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 4 
Abstract  5 

Fully automated building code compliance checking (ACC) requires accurate information 6 

extraction from both building information models (BIMs) and building code chapters, and 7 

equally (if not more) importantly, a precise matching between the two. While research on 8 

information extraction has been extensively conducted for ACC, there is a lack of investigation 9 

of automated and practical information mapping between the extracted information, from BIMs 10 

to building code requirements. To address this gap, the authors proposed a new method for BIMs 11 

model validation, to validate an input IFC model with regard to building code concepts. This 12 

validation method was supported by creating invariant signatures of architecture, engineering, 13 

and construction (AEC) objects that capture the geometric nature of the objects. Target concepts 14 

from building codes are classified into four categories: (1) explicit concepts, (2) inferable 15 

concepts, (3) user-assisted concepts, and (4) system defaults. Identification algorithms are 16 

developed for all four categories based on the invariant signatures of AEC objects. An experiment 17 

was conducted to test the proposed method on validating five real commercial project models 18 

with selected concepts from the International Building Code 2015. Comparing to a manually 19 

developed gold standard, 99.8% precision and 99.6% recall were achieved. This demonstrates 20 
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that the proposed method is promising in supporting information matching between BIMs and 21 

building code concepts for ACC purpose. 22 

Introduction 23 

Building information modeling (BIM) is very promising in the architecture, engineering, and 24 

construction (AEC) domain (Azhar 2011). It helps information conversion and communication 25 

in a more effective way. Comparing to the traditional method of manual building code 26 

compliance checking, automated compliance checking (ACC) that utilizes BIM technologies is 27 

expected to be more efficient in time, cost, and tends to generate fewer errors (Nguyen and Kim 28 

2011). However, current BIM technology, such as industry foundation classes (IFC) only 29 

supports limited information coverage related to building codes (Zhang and El-Gohary 2016a). 30 

The seamless linkage between the IFC standard and the building codes is missing. More 31 

specifically, the concepts in building codes mostly do not have a direct mapping to the entities 32 

defined in IFC standards, thus cannot be directly matched with IFC models in checking the model 33 

compliance. To allow the full automation of the model compliance checking process, several 34 

efforts have been made. For example, Tan et al (2010) proposed a framework of automated code 35 

compliance checking for building envelope design. Yang and Xu (2004) proposed a software 36 

implementation of knowledge modeling for building code compliance checking. Zhang and El-37 

Gohary (2016b) proposed a method to extend the IFC schema with extracted regulatory concepts. 38 

Xu and Cai (2020) proposed to convert BIM data to an ontology for matching/checking with 39 

spatial constraints in utilities regulatory documents. In spite of the advancement made by these 40 

existing efforts, there is still the lack of a systematic investigation of the feasibility of automation 41 

in matching BIMs with building code concepts, at the instance level and from the practical point 42 

of view. To address this gap, the authors propose a new method to conduct BIMs model validation 43 
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by automatically identifying building code concepts from the models using invariant signatures 44 

and logic-based inference. In this new method, the explicit information that could be directed 45 

extracted from BIMs is further used to infer more types of concepts (i.e., information extension) 46 

with the help of minimal information input from the users, for arriving at a set of computable 47 

building design data that can be directly matched to building code concepts. To represent the 48 

extended information, logic facts were generated for their storage. The proposed method does 49 

not need to modify or extend the existing schema of the IFC standard in use. Instead, it creates a 50 

new information set using invariant signatures that can: (1) validate all the explicit information 51 

from the IFC-based BIMs, (2) check for missing information, (3) infer target information, and (4) 52 

solicit un-inferable information from users, for mapping to corresponding concepts from building 53 

codes. For the missing information, only minimal input from users are required, through the help 54 

of inference making of intermediate data that brings BIMs data closer to target concepts. The 55 

resulting logic facts from the proposed method also ease the integration into building code 56 

compliance checking systems.  57 

Background 58 

Domain knowledge representations of building codes 59 

To enable automated building code compliance checking, one of the main steps is to convert the 60 

building codes written in natural/human language into computing language. In natural language’s 61 

discussion, syntax refers to the word sequences, semantics refers to the sense and meaning, and 62 

pragmatics refers to different interpretations in different contexts (Nawari 2018). To enable 63 

machines to process such syntax, semantics, and pragmatics, natural language processing (NLP) 64 

(Nadkarni et al. 2011) methods were developed and used. NLP approach has been shown to be 65 

promising in converting building codes rules and infrastructure regulations written in plain text 66 
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into computable representations (Zhang and El-Gohary 2016b; Xu and Cai 2020). Regarding 67 

computable representations of building codes, a lot of research has been done in representing the 68 

building code requirements in various computable formats. For example, Khemlani (2011) 69 

proposed to use predicate logic to represent building codes in FORNAX (i.e., a C++ library for 70 

IFC data editing). Ding et al. (2006) proposed to use rule-based language to represent 71 

accessibility requirements in building codes. Martins and Monteiro (2013) proposed to use XML-72 

based language to represent building codes of water systems. Tan et al. (2010) proposed to use 73 

XML-based language to represent building codes for checking building envelope using the Jboss 74 

rule engine. In addition, Jeong and Lee (2009) proposed to use direct hard coding to check 75 

building fire resistance requirements automatically. Nawari (2012) proposed to use object-76 

oriented representation for encoding a knowledge domain. Zhang and El-Gohary (2016c) 77 

proposed to use first-order logic (FOL) for encoding building codes. FOL consists of objects, 78 

relations, and functions. In recent research, domain-specific ontology was also used in 79 

constructing a set of semantic and syntactic structures for building codes (Zhang and El-Gohary 80 

2016c). Independent from such computable representations, however, is the need of matching 81 

BIMs to related building code concepts.  82 

Automated code compliance checking  83 

The first successful effort for code compliance checking can be traced back to the 1960s when 84 

Fenves (1966) designed an if-then system to represent American Institute of Steel Construction 85 

(AISC) standard specifications. Later, many research efforts followed and made advancement in 86 

automated code compliance checking (Lopez and Wright, 1985; Lopez et al., 1989, Garrett and 87 

Fenves, 1987). In recent studies (Holzer 2015, Sionov et al. 2015, Volk et al. 2014, Zou et al.  88 

2017, and Sacks 2018), researchers showed great interests in using building information 89 
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modeling (BIM) to support code compliance checking, which is expected to be interoperable 90 

among platforms for designers, contractors, clients, vendors, and others. An important problem 91 

each and every BIM-based ACC system must address, is how to match building design 92 

information from BIMs to building code concepts that are essential building blocks of regulatory 93 

rules in building codes. This was reflected in the four-stage rule checking framework that 94 

Eastman et al. (2009) summarized which included “(1) rule interpretation and logical structuring 95 

of rules for their application; (2) building model preparation, where the necessary information 96 

required for checking is prepared; (3) the rule execution phase, which carries out the checking, 97 

and (4) the reporting of the checking results.” Both the first two stages are intended to prepare 98 

input (i.e., building design and building codes, respectively) for the third phase – rule execution. 99 

In order for the building code rules to execute over the building design input, there lies the 100 

matching between the two inputs. In tackling this problem, recent ACC efforts mainly 101 

endeavored at the rule level (i.e., regulatory requirements from building codes). For example, 102 

Kasim et al. (2013) proposed a reusable solution for sustainability compliance checking using 103 

the requirement-applicabilities-selection-exception (RASE) methodology developed by Hjelseth 104 

and Nisbet (2011). Their method can extract sustainability requirements and convert them into 105 

compiled rules for use with a rule engine. It has the potential to support dynamic checking during 106 

the building design stage. Solihin and Eastman (2015) proposed to classify the rules in building 107 

codes into six categories, including: (1) rules for checking the well-formedness of a building 108 

model, (2) rules for building regulatory code checking, (3) rules for constructability/other 109 

contractor requirements, (4) rules for safety/other rules with corrective actions, (5) rules for 110 

warranty approvals, and (6) rules for checking BIM data completeness. Zhang and El-Gohary 111 

(2017) proposed a semantic NLP and logic reasoning-based method to support fully automated 112 
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code compliance checking. Their prototype achieved 98.7% recall & 87.6% precision in 113 

noncompliance detection in Chapter 19 of the International Building Code 2009 which was based 114 

on representing each regulatory requirement as a logic rule. Haubler et al. (2021) proposed a rule-115 

based method to implement the code compliance checking of railways, with 12 categories of 116 

rules (e.g., component definitions, directional definitions). Their approach was shown to be able 117 

to automatically examine 37%-75% of the 943 rules.  118 

BIM has a great potential in supporting automated code compliance checking, especially with the 119 

support of IFC standard, which is open and platform-neutral. However, despite the existing 120 

efforts and progresses achieved, practical obstacles remain, in information extraction and 121 

matching from both BIMs and specific building codes, at the regulatory concept level. For 122 

example, BIMs are not expected to contain explicit depictions of “egress”, which is an important 123 

concept in building codes.  124 

Information exchange in building information models (BIMs)  125 

Information exchange has been frequently studied (Sarawagi 2008, and Yang et al. 2019), 126 

especially using the ontology-based approach in recent research (Fernández et al. 2011, Yehia et 127 

al. 2019, Paliouras et al. 2011, and Wimalasuriya and Dou 2010). For information exchange in 128 

BIMs, in a design science research by Ding et al. (2017), a real-time quality checking system was 129 

accomplished using Industrial Foundation Classes-based Inspection Process Model (IFC-IPM). 130 

Their system demonstrated the efficiency in quality information exchange and could be used in 131 

inspection activities. Kim et al. (2016) developed a new approach to extract and process material 132 

information in BIMs, to explore energy-saving options early in the design phase. The major 133 

limitation of such an approach was the inaccuracies during simplifications in 134 
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construction/material data. Their new system consisted of three parts, namely, information 135 

extraction, material property matching, and file writing. The system improved the efficiency of 136 

energy modeling by eliminating the manual information input and increased the accuracy using 137 

the developed matching algorithms. 138 

For information exchange of IFC models in automated code compliance checking, Zhang and El-139 

Gohary (2019) proposed a machine learning-based approach to map building code concepts and 140 

relations to IFC elements and relations. Their method achieved 77% matching accuracy in IFC 141 

elements and 78% accuracy in IFC relations, which is representing the state of the art. For 142 

practical building code compliance checking automation, performance improvement will be 143 

needed. In addition, many concepts in building codes do not have a one-to-one mapping to IFC 144 

entities. The bridge between building codes concepts and IFC entities still need to be built with 145 

additional ways. 146 

Identification of building components 147 

There is also no lack of research in automated identification of building components. For example, 148 

Quintana et al. (2018) proposed a method for door detection from 3D colored point clouds data. 149 

Their approach could detect open, semi-open, and closed doors from the laser scanned data of an 150 

indoor environment by integrating geometry, colors, and other characteristics into the detection 151 

analysis. As a result, they were able to detect doors with close to 100% precision and higher than 152 

90% recall. Adán et al. (2018) proposed a method for detecting secondary building components  153 

(e.g., MEP components) from laser scanners. They proposed a 6D approach (XYZ+RGB) to 154 

recognize small objects such as switches and signs by inferring the objects following a consensus 155 

procedure, to create an as-is semantically rich 3D model. Puente et al. (2014) proposed a method 156 
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for detecting road tunnel luminaires using mobile Light Detection and Ranging (LiDAR) 157 

technology. Hamledari et al. (2017) proposed a method to detect components of under-158 

construction indoor partitions using computer vision-based technologies. It was found that the 159 

methods for detecting and constructing as-is building components have been studied extensively 160 

with practical results. However, reasoning about semantic building concepts (e.g., egress) from 161 

as-design models was under-researched to produce reliable and practical results, as discussed in 162 

the information exchange section. The detection of building code concepts is also different from 163 

detecting objects, because the building code concepts may involve multiple objects, relationships 164 

between them, and their combinations. As a result, new methods need to be developed to help 165 

identify these building code concepts, which the existing methods did not cover.  166 

Proposed Method for ACC-Oriented BIMs Model Validation 167 

The authors propose an iterative method to extend the information from BIMs to better support 168 

information mapping to building codes, for use in ACC systems. Different from previous 169 

approaches that directly map the building code concepts to IFC entities, which still do not provide 170 

enough information in compliance checking, or approaches that extend the IFC schema, which 171 

requires deep knowledge and understanding of IFC, the authors propose to use invariant 172 

signatures of AEC objects (Wu et al. 2021) as intermediate results to connect building code 173 

concepts and IFC entities, and extend the information from IFC models to infer more concepts 174 

based on the invariant signatures, to better map the information in IFC-based BIMs to building 175 

code concepts (Fig. 1).  176 

The authors propose an iterative approach to develop an intermediate information set with 177 

extended information added to BIMs, to provide information mapping between BIMs and 178 
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building code concepts, which in turn better supports automated compliance checking compared 179 

to the state of the art (Fig. 2). In this proposed method, there are four main steps: (1) construct 180 

invariant signatures for AEC objects from IFC models, (2) identify and classify target concepts 181 

from logic rules that represent regulatory information from building codes, (3) develop 182 

algorithms for extending model information to match target concepts, and (4) generate logic facts 183 

to store the extended information. The algorithms are developed following a data-driven 184 

approach so that the algorithms can be continuously developed to cover more concepts and model 185 

representations. New rules and algorithms can be added under the condition that they do not 186 

interfere with previous results, to ensure compatibility and robustness. With more training data, 187 

the system will be more robust. It is not our goal in this paper, however, to build the ultimate all-188 

in-one set of algorithms that cover each and every possible concept in building codes. Our goal 189 

in this paper is to introduce the method and framework to enable that. 190 

Step 1 - Construct invariant signatures for AEC objects from IFC models 191 

To allow the information matching in later steps, this step extracts information from the BIMs. 192 

During this processing of the BIMs data, invariant signatures (Wu et al. 2021) are used to convert 193 

the IFC models into value entries of a set of pre-defined features, a data format that is easier to 194 

process and use. Invariant signatures are “a set of intrinsic properties of the object that distinguis h 195 

it from others and that do not change with data schema, software implementation, modeling 196 

decisions, and/or language/cultural contexts.” (Wu et al. 2021). They capture the geometric 197 

nature of the IFC model and can fully represent the AEC objects in the IFC models. In this 198 

proposed method, invariant signatures are extracted from BIMs using the IFC2x3 standard, which 199 

is commonly used in commercial projects. While invariant signatures are platform neutral and 200 

independent from specific data schema, during their use, however, they still need to be extracted 201 
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from practical models that follow certain data standards. For example, consistent invariant 202 

signatures must be generated from different representations of the same shape, e.g., boundary 203 

representations (Brep) and extruded solid representations, two of the most commonly used 3D 204 

representations in IFC. In addition to these commonly used representations, a data-driven 205 

approach is used to develop algorithms for extracting information from the models that follow 206 

uncommon representations. In summary, the state-of-the-art invariant signatures extraction 207 

algorithms by Wu and Zhang (2019a, b) and Wu et al. (2021) are extended to allow full support 208 

for information extraction and information exchange for BIMs model validation. 209 

Experimental testing requires different BIMs as training data and testing data. The performance 210 

in terms of precision and recall is reported using element-level assessment, and the results are 211 

manually verified. During the training phase, the results shall achieve 100% in information 212 

extraction from the training models, and then the trained algorithms are tested on the testing 213 

models to assess their performance. 214 

Step 2 - Identify and classify target concepts 215 

The target concepts are extracted from logic rules that are in turn generated from building codes 216 

(regulations) using the state-of-the-art regulatory information extraction and transformation 217 

algorithms (Zhang and El-Gohary 2015; 2016b). These algorithms can generate logic rules based 218 

on the building codes fully automatically. As the state-of-the-art algorithms are not 100% 219 

accurate yet, the generated logic rules are further manually verified and modified as necessary, 220 

to form gold standards. This is still much more efficient comparing to generating the logic rules 221 

solely manually from scratch. In an experimental trial to generate the logic rules by comparing 222 

not using and using the machine-generated results, the average time for generating one logic rule 223 
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was reduced from 321.2 seconds/rule to 84.2 seconds/rule (i.e., 73.8% time saving) by using the 224 

machine-generated results. In the gold standard logic rules generated from the building codes, 225 

the logic clause in the form of “entity(Entity)” (where the predicate name has the same string 226 

with the argument but in lowercase) indicates a declaration of a concept instance. An observation 227 

of the building codes and those logic clauses showed that these predicates contain all the concepts 228 

in the corresponding sections of building codes, which are the target concepts to be mapped. On 229 

the other hand, because almost all nouns are generated in this form of instance declaration, the 230 

generated logic rules contain multiple types of building code concepts. For example, building, 231 

door opening, group h, and section 10.4 are all concepts generated from the building codes, which 232 

are of completely different types of concepts. To allow seamless information mapping, it is 233 

critical to classify these concepts, and then develop rule-based identification algorithms based on 234 

the characteristics of each type. 235 

In the proposed method, the authors classify the concepts into four types, which are explicit 236 

concept, inferable concept, user-assisted concept, and system default, respectively. These target 237 

concepts are classified by developers and end-users are not required to participate in this 238 

classification process. 239 

Explicit concepts are the concepts that are directly generable from the BIMs, i.e., the concept has 240 

a one-to-one mapping to IFC entities and can be directly identified. For example, a wall concept 241 

has corresponding AEC objects in IFC entities: IfcWall and IfcWallStandardCase.  242 

Non-explicit concepts are more challenging in their detection comparing to the explicit concepts 243 

because there is no direct one-to-one mapping between the concepts and IFC entities. However, 244 

some non-explicit concepts can be inferred based on related information in the IFC model. 245 
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Accordingly, there are two sub-categories, inferable and user-assisted. If a consistent inference 246 

rule can be found, then that concept is considered inferable, i.e., the inferable concepts are the 247 

concepts that can be heuristically inferred from the explicit information in the model with 248 

consistency; if not, then that concept is considered to require user judgement and therefore 249 

classified as user-assisted. For example, egress is considered an inferable concept whereas 250 

bathroom is classified as a user-assisted concept. The identification of inferable concepts is 251 

performed by recognizing related IFC entities and then selecting those that satisfy additional 252 

constraints based on heuristic rules. The additional constraints leverage the geometry and relative 253 

locations of these IFC entities comparing to other IFC entities in the same model. For each 254 

inferable concept, one heuristic rule-based algorithm is developed. The algorithms are developed 255 

by analyzing the corresponding human recognition process to summarize needed heuristics, and 256 

then digitalizing and formalizing these heuristics into rules. The rules are then verified on the 257 

training data to validate the correctness of the identification algorithms during the training 258 

process. One of the most representative inferable concepts is egress. For identifying an egress, 259 

the main heuristic was to identify the exit doors of the building. Therefore, the constraints used 260 

in the egress identification algorithm were to find doors that locate at the boundary of the building 261 

that connect interior and exterior of the building. Based on the geometric and locational 262 

information, interior doors can be excluded from the egress. During this process, all the reasoning 263 

can be performed automatically without human judgment, with the developed heuristic rules. 264 

While it is not difficult for a human to judge if a door is an egress, the algorithm for identifying 265 

these requirements still needs to be developed with exact steps, to ensure the algorithm can 266 

function well to generate the expected results robustly.  267 
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In contrast, user-assisted concepts are the concepts that can be semi-inferable with additional user 268 

input and judgement. The concepts that rely solely on user input could be straightforwardly 269 

handled by taking user inputs and therefore are outside of the scope of this paper. While logically 270 

it is straightforward to demonstrate if a concept is inferable (i.e., by finding a way to infer it), it 271 

is close to impossible to prove if a concept is not inferable. The boundary between inferable and 272 

user-assisted concepts therefore depends on the current implementation and reasoning capability. 273 

To differentiate from inferable concepts, user-assisted concepts can be inferred to a certain extent, 274 

but not 100% inferred. For example, while it might be tempting to computationally infer 275 

bathrooms from their size (i.e., bathrooms tend to be smaller than other rooms), this cannot 276 

guarantee a consistent result, as storage rooms can also be small whereas public restaurants can 277 

have quite large bathrooms. As such, additional manual input is needed to decide if a room is a 278 

bathroom. As a result, it is hard to quantify the size of the bathrooms, and relative size does not 279 

work either. Furthermore, room functions may change during the planning phase, so additional 280 

inputs from users are required for these concepts’ identification. By allowing certain extent of 281 

user judgment, the proposed method also incorporates some flexibility and error-tolerance in the 282 

building design. An important consideration is that the additional user input shall be minimal 283 

with inferred information computed to the largest extent possible, and the input should be 284 

collected preferably by multiple-choice or yes/no type of questions, with the least amount of 285 

domain knowledge and manual efforts needed.  286 

The system defaults are the concepts that are not representing actual objects from a building, such 287 

as tables in the regulation, equations for calculations, references to other sections, or other 288 

concepts that are not directly related to BIMs, which as a result will not be the focus of this 289 
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research. However, they are still needed in order for the downstream logic-based reasoning to 290 

execute successfully.   291 

To illustrate the idea, Fig. 3 shows the relations between the four categories of target concepts 292 

based on the above-mentioned IFC models and the IBC 2015. It also reveals that direct mapping 293 

from building codes to BIMs is not feasible for all concepts, and IFC models also contain 294 

information not used in the building code compliance checking. With the extended information, 295 

such gaps in matching BIMs with building code concepts can be addressed. 296 

Step 3 - Develop algorithms for extending model information to match target concepts 297 

In this step, information extension and matching algorithms are developed to match the invariant 298 

signatures generated from Step 1 to the target concepts identified in Step 2. Heuristic rule-based 299 

algorithms are developed iteratively until consistent results are obtained in the training data, i.e., 300 

the target concepts matching need to achieve 100% precision and recall in the training data. 301 

For explicit concepts, the algorithms are straightforward in that each object will generate one 302 

instance of the corresponding target concept. For example, a door object (IfcDoor) from the IFC 303 

model can be used to directly generate an instance of the door concept. The attributes of the 304 

instance should also be extracted, such as the length, width, etc. These attribute values can be 305 

directly obtained from the invariant signatures of the object. 306 

For inferable concepts, heuristic rule-based algorithms are developed to extend the explicit 307 

information to the target information by inference. Each concept has its own identification sub-308 

algorithm. For example, the egress concept (i.e., target concept) does not have a one-to-one 309 

mapping to existing IFC entities. The identification of egresses therefore needs to be conducted 310 

through inference. To develop the algorithm, heuristic rules are developed first. For example, one 311 
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possible heuristic rule for egress is that doors at boundaries of the building that connect interior 312 

and exterior of the building can be recognized as egresses. An algorithm can therefore be 313 

developed to identify a door’s shape, position, level, and relative locations to decide if the door 314 

can be classified as an egress, using this heuristic rule. Then all inferred results are added to the 315 

extended information set (i.e., the information originated from the BIMs), so the extended 316 

information set now contains all the inferred information in addition to the original explicit 317 

information. All information is stored for later use. 318 

For user-assisted concepts, a light user interface (UI) is developed to allow users to input the 319 

missing information. Inference algorithms are still developed to infer intermediate results, so that 320 

the questions presented to the user only ask for minimal input, and preferably using multiple-321 

choice questions and/or binary yes/no questions. In addition to soliciting user inputs, the 322 

algorithms also combine the user input with existing explicit and inferred information, to enrich 323 

the extended information set. 324 

At this step, all system default concepts are identified to support further development. No further 325 

processing is needed from the model validation perspective, as the information does not directly 326 

map to the BIMs per se. For example, section_1003_3 is such a concept, which refers to Chapter 327 

10, Section 1003.3 of a selected building code. While such concepts do not have a direct mapping 328 

in the extended information, they are important in the later automated reasoning stage of code 329 

compliance checking.  330 

Step 4 - Generate logic facts to store extended information set 331 

With the extended information set produced from the previous step, logic facts are generated to 332 

store this information. Instead of higher-order logic (Gallin 2011) and defeasible logic (Naeem 333 
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2014), the logic facts store all the instances of target concepts in first-order logic (FOL) format, 334 

which is widely used and successfully tested for storing objects and relations to conduct deductive 335 

reasoning effectively and expressively (Zhang and El-Gohary 2015). It is machine-readable so 336 

that they can be directly used for logic-based automated code compliance reasoning. The 337 

advantage of this logic fact format is that it is very easy to read, edit, store, and manage. The logic 338 

facts can be directly fed into a logic-based building code compliance checking system for 339 

automated reasoning, with no further processing needed on the model information side.  340 

The logic facts follow a uniform representation of concepts and properties. For each instance of 341 

the target concept, a numbered instance is declared (e.g., egress(egress32)). Then properties of 342 

the concept are linked to the instance in the form of logic relations (e.g., has(egress32, height117) 343 

indicates the height property of egress instance number 32 is represented by height instance 344 

number 117). Different concepts may have their unique properties, e.g., the room type property 345 

applies to a room but does not apply to a window. For algorithm development of generating logic 346 

facts, each target concept uses its own designated sub-algorithm. All generated logic facts are 347 

then manually checked for evaluation.  348 

Experiment  349 

For experimental testing, the authors collected five real commercial projects and a residential 350 

project, namely, a convenience store, a warehouse, two restaurants (a fast-food restaurant and an 351 

Italian restaurant), a hotel, and a duplex apartment. The first five models were provided by our 352 

industry partner and all of them are located in Texas, and the last one is a sample residential 353 

building model from the open-source common BIM files site (WBDG 2021). All the six models, 354 

however, were designed by different architects. For each project, the authors used a 355 
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corresponding building model in IFC format. The authors followed a 5:5 ratio for splitting the 356 

projects into training and testing models. As a result, the convenience store, warehouse, and the 357 

Italian restaurant were used as training data, whereas the fast-food restaurant, the hotel, and the 358 

duplex apartment models were used as testing data. Fig. 4 shows the training projects, and Fig. 5 359 

shows the testing projects. The hotel project contains a four-story main building and two one-360 

story side buildings, which has the largest number of building elements, and was also the largest 361 

in footage. The duplex apartment project contains a two-story building. The remaining four 362 

commercial buildings are all one-story buildings without side buildings. All models are well-363 

functioned complete building models with multiple rooms, walls, doors, etc. For example, the 364 

Italian restaurant, the convenience store, the warehouse, the fast-food restaurant, the hotel, and 365 

the duplex contained 14, 12, 1, 1, 200, and 11 rooms, 34, 37, 18, 54, 673, and 57 walls, 13, 11, 366 

34, 11, 317, and 14 doors, respectively. In summary, two of the testing models are similar to the 367 

three training models, which is one or two-story but with different layouts and different number 368 

of rooms, while the other testing model (the hotel project) is less similar in that it contains four 369 

stories, and has significantly more rooms, which adds more complications in the validation 370 

process. 371 

Step 1 - Construct invariant signatures from IFC models 372 

For the model validation process, the first step is to preprocess the models to extract invariant 373 

signatures-based information from the IFC models.  374 

In constructing the invariant signatures, the state-of-the-art algorithms (Wu et al. 2021) were used 375 

to extract values from the IFC models. For each AEC object, 36 features were generated as 376 

invariant signatures, including geometric, locational, and metadata signatures. The distribution 377 
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of the invariant signatures-based features is shown in Table 1. The invariant signatures were able 378 

to fully represent the information about building objects of a model. This simplified the process 379 

of further conversion, as the invariant signatures were ready to be used in developing the heuristic 380 

rule-based classification algorithms. Later algorithms development follows an iterative approach, 381 

i.e., for any information found missing in the later development phase, a refinement/extension of 382 

the invariant signatures was conducted. 383 

Step 2 - Identify and classify target concepts 384 

With the invariant signatures-based processing of IFC models completed, the building codes were 385 

then processed, using the state-of-the-art information extraction and transformation algorithm 386 

(Zhang and El-Gohary 2015; 2016b) to generate logic rules from International Building Code 387 

2015 (IBC 2015). To illustrate the idea, the authors chose Chapter 10 for demonstration. The 388 

automatically generated logic rules were then manually refined to error-freely represent the 389 

regulatory requirements in Chapter 10 of IBC 2015.  390 

To extract the target concepts from the logic rules, the authors developed a target concept 391 

identifier that can identify a target concept by recognizing the single-variable conjunct pattern of 392 

a logic clause (i.e., conjunct of the form “entity(Entity)”). For example, a “door(Door)” conjunct 393 

indicates a declaration of a door object variable. For each target concept, the logic rules always 394 

contain this type of declaration. Therefore, the target concept identification algorithm could 395 

identify all the related building code concepts from the logic rules. 396 

With this target concept identification algorithm, the authors were able to identify 1,408 target 397 

concepts. These concepts were then classified into the four types, as shown in Table 2 and Table 398 

3. For the concept coverage of models, every model covered most of the 1408 concepts from 399 
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Chapter 10 of the IBC 2015. The exceptions were fence, stair, and mezzanine. Only the Italian 400 

restaurant contained fences. Only the hotel model and the duplex apartment model contained 401 

stairs. No model contained mezzanines.  402 

Step 3 - Develop algorithms for extending model information to match target concepts 403 

Explicit concepts 404 

 405 
Explicit concepts were straightforward in their identification algorithm development, as the name 406 

suggested. Each explicit concept had a one-to-one mapping to the IFC entities, which was directly 407 

used for identifying them in the IFC models. For example, doors were identified through IfcDoor 408 

and rooms were identified through IfcSpace. 409 

The validation of these concepts’ identification was conducted by directly checking the number 410 

and properties of the corresponding IFC entities. Results showed all the needed explicit concepts 411 

were identified with 100% precision and 100% recall in the training data (Table 4).  412 

Inferable concepts 413 
 414 
For inferable concepts, one of the most representative concepts is egress. The authors conducted 415 

an experiment following the heuristic described in the method. The detailed implementation was 416 

as follows: 417 

Step 1: Identify the boundary of the building. The boundary is found by taking the maximum and 418 

minimum coordinates of walls and slabs on the first floor of the building. Four line segments 419 

need to be identified for each building model.  420 

Step 2: Select doors that are at the boundary of the building. This is achieved by checking the 421 

position of the doors. The doors selected are the ones that are close (i.e., within a predefined 422 

threshold) to the boundary of the building. 423 
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Step 3: Verify the orientation of each door selected from Step 2 and keep the ones that connect 424 

the interior and exterior of a building. This is achieved by checking if the door’s orientation is in 425 

parallel to the corresponding boundary. 426 

The visualization of the egress identification results on the Italian restaurant model is shown in 427 

Fig. 6. 428 

As illustrated in Fig. 6, Doors 1, 2, 3, 4, 6, and 8 were not identified as egress because they were 429 

not at the boundary of the building (Step 2 criterion was not satisfied). Doors 5 and 7 were further 430 

eliminated because they failed to satisfy the orientation criterion at Step 3, i.e., the direction was 431 

not in parallel with the corresponding boundary. Finally, Doors 9, 10, 11, 12, and 13 were 432 

identified as egresses because they met all the three criteria in the algorithm. 433 

In addition to egress, the authors also developed algorithms for the rest of the inferable concepts 434 

(Table 5). For example, for the identification of a building, the main heuristic used was to identify 435 

the boundary of the building based on a range for all involved building objects. For identifying 436 

floor levels, clustering algorithm was used to cluster slab objects together based on their elevation. 437 

For identifying a mezzanine, the main heuristic used was to recognize the slab objects between 438 

floor levels. The results of the algorithm development for inferable concepts are shown in Table 439 

6. 440 

User-assisted concepts 441 

 442 
For the other subtype of non-explicit concepts, the user-assisted concepts, the information from 443 

the IFC models was not sufficient to automatically identify those concepts even with inference. 444 

However, the inferences were able to be conducted to an extent to narrow down the range of 445 

selection. For example, based on the observation of the models, there was not enough information 446 
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for differentiating bathrooms from other rooms. For the target concept of a bathroom, however, 447 

it can be inferred that it must be a room, which could help limit the range. Therefore, to identify 448 

bathrooms, the algorithm will display questions to the user to help filter through the narrowed 449 

range, e.g., “Is room2 a bathroom? Enter 1 for Yes, enter 2 for No.” Similarly, algorithms for 450 

processing other user-assisted concepts were developed with interactive questions. Table 7 shows 451 

the additional information needed from users for successful identification of the user-assisted 452 

concepts. Table 8 shows the results of identifying user-assisted concepts.  453 

System defaults 454 
 455 

As described above, system defaults were not representing actual objects from a building design 456 

and therefore do not have (or need to have) any mapping in the extended information set. As a 457 

result, during the model validation process, these system defaults were identified, but no further 458 

action was conducted on them. They can be used to support the later compliance checking stage 459 

by instantiating logic rules for automated reasoning execution. For example, an equation concept 460 

referred to an equation from the building codes. A fully automated compliance checking system 461 

would need to use the equation for calculations in the checking, the process of which should also 462 

be automated. In line with such an approach, all 1,382 system defaults concepts were identified 463 

for future use.  464 

Step 4 - Generate logic facts to store extended information set 465 

With all the algorithms for extending the information set, identified target concepts were stored 466 

in logic facts. The logic facts can be directly used for later logic-based automated code 467 

compliance reasoning.  468 
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To generate logic facts, each instance of the target concept from the extended information was 469 

generated into connected B-Prolog (a Prolog system implementation with extensions for 470 

programming concurrency, constraints, and interactive graphics) clauses (Zhou 2014) including 471 

its declaration and properties, where Prolog is a FOL-based logic programming implementation. 472 

For example, the identified egress entity 1qPjXNL6r8rRF28rPA_nZx (Door 10 in Fig. 6) was 473 

stored in “egress(egress2). height(height32). has(egress2, height32). has_value(height32, 7.33). 474 

has_unit(height32, foot). …” “egress2” was used because it was the second identified egress 475 

among all the identified egresses. The height of the egress was 7.33 feet. To represent such 476 

information, a height instance was declared as “height32”, because there were already 31 height 477 

instances declared beforehand. The “has_value(height32, 7.33).” and “has_unit(height32, foot).” 478 

defined the value and unit of the height property, respectively. Additional information was also 479 

represented in the same format, such as its length, width, position, orientation direction, etc. Table 480 

9 shows the results of the logic clauses generated from the extended information set. 481 

Results and Analysis 482 

To evaluate the robustness of the proposed method and developed algorithms, the authors tested 483 

them on the three testing models, namely, the fast-food restaurant model, the hotel model, and 484 

the duplex apartment model (Fig. 5). The results are shown in Tables 10-13. Table 10 shows the 485 

results on explicit concepts. Note that the hotel model had four roofs which were not directly 486 

observable in Fig 5, so the authors showed the roofs again in Fig. 7. 487 

Table 11 shows the results on inferable concepts. The precision was 96.0% and the recall was 488 

93.9%. As an example illustration, the egresses identified are shown in Fig. 8 and Fig. 9, for the 489 

fast-food restaurant model and the hotel model, respectively. For fast-food restaurant model, both 490 
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egresses were successfully identified. For the hotel model (Fig. 9), six egressed were successfully 491 

identified whereas five egresses were missed. This error occurred because there were three 492 

separate buildings in the hotel model, whereas the algorithm only identified one building - the 493 

main building. A further analysis showed that this was because in all three training models there 494 

was only one building for each model. Following the data-driven approach, the assumption of 495 

one building for each model was established from the training models, whereas it does not hold 496 

in the hotel testing model. As a result, the trained algorithms in our experiment failed to identify 497 

the other two buildings and the corresponding five egresses. In addition, one assembly area was 498 

also incorrectly identified because of this error. 499 

Table 12 shows the results of user-assisted concepts. The developed algorithms produced simple 500 

binary (Yes/No) questions based upon which perfect precision and recall could be achieved. 501 

Table 13 shows the generated logic facts for the whole model. 502 

As shown in Table 13, the algorithms achieved an overall 99.8% precision and 99.7% recall 503 

which is very promising. However, for the inferable concept category, the precision was only 504 

96.8% and the recall was only 93.9% in the generated logic facts. The logic clause-level recall 505 

was different from the concept-level recall shown in Table 11, because one egress concept needs 506 

to be represented by multiple logic clauses.  507 

The error in the inferable concept category occurred because the developed system did not 508 

identify all three buildings in the hotel model, which can be seen in Fig. 7 and Fig. 9. A further 509 

inspection showed that the developed algorithm used a relatively strong assumption that a 510 

building is close to a rectangular shape (with some error margin) and there is only one building 511 

in the model. This assumption was valid during the training phase because all training models 512 
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were single-building models with a rectangular-shaped boundary. However, this assumption was 513 

not valid on the testing hotel model because there were two side buildings attached to the main 514 

building. Therefore this hotel model did not have a one-to-one mapping between buildings and 515 

IfcBuilding entities (i.e., there was only one IfcBuilding entity but three connected buildings). 516 

This unseen multi-building model resulted in an error in the developed system and caused a 4% 517 

drop in precision and a 6.1% drop in recall on the logic clauses of the inferable concept category. 518 

To resolve it, the authors did a follow-up experiment to modify the algorithm to allow polyline 519 

shape as building boundaries and allow multiple buildings to exist in one project model. This 520 

modification enabled the algorithm to then correctly identify all buildings and egresses. Based on 521 

the nature of rule-based algorithms, the same level of performance may not be readily achieved 522 

on unseen patterns. However, with further development on more training data to cover more 523 

concepts and patterns for building code and building design models, respectively, the expectation 524 

is that the accumulated set of algorithms will continuously be expanded and therefore enhanced 525 

its robustness, to asymptotically approach the ultimate superset of algorithms. 526 

In Chapter 10, 1408 regulatory concepts can be extracted, which is sufficient to demonstrate the 527 

robustness of the method. This method is expected to generate comparable results on other 528 

chapters of the IBC 2015. For other chapters in the IBC 2015, there are many concepts that were 529 

in common with Chapter 10, such as building, wall, ceiling, etc. For new concepts, the proposed 530 

method can also be used to categorize them and develop new identification algorithms 531 

accordingly.  532 

In summary, the proposed method achieved an overall 99.8% precision and 99.6% recall in the 533 

resulting logic clauses. 534 
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Contributions to the Body of Knowledge  535 

The contributions to the body of knowledge are four-fold. First, the authors investigated the 536 

feasibility of automated inference of non-explicit information in BIMs, to match with building 537 

code concepts. It was found that this feasibility depends on the type of non-explicit information 538 

to be derived. For non-explicit information that is not directly inferable, the authors still leverage d 539 

inference to reduce the needed manual input from users. Second, the authors presented a new 540 

categorization of the concepts from building codes in four categories: (1) explicit, (2) inferable, 541 

(3) user-assisted, and (4) system defaults, in the context of serving as target concepts of 542 

validating/matching with BIMs, to facilitate the analysis of BIMs for ACC in a divide-and-543 

conquer manner. Third, in the identification of concepts from BIMs, the authors developed 544 

invariant signatures-based algorithms for matching with each of the four categories of building 545 

code concepts, with high recall and precision. Last but not least, the proposed method was able 546 

to extend the information from BIMs and check for missing information in the context of ACC. 547 

Combined with logic rule-based algorithms, the resulting information set (i.e., the collected 548 

information) was demonstrated to be significantly extended to facilitate the matching of BIMs 549 

with building codes. In summary, the authors made a solid advancement in filling the gap of 550 

information mapping from BIMs to building codes for ACC, by introducing an extended 551 

information set using invariant signatures-based inferences. This method supports model 552 

validation in ACC and therefore indirectly and positively affects interoperability of BIM.   553 

Conclusions  554 

The authors proposed an iterative method for BIMs model validation using invariant signatures 555 

and logic inference to support automated building code compliance checking. The proposed 556 

method can extend the information extracted from BIMs with non-explicit concepts, to support 557 
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mapping from BIMs to target concepts in building codes. The proposed method uses invariant 558 

signatures of AEC objects as intermediate results to extract information from IFC entities and 559 

extended the extracted information by inferring more concepts based on heuristic rule-based 560 

algorithms and user inputs. An experiment on International Building Code 2015 and five 561 

commercial building models showed that the proposed method achieved 99.7% precision and 562 

99.5% recall in generating the extended information set. The proposed method was shown to 563 

function with consistent results between testing data and training data, in mapping the extended 564 

information set from BIMs to building code concepts. This helps address the existing research 565 

gap of BIMs validation to support fully automated building code compliance checking. 566 

Limitations and Future Work 567 

The authors acknowledged the following limitations of this paper: (1) the proposed method was 568 

tested in only one chapter (i.e., Chapter 10) of the IBC 2015, how it will perform in other chapters 569 

and other building codes remain to be tested. However, the authors would expect comparable 570 

results on other chapters and other building codes using the same method. (2) In order for the  571 

processing of inferable concepts to be error-free, the assumption used in the heuristic rules needs 572 

to be broadly applicable in any foreseeable BIMs. (3) Due to the nature of rule-based algorithms, 573 

it is time-consuming and labor intensive to grow the number of concepts and patterns covered, 574 

whereas error is always possible before the number of concepts and patterns saturate.  However, 575 

the authors believe the number of concepts and patterns in this context is enumerable, and a 576 

compatible set of rules are feasible with careful implementation, such as by performing a 577 

comprehensive check after each new rule is added. In addition, while the theoretical optimal rule 578 

set may be hard to achieve, it is always feasible to arrive at practically “comprehensive” solutions 579 
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for a known scope (e.g., concepts in International Fire Code) using data-driven approaches. Lastly, 580 

the method was validated only on commercial and residential buildings. Other types of built 581 

environment, such as civil infrastructure (e.g., railway station) remain to be tested. In their future 582 

research, the authors plan to test their method on more building codes and explore ways to ensure 583 

the broad applicability and compatibility of heuristic rules. Furthermore, more models will be 584 

used to accumulatively and continuously expand the set of algorithms and building code concepts 585 

covered.  586 
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Fig. 1. Idea illustration of the proposed method. 769 
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Fig. 2. Workflow of the proposed method. 771 
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Fig. 3. Venn Diagram of concepts in building codes and IFC models. 773 
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Fig. 4. Visualizations of training project models: the convenience store, the Italian restaurant, 775 

and the warehouse. 776 



 

34 
 

 777 

Fig. 5. Visualizations of testing project models: the fast-food restaurant, the hotel, and the duplex 778 

apartment. 779 
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 780 

Fig. 6. Visualization of all the egresses identified for Italian restaurant. 781 
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Fig. 7. Visualization of the four roofs identified for the hotel model. 783 
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 784 

Fig. 8. Visualization of the two egresses identified for the fast-food restaurant model. 785 
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 786 

Fig. 9. Visualization of all egresses identified for the hotel model (viewed from the backside of 787 

the building). Egresses 3, 4, 8, 9, 10, 11 were correctly identified, whereas egresses 1, 2, 5, 6, 788 

and 7 were missed, and egresses 12, 13, 14, 15 were incorrectly identified. 789 
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List of Tables 796 

Table 1. Properties of invariant signatures-based features. 797 

Signature Type  Example Feature  Feature Count 

Geometric Length, Radius 21 
Locational Position, Orientation Direction 7 

Metadata # of Faces, Average # of Vertices of 

Faces 
8 

 798 
Table 2. Count of concepts for each type. 799 

Concept Type  Example Concept  Concept Count 

Explicit Wall, Fence, Window 8 
Inferable Egress, Story 11 

User-Assisted Bathroom, Occupied_roof 7 

System Default Equation 20, Message, Group_H  1,382 

 800 
Table 3. All four types of concepts. 801 

Explicit Concept Inferable Concept User-Assisted Concept System Default 

Floor Building Stairway_doors Group_H 

Wall Building_height Machinery_rooms Means 

Window Floor_level Storage_rooms Barrier 

Door Floor_surface Lobbies Message 

Room Egress Bathroom 1,378 more concepts 

Ceiling Assembly_areas Exit_discharge_doors  
Fence Means_of_egress_system Occupied_roof  

Stair Exit   

 Mezzanine   

 Room_elevations   

 Story   

 802 

Table 4. Explicit concepts identification result on training models. 803 

Concept IFC Map No. Identified 
No. Correctly 

Identified 
Gold Standard Precision Recall 

Floor IfcSlab 24 24 24 100% 100% 

Wall 
IfcWall/IfcWallS

tandardCase 

99 99 99 
100% 100% 

Window IfcWindow 20 20 20 100% 100% 

Door IfcDoor 58 58 58 100% 100% 

Room IfcSpace 27 27 27 100% 100% 

Ceiling IfcRoof 5 5 5 100% 100% 

Fence IfcRailing 12 12 12 100% 100% 
Stair IfcStair 0 0 0 - - 

Total - 245 245 245 100% 100% 

 804 
Table 5. Heuristics used in inferable concepts identification algorithms.  805 

Concept   Heuristics Description  

Building Identify the boundary. 
Building_height One of the properties of the building concept. 

Floor_level Using clustering algorithm to identify levels. 
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Floor_surface One of the properties of the floor concept.  

Egress Door entity at the boundary that connects interior and exterior. 

Assembly_areas One of the properties of the building concept. 

Means_of_egress_system Same as egress. 

Exit Same as egress. 
Mezzanine Floor objects between floor levels. 

Room_elevations One of the properties of the room concept. 

Story Same as floor level. 

 806 
Table 6. Inferable concepts identification results on training models. 807 

Concept   
No. 

Identified 

No. Correctly 

Identified 

Gold 

Standard 
Precision Recall 

Building 3 3 3 100% 100% 

Building_height 3 3 3 100% 100% 

Floor_level 3 3 3 100% 100% 

Floor_surface 3 3 3 100% 100% 

Egress 42 42 42 100% 100% 
Assembly_areas 3 3 3 100% 100% 

Means_of_egress_system 42 42 42 100% 100% 

Exit 42 42 42 100% 100% 

Mezzine 0 0 0 - - 

Room_elevations 29 29 29 100% 100% 

Story 3 3 3 100% 100% 
Total 173 173 173 100% 100% 

 808 
Table 7. Additional information needed for user-assisted concepts. 809 

Concept Inferred Concept Additional Information Input Type 

Machinery_rooms Room Room type. Binary (Y/N) 

Storage_rooms Room Room type. Binary 
Lobbies Room Room type. Binary 

Bathroom Room Room type. Binary 

Exit_discharge_doors Egress Egress type. Binary 

Occupied_roof Roof If the roof is occupied. Binary 

Stairway_doors Door Door types. Binary 

 810 
Table 8. User-assisted concepts identification result on training models. 811 

Concept 
No. 

Questions 

No. Correct 

Questions 

Gold 

Standard 
Precision Recall 

Machinery_rooms 27 27 27 100% 100% 

Storage_rooms 27 27 27 100% 100% 

Lobbies 27 27 27 100% 100% 
Bathroom 27 27 27 100% 100% 

Exit_discharge_doors 12 12 12 100% 100% 

Occupied_roof 5 5 5 100% 100% 

Stairway_doors 58 58 58 100% 100% 

Total 183 183 183 100% 100% 

 812 
Table 9. Number of logic clauses in the generated logic facts on training models. 813 
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Concept Type  
No. Logic 
Clauses 

No. Correct 
Logic Clauses 

Gold 
Standard 

Precision Recall 

Explicit  3,458 3,458 3,458 100% 100% 

Inferable  699 699 699 100% 100% 

User-assisted  80 80 80 100% 100% 
System defaults 4,146 4,146 4,146 100% 100% 

Total 8,333 8,333 8,333 100% 100% 

 814 
Table 10. Explicit concepts identification results on testing models. 815 

Concept IFC Map 
No. 

Identified 

No. Correctly 

Identified 

Gold 

Standard 
Precision Recall 

Floor IfcSlab 39 39 39 100% 100% 

Wall 
IfcWall/IfcWallS

tandardCase 
795 795 795 100% 100% 

Window IfcWindow 145 145 145 100% 100% 

Door IfcDoor 344 344 344 100% 100% 

Room IfcSpace 212 212 212 100% 100% 
Ceiling IfcRoof 6 6 6 100% 100% 

Fence IfcRailing 0 0 0 - - 

Stair IfcStair 8 8 8 100% 100% 

Total - 1549 1549 1549 100% 100% 

 816 
Table 11. Inferable concepts identification result on testing models. 817 

Concept 
No. 

Identified 

No. Correctly 

Identified 

Gold 

Standard 
Precision Recall 

Building 3 3 5 100% 60.0% 

Building_height 3 3 5 100% 60.0% 

Floor_level 7 7 7 100% 100% 

Floor_surface 39 39 39 100% 100% 
Egress 16 12 17 75% 70.6% 

Assembly_areas 3 2 3 66.7% 66.7% 

Means_of_egress_system 16 12 17 75% 70.6% 

Exit 16 12 17 75% 70.6% 

Mezzanine 0 0 0 - - 
Room_elevations 212 212 212 100% 100% 

Story 7 7 7 100% 100% 

Total 322 309 329 96.0% 93.9% 

 818 
Table 12. User-assisted concepts identification results on testing models. 819 

Concept   
No. 

Questions 

No. Correct 

Questions 

Gold 

Standard 
Precision Recall 

Machinery_rooms 212 212 212 100% 100% 

Storage_rooms 212 212 212 100% 100% 

Lobbies 212 212 212 100% 100% 

Bathroom 212 212 212 100% 100% 

Exit_discharge_doors 344 344 344 100% 100% 
Occupied_roof 6 6 6 100% 100% 

Stairway_doors 344 344 344 100% 100% 

Total 1542 1542 1542 100% 100% 
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 820 
Table 13. Number of logic clauses in the generated logic facts on testing models. 821 

Concept Type 
No. Logic 

Clauses 

No. Correct 

Logic Clauses 
Gold Standard Precision Recall 

Explicit  22,316 22,316 22,316 100% 100% 

Inferable  1,617 1,565 1,667 96.8% 93.9% 

User-assisted  84 84 84 100% 100% 

System Defaults 4,146 4,146 4,146 100% 100% 

Total 28,163 28,111 28,213 99.8% 99.6% 

 822 
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 831 


