

7.3 Observable Error of Objective Loss Function

To validate the effectiveness of model convergences, we
conduct an empirical micro-benchmarking study on the
error of objective loss function in HETERRSNN++ and cold-
start HETERRSNN, respectively. In general, a smaller loss
indicates better model effectiveness of unsupervised

TABLE 3
Multi-Label Author Node Classification in AMiner

TABLE 4
Multi-Class Venue Node Classification in AMiner

TABLE 5
Anomaly Detection on the CTI Dataset

PENG ET AL.: LIME: LOW-COST AND INCREMENTAL LEARNING FOR DYNAMIC HETEROGENEOUS INFORMATION NETWORKS 639

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on February 19,2022 at 17:25:27 UTC from IEEE Xplore. Restrictions apply.

learning models. We leverage different datasets with vari-
ous sizes extracted from DBLP to showcase different time
scales and their effects on the dynamic HINs. We configure
the increment on a daily, weekly, monthly, seasonally, and
yearly basis, respectively. In Fig. 6, there is an observably
stable but descending trend of the objective function differ-
ences under different increment scales. The error tends to
decrease as the number of HIN nodes soars. For instance,
the error of daily increment in HETERRSNN++ is roughly
0.0804 while it falls to merely 0.0004 in case of yearly incre-
ment. This is because more HIN nodes are involved in the
bias calibration, wherein a increasing number of training
iterations will gradually improve the precision despite the
inevitably longer processing time (Fig. 5). The result indi-
cates the objective loss error can be constantly maintained at
an extremely low level with minimized bias stemming from
dynamic network changes.

7.4 Case Study

As a significant departure from NRL methods [3], LIME can
automatically discover the internal semantic relationship
among nodes in our cuboid space. In an attempt to illustrate
this advantage, we show the author and venue nodes that
share the same row and column vectors when applying
HETERRSNN to the DBLP dataset. The results are given in
Table 6, which include both publication venues and authors
of different research fields.

As can be seen from Table 6, LIME is highly effective in
grouping nodes with similar semantics. For example, the
publication venues in row-45 are all conferences and jour-
nals in computing systems. We also observe similar group-
ing for authors and venues in other fields of data mining,
databases, AI, ML, NLP, CV, etc. Given that the grouping is
done automatically without human involvement or similar

search, LIME is thus able to learn the semantic relationships
during training. The results show that our 3-component
shared embedding scheme is about to capture and incorpo-
rate the underlying structural and semantic relationships
between various types of nodes in heterogeneous networks.
This allows LIME to reduce the number of node vector with-
out significantly compromising the quality of the node
representation.

8 RELATED WORK

DeepNetwork EmbeddingModels. Previous network representa-
tion learning models primarily focus on improving the learn-
ing ability such as preserving original network structural
information and properties [3] or semantic correlations of dif-
ferent types of nodes and relationships [5], [13], [41]. Unlike
these, LIME aims to improve the efficiency in computational
resources and training time to allow the learning algorithm to
scale to large networks and to respond to a dynamically
changing HIN quickly. While graph-based learning methods
have recently demonstrated impressive results on learning
graph representations, graph neural networks (GNNs) would
incur significant memory overhead and long training time for
real-life networks. As a result, GNNs are ill-suited for learning
embedding for larger, dynamically changingHINs.

LightRNN [25] is the most closely related work for
resource-tuned representation learning. It targets word
embedding learning for natural language processing tasks.
LightRNN adopts a 2-component shared embedding scheme
using RNN for learning word embeddings. LightRNN allo-
cates every word in the word vocabulary into a table so that
words in a row shardwith a rowvector andwords in each col-
umn share a common column vector. While LightRNN
reduces the model size and running time for processing texts,
a 2-component scheme is ill-suited for HINs because it cannot
adequately model the semantics among heterogeneous nodes
in a HIN. Inspired by LightRNN, we adopt a 3-component
shared scheme and employRsNN topropagate and aggregate
information across the network hierarchy. LIME also advances
LightRNN by using a faster and more accurate algorithm to
solve the optimization problem in shared embedding space.

Dynamic Network Embedding Models. Numerous dynamic
network embedding models have been proposed and can be
classified into three categories: i) Stochastic-based approaches
[18], [19], [20] assume the network changes follow a certain
stochastic process (e.g., Hawkes process, Triadic closure pro-
cess, orMultivariate point process), which can hardly stand in

Fig. 6. Objective loss on different sized HIN.

TABLE 6
LIME Can Automatically Group Venue/Author Nodes in the Same Research Field to Share the Same Row or Column Vector

Vector no. Network nodes (venues or authors) Research field

row-45 TC, TPDS, TOS, ASPLOS, IPDPS, TOCS, HPCA, OSDI, SOSP, FAST, ICDCS, TECS, PARCO, ISCA Computing systems
row-72 VLDB, ICDE, SIGMOD, ICDT, TODS, VLDBJ, CIDR, EDBT, PVLDB, PODS, DASFAA, SSDBM Database
row-86 KDD, TKDE, ICDM, TKDD, WSDM, DMKD, CIKM, SDM, KAIS, ECML-PKDD, PAKDD Data mining
row-99 Albert Zomaya, Andrew S. Tanenbaum, Ion Stoica, Schahram Dustdar, David A. Patterson Computing systems
row-121 NIPS, ICML, JMLR, TPAMI, Neural Computation, AIJ, UAI, IJCV, TNNLS, Machine Learning Machine learning
column-19 Jiawei Han, Philip S. Yu, Christos Faloutsos, Jian Pei, XindongWu, Charu Aggarwal Data mining
column-55 CVPR, ICCV, TPAMI, MM, TIP, ECCV, TMM, IJCV, ACCV, CVIU, IET-CVI Computer vision
column-89 ACL, EMNLP, NAACL, COLING, TSLP, TASLP, CoNLL, JSLHR, Computational Linguistics Computational linguistics
column-131 AAAI, IJCAI, UAI, Artificial Intelligence Journal, JAIR, ECAI, JSLHR, IJAR, Neural Networks AI
column-71 Andrew Zisserman, Jitendra Malik, Andrew Fitzgibbon, Eric Grimson, Roberto Cipolla Computer vision

640 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 3, MARCH 2022

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on February 19,2022 at 17:25:27 UTC from IEEE Xplore. Restrictions apply.

realistic networks. ii) Approaches based on temporal random
walks [22], [23], [24] exploit snapshot and skip-gram technolo-
gies for learning the embedding. However, suchmodels have
intrinsic limited scalability in terms of computation and stor-
age, and ignore the heterogeneity of network structure,
thereby limiting the representation precision. iii) Attention-
based approaches [29] use node-, edge- and temporal-level
attention for graph embedding, most suitable for link predic-
tion. However, the computation and space complexity
impede its applications in large-scale networks, wherein out-
of-memory tends tomanifest. Furthermore, other task-specific
graph embedding approaches [42], [43] use supervised/semi-
supervised modeling to learn dynamic rules. However, they
aim to predict the structure of graph instead of effective node
embedding, causing prohibitively long training time. One can
easily integrate the proposed node embedding LIME with
recurrent neural network such as LSTM to effectively fulfill
such prediction. As a departure fromprior work, LIME has sig-
nificantly accelerated the embedding procedure with lower
memory cost but can achieve higher-quality embeddings.

9 CONCLUSION

Networks are a universal language for modeling complex
systems. The ability for understanding and characterizing
network structures underpins many applications. However,
realizing this ability in a resource- and time-efficient man-
ner is highly challenging because real-world networks
encompass massive heterogeneous nodes and edges and
can change drastically over time. We have presented LIME, a
fast, resource-efficient method for extracting useful repre-
sentation from dynamic information networks. To reduce
the memory requirement for learning network representa-
tion, LIME exploits the semantic relationships among net-
work nodes to encode multiple nodes with similar
semantics in shared vectors. By using many fewer node vec-
tors, LIME thus significantly cuts down the memory space
and computational time over the state-of-the-arts. To mini-
mize the information lost when using fewer node vectors,
LIME exploits the recursive neural network with carefully
designed optimization strategies to explore the node seman-
tics in a novel cuboid space. To quickly adapt to the changes
in a network, we develop a novel incremental learning for
changing networks. We apply LIME to three large-scale data-
sets across three downstream processing tasks and compare
LIME against eight prior state-of-the-art methods for learning
network representation. Our extensive experiments show
that LIME reduces the memory footprint by over 80 percent
and computational time over 2x, without compromising the
quality of the learned network representation.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation
of China under Grant 62002007 and Grant U20B2053, in part
by Key Research and Development Project of Hebei Province
under Grant 20310101D, in part byU.K. EPSRC (EP/T01461X/
1, EP/T021985/1), in part by UK Royal Society International
Collaboration Grant, NERC (NE/P017134/1), SKLSDE-
2020ZX-12, Australian Research Council Discovery scheme
under Grant DP200103494, NSF ONR N00014-18-1-2009, NSF

under Grant III-1763325, III-1909323, and Grant SaTC-1930941.
This work was also sponsored by CAAI-Huawei MindSpore
Open Fund. Thanks for computing infrastructure provided by
HuaweiMindSpore platform.

REFERENCES

[1] Z. Liu et al., “Alleviating the inconsistency problem of applying
graph neural network to fraud detection,” in Proc. 43rd Int. ACM
SIGIR Conf. Res. Develop. Inf. Retrieval, 2020, pp. 1569–1572.

[2] Z. Wang et al., “Predictive network representation learning for
link prediction,” in Proc. 40th Int. ACM SIGIR Conf. Res. Develop.
Inf. Retrieval, 2017, pp. 969–972.

[3] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A com-
prehensive survey on graph neural networks,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 32, no. 1, pp. 4–24, Jan. 2021.

[4] H. Peng et al., “Fine-grained event categorization with heteroge-
neous graph convolutional networks,” in Proc. Int. Joint Conf. Artif.
Intell., 2019, pp. 3238–3245.

[5] Y. He et al., “Hetespaceywalk: A heterogeneous spacey random
walk for heterogeneous information network embedding,” in
Proc. 28th ACM Int. Conf. Inf. Knowl. Manage., 2019, pp. 639–648.

[6] Y. Cao et al., “Multi-information source HIN for medical concept
embedding,” in Proc. Pacific-Asia Conf. Knowl. Discovery Data Min-
ing, 2020, pp. 396–408.

[7] Y. Gao, X. LI, H. Peng, B. Fang, and P. Yu, “HinCTI: A cyber threat
intelligence modeling and identification system based on hetero-
geneous information network,” IEEE Trans. Knowl. Data Eng., to
be published, doi: 10.1109/TKDE.2020.2987019.

[8] J. Tang et al., “LINE: Large-scale information network embedding,” in
Proc. 24th Int. Conf.WorldWideWeb, 2015, pp. 1067–1077.

[9] D. Yogatama et al., “Embedding methods for fine grained entity
type classification,” in Proc. 53rd Annu. Meeting Assoc. Comput. Lin-
guistics, 2015, pp. 291–296.

[10] H. Peng et al., “Hierarchical taxonomy-aware and attentional
graph capsule RCNNs for large-scale multi-label text classi-
fication,” IEEE Trans. Knowl. Data Eng., to be published,
doi: 10.1109/TKDE.2019.2959991.

[11] B. Perozzi et al., “Deepwalk: Online learning of social repre-
sentations,” in Proc. 20th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, 2014, pp. 701–710.

[12] A. Grover and J. Leskovec, “node2vec: Scalable feature learning
for networks,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Dis-
covery Data Mining, 2016, pp. 855–864.

[13] Y. Dong et al., “metapath2vec: Scalable representation learning for
heterogeneous networks,” in Proc. 23rd ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, 2017, pp. 135–144.

[14] D. Wang et al., “Structural deep network embedding,” in Proc.
22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2016,
pp. 1225–1234.

[15] S. Cao et al., “GraRep: Learning graph representations with global
structural information,” in Proc. 24th ACM Int. Conf. Inf. Knowl.
Manage., 2015, pp. 891–900.

[16] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner and G. Monfar-
dini, “The graph neural network model,” IEEE Trans. Neural
Netw., vol. 20, no. 1, pp. 61–80, Jan. 2008.

[17] K. Xu et al., “How powerful are graph neural networks?” in Proc.
Int. Conf. Learn. Representations, 2019, pp. 1–17.

[18] Y. Zuo et al., “Embedding temporal network via neighborhood
formation,” in Proc. 24th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, 2018, pp. 2857–2866.

[19] L. Zhou et al., “Dynamic network embedding by modelling triadic
closure process,” in Proc. AAAI Conf. Artif. Intell., 2018, pp. 571–578.

[20] R. Trivedi et al., “Representation learning over dynamic graphs,”
in Proc. Int. Conf. Learn. Representations, 2019, pp. 1–25.

[21] H. Peng et al., “Dynamic network embedding via incremental
skip-gram with negative sampling,” Sci. China Inf. Sci., vol. 63,
no. 10, pp. 1–19, 2020.

[22] G. H. Nguyen et al., “Continuous-time dynamic network
embeddings,” in Proc. Web Conf., 2018, pp. 969–976.

[23] L. Du et al., “Dynamic network embedding: an extended approach
for skip-gram based network embedding,” in Proc. 27th Int. Joint
Conf. Artif. Intell., 2018, pp. 2086–2092.

[24] F. Heidari and M. Papagelis,“Evolving network representation
learning based on random walks,” Appl. Netw. Sci., vol. 5, no. 1,
pp. 1–38, 2020.

PENG ET AL.: LIME: LOW-COST AND INCREMENTAL LEARNING FOR DYNAMIC HETEROGENEOUS INFORMATION NETWORKS 641

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on February 19,2022 at 17:25:27 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TKDE.2020.2987019
http://dx.doi.org/10.1109/TKDE.2019.2959991

[25] X. Li et al., “LightRNN: Memory and computation-efficient recur-
rent neural networks,” in Proc. 30th Int. Conf. Neural Inf. Process.
Syst., 2016, pp. 4385–4393.

[26] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization:
Algorithms and Complexity. Chelmsford, MA, USA: Courier Corpo-
ration, 1998.

[27] W. L. Hamilton et al., “Inductive representation learning on large
graphs,” in Proc. 31st Int. Conf. Neural Inf. Process. Syst., 2017,
pp. 1025–1035.

[28] J. Tang et al., “PTE: Predictive text embedding through large-scale
heterogeneous text networks,” in Proc. 21th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, 2015, pp. 1165–1174.

[29] L. Yang et al., “Dynamic heterogeneous graph embedding using
hierarchical attentions,” in Proc. Eur. Conf. Inf. Retrieval, 2020,
pp. 425–432.

[30] D. Zhang et al., “Metagraph2vec: Complex semantic path aug-
mented heterogeneous network embedding,” in Proc. Pacific-Asia
Conf. Methodologies Knowl. DiscoveryDataMining, 2018, pp. 196–208.

[31] C. Shi, Y. Li, J. Zhang, Y. Sun, and P. S. Yu, “A survey of heteroge-
neous information network analysis,” IEEE Trans. Knowl. Data
Eng., vol. 29, no. 1, pp. 17–37, Jan. 2017.

[32] T.-Y. Fu et al., “Hin2vec: Explore meta-paths in heterogeneous
information networks for representation learning,” in Proc. ACM
Conf. Inf. Knowl. Manage., 2017, pp. 1797–1806.

[33] R. Preis, “Linear time 1/2-approximation algorithm for maximum
weighted matching in general graphs,” in Proc. Annu. Symp. Theor.
Aspects Comput. Sci., 1999, pp. 259–269.

[34] D. E. Drake and S. Hougardy, “Linear time local improvements
for weighted matchings in graphs,” in Proc. Int. Workshop Exp. Effi-
cient Algorithms, 2003, pp. 107–119.

[35] D. Drake and S. Hougardy, “A simple approximation algorithm
for the weighted matching problem,” Inf. Process. Lett., vol. 85,
no. 4, pp. 211–213, 2003.

[36] Y. Dong et al., “Location of facility based on simulated annealing
and “zkw” algorithms,” Math. Problems Eng., vol. 2017, 2017, Art.
no. 4628501.

[37] Ravindra K. Ahuja, K. Mehlhorn, J. Orlin, and Robert E. Tarjan,
“Faster algorithms for the shortest path problem,” J. ACM (JACM),
vol. 37, no. 2, pp. 213–223, 1990.

[38] J. Tang et al., “ArnetMiner: Extraction and mining of academic
social networks,” in Proc. 14th ACM SIGKDD Int. Conf. Knowl. Dis-
covery Data Mining, 2008, pp. 990–998.

[39] P. A. Est�evez, M. Tesmer, C. A. Perez, and J. M. Zurada,
“Normalized mutual information feature selection,” IEEE Trans.
Neural Netw., vol. 20, no. 2, pp. 189–201, Feb. 2009.

[40] V. Van Asch, “Macro-and micro-averaged evaluation measures,”
Belgium: CLiPS, vol. 49, 2013.

[41] C. Yang, Y. Feng, P. Li, Y. Shi, and J. Han, “Meta-graph based HIN
spectral embedding: Methods, analyses, and insights,” in Proc.
IEEE Int. Conf. Data Mining, 2018, pp. 657–666.

[42] P. Goyal et al., “dyngraph2vec: Capturing network dynamics
using dynamic graph representation learning,” Knowl.-Based Syst.,
vol. 187, 2020, Art. no. 104816.

[43] A. Pareja et al., “EvolveGCN: Evolving graph convolutional net-
works for dynamic graphs,” in Proc. AAAI Conf. Artif. Intell., 2020,
pp. 5363–5370.

Hao Peng is currently an assistant professor with
the School of Cyber Science and Technology,
and the Beijing Advanced Innovation Center for
Big Data and Brain Computing in Beihang Univer-
sity. His research interests include representation
learning, machine learning, and graph mining.

Renyu Yang (Member, IEEE) is a research fel-
low with the University of Leeds, U.K. and adjunct
researcher with the Beijing Advanced Innovation
Center for Big Data and Brain Computing in Bei-
hang University. His research interests include
reliable distributed systems, big data analytic at
scale, and applied machine learning.

Zheng Wang is an associate professor with the
University of Leeds, U.K. His research cuts
across the boundaries of parallel program optimi-
sation, systems security, and applied machine
learning.

Jianxin Li is currently a professor with the State
Key Laboratory of Software Development Envi-
ronment, and Beijing Advanced Innovation Cen-
ter for Big Data and Brain Computing in Beihang
University. His current research interests include
social network, machine learning, big data, and
trustworthy computing.

Lifang He (Member, IEEE) is currently an assis-
tant professor with the Department of Computer
Science and Engineering, Lehigh University.
Before her current position, he worked as a post-
doctoral researcher with the Department of
Biostatistics and Epidemiology, University of
Pennsylvania. Her current research interests
include machine learning, data mining, tensor
analysis, with major applications in biomedical
data, and neuroscience.

Philip S. Yu (Fellow, IEEE) is a distinguished
professor and the Wexler Chair in Information
Technology at the Department of Computer Sci-
ence, University of Illinois at Chicago. Before join-
ing UIC, he was at the IBM Watson Research
Center, where he built a world-renowned data
mining and database department. He is a fellow
of the ACM. He was the editor-in-chiefs of ACM
Transactions on Knowledge Discovery from Data
(2011–2017) and IEEE Transactions on Knowl-
edge and Data (2001–2004).

Albert Y. Zomaya (Fellow, IEEE) is the chair pro-
fessor of high performance computing & network-
ing with the School of Computer Science, Sydney
University and the director of the Centre for Dis-
tributed and High Performance Computing. He is
a fellow of AAAS and IET. He served as editor in
chief of IEEE Transactions on Computers for two
terms (2011–2014). Currently, he serves as a
founding editor-in-chief for IEEE Transactions on
Sustainable Computing.

Rajiv Ranjan (Senior Member, IEEE) is a chair
and professor of computing science and Internet
of Things, Newcastle University, U.K. He is an
internationally established scientist with about
250 scientific publications and expertise in cloud
computing, big data, and the Internet of Things.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

642 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 3, MARCH 2022

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on February 19,2022 at 17:25:27 UTC from IEEE Xplore. Restrictions apply.

