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ABSTRACT 

 

Robotic automation of construction tasks is a growing area of research. For robots to successfully 

operate in a construction environment, sensing technology must be developed which allows for 

accurate detection of site geometry in a wide range of conditions. Much of the existing body of 

research on computer vision systems for construction automation focuses on pick-and-place 

operations such as stacking blocks or placing masonry elements. Very little research has focused 

on framing and related tasks. The research presented here aims to address this gap by designing 

and implementing computer vision algorithms for detection and measurement of building framing 

elements and testing those algorithms using realistic framing structures. These algorithms allow 

for a stationary RGB-D camera to accurately detect, identify, and measure the geometry of framing 

elements in a construction environment and match the detected geometry to provided building 

information modeling (BIM) data. The algorithms reduce identified framing elements to a 

simplified 3D geometric model, which allows for robust and accurate measurement and 

comparison with BIM data. This data can then be used to direct operations of construction robotic 

systems or other machines/equipment. The proposed algorithms were tested in a laboratory setting 

using an Intel RealSense D455 RGB-D camera, and initial results indicate that the system is 

capable of measuring the geometry of timber-frame structures with accuracy on the order of a few 

centimeters. 

 

INTRODUCTION 

 

There is a significant body of prior work which has focused on developing BIM integrated 

computer vision systems for construction robotic applications, however, most of this work focuses 
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on stacking tasks rather than framing, and uses an eye in hand camera rather than a fixed camera 

configuration (Dawod and Hanna 2019; Feng et al. 2015; Tish et al. 2020). Due to the relatively 

small size of building elements assembled in these types of tasks, computer vision sensors can be 

placed very close to the material being measured, limiting challenges associated with sensor noise 

and accuracy. Computer vision systems intended for other construction applications, such as 

progress monitoring, have also been demonstrated (Deng et al. 2020; Han et al. 2018; Troncoso-

Pastoriza et al. 2018; Vähä et al. 2013). 

 The more general problem of object detection using computer vision sensors and image 

segmentation has been the subject of much research, with work by Schwarz et al. (2017), Li et al.  

(2017), Feng et al. (2014), and Wang et al. (2015) providing a good template for solving this 

problem in the construction domain. Prior work by Zhang (2018), Zhang et al. (2015) and Akanbi 

et al (2020) explores automated extraction of geometric information from BIM documents, 

providing approaches which can be readily applied to BIM integrated computer vision. 

This paper presents a novel system for the detection and measurement of framing elements 

using a depth sensing computer vision (RGB-D) camera. The system described in this paper is 

intended for use with construction robots designed to assist in framing operations such as assembly 

or sheathing. The output of the system is a set of vertices representing the geometry of a framing 

structure and its position relative to the RGB-D camera. The authors additionally propose a 

framework for cross referencing the detected geometry with building information modeling (BIM) 

data in order to allow for BIM directed construction robot/machine control. 

The stacking tasks investigated by Dawod and Hanna (2019), Feng et al. (2015), and Tish 

et al. (2020) differ significantly in their requirements from the framing tasks that are the focus of 

this paper. All three of these prior papers implemented computer vision algorithms which 

measured the 3D geometry of small building elements placed very close to a depth sensor. A 

computer vision system for robotic automation of framing tasks must be able to measure the 

geometry of larger framing structures that are at least several meters from the sensor. A different 

approach to sensor configuration and computer vision algorithms is necessary to meet these 

requirements. Currently, there is very little research which addresses computer vision for framing 

or related tasks, and the authors seek to address this gap to support longer term research goals in 

construction robotics. 

The goal of developing this system was to create a computer vision system capable of 

precisely measuring framing elements using low-cost sensors. The system was designed to 

function in a variety of lighting and background conditions, and to be compatible with modern 

BIM formats such that it can be applied easily to construction robots. 

The computer vision system proposed by the authors was tested in an indoor environment 

using a set of three test frames constructed using standard 2x4 pine boards. The algorithm was able 

to detect the geometry of these frames with an average accuracy of +/-5.386 cm. Due to increased 
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noise in the data provided by the RGB-D sensor, the computer vision system was not able to 

function successfully in an outdoor environment. 

 
ALGORITHM DESCRIPTION 

 
The proposed computer vision system measures the geometry of a single surface of a framing 

structure. Since a frame is normally constructed from uniformly shaped beams, this provides 

enough information to fully define the geometry of the structure. This information is extracted 

from the depth image produced by an RGB-D camera. In order to extract the geometry of the 

surface of a frame, the computer vision system grows a plane outward from a user selected point 

in a depth image, and then approximates the extracted plane as a set of polygons. 

An RGB-D camera provides two separate datasets: an RGB image containing the color of 

each pixel in the image, and a depth image containing the distance of each pixel from the camera 

in the z (depth of view) direction. The coordinates of each depth pixel in three-dimensional space 

relative to the camera can be readily extracted from the depth image (Intel Corporation 2021). Data 

from the RGB image produced by the camera is not used by the proposed algorithm, except for 

facilitating the display of outputs. The RGB data is more sensitive to changes in lighting 

conditions, and is less useful for object identification than depth data due to the uniform color of 

most framing elements. 

 Depth data from the RGB-D camera is processed in several steps to extract the geometry 

of a framing structure. The first step is to preprocess the depth data by applying spatial and 

temporal filtering. Multiple depth images taken over a short span of time are combined together 

and then smoothed spatially to reduce noise. Raw depth data received from the camera contains a 

significant amount of noise, especially in the time domain, so this filtering is necessary to create a 

smooth and accurate image for further processing steps. 

 The second step is to extract the plane of the framing structure from the depth image. The 

plane extraction algorithm starts by computing the normal vector of the selected point and its 

nearest neighbors. It then grows a surface outward from that point, adding additional points to the 

surface if the normal vector of the plane formed by those points and their nearest neighbors is 

sufficiently close to the normal vector of the surface. The algorithm halts when it can no longer 

find additional valid points to add to the surface. 

The plane extraction algorithm proposed by the authors is conceptually similar to 

approaches presented in prior literature. However, this algorithm differs from those presented by 

Li et al. (2017), Feng et al. (2014), and Wang et al. (2015) because it operates on the depth image 

directly, rather than a point cloud generated from the depth image, allowing for a simpler codebase 

and reduced computational complexity. This approach may provide slightly reduced performance, 
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but the error tolerance in construction jobs may also be higher than other more precise industries 

(e.g., integrated circuit manufacturing). 

 The final step required is to measure the geometry of the extracted plane. Once the plane 

of interest is extracted from the depth image, the geometry is smoothed out using a filter in order 

to provide additional tolerance for noise in the input dataset. The shape of the plane of interest is 

then approximated as a polygon, and the positions of the vertices of that polygon are found in 

three-dimensional space. These points are then projected into a local camera coordinate system to 

facilitate a position independent comparison with the expected geometry. The algorithm outputs 

the shape of the framing structure as a list of connected vertex positions in three dimensional space. 

A visualization of the major steps in this algorithm is shown in Figure 1. 

 All of the code developed to implement this algorithm was written using OpenCV, Python, 

and the Intel RealSense libraries (Python Software Foundation 2021a,b; Intel Corporation 2021). 

This set of open-source libraries allowed for much more efficient development of the computer 

vision codebase by conveniently implementing basic functions such as spatial filtering or 

extracting a 3D coordinate from a depth image. Python was chosen as a programming language to 

facilitate rapid prototyping and easy modification of code due to its simplified syntax. 

 

EXPERIMENTAL RESULTS 

 

A computer vision system utilizing the algorithm described above was subjected to a series of real-

world tests using an Intel RealSense D455 RGB-D camera and three test frames constructed using 

standard pine 2x4 boards. An image showing the geometry of each of the test frames is contained 

in Figure 2. 

https://ascelibrary.org/doi/10.1061/9780784483961.057
https://doi.org/10.1061/9780784483961.057


• Suggested Citation: Lacny, C., and Zhang, J. (2022). “Computer vision-based geometry mapping and 
matching of building elements for construction robotic applications.” Proc., ASCE Construction Research 
Congress, ASCE, Reston, VA, 541-549. 

• For final published version, please refer to ASCE database here: 

https://doi.org/10.1061/9780784483961.057 

 
 

 – 5 –   

 

Figure 1. Visualization of major steps in the computer vision algorithm. 

 

 
Figure 2. Labeled image of the test frames used to validate the function of the computer 

vision system. 

 

 Testing was performed by placing the computer vision camera 1 meter away from each 

text frame, perpendicular to the surface of the frame. A point on the surface of interest was then 

selected by a human operator, and the geometry detected by the computer vision system was 

compared to the known geometry of the frame. The results from this testing are summarized in 

Figure 3. Error was computed by measuring the Hausdorff distance between the sets of vertices 

produced by the computer vision algorithm and the known measurements of the frames. The 

Hausdorff distance essentially represents the worst-case error between the expected position of a 

point and its measured position in the output dataset. This method of computing error was used 

because it has been shown to be effective in assessing object detection accuracy (Dubuisson and 

Jain 1994). The standard Hausdorff distance was used, rather than the modified form proposed by 

Dubuisson and Jain (1994), as the computer vision algorithm produces a set of points that does not 

contain significant noise or outliers. The average error between the expected and measured 
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location of vertices for each frame is also provided, however, when the authors refer to the 

‘accuracy’ of the algorithm, they are referring to the Hausdorff distance or ‘worst case’ error.  

 

 

Figure 3. Summary of computer vision system testing results. 

 

 In an indoor environment, the computer vision system was able to measure the geometry 

of the 0.8x0.8 m rectangular frame with an accuracy of +/- 2.844 cm, the 1.6x0.8 m frame with an 

accuracy of +/-7.930 cm and the 0.525 m pentagonal frame with an accuracy of +/- 5.385 cm. This 

level of accuracy for our initial testing is fairly promising, and represents less than 10% error for 

the positions of points in both the local coordinate system and in the camera’s coordinate system. 

Between the three frames, this represents an average accuracy of +/- 5.386 cm. 

 The outputs shown in Figure 3 demonstrate that the algorithm was able to successfully 

extract the shape of each of the test frames and extract the positions of each of the frames’ vertices 

with a reasonably high level of accuracy. This level of performance is likely acceptable for object 

detection and matching applications, but falls short of what is necessary for real-time robotic 

control. However, adding redundancy could further increase the level of accuracy which may still 

allow sensing systems using such technology to outbid classic LiDAR systems. In addition, this 

technology could be used in conjunction with other sensing data to cross validate. 

 Limited testing was also performed in an outdoor environment; however, the depth camera 

was unable to produce a sufficiently accurate depth map in bright sunlight to run the plane 

extraction algorithm under these conditions. This is in contrast to what the documentation for the 

device suggested (the performance of this type of depth camera should be comparable or better in 

an outdoor environment relative to an indoor one) (Grunnet-Jepsen et al. 2020).  

The primary issue in outdoor testing seemed to be sensor calibration. Since the algorithm 

proposed by the authors relies primarily on depth data from the sensor, rather than RGB data, 

lighting conditions do not directly affect the output. It was observed, however, that the quality of 

the depth image produced by the RealSense D455 camera varied significantly based on lighting 

conditions and camera calibration settings. In order to yield a high-quality depth map, RGB-D 
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sensor settings such as the camera exposure and IR emitter intensity required adjustment based on 

lighting conditions. Although the RealSense D455 camera has built-in features to automatically 

adjust these settings, the automatic settings often did not yield an acceptable depth map, and 

manual tuning was required. This was especially apparent in outdoor environments, where lighting 

conditions were more variable, and the overall intensity of ambient light was higher. In an indoor 

environment, the camera’s automatic calibration settings were sufficient to produce a high-quality 

depth image under various levels of illumination. In bright sunlight, the camera’s automatic 

calibrations produced an extremely noisy depth image. A better result was achieved by manually 

tuning the camera’s settings; however, the resulting performance still fell short of the consistency 

required to run the proposed algorithm.  

It is likely that acceptable performance could be achieved in an outdoor environment with 

improved sensor calibration, however, further testing must be conducted to determine if this is the 

case, and to ascertain the performance of the sensor and algorithm in an outdoor environment. 

 

BIM INTEGRATION 

 

For the prior dataset, the output of the computer vision system was compared to the measured 

parameters of the test frames physically. Data from this system could also be compared to an 

expected geometry extracted from a BIM file, allowing this system to match the assembly to an 

object in the BIM plan and verify that an assembly has been constructed within its designed 

tolerances. Prior work from the Automation and Intelligent Construction Lab that focused on 

extracting generalized geometric information from BIM data provides a useful template for 

implementing this functionality (Akanbi et al. 2020; Zhang 2018; Zhang and El-Gohary 2015), 

and this is an important long-term focus of work by the authors on this subject. For example, one 

possible workflow is proposed as follows (Figure 4): 

The coordinate system in an input BIM that depicts the plan and design could be used as 

the basis. In other words, the origin, x-axis, y-axis, and z-axis used by the input BIM will serve as 

the origin, x-axis, y-axis, and z-axis of the operational space of the construction system (e.g., a 

construction robot). The algorithm demonstrated above processes sensed physical building 

components into camera coordinates (coordinates with respect to the camera used), which will be 

further converted into coordinates in the as-planned BIM environment. This could be achieved 

through classic scaling, translation, and rotation transformations through 4x4 matrices operations 

(Golparvar-Fard et al. 2011). The transformations could be conducted indirectly through 

referencing known points that are common both on site and in BIM (e.g., staked reference points).  

We propose to use the industry foundation classes (IFC) format to represent the BIM, which can 

be exported/generated from almost all major BIM authoring tools such as Autodesk Revit, Bentley 

AECOSim, Trimble SketchUp, and GraphiSoft ArchiCAD. Furthermore, the data-driven reverse 
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engineering algorithm development (D-READ) method depicted in Akanbi et al. (2020) will be 

used to generate robust extraction algorithms for extracting cartesian points that represent the 

corresponding building elements in BIM (note that the IFC model in this case needs to be at a high 

level of development/detail (LOD), usually at LOD 400 and above). Figure 5 shows one example 

trace that could be identified following the D-READ method to extract cartesian points, for 3D 

geometries represented using the Boundary Representation (Brep) method. Through comparing 

the as-planned cartesian points and the as-constructing (i.e., being built) coordinates of the building 

elements, path planning for construction robot or other construction machines could be performed.  

  

 
Figure 4. A possible integration with BIM for feeding construction robots. 

 

DISCUSSION 

 

Although the performance of the computer vision system presented in this paper is promising as 

shown by the initial experimental results, the use cases of the system are currently limited. The 

vision system is specifically designed to measure framing structures, and may need further 

deliberation to adapt to other use cases. Additionally, the computer vision camera requires  

calibration for different lighting conditions, so it could only be deployed for a very specific purpose 

in its current form (i.e., interior wall studs and panel construction).  

 The most significant limiting factor on the performance of this computer vision algorithm 

is the performance of the current generation of inexpensive RGB-D cameras. Although the Intel 

RealSense D455 camera used for testing the system has a reasonably high depth resolution, the 

depth image produced by the camera is prone to noise and holes, especially at large distances, 

limiting its utility for object detection and measurement. Measuring the geometry of a frame to 

facilitate a robot placing material on it requires a very high level of precision relative to other tasks 

that these types of cameras have regularly been used for, such as robot localization. Higher 

performance depth sensors based on LiDAR could likely achieve significantly improved accuracy 

using a similar algorithm and reduce the need for recalibration based on lighting conditions.  

 Another possible approach to improving the performance of the system would be 

combining data from multiple sensors. Multiple depth sensing cameras could be placed in different 

positions relative to a framing structure with data from each camera combined into a single point 
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cloud. This would provide a significantly enhanced field of view, allowing the system to measure 

larger structures, as well as providing a higher density of data in areas where the field of view of 

multiple cameras overlap. Pérez et at (2016) additionally suggest that data from a depth sensing 

camera can be combined with data from a high-definition camera to produce a denser depth map. 

 

 
Figure 5. An example trace  to extract Cartesian points from IFC geometry for building 

elements (Zhang 2018). 

 

 The performance of the plane extraction algorithm used by the computer vision system 

could likely be improved by implementing a more advanced mathematical approach, such as the 

methods proposed by Feng et al. (2014) and Li et al. (2017). An approach based around neural 

networks may also yield superior performance, however, more research would be required to 

determine if this is the case. Schwarz et al. (2017) suggest that machine learning techniques have 

been shown to achieve a higher level of performance than procedural approaches for the general 

problem of image segmentation and object detection. 

 Current implementations of the proposed computer vision system are only capable of 

accurately measuring the geometry of relatively small test frames at distances on the order of a 

few meters. At larger distances, noise in the depth image may overwhelm the ability of the plane 

extraction algorithm to successfully extract the plane of interest, and error in the depth data from 

the RGB-D camera used scales approximately with distance squared (Grunnet-Jepsen et al. 2020). 
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Developing a computer vision system for measuring framing elements on the scale of a 

construction site would likely require further improved algorithms, better sensor hardware, and a 

system with multiple sensors. 

 

CONCLUSION 

 

In this paper a novel computer vision system for mapping the geometry of framing structures was 

presented. The algorithm was tested with a series of test frames in an indoor environment, yielding 

an average measurement accuracy of +/-5.386 cm. The performance demonstrated by the 

algorithm is likely sufficient for object recognition and matching with BIM data, however it falls 

short of the accuracy required for most real-time robotic control applications. In order to fulfill its 

desired role in construction robotics/machine guidance, the performance of the computer vision 

system will likely need to be further improved using enhanced sensors and more advanced 

algorithms and configurations. 
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