
A work crew installs fiber-optic telecommunications cable under a street in midtown Manhattan in New York City. This type of cable can function as sensitive seismic

strain sensors, providing Earth scientists with a deluge of data. Credit: Stealth Communications/Wikimedia Commons, CC BY-SA 3.0
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Fiber-optic cables can provide a wealth of detailed data on subsurface vibrations from a
wide range of sources. Machine learning offers a means to make sense of it all.
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Finding solutions to several of the most pressing environmental, energy, and geohazards
challenges of our time—from carbon sequestration to major earthquakes—depends on our
ability to understand Earth’s subsurface and how we interact with it. This understanding
largely emerges from the study of underground vibrations that result from both natural
events (e.g., earthquakes, magma movements, and even strong winds and rainstorms) and
human activities (e.g., hydraulic fracturing, excavation, and vehicular traffic).
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Seismometer networks are conventionally used to map and track these vibrations, but setting
up these networks can be difficult, expensive, or impossible, depending on the setting. A
recent alternative is to gather data on vibrations from thousands of kilometers of
underground fiber-optic cables already in place for telecommunications networks. However,
sifting through the deluge of data these networks produce is an unwieldy task. Machine
learning can help make it less daunting.

A New Use for Fiber-Optic Cables

Seismological studies, which locate and
measure vibrations underground, provide a
wealth of information on subsurface
structure and dynamic surface-subsurface
interactions. For these data to be fully useful
and comparable among various studies,
however, it is crucial that they are acquired
at the right places and times and at
appropriate spatial and temporal
resolutions.

In many contexts, using traditional seismic
“point” sensors to achieve these
requirements can be challenging. For example, broadband seismometers that record seismic
vibrations—including earthquakes, induced seismicity, seismic waves generated
intentionally for subsurface imaging, and other natural and human-caused vibrations—are
often expensive to purchase and costly and labor intensive to deploy. Furthermore, installing
them—especially in remote environments or urban areas—often involves logistical and legal
considerations related to data acquisition budgets, land access, or permitting, so many
studies end up having limited temporal and spatial coverage.

In the past half decade, distributed acoustic sensing (DAS) has emerged as an attractive and
versatile alternative to conventional seismometer deployments (Figure 1). DAS technology
turns conventional fiber-optic cables into arrays of hundreds to thousands of strain rate
sensors that enable continuous, long-term data acquisition over distances of tens of
kilometers, with spatial resolutions on the order of a few meters, and at frequencies ranging
from millihertz to kilohertz, allowing for detection of all manners of seismic and other types
of vibrations. These vibrations momentarily distort the shape of a fiber and cause changes in
the travel time of light pulses scattered throughout the fiber. Instrumentation installed at one
end of the fiber, called an interrogator, can detect these changes in travel time and convert
these data into information about the location of the shaking.
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Fig. 1. This timeline shows significant experimental and machine learning (ML) developments with respect to fiber-optic data, beginning with the

invention of optical time domain reflectometer (OTDR) technology, which allows characterization of the condition and light transmission performance of

fiber-optic cables and is the measurement principle used in most modern to distributed acoustic sensing (DAS) systems. More recently, a convolutional

neural network (CNN) and a generative adversarial network (GAN)—a deep learning approach and an ML approach, respectively—have been applied

DAS data. Seminal studies describing each development are indicated below the dates: Barnoski and Jensen, 1976,

https://doi.org/10.1364/AO.15.002112; Harmer, 1982, https://doi.org/10.1177/002029408201500403; Lyons and Lewis, 2000,

https://doi.org/10.1177/014233120002200504; Daley et al., 2013, https://doi.org/10.1190/tle32060699.1; Cao et al., 2015,

https://doi.org/10.1364/ACPC.2015.ASu2A.145; Aktas et al., 2017, https://doi.org/10.1117/12.2262108; Shiloh et al., 2018,

https://doi.org/10.1364/OFS.2018.ThE22.

DAS can provide both scientific and economic advantages over point sensors in situations in
which fiber-optic cables are already installed, such as in the case of existing fiber-optic
telecommunications networks. Unused, or “dark,” fibers in these networks can be repurposed
as sensing arrays. If not already available, fiber can often be installed or trenched relatively
easily, especially in comparison to the amount of time and effort required to deploy the same
number of point sensors. And unlike geophones or seismometers, fiber-optic cables can be
left to collect data for long periods of time without being disturbed by harsh environmental
conditions, wildlife, or people.

Telecommunications grade fiber is suitable for shallow borehole and surface deployments and
can cost only a few dollars per meter. Furthermore, having a permanently deployed receiver
array is advantageous for time-lapse DAS surveys and eliminates the need for costly
instrument servicing. The interrogator, the most expensive part of the measurement system,
can be used on site only when measurements are required to further reduce expenses. The
cost of DAS interrogators can still be high for extended duration deployments, but achieving
equivalent coverage and spatial density of measurements with conventional sensors is
currently prohibitive. Moreover, we expect the costs of DAS to continue declining. Thus, when
compared with large-scale deployments of point sensors with lower coverage and density, the
scientific value of DAS systems may justify the costs.

Recent work has validated DAS’s usefulness across numerous applications, giving scientists
unprecedented views into many targets of interest. For example, research has demonstrated
that DAS can act as a permanent seismic sensor for monitoring carbon dioxide movement
through a storage reservoir [e.g., Daley et al., 2013], a finding relevant for potential carbon
sequestration efforts. Other studies have used DAS to measure dynamic strain in volcanic
environments [Jousset et al., 2018], to characterize physical properties of near-surface rock
structure [Ajo-Franklin et al., 2019], to monitor icequakes and other events related to glacier
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movement and dynamics [Walter et al.,
2020], and to detect regional earthquakes
and ocean wave dynamics using existing
cables on the seafloor [e.g., Sladen et al.,
2019].

However, challenges in storing, managing,
exploring, and analyzing the vast amounts
of data collected by DAS are hindering its
wider application, resulting in heaps of rich
data that remain unused. Consider the
example of a researcher who spends entire
40-hour work weeks combing through a

city-scale DAS data set of measurements from 10,000 sensors at a realistic pace. If this person
looked at 250 sensors at a time, examining 30-second windows of recorded data for 15
seconds apiece, perhaps to label vibrational events of interest, roughly 84 weeks would be
required to completely analyze just 1 week (typically at least several terabytes) of recorded
data.

Although cumbersome to analyze manually, these dense data are increasingly amenable to
the application of traditional and innovative machine learning (ML), a set of highly flexible
tools that use algorithms to parse and learn from data and then apply this knowledge to make
predictions. Thus, ML is allowing scientists to learn from DAS data more efficiently and to
develop transformative techniques for subsurface exploration.

Applying Machine Learning to DAS

ML algorithms can handle very large volumes of data, enabling fast and efficient processing
and interpretation of variable and complex observables. With recent and rapid growth in the
quantity and variety of DAS data sets, scientists have been exploring how ML techniques can
be used to process or identify patterns in DAS data in comparison with classic approaches. In
contrast to sparse seismometer networks, DAS records data along evenly spaced cable
segments, making it more natural to organize the data into a matrix or image. Much as we do
in computer vision, we often break up these large matrices into smaller matrices, each
representing a collection of neighboring sensors during a short time window.

Since its first application in the early 2000s, DAS+ML, as we abbreviate this combination, has
been applied in both aboveground and subsurface studies. The principal motivation for using
DAS+ML to date has been surveillance—monitoring movement and activity to ensure the
integrity of pipelines and other infrastructure and the security of perimeters of sensitive
locales like airports (Figure 2, top). Researchers turned to ML algorithms to discriminate
between the different sources that could generate shaking—did a pedestrian, car, or
excavator cause the vibration?
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Fig. 2. Applications of DAS technology in geoscience to date (top) have included tracking the movement of vehicles, tractors,

and trains; assessing infrastructure health; detecting microseismicity; monitoring hydraulic fracturing; producing data (i.e.,

generating a large database of tagged events); and removing noise from data sets. ML approaches used on DAS data so far

(bottom) include the following: CNN, convolutional neural network; MLP, multilayer perceptron; SVM, support vector

machine; GMM, Gaussian mixture model; GAN, generative adversarial network; RVM, relevance vector machine; DPN, dual-

path network; k-means, a clustering algorithm; PNN, probabilistic neural network; RBF, radial basis function. Percentages

refer to the fraction of papers from our comprehensive list of ML applications to DAS data that cover each application or

approach.

Different types of machine learning algorithms have been used for data analysis (Figure 2,
bottom), and they have evolved over time. Early studies of distributed vibration sensing used
methods like nearest neighbor and support vector machines that required practitioners to
determine manually which features of a data set could be detected and discriminated
[Tejedor et al., 2017].

More recently, the literature shows a clear shift toward processing and classification of DAS
data via deep learning methods, representing the many flavors of convolutional neural
networks [Shao et al., 2020]. Unlike basic machine learning models, which need significant
human guidance to ensure that they make physically realistic predictions, a deep learning
algorithm can determine on its own whether a prediction is plausible through its own neural
network. Such work is applying DAS+ML in ever more nuanced ways, with practitioners using
it as a diagnostic to assess the “health” of infrastructure, such as tracking moving trains
precisely and monitoring their maintenance [Kowarik et al., 2020].
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Subsurface investigations are also becoming
popular targets for DAS+ML. In these
studies, the focus shifts from monitoring
infrastructure to detecting earthquakes
among a noisy mix of vibrations from
various other sources or to identifying
ambient seismic noise signals that may be
useful in imaging or monitoring
underground structure or processes. DAS
recordings in studies of the subsurface tend
to be spatially or temporally large (or both)
and contain signals from a wide variety of
natural and anthropogenic sources. These
factors complicate data labeling, the process of adding contextual information to a data set—
for example, to link a particular seismic signal to a recent earthquake—to help an ML
algorithm learn. Thus, such studies commonly use unsupervised ML methods, in which
algorithms don’t require training with labeled data sets and can find patterns and evaluate
data on their own with little or no human intervention [Martin et al., 2018].

Trenches for a DAS array at Kafadar Commons on the campus of Colorado School of Mines (right) were dug during construction of a nearby building in

October 2017. A DAS interrogator was connected to the array in November 2018, measuring strain along the cable in time (y-axis) and space (x-axis) as

seen on a computer monitor (left). Credit: Whitney Trainor-Guitton

For down-well microseismic observations (those collected in wells or boreholes), labeling
data with certainty is nearly impossible because the seismic sources may be weak, meaning
the signal generated does not stand out clearly from background observations. Also, the
sources are not directly observed: We don’t see the small fractures opening in the subsurface
that create a microseismic event. So when supervised ML is used, researchers rely on
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supplementing training data sets with synthetic data (e.g., data sets generated by wave
propagation simulations) to identify microseismic events within the DAS records.

High-Performance, Cloud, and Edge Computing

DAS surveys often involve data collected at rates greater than 10 megabytes per second,
producing data sets on the order of 1 terabyte per day [Shiloh et al., 2019]. Processing such
quantities of data is computationally expensive and often unfeasible without high-
performance computing (HPC) capabilities. Fortunately, significant breakthroughs have been
made in both ML and data-intensive HPC, concurrent with the development of DAS
technology.

Two developments in particular are allowing geophysicists to significantly speed up ML
algorithm training with large DAS data sets. The first is access to highly scalable distributed
systems—supercomputers in which components installed on several machines can be
combined and adapted to optimize performance and accommodate growth. The second is the
development of accelerated computing platforms, including Compute Unified Device
Architecture (CUDA) and other interfaces for computing with graphics processing units or
tensor processing units.

Storage of large volumes of data poses additional challenges commonly faced in DAS
investigations. Cloud storage can help to address these challenges by providing secure,
reliable, and almost infinitely scalable storage solutions. Cloud storage also helps to
streamline public accessibility by making data sets readily available from anywhere. Providing
such accessibility to valuable data sets is crucial for research transparency, reproducibility,
and fostering collaborations among scientists, which ultimately accelerates technological
advancement.

Cloud computing services paired with cloud
storage and data lakes (repositories of data
in their native formats) further allow users
to work with data where they are stored
rather than requiring users to download the
data first, eliminating the need for costly
data transfers. Storage and analysis on cloud
systems have the potential to increase the
efficiency of DAS data processing by
allowing multiple users to do this processing
simultaneously and collaboratively.

For experiments being conducted in remote
or poorly connected locations, however, transferring data from where they are produced to be
stored elsewhere—whether in the cloud or in localized storage—before they are analyzed can
sometimes be challenging and preclude their use in real-time decisionmaking, as data may
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reach the data analysis location after their window of peak usability. This limitation is
becoming increasingly relevant as the applications of DAS broaden. For example, DAS data
collected from within a well during a hydraulic fracturing experiment can aid in determining
when and where fractures occur—useful information for monitoring whether injection or
production parameters such as flow rates or proppant concentrations should be changed. The
bandwidth for data transmission during downhole experiments is often limited, though,
making it difficult to extract and process the data fast enough to use them to make quick
decisions about adjusting experimental stimulation parameters.

Edge computing, in which data storage and computational resources are located close to
where data are produced or consumed rather than in a centralized (but often distant) location,
offers a solution. This method involves processing data sets “on the edge” alongside sensors
as the data are collected and extracting only useful information from the massive data
streams. Edge computing reduces the amount of data that must be transferred. This capability
could allow enhanced and automated interconnectivity between DAS, other geophysical or
environmental sensors in an area, and researchers’ computers through an “Internet of
things” platform. Existing edge computing algorithms for distributed sensing generally lack
robustness for use across different applications because they are created on a case-by-case
basis. However, this approach could be improved by designing ML tools that run efficiently on
the edge.

The Limitless Future of DAS+ML

DAS is becoming a transformative tool for studying subsurface processes, but its large data
volumes obstruct even wider use. Important design improvements in ML algorithms for DAS
data handling and analysis will facilitate the technique’s broader application in addressing
important scientific questions and societal needs. These improvements involve solutions
enabling fast and accurate labeling of training data sets for improved use in supervised
algorithms; creating domain-specific features for preparing and choosing characteristics of
DAS data (e.g., to distinguish the signal of an earthquake from that of a passing car or train);
and improving physics-based pattern discovery in data.

Further innovation is also needed for DAS+ML to be adopted as a tool for initial quality control
of seismic data—for example, to identify whether there are spatial or temporal sections of a
data set that are of higher quality. Identifying sections of data with the desired frequency
content, fiber coupling, or characteristic signals offers more potential for interpreting and
distinguishing geologic units correctly, identifying earthquakes amid background noise,
discerning natural from human-made seismic events, identifying different types of vehicles
for traffic tracking purposes, and other applications. Improving the efficiency of seismic data
processing will lead to automated interpretation of DAS data.

As the interpretive abilities of ML
algorithms improve, more advanced
seismological problems beyond data quality
control or signal classification may be
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tackled. Such problems include data
inversion (estimating maps of subsurface
properties from observed data), event
forecasting, and uncertainty quantification.
In addition, because DAS is unlikely to be
used in isolation in the future, necessary
advances include ML models that can
integrate DAS with other seismic sensor
networks and that can transfer and apply
models trained on DAS data to data gathered by other types of sensors (or vice versa).

DAS’s increased spatial coverage and density compared with conventional point sensors,
when combined with ML, present some exciting benefits, including for improved
groundwater resource monitoring and management at local to regional scales, real-time
earthquake detection, and rapid deployment of seismic monitoring arrays. The technique
should also enable emerging strategies to mitigate climate change: With its usefulness in
studying subsurface structure, for example, DAS+ML could help design energy-efficient
infrastructure, harness geothermal energy, and investigate options for carbon dioxide
sequestration and storage. We see DAS+ML as a critical component in pushing the use of
dense seismic data beyond basic research and in providing decisionmakers with the
interpretable and actionable results they need to make progress toward these societally
important advances.

Acknowledgments

The authors are part of the Working Group on DAS and Machine Learning, which is part of the
Distributed Acoustic Sensing Research Coordination Network (RCN) supported by National
Science Foundation award 1948737 under the Geosciences and Engineering directorate. We
invite readers working in this area to get involved in the RCN. We especially thank DAS+ML
RCN working group member Bin Luo for insightful conversations during the development of
this article.

References

Ajo-Franklin, J. B., et al. (2019), Distributed acoustic sensing using dark fiber for near-surface
characterization and broadband seismic event detection, Sci. Rep., 9, 1328, https://doi.org/10.1038/s41598-
018-36675-8.

Daley, T. M., et al. (2013), Field testing of fiber-optic distributed acoustic sensing (DAS) for subsurface
seismic monitoring, Leading Edge, 32(6), 699, https://doi.org/10.1190/tle32060699.1.

Jousset, P., et al. (2018), Dynamic strain determination using fibre-optic cables allows imaging of
seismological and structural features, Nat. Commun., 9, 2509, https://doi.org/10.1038/s41467-018-04860-
y.

Necessary advances include ML models that

can integrate DAS with other seismic sensor

networks and that can transfer and apply

models trained on DAS data to data gathered

by other types of sensors.

“

https://eos.org/opinions/ten-ways-to-apply-machine-learning-in-earth-and-space-sciences
https://www.iris.edu/hq/initiatives/das_rcn
https://doi.org/10.1038/s41598-018-36675-8
https://doi.org/10.1190/tle32060699.1
https://doi.org/10.1038/s41467-018-04860-y


© 2022 American Geophysical Union. All rights reserved.

Kowarik, S., et al. (2020), Fiber optic train monitoring with distributed acoustic sensing: Conventional and
neural network data analysis, Sensors, 20(2), 450, https://doi.org/10.3390/s20020450.

Martin, E. R., et al. (2018), A seismic shift in scalable acquisition demands new processing: Fiber-optic
seismic signal retrieval in urban areas with unsupervised learning for coherent noise removal, IEEE Signal
Process. Mag., 35(2), 31–40, https://doi.org/10.1109/MSP.2017.2783381.

Shao, L. Y., et al. (2020), Data-driven distributed optical vibration sensors: A review, IEEE Sens. J., 20, 6,224–
6,239, https://doi.org/10.1109/JSEN.2019.2939486.

Shiloh, L., et al. (2019), Efficient processing of distributed acoustic sensing data using a deep learning
approach, J. Lightwave Technol., 37(18), 4,755–4,762, https://doi.org/10.1109/JLT.2019.2919713.

Sladen, A., et al. (2019), Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor
telecom cables, Nat. Commun., 10, 5777, https://doi.org/10.1038/s41467-019-13793-z.

Tejedor, J., et al. (2017), Machine learning methods for pipeline surveillance systems based on distributed
acoustic sensing: A review, Appl. Sci., 7, 1–26, https://doi.org/10.3390/app7080841.

Walter, F., et al. (2020), Distributed acoustic sensing of microseismic sources and wave propagation in
glaciated terrain, Nat. Commun., 11, 2436, https://doi.org/10.1038/s41467-020-15824-6.

Author Information

Whitney Trainor-Guitton, Colorado School of Mines, Golden; also at Zanskar Geothermal,
Provo, Utah; Eileen R. Martin (eileenrmartin@vt.edu), Virginia Polytechnic Institute and
State University, Blacksburg; Verónica Rodríguez Tribaldos, Lawrence Berkeley National
Laboratory, Berkeley, Calif.; Nicole Taverna, Colorado School of Mines, Golden; and Vincent
Dumont, Lawrence Berkeley National Laboratory, Berkeley, Calif.

Citation: Trainor-Guitton, W., E. R. Martin, V. Rodríguez Tribaldos, N. Taverna, and V. Dumont (2022), Distributed sensing and machine

learning hone seismic listening, Eos, 103, https://doi.org/10.1029/2022EO220121. Published on 4 March 2022.

2022. The authors. CC BY 3.0


Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.

https://doi.org/10.3390/s20020450
https://doi.org/10.1109/MSP.2017.2783381
https://doi.org/10.1109/JSEN.2019.2939486
https://doi.org/10.1109/JLT.2019.2919713
https://doi.org/10.1038/s41467-019-13793-z
https://doi.org/10.3390/app7080841
https://doi.org/10.1038/s41467-020-15824-6
mailto:eileenrmartin@vt.edu
https://doi.org/10.1029/2022EO220121
https://creativecommons.org/licenses/by/3.0/us/

