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Convergence rates of two-component MCMC
samplers
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Component-wise MCMC algorithms, including Gibbs and conditional Metropolis-Hastings samplers, are com-
monly used for sampling from multivariate probability distributions. A long-standing question regarding Gibbs
algorithms is whether a deterministic-scan (systematic-scan) sampler converges faster than its random-scan coun-
terpart. We answer this question when the samplers involve two components by establishing an exact quan-
titative relationship between the L? convergence rates of the two samplers. The relationship shows that the
deterministic-scan sampler converges faster. We also establish qualitative relations among the convergence rates
of two-component Gibbs samplers and some conditional Metropolis-Hastings variants. For instance, it is shown
that if some two-component conditional Metropolis-Hastings samplers are geometrically ergodic, then so are the
associated Gibbs samplers.
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1. Introduction

Markov chain Monte Carlo (MCMC) algorithms are useful for sampling from complicated distribu-
tions (Brooks et al. [6]). Component-wise MCMC algorithms, such as Gibbs samplers and conditional
Metropolis-Hastings (CMH) samplers, sometimes called Metropolis-within-Gibbs, are among the most
useful in multivariate settings. We study the convergence rates of two-component Gibbs samplers and
the case where the components may be updated using Metropolis-Hastings, paying particular attention
to the relationship between the convergence rates of the Markov chains.

Investigating the convergence rates of the underlying Markov chains is important for ensuring a
reliable simulation effort (Geyer [18], Flegal, Haran and Jones [15], Jones and Hobert [29], Vats et al.
[63]). If the Markov chain converges sufficiently fast, then, under moment conditions, a central limit
theorem holds (Chan and Geyer [7], Doss et al. [11], Hobert et al. [24], Jones [28], Robertson et al.
[50]). Additionally, asymptotically valid Monte Carlo standard errors are available (Dai and Jones [8],
Flegal and Jones [16], Jones et al. [32], Vats, Flegal and Jones [61,62]).

Let IT(dx, dy) be a joint probability distribution having support X x Y and let ITx |y (dx|y), y €Y,
and ITy|x(dy|x), x € X, be full conditional distributions. There are many potential component-wise
MCMC algorithms having IT as their invariant distribution. When it is possible to simulate from the
conditionals, it is natural to use a Gibbs sampler. One version is the deterministic-scan Gibbs (DG)
sampler, which is described in Algorithm 1.

An alternative is the random-scan Gibbs (RG) sampler which is described in Algorithm 2.

Two-component Gibbs samplers are surprisingly useful and widely applicable in the analysis of so-
phisticated Bayesian statistical models. In particular, they arise naturally in data augmentation settings
(Hobert [22], Tanner and Wong [57], van Dyk and Meng [60]).

There is abundant study of the convergence properties of Gibbs samplers, both in the general case
(see Liu, Wong and Kong [37], Roberts and Polson [42], Liu, Wong and Kong [38]) and for two-
component Gibbs samplers in specific statistical settings; see, among many others, Diaconis, Khare
and Saloff-Coste [9], Doss and Hobert [10], Ekvall and Jones [13], Hobert and Geyer [23], Johnson
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Algorithm 1 Deterministic-scan Gibbs sampler

1: Input: Current value (X, Y,) = (x, y).

2: Draw Y, from Iy x (-|x), and call the observed value y.
3: Draw X, 41 from HX|Y(-|y/).

4: Setn=n+1.

Algorithm 2 Random-scan Gibbs sampler with selection probability r € (0, 1)
1: Input: Current value (X,, ¥,) = (x, y).

Draw U ~ Bernoulli(), and call the observed value u.

If u=1,draw X4 from ITxy(-|y), and set ¥;, ;| = y.

If u =0, draw Y, from ITy|x (-|x), and set X,, 1| = x.

Setn=n+1.

and Jones [25,26], Jones and Hobert [30], Khare and Hobert [34], Marchev and Hobert [39], Roy [52],
Tan and Hobert [55], Wang and Roy [65,66]. However, there is not yet an answer to the following basic
question: which converges faster, a deterministic- or random-scan Gibbs sampler?

There exist some qualitative results related to this question (see Johnson, Jones and Neath [27], Tan,
Jones and Hobert [56]). For instance, Roberts and Rosenthal’s [43] Proposition 3.2 states that a random-
scan Gibbs sampler is uniformly ergodic whenever an associated deterministic-scan Gibbs sampler
is too. There is also literature devoted to finding the convergence rates of various Gibbs samplers
when IT is Gaussian, or approximately Gaussian (see, e.g., Amit [1,2], Amit and Grenander [3], Roberts
and Sahu [47]) or in the finite discrete state space setting (Fishman [14]). However, in general, the
relationship between the convergence rates of deterministic- and random-scan Gibbs samplers is poorly
understood.

A related question is addressed by Andrieu [4], who shows that the DG sampler yields sample
means with smaller asymptotic variances than its random-scan counterpart, assuming that, in the RG
sampler, the selection probability is r = 1/2 (see, also, Greenwood, McKeague and Wefelmeyer [19]).
On the other hand, the author remarks that making such a comparison in terms of convergence times
is unlikely to bear fruit (Andrieu [4], page 720). This is because there are examples suggesting that,
when the Gibbs sampler has a large number of components, there is no definite answer to the question
above (Roberts and Rosenthal [46]).

We give an exact solution to the question in the two-component setting. Indeed, we develop a quanti-
tative relationship between the convergence rates of the two types of Gibbs samplers, and show that the
deterministic-scan sampler converges faster than its random-scan counterpart no matter the selection
probability in the random scan. This result is described now, but the full details are dealt with carefully
later. The L? convergence rate of a Markov chain is a number in [0, 1], with smaller rates indicating
faster convergence. Let p(Py) be the L? convergence rate of the DG sampler, and, p(Py;), that of the
RG sampler. We show that

1+ V1=4r(1—nll — p(Py)]

P (Prg) = )

(1)
There are some easy, but noteworthy, consequences of this result. Notice that (i) p (Pyg) € [1/2, 1] while
p(Pyg) € [0, 17; (ii) as either p(Ppys) or p(Prg) increases so does the other; (iii) if p(Pps) < 1, then
p(Pyg) > p(Ppsg), but p(Pys) = 1 if and only if p(Py) = 1; and (iv) the optimal selection probability
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Algorithm 3 Deterministic-scan CMH sampler

1: Input: Current value (X, Y,) = (x, y)
2: Draw Y, 41 from Iy x (-|x), and call the observed value y.
3: Draw a random element Z from ¢ (-|x, y’), and call the observed value z. With probability

x|y (z1y)q(xlz, y") }

a(z;x,y) = min{l,
xy (x[y)q(zlx, y)

set X, 41 = z; with probability 1 — a(z; x, y), set X1 = x.
4 Setn=n+1.

Algorithm 4 Random-scan CMH sampler with selection probability r € (0, 1)
1: Input: Current value (X, ¥,) = (x, y).
2: Draw U ~ Bernoulli(r), and call the observed value u.
3: If u =1, draw a random element Z from ¢ (-|x, y), and call the observed value z. With probability

mxyy 2ly)g(xlz, y) }

a(z;x,y)=min{l,
x|y (x|y)g(zlx, y)

set X, 11 = z; with probability 1 —a(z; x, y), set X,41 =x.Set V41 = y.
4: If u =0, draw Y, from Iy x (:|x), and set X, 1| = x.
5. Setn=n+ 1.

for Py is r = 1/2 in which case

1 PDG
p(Pyg) = Y PUre) f()

In Section 4 we generalize this discussion and show that the DG sampler converges faster even after
taking into account computation time. Indeed, if k;, and k; are the number of iterations that can be run
by DG and RG samplers, respectively, in unit time, then (1) implies that p (Pog)*® < p(Prs)*® for any
selection probability.

Perhaps the most common type of MCMC sampler in applications are conditional Metropolis-
Hastings (CMH) samplers. These Markov chains arise when it is infeasible to sample from at least
one of the conditional distributions associated with IT so that at least one Metropolis-Hastings update
must be used. Assume that ITy|x and ITx,y, respectively, admit density functions y|x and mxy. Let
q(-]x,y), (x,y) € Xx Y, be aproposal density function on X. A deterministic-scan CMH (DC) sampler
we study is now described in Algorithm 3, but a more general algorithm is considered in Section 5.2.

There is an obvious alternative random-scan CMH (RC) sampler in Algorithm 4.

Despite their utility, compared to Gibbs samplers there has been little investigation of CMH Markov
chains (Fort et al. [17], Herbei and McKeague [21], Johnson, Jones and Neath [27], Jones, Roberts
and Rosenthal [31], Rosenthal and Rosenthal [51], Roberts and Rosenthal [43,44]) but what there
is tends not to focus on specific statistical models. For example, Johnson, Jones and Neath’s [27]
Theorem 3 states that if a deterministic scan component-wise Markov chain is uniformly ergodic, then
so is its random-scan counterpart, thus generalizing the result proved for Gibbs samplers by Roberts
and Rosenthal [43], which was described previously.

Both versions of Gibbs samplers are special cases of the respective versions of CMH samplers.
Thus it is plausible that there should be some relationship among the convergence rates of the Markov
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Figure 1. Relationship among two-component Gibbs samplers and their CMH variants in terms of L2 geometric
ergodicity.

chains of Algorithms 1-4, especially if the CMH samplers are “close” to the Gibbs samplers. There are
a few results in this direction. For example, there are sufficient conditions which ensure that if the RG
Markov chain is geometrically ergodic, then so is the RC Markov chain (Jones, Roberts and Rosenthal
[31], Theorem 6). However, these relationships are not well understood in general and the following
question has not been addressed satisfactorily: if one of the four basic component-wise samplers is
geometrically ergodic, then, in general, which of the remaining three are also geometrically ergodic?

We give an answer to this question by developing qualitative relationships among the convergence
rates of the DG, RG, DC, and RC samplers, which are depicted in Figure 1. Here, we consider L?
geometric ergodicity. A Markov chain is L? geometrically ergodic if its L> convergence rate is strictly
less than 1. Under regularity conditions, L? geometric ergodicity is equivalent to the usual notion of
geometric ergodicity defined in terms of the total variation distance. (This equivalence will be made
precise in Section 3.) In Figure 1, a solid arrow from one sampler to another means that, if the former is
L? geometrically ergodic, then so is the latter. A dashed arrow means that L? geometric ergodicity of
the former only implies that of the latter under appropriate conditions on the proposal density g (-|x, y).
One of these conditions is condition 5.1 in Section 5.

Figure 1 yields the following. The DG sampler is L? geometrically ergodic if and only if the RG
sampler is. If the RC sampler is L? geometrically ergodic for some proposal density, then so are the
DG and RG samplers. If the DC sampler is L? geometrically ergodic for some proposal density, then
so is the RC sampler with the same proposal density. The relations depicted in Figure 1 hold regardless
of the selection probabilities for the random-scan samplers.

The remainder is organized as follows. Section 2 contains some general theoretical background. In
Section 3, we lay out some basic properties of the four types of samplers. In Section 4, we derive (1),
and discuss its implications. In Section 5, we establish the relations shown in Figure 1 along with
additional connections with more general CMH samplers. We give some final remarks in Section 6.
Some technical details are relegated to the appendices.

2. Preliminary Markov chain theory

Let (Z, F) be a measurable space and let P be a Markov transition kernel (Mtk), thatis, let P : Z x F —
[0, 1] be such that for each z € Z, P(z,-) is a probability measure and for each A € F, P(-, A) is
measurable. For a positive integer n, denote the n-step transition kernel associated with P by P", so
that P! = P, and

Pz, A) =fP(z’,A)P"(z,dz’)
Z

for z € Zand A € F. If w is a probability measure on (Z, F) and A € F, define

(wP)(A) :/a)(dz)P(z, A).
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Say w is invariant for P if oP = w. If
P(z,dZ)w(dz) = P(Z, d2)w(d7), 2

then P is said to be reversible with respect to w. Integrating both sides of the equality in (2) shows that
w is invariant for P.
For a measurable function f : Z— R and a probability measure u : F — [0, 1], define

(Pf)(z)=/f(z/)P(z,dz/) and Mf=fzf(z)u(dz)-

Assume that o is invariant for P. Let L?(w) be the set of measurable real functions f that are square
integrable with respect to w and let L(z)(a)) be the set of functions f € L2(a)) such that wf = 0. For

f, g € L*(w), define their inner product to be
(f,8)o= / f(2)g()w(dz),
z

and let || f]12 = (f. f)o- Then (L* (@), (-, )») and (L}(), (-, -)»,) form two real Hilbert spaces. For
any f € L%(a)), we have Pf € L%(a)). Thus, P can be regarded as a linear operator on L%(a)). Let

1Pllw= sup I1Pflle-
feLd(®). | fllo=1

By the Cauchy-Schwarz inequality, || P||, < 1. When P is reversible with respect to w, P, as an oper-
ator on L%(a)), is self-adjoint so that (P f1, f2)» = (f1, Pf2)w for f1, f> € L(Z)(a)), and

Pl = sup HPF, ol
feLd), I fllo=1

Moreover, if P is self-adjoint, then for each positive integer n,
1P o= 1Pl

(see, e.g., Helmberg [20], §30 Corollary 8.1, §31 Corollary 2.1). Say P is non-negative definite if it is
self-adjoint, and (Pf, f), > 0 foreach f € L(z)(w).
For two probability measures i and v on (Z, F), define their L? (or XZ) distance to be

lw—vleo= sup lwf —vfl.
feLd), I fllo=!

Let Lﬁ(a)) be the set of probability measures u such that du/dw € L?(w). When H,v e Li(w),

<du dv >_‘d,u dv
’ w

I =vllo = sup i do

feLd(@). | fllo=1

w

The L2 convergence rate of the Markov chain associated with P, denoted by p (P), is defined to be the
infimum of p € [0, 1] such that, for each u € Lﬁ(w), there exists C, < oo such that, for each positive
integer n,

P = ol < Cup".
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When p(P) < 1, we say that the Markov chain is L? geometrically ergodic, or more simply, P is L?
geometrically ergodic. The following is a direct consequence of Roberts and Rosenthal’s [43] Theo-
rem 2.1 and we will use it extensively.

Lemma 2.1. If P is reversible with respect to w, then p(P) = || P| -
The following comparison lemma will be useful in conjunction with Lemma 2.1.

Lemma 2.2. Let Py and P> be Mtks on (Z, F) having a common stationary distribution w. Suppose
further that || P2||, < 1 and there exists § > 0 such that, for z€ Zand A € F, P1(z, A) > 6P>(z, A).
Then || P1llo < 1.

Proof. Without loss of generality, assume that § < 1. Let R(z, A) = (1 —8) " 1(P1(z, A) — 8 P,(z, A)).
Then R(z, A) defines an Mtk such that wR = w. By Cauchy-Schwarz, |R]|, < 1. By the triangle
inequality, || P1lle < 8[| P2llw + (1 =) I R]le < 1. U

We can use these lemmas to obtain a generalization of Jones, Roberts and Rosenthal’s [31] Proposi-
tion 2. This will allow us to treat the selection probabilities in the random-scan algorithms as arbitrary
when studying their qualitative convergence rates.

Proposition 2.3. Let Py and Py be Mtks on (Z, F) such that for any 0 < r < 1 the mixture kernel
P, =1 Py + (1 —r) Py is reversible with respect to w. If p(Py,) < 1 for some ry € (0, 1), then p(P,) <1
foreveryr € (0, 1).

Proof. ForeachzeZand A € F,

. r l1—r
Py(z, A) me{—,
ro

_ro} Pro(z, A).

Since P, is reversible with respect to w for all » € (0, 1), the claim follows from Lemmas 2.1 and 2.2. [J

Remark 2.4. While we will not require it, it is straightforward to extend the proof of Proposition 2.3
to the setting where there is an arbitrary, but finite, number of Mtks in the mixture.

We are now in position to begin our study of the algorithms defined in Section 1.

3. Basic properties of two-component samplers

We begin by defining the Markov transition kernels for the four algorithms described in Section 1 along
with some related Markov chains that will be useful later. Then we will turn our attention to some basic
properties of the operators and total variation norms for these Markov chains.

Suppose (X x Y, Fx x Fy) is a measurable space with a joint probability distribution IT(dx, dy).
Let ITx (dx) and ITy (dy) be the associated marginal distributions, and, ITxy (dx|y) and ITyx (dy|x),
the full conditional distributions. To avoid trivial cases we make the following standing assumption.

Assumption 3.1. There exist Aj, A € Fx and By, By € Fy suchthat AN A, =9, BN By =,
and that [Tx (A1) > 0, [Tx(A») > 0, [Ty(By) > 0, ITy(B,) > 0.
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When Assumption 3.1 is violated, at least one of Fx and Fy contain only sets of measure zero or
one, and all the problems we study become essentially trivial.

Letting I1, [Ty, or ITy play the role of w from Section 2, as appropriate, allows us to consider
the Mtks defined in the sequel as linear operators on the appropriate Hilbert spaces. Assumption 3.1
ensures LJ(IT), L3(T1x), and L3(TTy) contain non-zero elements.

3.1. Markov transition kernels
The Mtk for the DG sampler is

Poo((x, y), (dx', dy")) = Ty (dx'[y") Ty x (dy'[x).

Now Py has IT as its invariant distribution, but it is not reversible with respect to I1. If §, and &, are
point masses at x and y, respectively, then the Mtk for the RG sampler is

Pec((x, ), (dx', dy")) = rTlxy (dx"[)8y (dy") + (1 — r) Iy x (dy'|x)8x (dx").

It is well known that P, is reversible with respect to IT and hence has IT as its invariant distribution.
Now let P,; denote the Metropolis-Hastings Mtk (Tierney [58,59]) which is reversible with respect to
the full conditional ITyy. Then the Mtk for the DC sampler is

Poc((x, ), (dx",dy")) = Pyu(dx'|x, y) My x (dy'|x).

Note that P, has IT as its invariant distribution, but it is not reversible with respect to I1. The Mtk for
the RC sampler is

Pec((x, ), (dx’, dy") = r P (dx'|x, )8, (dy") + (1 — r) Ty x (dy'[x)8, (dx)

and it is again well known that P, is reversible with respect to IT and hence has IT as its invariant
distribution.

It will be convenient to consider marginalized versions of the DG chain, which we now define. The
X-marginal DG chain is defined on X, and its Mtk is

Paoo (x, d') = / Ly (dx’ ) Ty x (dyl).
Y

Similarly, the Y-marginal DG chain is defined on Y, and has Mtk

PYDG(y’dy/):/HYlX(dy/|x)nX|Y(dx|)’)~
X

Note that Py, and Py are reversible with respect to [Ty and Iy, respectively (Liu, Wong and Kong
[37], Lemma 3.1). Moreover, it is well-known that the convergence properties of the marginal, Py,
and Py, chains are essentially those of the original DG chain (Robert [41], Roberts and Rosenthal
[45]).

There also exists an X-marginal version of the DC sampler (but not a Y -marginal version) with Mtk
given by

Pae(x, dx') = / Pan(@x’x, y)TTy 1 (dyl).
Y

Jones, Roberts and Rosenthal’s [31] Section 2.4 shows that Py, is reversible with respect to ITy and
enjoys the same qualitative rate of convergence in total variation norm as the parent DC sampler.
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3.2. Operator norms

It is clear that P,g, Prg, Poc, and Py can be regarded as operators defined on L%(l’[). Among them, Py
and Py are self-adjoint. It can be checked that Py is non-negative definite; see Liu, Wong and Kong
[38], Lemma 3, and Rudolf and Ullrich [53], Section 3.2. Also, Px,; and Py, are self-adjoint operators
on L%(H x), while Py, is a self-adjoint operator on L(Z)(l'[y). Moreover, Py and Py are non-negative
definite (Liu, Wong and Kong [37], Lemma 3.2).

Using Lemma 2.1 and the fact that RG and RC chains are reversible with respect to I1, we have

P(Pre) = | Prgllm and  p(Prc) = | Pecllm-

Similar relations for the deterministic-scan samplers are given in the following lemma, whose proof is
given in Appendix A.

Lemma 3.2. For each positive integer n,

1 —1/2
1P = p(Pyg) = || Pusclliiy = | Pwclimny

1 —1 1
1PN < p(Poc) = | Pacllmy < 1PN

(||PI;1C||11-[/("_1) is interpreted as O when n = 1.)

The surprising exponent 1/(n — 1/2) in the above lemma has also appeared in related results on
alternating projections (Kayalar and Weinert [33], Theorem 2).
Applying Lemmas 2.1 and 3.2 we obtain the following.

Corollary 3.3. p(Pp;) = p(Pxps) = p(Pug) and p(Ppc) = p(Pypc)-

For g € L3(Iy) and i € L3(ITy), let

y(g.h) = / ¢RI, dy)
XxY

and

7 =sup{y(g.h): g€ Li(Tx), lglny =1, h € L§(Ty), lAlm, = 1}.

We say that y € [0, 1] is the maximal correlation between X and Y. The following result can be found
in Theorem 3.2 of Liu, Wong and Kong [37]; see also Liu, Wong and Kong [38] and Vidav [64].

Lemma 3.4.

=2
Yy = ”PXDG”HX = ”PYDG”Hy .

3.3. Total variation

We consider the connection between L? geometric ergodicity and the usual notion of geometric ergod-
icity defined through the total variation norm, denoted by || - ||;y. For the four component-wise Markov
chains considered here we can use results from Roberts and Tweedie [49] to show that these concepts
are equivalent (see also Roberts and Rosenthal [43]). A proof is provided in Appendix B.
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Proposition 3.5. Let P denote the Mtk for any of the DG, RG, DC, and RC Markov chains. Suppose
that the o-algebras Fx and Fy are countably generated, and P is g-irreducible. Then P is L*-
geometrically ergodic if and only if it is I1-almost everywhere geometrically ergodic in the sense that,
for T1-almost every (x, y), there exist C(x,y) and t < 1 such that, for all n,

I1P*(Cx,y), ) = O lw = Clx, )"

Direct applications of Theorem 2 of Roberts and Tweedie [49] yield analogous results for the
marginal chains defined by Pypg, Pypg, and Pypc.

4. Quantitative relationship between p(P,.) and p(P,,)

4.1. Main result

The proof of the following is given in Section 4.2.

Theorem 4.1.

1+ VT=4rd =Nl =p(Pr
Py = LY TP )]

We illustrate Theorem 4.1 in two examples.

Example 4.2. When IT is Gaussian, there are explicit formulas for p(Py,;) and p(Pys) (Amit [2],
Roberts and Sahu [47]). In particular, when IT is a bivariate Gaussian, and the correlation between X
and Y is y € [—1, 1], it is well-known that p(Ppg) = y2 (see, e.g., Diaconis, Khare and Saloff-Coste
[9], Section 4.3). Meanwhile,

1+/1—=4r(1—r)(1 —y?)

o (Prg) = B

(Levine and Casella [35], page 193). This is in accordance with the general result in Theorem 4.1.

Example 4.3. When X x Y is a finite set, I1 can be written in the form of a probability mass function
(pmf), 7 (-, -). For illustration, take X =Y = {1, 2, 3, 4, 5}, and generate the elements of 7 (i, j), (i, j) €
XY, via a Dirichlet distribution. The convergence rates of DG and RG samplers can then be calculated
using the second largest eigenvalue in modulus of their transition matrices. We repeat this experiment
20 times for different values of selection probabilities. The results are displayed in Figure 2.

We now turn our attention to some of the implications of Theorem 4.1. Notice that, given the
selection probability r € (0, 1), p(Pys) and p(Pys) are monotonic functions of each other. Indeed,
in light of Lemmas 3.2 and 3.4, given any selection probability, the convergence rates of the two
types of Gibbs chains are completely determined by the maximal correlation between X and Y.
p(Pye) = 72 =0 if and only if p(Pys) = max{r, 1 — r}; p(Pos) = 7> = 1 if and only if p(Py) = 1;
and when p(Poe) = 77 € (0, 1), p(Pr) € (max{r, 1 —r}, 1) and p(Poe) < p(Prc)-
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Figure 2. Relationship between p(Pps) and p(Prg) for discrete target distributions. In each subplot, 20 joint
pmfs are randomly generated using Dirichlet distributions with random concentration parameters. Each circle
corresponds to a joint pmf. The solid curves depict the relationship given in Theorem 4.1.

Let k, > 0 be such that p (PRG)k* = p(Py) so that, roughly speaking, one iteration of the DG sampler
is “worth” k. iterations of the RG sampler in terms of convergence rate. By Young’s inequality,

1+ J/1—4r(1—r)+4r(1 —r)p(Pus)
2

> —4r(1 —r)+4r(1 —r)p(Py)]V*

p(Prg) =

> p(Po) 177,

Therefore, k., > 1/[r(1 —r)].

Let 1 and #, be the time it takes to sample from ITy|y and ITy,x, respectively. For simplicity, assume
that they are constants. Suppose that, within unit time, one can run k;, iterations of the DG sampler, and
kg iterations of the RG sampler. Then

ke Hnh+n 1 1

= < < .
ky rti+Q—=r)y " min{r,1 —r} " r(1—r)

Since ky > 1/[r(1 —1)],

rii+ (1 —r)p

P (Poe)’® = p(Pro)k> = exp {[logpwm)]k*kk
n+n

} < p(Po)™.
In this sense, the DG sampler converges faster than its random-scan counterpart.

Remark 4.4. It is natural to consider whether Theorem 4.1 can be extended to the case where there are
more than two components. This proves to be challenging. Two-component deterministic-scan Gibbs
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samplers have reversible marginal chains and hence Py, and Pypg, as linear operators, are self-adjoint.
Consequentially, there are results like Lemma 3.2, which link the convergence rate p (Pps) to the norms
of Py and Py,c. However, deterministic-scan Gibbs samplers with more than two components do not
possess reversible marginal chains. Therefore, techniques employed herein cannot be readily applied

to compare the convergence rates of DG and RG samplers when the number of components exceed
two.

4.2. Proof of Theorem 4.1

Remark 4.5. Before we begin the proof, we note that the result of Theorem 4.1 is related to the theory
of two projections (Bottcher and Spitkovsky [5]). When » = 1/2, an alternative proof of Theorem 4.1
is available if we apply results on the norm of the sum of two projections (e.g., Duncan and Taylor
[12], Theorem 7) along with Lemma 3.2.

By Lemmas 3.2 and 3.4, p(Pyg) = )72, where y € [0, 1] is the maximal correlation between X and Y.
To prove Theorem 4.1, we need to connect p(Pyg) to y. We begin with a preliminary result.

Lemma 4.6.

p(P) = max{l —r +rp?r+ (1 —r)p?}.

Proof. Let g € L%(Hx) be such that || g|lm, = 1. Let f, be such that f,(x, y) = g(x) for each (x, y) €
X x Y sothat f, € L(Z)(H), and || f¢lm = 1. By Cauchy-Schwarz,

”PRG”H > (PRGfgs fg)l'[
ZV/ (/ g(x/)HX|Y(dx/|y)> g()I(dx, dy) + (1 —r)(g, ghny (3)
XxY \JX

=r(PXDGg1g)HX +1—r.
Recall that Py, is non-negative definite. This implies that

”PXDG”HX = Sup{<PXDGg/7 g/)l_lx :g/ € L%(HX)» ”g/”l'lx =1}.
(See, e.g., Helmberg [20], §14 Corollary 5.1.) Taking the supremum with respect to g in (3) yields

1Pl = 1= r +rll Paoling =1 —r +r7?, )

where the last equality follows from Lemma 3.4.
By an analogous argument,

I Pl = 7 + (1 = ") || P ity =7 + (1 = )72 Q)

Recall that p (Pyg) = || Prsllmm- The proof is completed by combining (4) and (5). O
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Our proof of Theorem 4.1 hinges on the fact that, for each f € L(z)(l'l) and (x, y) e XXV, Py f(x,y)
can be written in the form of g(x) + A(y), where

g(X)Z(l—")/Yf(x,y/)l'lY\X(dy’IX), h(y)=V/Xf(x/,y)HX|Y(dx/|y)-

As we will see, this allows us to restrict our attention to a well-behaved subspace of L(z)(l'l) when
studying the norm of Pyg.
For g L%(HX) and h € L(z)(l'ly), let g @ h be the function on X x Y such that

(g®h)(x,y) =gx)+h(y)
for (x, y) € X x Y (in a [T-almost everywhere sense). Let
H={g®h:gelL}(y), heL(y))}.

Then H, equipped with the inner product (-, -) 1, is a subspace of L%(l’[). Forg®heH,

lg @ hld = llgh, + Ik}, +2y (g, h),

where y (g, h) is defined in Section 3.1. It follows that

(1= 7)(IglFr, + IAlF,) < lg ®hlF < 1+ P8, + 121F,) - 6)

When y <1, g h =0if and only if g =0 and # = 0. It follows that, whenever y < 1, forany f € H,
the decomposition f = g @ h is unique.

To proceed, we present two technical results concerning H. Lemma 4.7 is proved in Appendix C,
and Lemma 4.8 is a direct consequence of (6).

Lemma 4.7. Ify < 1, then H is a Hilbert space.

Lemma 4.8. Let y < 1 and suppose that {g,}, | and {h,} > | are sequences in L(%(HX) and L%(l’ly),

respectively. For g € L(z)(l'[x) and h € L(%(l'[y), lim (g, ® hy) =g @ h if and only if lim g, =
n—>oo n—o0

g, and lim h, =h.
n—oo
It is easy to check that, for every f € L%(l’[), P f € H. Define Pyg|p to be Pyg restricted to H. The
norm of Pyg| g is

[ Pelalim="— sup [P flim.
feH | fIn=1

We then have the following lemma.

Lemma 4.9.

”PRG”H = ||PRG|H||1'I~

Proof. It is clear that

I Prllrt = Il Prol el - )
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Because the range of Py isin H, forany f € L(z)(l'l) and positive integer n,

—1 —1
I Pe flin = 11 Prcly Prc flIm < 1 Prcler iy I f 1l -

Note that we have used the fact that || Pys||;1 < 1. Since Py is self-adjoint, for each positive integer n,
| PNl = |l Prg I - It follows that

1/n (n—1)/n

| Pl = lim [IP&IH" < m [Pl ™" = Il Paol il ®)
Combining (7) and (8) yields the desired result. O

We are now ready to prove the theorem.

Proof of Theorem 4.1. When y = 1, the theorem follows from Lemma 4.6 and the fact that p (Pys) =
| Pegllm < 1. Assume that y < 1. We first show that

1+1—4r(1—r)(1—72)
> .

p(Pre) = €))

It follows from Lemma 4.9 that p (Pyg) = || Prs| 1 |l 11- Note that Pyg| g is a non-negative definite operator

on H. By Lemma D.1 in Appendix D, p(Pys) is an approximate eigenvalue of Pys|p, that is, there
exists a sequence of functions {g, ® hn};’le in H such that ||g, @ h,|ln = 1 for each n, and

nli)n;o[PRG(gn @ hn) — p(Pre)(8n ® hy)] =0. (10)
For every positive integer n,

Pro(gn @ hp) =10 —1r)gn + (1 —1)01h,] @ (r Q2gn +1hy),

where Q; : L%(Hy) — L%(HX) and Q> : L%(HX) — L%(Hy) are bounded linear transformations such
that, for g € L3(ITy) and i € L3(TTy),

(th)(X)Z/Yh(y)l'lmx(dyl)c% (ng)(y)Z/Xg(X)wa(dXIy)-
By Lemma 4.8, (10) implies that

lim {[1 —r — p(Prc)lgn + (1 =) Q1ha} =0,
lim {[r — o (Pra)1n +7 0284} =0.
n—o0
Applying Q1 to the second equality in (11) yields
nlingo{[r — p(Peo)]1Q1hn + 1 Pxpsgn} =0.

Subtracting (a multiple of) this from (a multiple of) the first equality in (11) gives

nlingo{[l —7 = p(Pra)1lr — p(Pro)lgn —7(1 — 1) Panggn} =0. (12)
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Similarly, applying Q> to the first equality in (11) and subtracting it from the second equality in (11)
yields
lim {[1 —r — p(Pe)1lr — p(Prg)lhn — (1 —r) Pypchn} =0. (13)
n—o0
By Lemma 3.4, || Paogallry < 721gallrys I Prochallny < 721lall, - It follows from (12) and (13)
that

limsup{[1 — r — p(Peo)1[r — p(Pec)] = r(1 = 1) 7?}llgallmy <0,

limsup{[1 — r — p(Pe)I[r — p(Pec)] = r(1 = )7} u |11, 0.
In particular,
limsup{[1 — r — p(Peo)I[r — p(Pec)] = r(1 = )7}l gulliny + llnllmy ) <0. (14)

n—o0

By the triangle inequality,
lgnllry + 12nlity =1gn @0l + 0@ hnlim = lIgn @ hnllm=1.
It then follows from (14) that
[p(Pr) +r = 1[p(Pr) = r] = r(1 = 1)7* <0. (15)

This proves (9).
Next, we show that

1+/1—4r(1—r)(1—72)
> .
This will complete the proof, since, by Lemmas 3.2 and 3.4, p(Py) = )72. If y =0, then (16) follows

immediately from Lemma 4.6. Now assume y € (0, 1). Recall that p(Py) = || Prsllm1- It suffices to
show that

P (Pre) = 16)

1+1—=4r(1—r)(1 —72)
> .
Recall that Py is non-negative definite, and || Pxo |y, = )72. Hence, )72 is an approximate eigenvalue

of Pyps. In other words, there exists a sequence of functions {g,},2 | in L%(H x) such that || g,|Im, =1
for each n, and

[ Prolim = A7)

lim (Pyoefn — 728n) =0. (18)
n—oo

Let

=1+ /1—4r(1-r)1-7?)
= 2012 '

Consider the sequence of functions {g, ® aQ28,},» in H C L(%(H). It is easy to show that, for each n,

Pkc(gn @QQ2§n) =(1- r)[gn +aPXDng] @ra+ 1)Q2§n

19)
=1 =r U +a7)g, & ra+1)028n + (1 = r)a(Pscgn — 7°8n) ©0.
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It is straightforward to verify that

Cra+l) 1+ /1—4r(d—r)(1-7?)
y .

1 =rA+ayp? 5

Hence, (19) can be written as

1+y/1—4r(1—r)(1—7?)

PRG(gn ® aQZgn) - )

(8n ®a028n) = (1 — r)a(Pxpoén — 728n) 0.

By (18), the right-hand-side goes to 0 € H as n — 0o0. Moreover, by (6), ||g, ®a 028, 13 >1—7 >0.
It follows that

- 1+ /1=4r(l=n)(1 -2
| Peolrn = limsup _ 1+ ! )
I1

n—o00

”gn @ aQ2§n Im

PRG< en®aQ28n )

and (17) holds. O

5. Qualitative relationships among convergence rates

It follows from Theorem 4.1 that the RG sampler is L? geometrically ergodic if and only if the asso-
ciated DG sampler is too; see Roberts and Rosenthal’s [43] Proposition 3.2 for what is essentially a
proof of the “if”” part. Our objective for Section 5.1 is to establish similar relations between other pairs
of component-wise samplers introduced in Section 1, and eventually build Figure 1. In Section 5.2 we
consider a more general setting where the Gibbs update from P, is replaced by a second Metropolis-
Hastings update. Most of the results from Section 5.1 extend to the setting of Section 5.2.

5.1. Two-component samplers with Gibbs updates

First, by Proposition 2.3, if the RG or RC sampler is L> geometric ergodic for some selection prob-
ability, then it is L> geometrically ergodic for all selection probabilities. This allows us to treat the
selection probabilities of the RG and RC sampler as arbitrary in what follows.

It is certainly not true that, in general, L? geometric ergodicity of the DG and RG samplers implies
that of the DC or RC samplers. The following condition on the proposal density g will be useful.

Condition 5.1.

x|y (x']y)
C= sup —
(x/,x,y)EXXXxY q(x Ix, y)

Condition 5.1 is analogous to a commonly-used condition for uniform ergodicity for full dimensional
Metropolis-Hastings samplers (Liu [36], Mengersen and Tweedie [40], Roberts and Tweedie [48],
Smith and Tierney [54]). Indeed, if P,y is the Metropolis-Hastings Mtk which is reversible with respect
to ITx|y with proposal density g, then under condition 5.1, foreach y € Y, x € X, and A € Fy,

gx|x',y) q(xX'|x,y)
mxy (x|y) wxy (x|y)

1
PMH(Alx,y)Z/Amin{ }ﬂxw(x/ly)dx/z EHX|Y(A|)’)- (20)
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DC «....... RC XDCZ=ZDC ZZ-ZRC
[ 74
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DG RG
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Figure 3. Building the relations among the convergence rates of component-wise samplers.

For a fixed y € Y, the Markov chain on X defined by P, has stationary distribution ITxy (-|y) and (20)
implies that this chain is uniformly ergodic. Moreover, condition 5.1 implies that if C can be calculated,
then one can use an accept-reject sampler, at least in principle, to sample from ITy|y.

Condition 5.1 allows us to draw the dashed arrows between DG and DC and between RG and RC in
Figure 3b.

Proposition 5.2. Suppose condition 5.1 holds.

1. If p(Pps) < 1, then p(Ppe) < 1.
2. If p(Prg) < 1, then p(Pye) < 1.

Proof. Consider the first item. By Corollary 3.3, p(Pxps) = p(Pys) < 1 and hence by Lemma 3.2
|| Pyoglli < 1. Theorem 5 in Jones, Roberts and Rosenthal [31] establishes that, under condition 5.1,
Poe(x, A) > C_IPXDG(x, A) for x € X and A € Fx. Hence by Lemma 2.2 we have that || Pypellm < 1.
An appeal to Lemma 3.2 yields p(Py) < 1.

The second item follows from Lemma 2.2 since Theorem 6 in Jones, Roberts and Rosenthal [31]
establishes that, under condition 5.1, Pw((x, y), A) > C~! P((x, v), A) for each (x, y) and measur-
able A. O

Next, observe that L? geometric ergodicity of the RC sampler does not necessarily imply that of the
associated DC sampler. Indeed, a counter example can be constructed as follows. Let X =Y = {1, 2},
and suppose that IT is a uniform distribution on X x Y. Then ITy|x and I1xy are uniform distributions
on Y and X, respectively. Let ¢ (-|x, y) be defined with respect to the counting measure, and suppose
that, for y € {1, 2}, g(2|1,y) = ¢ (1|2, y) = 1. In other words, g(-|x, y) always proposes a point in X
that is different from x. The resulting RC chain is L?-geometrically ergodic, but the associated DC
chain is periodic, and it is easy to show that p(Pyc) = 1.

The relations that we have described so far can be summarized in Figure 3a. As in Figure 1, a solid
arrow from one sampler to another means that L? geometric ergodicity of the former implies that
of the latter, while a dashed arrow means that the relation does not hold in general, but does under
condition 5.1. A dotted arrow from one sampler to another means that L geometric ergodicity of the
former does not imply that of the latter in general, and we have not yet addressed whether it does under
condition 5.1.

Lemma 2.2 allows us to establish the following result, which shows that the RC sampler is L?
geometrically ergodic whenever the DC sampler is. This allows us to draw a solid arrow from the DC
sampler to the RC sampler in Figure 3b.

Proposition 5.3. If p(P,c) < 1, then p(Pyc) < 1.
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Proof. By Lemma 3.2, ||PDZC||1-[ < p(Py) <1.For (x,y) e XxYand A € Fx x Fy,

PE((x, ), A) = r2(1 = r)?P2((x, y), A).

By Lemma 2.2, || P4 |Ip < 1. Since Py is self-adjoint, p(Pyc) = || Peclln = ||P]:‘C||ll_[/4 <1. O

The final relation that we need to establish is given below. It allows us to draw a solid arrow from
the RC sampler to the DG sampler.

Proposition 5.4. If p(Pc) < 1, then p(Pps) < 1.

Proof. Consider the contrapositive and recall that, by Lemmas 3.2 and 3.4, p(Pys) = )72. Assume that
y = 1. It suffices to show that p(Pyc) = 1.

Let g € L3(Tx) and i € L3(ITy) be such that |glin, = ||l2lln, = 1. Let f, € L3(IT) be such
that f,(x,y) = g(x), and, f; € L3(ID), fi(x,y) = h(y). Recall that p(Pic) = || Pcllri. By Cauchy-
Schwarz,

P (Pre) = (PRtha fg)l'[

:}"./X Yh(Y)g(x)H(dx,dy) + (1 —I")./;( ‘/Yh(y/) HY|X(dy/|x)g(x)1'[(dx’dy)

xY
=y(gh).

Taking the supremum with respect to g and & shows that p(Pyc) >y = 1. ]

Incorporating Propositions 5.3 and 5.4 in Figure 3a yields Figure 3b. From here, one can obtain
Figure 1 by following the steps below:

1. When there is a path from one sampler to another consisting of only solid arrows, draw a (direct)
solid arrow from the former to the latter, if there isn’t one already. This allows us to draw solid
arrows from DC to DG, from RC to RG, and and from DC to RG.

2. When there is a dotted arrow from one sampler to another, and there is a second path from the
former to the latter consisting of dashed and possibly solid arrows, convert the dotted arrow to a
dashed one. This allows us to convert all dotted arrows in Figure 3b to dashed ones.

For example, from Figure 3b we see that if p(Py) < 1, then p(Pyc) < 1 and if p(Pyc) < 1, then
p(Pys) < 1. Hence if p(Pyc) < 1, then p(Py;) < 1 and we can obtain the solid arrow from DC to DG
in Figure 1.

Finally, we can integrate Corollary 3.3 into Figure 1, and this yields Figure 3c.

5.2. CMH with two Metropolis-Hastings updates

Consider the setting where there are two components, both of which will be updated via Metropolis-
Hastings. Let g1 (+|x, y) be a density on Y and ¢»(:|x, y) a density on X. The deterministic-scan condi-
tional Metropolis-Hastings algorithm with two Metropolis-Hastings updates is now described in Algo-
rithm 5.

Denote the Mtk of the two Metropolis-Hastings steps by Pj(dy’|x, y) and P>(dx’|x, y’) so that the
transition kernel, Py, of the CMH algorithm is formed by composing the two Metropolis-Hastings
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Algorithm 5 Deterministic-scan CMH with two Metropolis-Hastings updates
1: Input: Current value (X,, Y,) = (x,y)
2: Draw a random element W from ¢ (-|x, y), and call the observed value w. With probability

myx (wlx)gr (ylx, w) }

aj(w; x, y) =min { 1,
Ty x (Y1x)g1(wlx, y)

set ¥, 41 = w; with probability 1 — aj(w; x, y), set ¥,,+1 = y. Denote the observed value of Y,
by y'.
3: Draw a random element Z from g, (-|x, y"), and call the observed value z. With probability

xyy zly)qa(x|z, y) }

a(z; x,y') = min { 1,
wxy (x]yNg2(zlx, y")

set X1 = z; with probability 1 — ax(z; x, y'), set X,,4+1 = x.
4: Setn=n+1.

updates:
Poc((x,y), (dx',dy") = Pa(dx'[x, y) Py (dy'x, y).

We will refer to the algorithm as the DC sampler. Of course, there is a random-scan version with
transition kernel denoted Py which is formed by mixing the two Metropolis-Hastings updates:

Pee((x,y), (dx", dy")) = r P2(dx’|x, )8y (dy") + (1 — r) Py (dy'|x, y)8, (dx").
We will refer to the algorithm as the RC sampler. Notice that P,; and P, are special cases of Py
where the proposal density is chosen to be the appropriate full conditional. Similarly, Py and Py are
both special cases of Py. Thus there may be connections between the qualitative convergence rates of

these Markov chains. By Proposition 2.3, we may treat all selection probabilities as arbitrary. We begin
with an extension of Proposition 5.4.

Proposition 5.5. If p(Pe) < 1, then p(Pys) < 1.
Proof. The proof is essentially the same as that of Proposition 5.4 with Py playing the role of Py.. The

only difference is that one needs to make use of the fact that Py (dy’|x, y) leaves ITy|x (dy|x) invariant
for each x € X: By Cauchy-Schwarz,

p(ﬁRC) = <ﬁRth7 fg)l'[

=r/x BN dy) + —r)/x Y/Yh(y’> P11, ¥) () Ty x (dyl) M (dx)

:r/X Yh(y)g(x)l'l(dx,dy)—l—(l—r)/x KO @) ) )
=y(g h). 0

We will have need of the following condition on the proposal density ¢ at several points. Notice the
analogy to condition 5.1.
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Condition 5.6.
Ty x (y']x)

C = /
G,y y)eXxyxy q1(y'1x, ¥)

Proposition 5.7. Suppose that condition 5.6 holds. If p(Pyc) < 1, then p(Poe) < 1.

Proof. Observe that by condition 5.6 we have

q1(yY'|x, y) ql(ny,y’)} 1

, > —myix (Y |x),
Ty x(V'x) mwyx (y|x) c

@1 (Y Ix, y)a1(y'; x, y) = 7y x (y'[x) min {
so that
1
Pi(dy'|x,y) = C—IHY|X(dy/|X),
and hence,

~ 1
PDC((-xv y)7 (dx/v dy/)) 2 C_IPDC((X’ y)v (d)C/, dy/))

It follows that, for (x, y) e X x Y and A € Fx x Fy,

52 L 2
Pl ((x,y),A) = o2 P ((x, ), A).
1

By Lemma 3.2, | P21 < p(Py) < 1. Then Lemma 2.2 implies that || P2, < 1. For u € L2(TT) and
positive integer 7,

p b du ~
luPl — o= l(n =M Pln= Sup <E_I’P§cf> '
feL3@), | flln=1 vl

Using Cauchy-Schwarz and treating even and odd n separately, we see that

du 5 5 2 52 (n—1)/2
sup <d—n —1, PD”Cf> <l =Tl B2 < = T B2 G072,
FeL3). |l flin=L1 n

where |n/2] is the largest integer that does not exceed n /2. Therefore, p(Poo) < | 15D2C||11-[/ 2. O
Proposition 5.8. Suppose that condition 5.6 holds. If p(Pxc) < 1, then p(f’Rc) < 1.

Proof. Since both Py and f’RC are reversible, p(Pyc) = || Prcllm and p(f’RC) = ||15RC||1-1. Recall that
under condition 5.6,

1
Pi(dy'|x,y) > C—IHY|X(dy/|X),

and hence,

5 1—-r
Prc((x, ), (dx', dy")) = r Py (dx[x, )8y (dy') + C—]Hle(dy/pC)(Sx (dx")
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1
2 C_PRC((-X7 y), (dx/v dy/))
1

Note that, without loss of generality, we have assumed that Py and 15RC have the same selection prob-
ability. The desired result now follows from Lemma 2.2. (|

One can combine the results above with those in the previous subsection to obtain other relations.
For example, combining Proposition 5.8 with Proposition 5.3 gives the following result.

Corollary 5.9. Suppose that condition 5.6 holds. If p(Py) < 1, then p(Pye) < 1.

To make progress on developing further qualitative convergence relationships, we will need to in-
clude condition 5.1 so that we can appeal to the results of the previous section. Notice that the proposal
density g> from Algorithm 5 corresponds to the proposal density g from Algorithm 3 so that condi-
tion 5.1 can be interpreted as a condition on ¢».

Proposition 5.10. Suppose that conditions 5.1 and 5.6 hold. Then

L if p(Poc) < 1, then p(Ppe) < 1and p(Pec) < 1
2. l.'fp(PiRG) <1, then p([:RC) <land p(Py) < 1; and
3. ifp(Pre) < 1,then p(Pye) < 1.

Proof. We consider only the first item as the others are similar. From Figure 3c we have that, under
condition 5.1, if p(Pys) < 1, then p(Pyc) < 1 and p(Pyc) < 1. Combining this with Propositions 5.7
and 5.8 yields the claim. O

Remark 5.11. The relations in Proposition 5.10 do not necessarily hold without conditions such as 5.1
and 5.6. For instance, in the previous subsection we have shown that p(Py) < 1 does not imply
p(Pyc) < 1in general Since Py and P, are respectively special cases of PRC and PDC, p(PRC) <1
does not imply ,O(Pnc) < 1 in general.

We depict the known qualitative convergence relations among DG, RG, ITC, and RC in Figure 4.
A dashed arrow with double arrowheads from one to another means that L2 geometric ergodicity of the
former implies that of the latter under conditions 5.1 and 5.6, but not in general. Figure 4 illustrates that
the complexity of DC (in particular, the lack of a reversible marginal Markov chain) means that it is an
open question as to whether the L2 geometric ergodicity of DC implies the L? geometric ergodicity of
any of the rest.

Finally note that combining Figures 3c and 4 does not characterize all known qualitative convergence
relationships. For example, combining the results in the figures would suggest that under conditions 5.1
and 5.6 if p(P,c) < 1, then p(Pye) < 1, but Proposition 5.7 shows that only condition 5.6 is required.

Figure 4. Known qualitative convergence relationships among the Gibbs samplers and their CMH variants with
two Metropolis-Hastings updates.
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6. Final remarks

We have focused on convergence relationships between deterministic-scan and random-scan MCMC
algorithms when there are two component-wise updates. At the heart of these relationships is the ex-
plicit quantitative relationship developed between Gibbs samplers in Theorem 4.1. This result is intu-
itively appealing since a random-scan Gibbs sampler may update the same component consecutively
and thus one might expect convergence to be slower than the deterministic-scan version. When there
are more than two components it is intuitively less obvious that the random-scan Gibbs sampler will
converge substantially more slowly than the deterministic-scan version since it is much less likely to
update the same component consecutively. Indeed, Roberts and Rosenthal [46] provide some examples
where the relationship between the convergence rates becomes more complicated when the number
of components is large. However, as we explained in Remark 4.4 there are technical hurdles to in-
vestigating this rigorously. As we saw in Section 5.2, the situation is even more complicated, even in
the two-component setting, when considering deterministic-scan and random-scan versions of CMH
Markov chains. There is ample room for future work along these lines.

Appendix A: Proof of Lemma 3.2

We will prove

1/(n—1/2
1P = p(Poo) = Il Prns iy = 1 Py -
The proof for the other equation is similar.

(1) I Pxosliny = Il Pyosllmy - This is given in Liu, Wong and Kong’s [37] Theorem 3.2.
(i1) ||P;’G||ll_l/ (=172 | Pxoslimy - Firstly, since Py, is self-adjoint, for each positive integer n,

| Phclimy, = PXDG||’li[X and similarly for Pypg.

We begin by showing that || PZ[|1]"~"/? < || P llmy- Let f € LA(TT) be such that | f||g =
1, and let

hf(y)=fxf(x,y)l'lxw(dx|y), yEeY,
gf(X)=/Yhf(y)HY|X(dyIX), xeX.
Then hy € Li(TTy), and g s € L3(T1x). Note that
(8787011 =/X/;hf()’)nY\X(dﬂx)/Yhf(y/)HY|X(dyl|x) My (dx)

- / h ¢ () h £ () Ty (dy |0 Ty (dx ) Ty (dy)
YxXxY
= <hf1 PYDth>nY'

Moreover, by the Cauchy-Schwarz inequality, ||4 |11, < 1. It follows that

g IIfry = (h s Proch )y < I Proalinny = Il Paollriy -
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Itis easy to verify that, for each positive integer n and (x, y) e XxY, Pl f(x,y) = P)?Dgl gr(x).
Therefore,

—1 —1 n—1/2
I Po fllm =1 Pl g7 llmx < [l Paoclltyy, g limy < IIPXDGIIHX/ .

Taking the supremum with respect to f yields the desired inequality.

We now show that [Py, < ||PD”G||11-[/("_1/2) and it will follow immediately that

1 Pawclimy < 1P "% Let h € L3(TTy) be such that [|A||m, = 1. Let f;, € L2(TT) be such
that fj,(x, y) = h(y) for (x,y) € X x Y. Then || fn|lm = 1. Lastly, let Q1h € L(z)(l'lx) be such

that (Q1h)(x) = [, h(y)TTy|x (dy|x). Note that, for (x, y) € X x Y, (Q1h)(x) = (P f) (x, y).
A careful calculation shows that

(h, P2 hym, = fY h(y) /X (P2=20h)(x) Ty (dx|y) Ty (dy)

= /Y Xh(y) (P22 1) (x) Ty x (dy|x) Tx (dx)

= (P'' 01k, PICY Q1)
= (P fu, P fi)nn
<Pyl -

Since P2"~! is non-negative definite,

YDG

1Pl = 1P iy = sup{(Pa "W k), b € L§(y), (1A ||y =1}

This shows that | Puoclfs ' < I PLII%-
0 (Pos) = | Pxoslliy - By Lemma 2.1, || Pugling = 0 (Pxos), the L? convergence rate of the X-
marginal DG chain.

We now show that p(Pxps) < p(Pog). Let g € L%(HX) be such that |[g|lm, = 1. Let

fe € L%(H) be such that f,(x,y) = g(x). Then || follm = 1. For any u € Li(l’[x) and posi-
tive integer n,

where [i is any measure in Li(l’[) such that fY (-, dy) = u(-). Taking the supremum with
respect to g shows that

”/"LP)Z)G - HX”HX = ”l&/PI:lG — i

This implies that p (Pxps) < 0 (Pog)-
Finally, we show that p(Py) < p(Pypo). Let i € L2(T1), and define f € L3(TT) and g5 €

L}(Ty) as in (ii). Then, for a positive integer n,
&Py f = TIf| = Pl gy — Txgys| < P’ — Mxllmy
where pu(-) = fY (-, dy). Taking the supremum with respect to f shows that
~ pn n—1
Py — Hlim < ln Py — Mixllmy

which implies that p(Pps) < o (Pxps)-
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Appendix B: Proof of Proposition 3.5

We will prove the result for P, and Py.. The proofs for P, and Py are similar. We will make use of
results in Roberts and Tweedie [49]. These results require Fx and Fx X Fy to be countably generated.
We have assumed that Fx and Fy are countably generated. This implies that Fx x Fy is also countably
generated. Indeed, if Fx is generated by {A;}°2, and Fy is generated by {B.i}?il’ then Fx x Fy can

i=1

be generated by sets of the forms A; x Y and X x B;.

Consider Pgc. Then the claim follows immediately due to its reversibility with respect to I'T (Roberts
and Tweedie [49], Theorem 2).

Now suppose P,. is L? geometrically ergodic. Then it is IT-a.e. geometrically ergodic (Roberts
and Tweedie [49], Theorem 1). Conversely, suppose that the P, is [T-a.e. geometrically ergodic.
This implies Pype is [1y-a.e. geometrically ergodic. It is also straightforward to check that Py is
@*-irreducible, with ¢*(-) = fop(-, dy). Since Py is reversible with respect to Iy, it is also L?
geometrically ergodic. By Corollary 3.3, P, must be L? geometrically ergodic as well.

Appendix C: Proof of Lemma 4.7

It suffices to show that H is closed (see, e.g., Helmberg [20], §6). Consider a sequence of functions
in H, {g, @ h,}° ,, such that

n=1"
lim (g, ® hy) = f € L3(TD).
n—od
The sequence {g, D h,} is Cauchy, that is,

lim sup ||gn D hn — (gm D hm)|lm =0.
n—0o0

m>n
By (6),
lgn ® hn — (gm ® )1y = (1 = P)(UIgn — gmlFr, + 1w — himlIFy,) -

Since y < 1, {g,} and {h,} are Cauchy as well. By the completeness of L%(HX) and L(z)(l'ly), there
exist g € L(z)(HX) and h € L%(Hy) such that

lim g, =g, lim h,=h.
n—0o0 n—oo

Again by (6),
lgn ®hn — (g ®MIF < 1+ 7)lIgn — gllT1, + Ihn — hliF,) -
This implies that

lim (gn @ hy) :gEBh
n—00

Hence, f = g ® h € H, meaning that H is closed.

Appendix D: A lemma concerning Theorem 4.1

The following lemma is the result of several elementary facts in functional analysis. See, e.g., Helmberg
[20], §23, 24.
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Lemma D.1. Let H' be a real or complex Hilbert space equipped with inner product (-, -) and norm

Il -1I. Let P be a bounded non-negative definite operator on H'. Then || P || is an approximate eigenvalue

of P, i.e., there exists a sequence {f,}°°  in H' such that || fu|| =1 for each n, and lim ||Pf, —
- n—o0

I Pl full = 0.
Proof. Since P is non-negative definite,

[Pll= sup  (Pf, f).
feH | fl=1

It follows that there exists a sequence { f;,}, in H' such that || f,|| = 1 for each n, and lim (Pf;, fn) =
n—oQ
[| P]|. Note that

(Pfn, Ju) = IIPfull = 1Pl
This implies that || Pf,,|| — || P|| as n — oo. It follows that

Bim (|Pfy =PI full®= lim (1PN +1PI* = 21 PICP S, fu)) =0. O
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