Layered and Object-Based Game Semantics

ARTHUR OLIVEIRA VALE, Yale University, USA
PAUL-ANDRE MELLIES, CNRS and Université de Paris, France
ZHONG SHAO, Yale University, USA

JEREMIE KOENIG, Yale University, USA

LEO STEFANESCO, MPI-SWS, Germany

Large-scale software verification relies critically on the use of compositional languages, semantic models,
specifications, and verification techniques. Recent work on certified abstraction layers synthesizes game se-
mantics, the refinement calculus, and algebraic effects to enable the composition of heterogeneous components
into larger certified systems. However, in existing models of certified abstraction layers, compositionality is
restricted by the lack of encapsulation of state.

In this paper, we present a novel game model for certified abstraction layers where the semantics of layer
interfaces and implementations are defined solely based on their observable behaviors. Our key idea is to
leverage Reddy’s pioneer work on modeling the semantics of imperative languages not as functions on global
states but as objects with their observable behaviors. We show that a layer interface can be modeled as an
object type (i.e., a layer signature) plus an object strategy. A layer implementation is then essentially a regular
map, in the sense of Reddy, from an object with the underlay signature to that with the overlay signature.
A layer implementation is certified when its composition with the underlay object strategy implements the
overlay object strategy. We also describe an extension that allows for non-determinism in layer interfaces.

After formulating layer implementations as regular maps between object spaces, we move to concurrency
and design a notion of concurrent object space, where sequential traces may be identified modulo permutation
of independent operations. We show how to express protected shared object concurrency, and a ticket lock
implementation, in a simple model based on regular maps between concurrent object spaces.

CCS Concepts: « Theory of computation — Program verification; Program specifications; Abstrac-
tion; Program semantics; Logic and verification; Linear logic; » Software and its engineering — Correctness.

Additional Key Words and Phrases: object-based semantics, certified abstraction layers, game semantics,
program refinement

ACM Reference Format:

Arthur Oliveira Vale, Paul-André Melliés, Zhong Shao, Jérémie Koenig, and Léo Stefanesco. 2022. Layered
and Object-Based Game Semantics. Proc. ACM Program. Lang. 6, POPL, Article 42 (January 2022), 32 pages.
https://doi.org/10.1145/3498703

1 INTRODUCTION

Certified software [Shao 2010] comes with a formal specification and a mechanized proof that
the software conforms to the specification. There have been a large number of recent projects
on building certified components such as compilers [Leroy 2009], program logics [Appel 2011],

Authors’ addresses: Arthur Oliveira Vale, Yale University, USA, arthur.oliveiravale@yale.edu; Paul-André Melliés, Institut
de Recherche en Informatique Fondamentale (IRIF), CNRS and Université de Paris, France, mellies@irif.fr; Zhong Shao, Yale
University, USA, zhong.shao@yale.edu; Jérémie Koenig, Yale University, USA, jeremie.koenig@yale.edu; Léo Stefanesco,
MPI-SWS, Germany, leo.stefanesco@mpi-sws.org.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2022 Copyright held by the owner/author(s).

2475-1421/2022/1-ART42

https://doi.org/10.1145/3498703

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

http://creativecommons.org/licenses/by/4.0/
HTTPS://ORCID.ORG/0000-0003-1091-7560
HTTPS://ORCID.ORG/0000-0001-6180-2275
HTTPS://ORCID.ORG/0000-0001-8184-7649
HTTPS://ORCID.ORG/0000-0002-3168-5925
HTTPS://ORCID.ORG/0000-0002-4719-2922
https://doi.org/10.1145/3498703
https://orcid.org/0000-0003-1091-7560
https://orcid.org/0000-0001-6180-2275
https://orcid.org/0000-0001-8184-7649
https://orcid.org/0000-0002-3168-5925
https://orcid.org/0000-0002-4719-2922
https://doi.org/10.1145/3498703

42:2 Arthur Oliveira Vale, Paul-André Melliés, Zhong Shao, Jérémie Koenig, and Léo Stefanesco

OS kernels [Gu et al. 2015, 2016], file systems [Chen et al. 2015], and processor designs [Choi
et al. 2017]. Unfortunately, even if these systems were developed using the same proof assistant,
they use different semantic models and verification techniques. To scale up verification further
(as exemplified by the DeepSpec project [dee 2021; Appel et al. 2017]), one major challenge is to
identify a general-purpose model which could embed all existing components. This model should
support composition and help bridge the gap between components that operate at different levels
of abstraction.

1.1 Certified Abstraction Layers

Certified abstraction layers [Gu et al. 2015, 2018] are a promising technology for programming,
compiling, linking, and composing certified heterogeneous components. The initial sequential
CertiKOS kernel [Gu et al. 2015] was decomposed into 37 certified layers consisting of C and
assembly modules such as physical and virtual memory managers, context-switch libraries, thread
and process managers, virtual machine managers, and page fault and trap handlers. Later versions
of CertiKOS [Chen et al. 2016; Gu et al. 2016, 2018; Liu et al. 2019] showed how to extend certified
layers to support multicore and multithreaded concurrency, fine-grained locking, device drivers,
and real-time scheduling; they have also been extended to verify not only the total functional
correctness but also information-flow security properties [Costanzo et al. 2016; Liu et al. 2019].

As described in Gu et al. [2015], a certified abstraction layer consists of a layer implementation
together with two layer interfaces: the underlay provides specifications for the primitives available
to the layer implementation; the overlay provides specifications for the primitives which the layer
implements. A layer M implementing the overlay interface L, on top of the underlay interface L;
can be depicted on the right below. L,

A layer interface L has three components. First, a signature enu-
merates primitives together with their types, given asop : A — B — L
where A and B are sets. Second, the set S contains the abstract states of the layer interface. Finally,
for each primitive op : A — B, its specification is given as a function of type A x S — P1(B x S)
where P! corresponds to the maybe monad: P*(X) is defined as {x C X : |x| < 1}, and the empty
set @ € P1(X) denotes fault or silent divergence.

As an example (taken from Koenig and Shao [2020]), Fig. 1 presents a certified layer that
implements a bounded queue with at most N elements using a ring buffer. In the underlay interface
Ly = Ly, its abstract state contains an array f € UN with N values of type U and two counters
which take values in the interval 0 < ¢y, c; < N. The array supports the primitives get and set; the
primitives fai; and fai, increment the corresponding counter and return the counter’s old value.

The overlay L; = Lpq features two primitives enq and deq which respectively add a new element
to the queue and remove the oldest element. If we add an element which overflows the queue’s
capacity N, or remove an element from an empty queue, the result is @ (i.e., the primitive aborts).

The layer implementation M,q stores the queue’s elements into the array, between the indices
given by the counters’ values. This is expressed by the simulation relation R C S,q X S, in Fig. 1,
which explains how overlay states are realized by My in terms of underlay states. The code of My,
can be interpreted using the monad Sy, — P!(— X Sp,), with calls to primitives of L; = Ly, replaced
by their specifications. We write Ly,[Myq] to denote the result. We declare that M, defines a
certified layer Ly, Fr Mbq : Lbq when for each operation op € {enq(v),deq(*) | v € U} of the
overlay L, = Lyq, the relation R indeed establishes a simulation of Lyq.0p by Ly, [Mbq].op.

Certified abstraction layers bring the following benefits:

e Compositional Specification: A layer interface L provides not only the type signatures of its
primitives but also their full functional “deep” specification [Gu et al. 2015]. The client code

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

Layered and Object-Based Game Semantics 42:3

Lpq Sbq = u*
eng:U—1 Lpq-enq(v) @4 = {x@qv | |g| < N}
deq:1 > U Lpq.deq(+)@q = {v@p | § = vp}
Mpq R C Spq X Sib
Mpq-enq(v) := i « faip; set(i,0) GR (ficr,e2) © (c1 Sca < NAG=fo -+ fep-1) V
Mpq-deq(x) =1 « fair; get(i) (c2<c1 <NAG=for =10 fer—1)
Ly S = UV x Nx N
set :NxU—1 Lip.set(i,0)@(f, c1,c2) = {x@(f',c1,¢2) | i < N A f' = f[i:=0]}
get :N > U Lip.get(D)@(f,c1,c2) = {fi@(f,c1,c2) | i < N}
faij:1 >N Lyp.faii@(f, c1,¢2) = {cl@(f,c{,CZ) | c{ = (c1 +1)mod N}
faip : 1 > N Lipfaiz@(f, c1, c2) = {c2@(f, c1.¢5) | 5 = (c2 +1) mod N}

Fig. 1. A certified layer L, kg Mpq : Lpq implementing a bounded queue of size N using a ring buffer. The left
side of the figure shows the signatures of the overlay and underlay interfaces, and the code associated with
the layer. The right side shows primitive specifications and the simulation relation used by the correctness
proof. We use * as a unit value of type 1, and v@k € A X S as a pair of value v € A and state k € S.

for Lpq can operate without seeing how Lyq is actually implemented. In this sense, Lpq fully
encapsulates the implementation details of all the layers below.

e Compositional Verification: A certified system can be decomposed into many certified layers.
Each layer implementation (e.g., Mpq) serves as a building block connecting one layer interface
(e.g., Lpq) with another (e.g., Lip). A layer implementation can be verified using its overlay
and underlay interfaces alone.

e Effect Encapsulation and Composition: A layer interface behaves like an object in that its
signature hides not only the implementation but also the abstract state. A layer signature
is like an algebraic effect signature [Plotkin and Power 2001]. Its layer primitives are like
methods or effect handlers [Plotkin and Pretnar 2009].

1.2 A Layered and Object-Based Game Model

Koenig and Shao [2020] recently presented a game-semantic model for certified abstraction layers
by synthesizing ideas from game semantics [Abramsky et al. 2000; Abramsky and McCusker 1999;
Blass 1992; Hyland and Ong 2000], the refinement calculus [Back and Wright 1998], and algebraic
effects [Plotkin and Power 2001; Plotkin and Pretnar 2009]. They interpret each layer interface
signature as a game and the interaction between the layer interface and its client as a strategy.
They then model a layer implementation (e.g., Myq) as an “interaction substitution” morphism
from overlay strategies to underlay strategies. The resulting game semantics features specification
refinement with both angelic and demonic nondeterminism.

However, in their main development, Koenig and Shao use an explicit state-passing approach
where abstract states (e.g., elements of Spq and Sp,) are communicated as part of the interaction
(i.e., in game-semantic moves such as deq(*)@q). This is not desirable since a layer interface is
supposed to encapsulate its abstract state. A client of Lyq should not observe the internal state G in
its interaction with Lyq.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

42:4 Arthur Oliveira Vale, Paul-André Melliés, Zhong Shao, Jérémie Koenig, and Léo Stefanesco

TRA TTRA

Fig. 2. The picture on the left describes how every regular map M : TA — B can be factored into the map
k : TA — T1A which decomposes any sequence of elements of A such as (ai, az, a3, as, as, ag) € TA into a
"sequence of sequences" such as ({(a1, az), (a3), (a4, as, ag)) € 1A, followed by the map tM : tA — B
which “replays” M : TA — B as many times as there are elements in the output sequence of elements of B:
three times in this case, in order to obtain the sequence (b1, b2, b3) € TB. The picture on the right explains
how the construction adapts smoothly to a regular map M : fRA — B from a concurrent object space
+tRA equipped with an equivalence relation R on sequences of elements of A, using the decomposition map
KR : TRA — TTRA.

In this paper, we leverage ideas from Reddy’s pioneer work [Reddy 1996] on object-based semantics
and develop a new model for certified abstraction layers that does not carry abstract states in
the game-semantic moves and strategies. Semantics for imperative languages have mostly been
described as functions on global states. Reddy’s approach, on the other hand, defines such semantics
as objects with their observable behaviors. His key idea is precisely to restrict states as part of
the internal structure of objects and make them not externally visible. He constructed a semantic
model for objects based on coherence spaces [Girard 1987], and showed that an object function M
building objects of type B on top of other objects of type A can be viewed as a regular map (a linear
map with extra structure):

M : fA——> B

between coherence spaces A and B whose elements (or tokens) describe sequences of elements
of the coherence spaces A and B. Informally, the semantics of an object of type A (or B) is a set of
its observable event traces, denoted as of type TA (or ¥B), as shown in Fig.2. Each event (e.g., a1,
b1) is just an atomic method invocation plus its return value. The fundamental property of regular
maps is that they are entirely determined by their restriction M : 1A — B to the coherence space B
describing a single element (instead of many) inside {B. The regular map M is recovered from M
by the equation:

F

tA—M s 4B = A —S s A — My 4B (1)

where « is a canonical "decomposition” map and M replays M sequentially, as explained in Fig. 2.
The coherence space TA is called “dagger A” or more evocatively “replay A” for that reason.

Regular maps reveal the “declarative” nature of the object-based semantics. An “imperative-
looking” layer implementation M, is actually quite “functional:” it transforms a stream of events for
the underlay Ly, into one for the overlay Ly,q. While the bounded queue interface Ly, encapsulates
a stateful object, its effectful operations actually come from the underlay L,,, orchestrated by the
“stateless” object implementation My, following a regular pattern.

We show that there is a great synergy between object-based semantics and certified abstraction
layers, and we establish a nice and useful synthesis between these two lines of work. The object-
based approach can be nicely extended to support concurrency by equipping each {A with an
equivalence relation R, yielding a set of equivalent event traces, denoted as {rA in Fig. 2.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

Layered and Object-Based Game Semantics 42:5

1.3 Summary and Main Contributions
Our paper makes the following contributions:

e We present a new layered game model of interaction suitable for building certified systems
(see §3). We derive an object-based game from each layer signature. Layer interfaces are
modeled as general strategies for this game, and layer implementations are modeled as regular
strategies from the underlay signature to the overlay signature. A layer implementation is
then called certified when its composition with the underlay interface strategy refines the
overlay interface strategy.

e We show that our new layered game model as well as its object-based interpretation can
be easily extended to support a generalized form of layer interface specification that allows
non-determinism (see §4).

e We connect our game semantics to Reddy’s object-based model (see §2) by interpreting layer
signatures as coherence spaces and layer implementations as regular maps; we then extend
this interpretation to certified layer implementations (see §5).

e We design a notion of concurrent object space, where sequential traces may be identified
modulo permutation of independent operations (see §6). We show how to express protected
shared object concurrency, and a ticket lock implementation, in a simple model based on
regular maps between such concurrent object spaces (see §7).

Our extended technical report [Oliveira Vale et al. 2021] contains a set of appendices which give a
formal presentation of §3 and the detailed proofs for various results discussed in this paper.

1.4 Connecting Semantics to Code: A Broader Perspective

More broadly, this paper continues the work by Koenig and Shao [2020] and aims to develop a
compositional model for certified abstraction layers so that the model can be used to build certified
heterogeneous systems such as CertiKOS. The abstract reformulation of certified abstraction layers
enables us to benefit from a wealth of semantics research toward our goal. While our model allows
us to have a bird’s-eye view of a system’s behavior, when dealing with a concrete system we must
establish a connection between this large-scale view and the fine-grained operational semantics of
the code implementing it. To do so we plan to leverage and enhance the following technologies
developed recently by the Yale FLINT group:

CompCert0 [Koenig and Shao 2021]. The CompCertO compiler provides an open semantics based
on Koenig and Shao [2020] to the CompCert certified C compiler. The semantics is inspired by the
game-semantics approaches and compatible with the model of certified abstraction layers in this
paper. This tier of abstraction, unfortunately, suffers from the problem of lack of encapsulation of
memory state, which we resolve here in the case of certified layers.

DeepSEA [Sjoberg et al. 2019]. The process of manually connecting the C and assembly semantics
from CompCert with the Certified Abstraction Layers framework in the original development of
CertiKOS led to the development of the DeepSEA programming language. The DeepSEA code is
compiled into C (and then compiled to assembly using CompCert0) plus a deep specification of its
behavior in Coq and an automatically generated proof of refinement between them. The DeepSEA
platform has been revamped so that it now follows the semantics presented in this paper, and the
C code generated now comes with a proof of refinement with a specification in our new semantic
model. DeepSEA bridges the gap between the more abstract model (presented in our current paper)
and CompCertO’s model, crucially enforcing the encapsulation of C memory state by different
layers.

To verify a concrete system, we can first use DeepSEA and CompCertO to move from the small-step
operational semantics of CompCert to our model; we can then verify the system using the more

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

42:6 Arthur Oliveira Vale, Paul-André Melliés, Zhong Shao, Jérémie Koenig, and Léo Stefanesco

abstract model as described in this paper. Ultimately we believe this connection between systems
verification and the semantic models of linear logic and state brings to the forefront of systems
verification well-established semantic techniques for characterizing programming language and
systems behavior, with a focus on expressiveness and compositionality.

2 OBJECT-BASED SEMANTICS

Reddy [1996] introduces a semantic domain for imperative languages based on the model of state
introduced in Reddy [1993], itself based on the coherence spaces semantics for linear logic [Girard
1987] with the before operator [Retoré 1997]. He calls this semantic domain object-based semantics.
This section gives a quick introduction to coherence spaces and object-based semantics.

2.1 The Basic Principles

Reddy [1996] advocates the idea that a program with an internal state can be entirely characterized
in terms of its interactive behavior, as what he calls an object. This object-based semantics is based
on four basic principles:

(1) An object can in general be used only sequentially,

(2) The behavior of an object is in general affected by its past history of operations,

(3) Object functions must be linear maps,

(4) Object functions are regular maps.
Principle 1 means that objects can be described by the linear trace they produce, and Principle 2 that
the prefix of a trace influences what comes next. Principles 3 and 4 are then elegantly formalized
using the notion of coherence spaces originally introduced by Girard [1987].

2.2 Coherence Spaces and Linear Maps
Definition 2.1. A coherence space A = (|A],<4) is a set of tokens |A| together with a reflexive
and symmetric coherence relation <4 C |A| X |A|.
Example 2.2. The coherence space Var encodes the operations over a variable (or memory cell)
storing an integer value n € N. The web |Var| of Var is defined as:
|Var| := {get.n | n € N} @ {set(n).ok | n € N}
Each token of Var encodes both a call and return event: the token set(n).ok encodes a call to

set with argument n returning ok; the token get.n encodes a call to get with no arguments and
returning n. The coherence relation of Var is defined as:

0p.v Syar 0p’0” & (op=op’ = v=0")

The definition of <v,, conveys the intuition that the operations in Var are deterministic, in the
sense that two tokens op.v and op.v” with the same underlying operation op are coherent precisely
when the operation returns the same value v = v’.

We proceed in the same way to define the coherence space Counter which encodes the operations
of a counter:

|Counter| := {get.n | n € N} U {inc.ok} 0p.v Scounter Op’0° & (op=op’ = v="0")

Morphisms between coherence spaces are defined as linear maps, in the following way, where we
use the notation a +— b to denote a pair (a,b) € AX B:

Definition 2.3. A relation f C |A| X |B| is a linear map f : A —o B when for all a; +— by, a; —
b, € f the following holds:

(1) a; a dz = by T by (2) a1 Taays Aby=by, = a; = ay

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

Layered and Object-Based Game Semantics 42:7

A clique in a coherence space A is defined as a subset f C |A| of tokens of A which are pairwise
coherent. Note that a clique f of a coherence space A is the same thing as a linear map f : 1 < A
where 1 is defined as the coherence space with web |1| := {*} containing a single token such that

% O %,

2.3 The Replay Modality

The main thesis of Reddy [1996] is that the informal notion of object is appropriately captured
by the notion of clique of a coherence space of the form A, whose tokens are finite sequences of
tokens of A.

Definition 2.4. Given a coherence space A, the (free) object space associated to A is the coherence

space TA with tokens in |fA| := |A|* and the coherence relation <;4 which relates (ay, ..., an) <ta
(b1,...,by) if and only if:
Vi < min(n, m).{ay,...,ai—1) ={(b1,...,bi_1) = a; < b;.

An object is a clique of TA.

The coherence relation over TA ensures that at the first point where the two sequences differ,
they differ coherently. Note that if s € [tA| is a prefix of t € [tA| then s <4 t.

Example 2.5. The object space associated to Var is the space of all sequences of call and return
events that can be performed on a variable. Note that A does not enforce a particular semantics
for the returns across this sequence. For instance,

(get.3, set(7).ok, get.5) € |tVar] (get.0, set(1).ok, get.1) € |fVar|
On the other hand, an object in {Var specifies a particular semantics by restricting those sequences.
For instance, the following set of sequences forms a clique in fVar:
War = {s € [tVar| | (s=geti-s'"=>i=0)A(s=p-geti-geti -t =i=1i")
A (s =p-set(i).ok-get.i’ -t =>i=1i")}

The properties over the sequences in V4, enforce that: (1) The variable initially responds to a

get with a 0; (2) Consecutive calls to get return the same value; (3) A call to get following a set(i)

must return i. This defines a prefix-closed clique encoding all possible behaviors starting from a
certain state. Similarly, we can define:

Vcounter := {s € [TCounter| | (s = p - get.i -t = i = #inc(p))}

where #inc(p) counts occurrences of inc.ok in the sequence p.

2.4 Regular Maps between Object Spaces

Maps between object spaces are required to satisfy a regularity requirement. In Reddy [1996],
regular functions are first defined using a structural property of the map, then an equivalence is
proven with the co-Kleisli category of on coherence spaces.

Definition 2.6. For object spaces TA and B, a regular map f : TA —geg TB is a linear map
satisfying:

(1) (s t),..,(spotn) €f = (s10 sp ot ty) €f
(2)If (s = t;---t,) € f, then there exists s;,...,s, € |TA| such thats = s; - ... s, and
siPhef, . uspthef

The equivalence is then given by the following theorem.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

42:8 Arthur Oliveira Vale, Paul-André Melliés, Zhong Shao, Jérémie Koenig, and Léo Stefanesco

THEOREM 2.7 (REDDY). There is an isomorphism
fA—-B = FA —Reg B
between the linear maps from TA to B and the regular maps from TA to TB.

The isomorphism is based on the observation by Reddy that every linear function f : A — B
extends uniquely to a regular map f : YA — 7B defined in the following way:

Foi=A{si-osao (b bp) [n 20 AViisi>bi € f} © TA —peg TB
As explained in the introduction, the regular map fcan be equivalently defined as the composite (1)
where the canonical "decomposition” map k : TA — T1A is defined as:
K = {s1-...-Sp > (S1,...,Sn) | $1,...,5n € |TA[}

Example 2.8. We can define a regular map M : {Var —o Counter by first defining two maps M8
and M which define the sequences that map to the get.i token and the inc.ok token in Counter,
respectively,

M = {(get.i,set.(i+ 1)) > inc.ok | i € N} M8 = {(get.i) > get.i | i € N}

This intuitively corresponds to the following pieces of code one might write to implement a counter
using a variable:

inc() { get() {
i« get(); i « get();
set(i+1); return i;
return ok; 3

}

And then, the map M defined as M := M8¢' & M is indeed a linear map M : {Var —o Counter
which can be extended to a regular map M : fVar —Rreg TCounter, which can be regarded as
a function from objects in Var to objects in TCounter. One important equation which we will
formalize in §3 is that R

MoWa = Veounter- (2)
The equation expresses that the object Vcounter is correctly implemented by the object Wy, by using
the implementation specified by the regular map M. This can be seen as follows. Since M#' and
M both start with get, it must be that whenever s — t € Mo War we have that s starts with get.0.
But, as we will see in §3, traces in Wy, are deterministic so that there is only one possible return
for a get. ThAis way, there is a single sequence in W, that is mapped to any particular sequence in
Vcounter by M.

Composition of linear functions is defined by usual relational composition:
Definition 2.9. Given linear maps f : A —o Band g : B — C we define the composition
gof:A—oCas
gof ={a—c|3be|Bl.a—bef Ab—ceg}
The identity idg : A —o A is defined asidy :={a+> a | a € |A|}.
We define the composition of linear maps generating regular functions f : fA —o Bandg: 1B — C

asgo f.

In summary, object spaces are modeled as coherence spaces A and morphisms between these
object spaces are regular maps A —Rgeg TB. Regular maps can be instead described by linear maps
tA —o B, and such linear maps can be composed in accordance to regular map composition. A
single object of type A is a clique in the graph of the relation <+ 4.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

Layered and Object-Based Game Semantics 42:9

3 AN INTERACTIVE MODEL OF CERTIFIED LAYERS

In this section, we describe a layered model of interaction based on game semantics, suitable for
defining certified systems. We choose to present it informally here for the sake of simplicity, see
Oliveira Vale et al. [2021] for a formal presentation. A layer interface (E, Vg) consists of an effect
signature E and of a deterministic specification Vg, which we call an object strategy, of the interactive
behavior of the interface. A certified implementation M : (E, Vg) — (F, Vr) between two such layer
interfaces is essentially a collection of strategies M : E — F which implement the overlay interface
(F, Vg) using the effects and capabilities provided by the underlay interface (E, V).

3.1 Effect Signatures as Layer Signatures

An important observation of Koenig and Shao [2020] is that effect signatures can be used to specify
layer interface signatures. We recall their notion of effect signature here.

Definition 3.1. An effect signature is a set E of operations together with a mapping ar(—), which
assigns to each e € E a set ar(e) called the arity of e. We will use the notation

E ={e; : ar(ey), e, : ar(ey),...}

to describe effect signatures.

Example 3.2. We can define signatures Var, for a layer describing a variable interface, and
Counter, describing a counter, as follows:

Var := {get : N;set : N — 1} Counter := {get : N,inc: 1}

Note that a primitive of type A — B is described in the signature as an A-indexed family of
operations of arity B. For example, set : N — 1 corresponds to one operation set(i) : 1 for each
possible index i € N.

Example 3.3. The operations of the layer interfaces presented in Fig. 1 can be described by the
following effect signatures:

Epq == {enq(v) : 1, deq: U | v € U} Eyp = {set(i,0) : 1, get(i) : U, faij : N, faiz : N | i e N,o € U}

An effect signature already defines a certain structure of interaction in the sense that a caller
issues an effect e € E and potentially receives a response v € ar(e) from its environment. In this
way, an effect signature E defines a very small game where the possible moves are effects of E or
responses Uqcgar(e) to effects of E. The only valid plays in this game are:

€ e e-v

which are simply the empty play, a call to e € E, and a call to e € E followed by a return value
v € ar(e) toe.

3.2 Layer Implementations

Our primary goal in this section is to express how an overlay with effect signature F is imple-
mented using an underlay with effect signature E. To that purpose, we introduce the notion of
implementation M : E — F of the signature F in terms of the signature E. This notion of imple-
mentation is formulated as a family M = (M/) rer of game-semantics strategies M/, which we call
implementation strategies, over the signature E associated to each effect f € F.

When implementing an overlay with signature F using an underlay with signature E a single
operation f of the overlay F may require several operations over E to respond with a value
v € ar(f). This suggests a different pattern of interaction than what we discussed in §3.1, as the
game associated with E may be replayed several times in sequence. This leads to considering a

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

42:10 Arthur Oliveira Vale, Paul-André Melliés, Zhong Shao, Jérémie Koenig, and Léo Stefanesco

game, call it Replay E, which allows for the same moves as E but lets the game defined by E be
replayed as many times as necessary, so that the set of valid plays is given by sequences of shape:

€ €1 e - 01 €101 6€y €101 ... €y Uy

that is, a sequence of completed plays of E followed by a potentially partial play of E.
Then, we consider a play of E — F, a complete interaction leading to the implementation of an
effect f, as a play of Replay E bracketed by a play of F, like so:

f-e1rv1-...ceprvp0

where f € F,v € ar(f) and for all i, ¢; € E and v; € ar(e;). Any partial interactions matching this
shape are also possible plays, for instance

€ f f-er-vp-.. e f-er-vr-.. ek
These remarks allow us to define a notion of implementation as follows:

Definition 3.4. Let E and F be effect signatures. An implementation M : E — F is a non-empty
set of plays of E — F such that

(1) M is closed under the prefix order E: If s € M and p C s then p € M.

(2) M is receptive: f € M for every f € F, and for every e € Eif s- e € M and v € ar(e) then
s-e-v €M

(3) M is deterministic: If s - m - n, s - m - n” € M are even-length plays then n = n’.

Receptivity means that M accepts any operation f € F played by its client, as well as any return

value v € ar(e) played by its underlay in response to a call made by M to the operation e. Note also
that determinism means that

s-e,sef EM=e=¢
so that the implementation calls the same effect of the underlay next if their past histories are the
same. It also implies that

sco,s vV EM=0=0
so that if the same code in the underlay was executed with the same returns, then the same return
is given to the overlay effect being implemented. Furthermore, because of determinism, in no
condition may the plays f -s-vand f - s - e, where v € ar(f) and e € E, belong to the same
implementation M.

An implementation M : E — F may be decomposed into sets

M ={seM|fCs}
that is, M/ is the set of plays that implement the effect f. This is verified by the equation

M={elw HMf
feF

In fact, given a collection (M/) rer such that for each f the set of plays M/ is an implementation
M/ : E — F that only has plays starting with f, the set M defined as

M:{e}LﬂUMf

feF

is an implementation M : E — F. This way, implementations are in one-to-one correspondence to
collections (Mf) rer of implementations of each effect f € F.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

Layered and Object-Based Game Semantics 42:11

Example 3.5. The code presented in Example 2.8 can easily be encoded as the sets of plays
M = |{inc - gety, -n-set(n+1)-ok-ok|neN} M = |{getc,iner - Setvar -1 1| n €N}

where |S = {s | 3t € S.s T t} is the prefix ordering down-closure of S. The correspondence between
the code and the sets of plays should be apparent. The full implementation M : Var — Counter is
then simply M™"® U Meet,

Example 3.6. The strategy associated with the implementation Myq : Ex, — Epq outlined in Fig. 1
can be described as:

M;:q(v) = [{enq(v) - faiy - n - set(n,0) - ok - ok | n € N}

Ms;q = |{deq - fai; -n-get(n)-v-v|neNAveU}

In order to model the vertical composition operation of Gu et al. [2015, 2018] it will be necessary
to compose implementations. So consider an implementation M : E — F and an implementation
N : F — G. We would like to produce an implementation N o M : E — G. In order to do so the
implementation M will need to be used several times, as N might make several calls to effects in
F in order to implement a single call/return event from G. To this end, given an implementation
M : E — F we define the set M of plays, called its regular extension, as the set

M:={s;-...Sp|s,....sn€Mand s, -...-s, is a Replay E —o Replay F play}
so that M describes the plays resulting from using M several times to implement a play of Replay F.

Example 3.7. Consider the M : Var — Counter defined in Example 3.5. Its regular extension
includes plays such as

getcounter * 8€tyay @ - a-inc-gety, - b-set(b+1) - ok-ok-gete nter * Eetyar " € C

M M M

In the following definition, if s is a sequence involving events in signatures E, F, G we use the
notation s[gr to denote the subsequence of s including all but only the events in E or F. Later
we use the unary variation s[g for the subsequence including all but only the events in E. Then,
implementation composition is defined as

Definition 3.8. Let M : E — F and N : F — G be implementations. Then, the implementation
NoM:E — Gis defined as

NoM:= {stycler,FEAf/fander,G EN}

Example 3.9. Suppose we want to use a counter, with signature Counter as in example 3.2, to
implement an interface with signature

EqCounter := {get : N — B, inc : 1}
where B = {True, False}. The difference between Counter and EqCounter is that in EqCounter the
get operation takes an integer as argument, compares it against the current value of the counter,

and returns whether or not the value of the counter is equal to the argument to get. This can be
implemented by N : Counter — EqCounter defined as

N := | {inceqcounter NCCounter - 0k - ok} NEW := | {get(i) - get - j - (i == j)}
where we use — == — to denote the boolean function checking for equality of two integers. Now,
given the implementation M : Var — Counter from Example 3.5 we can construct N o M : Var —

EqCounter using Definition 3.8. Then, the general shape for a play in (N o M)&(is depicted by
the following graphical descriptions:

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

42:12 Arthur Oliveira Vale, Paul-André Melliés, Zhong Shao, Jérémie Koenig, and Léo Stefanesco

M Neet(d) (No M)get(i)
Var — Counter ; Counter — EqCounter || Var EqCounter
[get(i) get(i)
get | get
get : get
J | J
Jgoov
‘ (i==J) (i==])

For the particular play we depicted the interaction s in the definition of composition is
S= get(i) ’ getC0unter ' getVar '] J) (1 == J)
so that we verify that

S MVar,Counter = g€tcounter * 8€tvar " JJ € M s I Counter,EqCounter = get(i) - getcounter “J (i==j)eN
and therefore
$ [Var,EqCounter = get(i) - gety,, - j-(i==j) € NoM
Definition 3.10. At this point we are ready to define a category Layer whose objects are effect

signatures E, F and whose morphisms from E to F are the implementations M : E — F. Composition
is as in Definition 3.8 and the identity implementation for an effect signature E is given by

Ig=|{e-e-v-v|e€EAvear(E)}

3.3 Layer Interfaces

We introduce in this section the notion of layer interface defined as a pair (E, Vg) consisting of an
effect signature E specifying the interface for the objects, together with an object strategy Vg which
specifies the interactive behavior of the layer interface. We first define the notion of object strategy
and then give an illustration with our running example of ring buffers and bounded queues.

Definition 3.11. A (deterministic) object strategy over an effect signature E is a non-empty set of
plays Vg of Replay E which satisfies

(1) the strategy Vg is prefix-closed.
(2) the strategy Vg is receptive:

If s € Vg is an even-length play and e € E then s - e € Vg.
(3) the strategy Vg is deterministic:
Ifs-e-v,s-e-0" € Vg are even-length plays then v = v’.
We denote by Sg the set of object strategies over E.

Definition 3.12. A layer interface is a pair L = (E, Vg) of an effect signature E and of an object
strategy Vg over E.

Example 3.13. In general, given a state-based description of a layer interface L of the kind used

in Fig. 1, we can obtain the set of plays Lliq induced by a state g with the recursive condition:
e€lllg; m-n-selfige 39" .(n,q") € Lm@qAs € Liq
The empty queue € is a natural initial state, so we define (where qu is the state-based specification
in Fig. 1):
qu = (qu, Vbq) Vbq = quﬁe
For example, for all u,0 € U, Lpq allows the following play, as witnessed by the sequence of states
€, U, UV, U, €.
enq(u) - ok - enq(v) - ok - deq - u - deq - v € Viq,

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

Layered and Object-Based Game Semantics 42:13

For ring buffers, we prefer not to make any assumptions on initial contents, so that the get
operation on a location which has not yet been set is undefined. The corresponding layer interface
is (again, we denote by Lfb the state-based specification in Fig. 1):

Lyb := (Exb, Vib) Vip = ﬂ L3 #(£.0,0)
feuN
In this case, set(i,v) - ok - get(i) - v is a play in V;y, for all i < N, v € U, but get(i) - v on its own is

never accepted when |U| > 1.

3.4 Certified Layer Implementations

We have just seen in §3.2 how to define a notion of implementation M : E — F of an effect
signature F in terms of an effect signature E. We now adapt and refine this definition to obtain a
notion of certified implementation

M : (E,Vg) — (F,Vp)
between layer interfaces, as defined in Definition 3.12.

M
For an implementation M : E — F we will use the notation s < ¢ to mean that M can implement
the play t of Replay F using the underlay play s of Replay E. Formally:

M —~
s—t & dpeMplg=sandplrp=t

Definition 3.14. Let Lg = (E, Vg) and Lr = (F, V). A certified implementation M : Lg — Lp is an
implementation M : E — F such that

M
Vit € Vp.3s € Vg.s — t
We also find convenient to use the notation:
M M
Vg —> V=Vt € Vp.ds € Vg.s — t.
Example 3.15. Building on Example 3.13, the correctness of Mpq can be established using the
simulation relation R given in Fig. 1. We can show by induction on plays that:

GR (fic1,c2) = Ll (foer,¢2) > Luglid

M
For € € Lpq#ig we have e < cande e Lip#(f, c1,¢2). For (n,q’) € Lpq.m and s € Lpq#iG’, we only
need to witness a related state G’ R (f”, ¢}, ¢;) of Ly reached by the corresponding sequence of

operations in Myq. Since the initial states € R (£, 0, 0) are related for all f € UV, we can conclude
Mbq
Vib = Viq-

Definition 3.16. The category CertiLayer has layer interfaces as objects and certified implemen-
tations M : (E,Vg) — (F, VF) as morphisms, with composition and identities defined as in the
category Layer.

Layer interfaces support a simple notion of refinement defined by
(E,Vg) C(E V) & Vg CVj
The refinement order C defines a refinement system satisfying the usual refinement law.
ProposITION 3.17. (E, Vg) C (E, V}) if and only if the identity implementation on E is a certified
implementation from (E, Vg) to (E, Vy).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

42:14 Arthur Oliveira Vale, Paul-André Melliés, Zhong Shao, Jérémie Koenig, and Léo Stefanesco

Which immediately implies that:
COROLLARY 3.18. Suppose that Ly E L] and L; E Ly. Then, if M : Ly — Ly then M : L] — L;.

REMARK 1. Another way to formulate Definition 3.8 would be to proceed along the lines of game
semantics, and to see the implementation M : E — F as a strategy from Replay E to F, and similarly
for N. In that prospect, the set M of plays defines a strategy from Replay E to Replay F which may
be then composed with the strategy N from Replay F to G in order to obtain the strategy N o M
from Replay E to G. Definition 3.14 of certified implementation may be reformulated in this spirit by

M
observing that the property Vi < VF is equivalent to the fact that Vr seen as a strategy of Replay F is
refined by the composite of Vi seen as a strategy of Replay E with the strategy M from Replay E to
Replay F, see Oliveira Vale et al. [2021] for details.

4 NON-DETERMINISTIC LAYER INTERFACES

In this section, we generalize the notions of layer interface formulated in §3 in order to accommodate
specific forms of nondeterminism in the specification of layers. We start by introducing the notion
of nondeterministic layer interface.

Definition 4.1. A non-deterministic layer interface L = (E,Vg) is a pair consisting of an effect
signature E and set Vg C Sg of object strategies. We further require Vg to be upward closed under
the refinement order:

YVE € VE. VVE; €Sg. VgC VE, = VE’ € Vg

Given an arbitrary set Vg of object strategies, we will write its upward closure TV = {V’ €
Sg | AV € V.V C V’} This means in particular that a layer interface (E, V)) can be promoted to its
nondeterministic counterpart as (E, T{V}).

Definition 4.2. A certified implementation M : Lg — LF between nondeterministic layer inter-
faces is an implementation M : E — F such that

M
VVg € Vg. AVE € V. (E, VE) — (F, VF).

The intuition behind these definitions is that the behavior of a nondeterministic layer interface
(E, VE) is described by the set Vg of deterministic object strategies potentially chosen to implement
the layer interface. An implementation M : E — F defines a certified implementation M : L — Lp
when for all object strategies Vg of the underlay, there is an object strategy Vi of the overlay included
in the composite of M and Vg.

The category CertiLayerND has non-deterministic layer interfaces Lg, L as objects and certi-
fied implementations M : Lg — Lr as morphisms. Composition and identities are as in Layer.

Example 4.3. Recall that in Example 3.13, we defined
Ly = (Esb, Vi) Vi i= (] LH(£,0,0)
feUN

allowing arbitrary initial contents in Ly,. In fact, the correctness of My is also insensitive to the
counters’ initial value, since € R (f, ¢, ¢) for all ¢ < N. However, we cannot define V};, as

‘/r\;;/rol‘lg = ﬂ ﬂ Lfbﬁ(f’ [C)
erN c<N

which would make the behavior of fai; and fai; completely undefined, similarly to the initial
behavior of get.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

Layered and Object-Based Game Semantics 42:15

By contrast, the model introduced by Definition 4.1 gives a more fine-grained way to weaken
constraints on Lyp:

L = (Ep, Vi) Vip =MLY H(fre0) | f e UN, e <N}
-qu = (qu> (Vbq) (Vbq = T{Vbq}

Then Myq : L, — Lbq remains a certified implementation in the sense of Definition 4.2.

We can easily adapt the notion of refinement C between deterministic layer interfaces, in the
following way:
(E,VHYC(E,V) & V' 2V
Just asin §3.4, we have that (E, V’) E (E, V) ifand only if the identity implementationIg : E — E
on the effect signature E is a certified implementation. From this follows an immediate adaptation
of Proposition 3.18:

ProrosITION 4.4. Given L1 E L] and L] T Ly, if M : L1y — Ly, then M : L] — L.

5 CORRESPONDENCE WITH OBJECT-BASED SEMANTICS IN COHERENCE SPACES

In §2 we reviewed Reddy’s object-based semantics in coherence spaces, and in §3 we introduced an
interactive game model of certified layers with many similarities to Reddy’s object-based semantics.
In this section we discuss a way of connecting the two semantics.

5.1 The Category Reg of Regular Maps

We start by observing that in §2 we have delineated all of the structure for the category of coherence
spaces, defined simply as

Definition 5.1. The category Coh has coherence spaces A, B as objects and linear maps f : A — B
as morphisms. Composition and identity are relational composition — o —, and the diagonal relation
id_ respectively.

We also take the opportunity to define the category Reg of object spaces:

Definition 5.2. The category Reg has coherence spaces A, B as objects and regular maps f : 1A —o
B as morphisms. The composite of two regular maps f : TA — Band g : TB —o C is defined as the
regular map g o f : TA — C as explained in §2. The identity morphism of A in Reg is the regular
map €4 : TA —o A defined as €4 := {(a) > a | a € |A|}. Note that the category Reg is the co-Kleisli
category associated to the comonad § : Coh — Coh on the category Coh of coherence spaces.

We then introduce the category CertiReg which refines the category Reg of regular maps in the
same way as the category CertiLayer refines Layer in §3.

Definition 5.3. The objects of CertiReg are the pairs (A, W,) consisting of a coherence space A
and of a clique Wy of the coherence space TA. A morphism M : (A, Wa) — (B, Wp) of the category
CertiReg is defined as a regular map M : fA — B such that M o W4 2 Wp where C is the
(set-theoretic) inclusion of linear maps.

5.2 Effect Signatures to Coherence Spaces

We can associate to every effect signature E a coherence space [E] defined as
I[IE]| ={ewv | e € Eandov € ar(e)} evopp) eV & (e=e¢ =0=0)

Every token e.v € [E] is a pair consisting of an effect and a return value (or arity) associated to
this effect. Coherence encodes a form of determinism, which ensures that there exists at most one

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

42:16 Arthur Oliveira Vale, Paul-André Melliés, Zhong Shao, Jérémie Koenig, and Léo Stefanesco

possible return value v € ar(e) for a given effect e € E in a clique of [E]. This means in particular
that given an effect e and two possible return values v,v” € ar(m), two tokens of the coherence
space [E] of the form s - (e.v) and s - (e.v’) are coherent precisely when v = v’.

The translation from effect signatures E to the underlying coherence space [E] suggests that we
can see plays e - v in E as tokens e.v € [[E]. We can then interpret any even-length play of Replay E
as sequence in T[[E] as follows:

[er-v1-...en-vn] =<e1.01,...,€0.0n)

which in fact defines an order-preserving bijection (with respect to prefix ordering on sequences)
between the plays encoded by Replay E and tokens of 1 E]. From now on we allow ourselves to
apply this bijection tacitly whenever we need it.

5.3 From Implementations to Certified Regular Maps

We start by noting that every implementation M : E — F between effect structures E, F can be
translated to a regular map [M] : t[E]] — [F] between coherence spaces in the following way:

[M]|:=={s> fo|f-s-veM}
We can establish that the translation is functorial in the sense that

PROPOSITION 5.4. The translation [] defines a full (but not faithful) functor [—] : Layer — Reg

The functor [—] is full because every regular map N : [E]] — [F]| can be turned into an object
strategy M : E — F such that N = [M]| defined as the receptive closure of

M=[{f-s-v|s+ foeN}

On the other hand the functor [[—] is not faithful because two object strategies M, M’ : E — F
which differ only on partial behaviors are translated to the same regular map [M] = [M']. The
reason is that the functor [-] captures exactly the complete behaviors of object strategies.

We then extend the functor [—] : Layer — Reg defined in §5.3 to a functor

[-] : CertiLayer — CertiReg (3)
To that purpose we observe that for every effect signature E,

ProposITION 5.5. If Vi is an object strategy over the effect signature E then its set of even-length
plays is a non-empty, prefix-closed clique of the associated coherence space F[EJ.

Thanks to this observation we can associate to every layer interface (E, Vg) in CertiLayer the

corresponding pair in CertiReg,
(E.Ve) = ([E]. [VE])
where [[Vg] is simply the clique in T[E] corresponding to the even-length plays of the object
strategy Vg. This then allows us to extend the functor [—] : CertiLayer — CertiReg defined in
§5.3 to a functor
[-] : CertiLayerND — CertiRegND

by applying to sets Vg of object strategies the action of the original functor [—] in (3) to object
strategies Vg € Vg, in the following wayL

[Vel = {l[Vel | V& € Ve} [(E,Ve)]l = ([EL [Ve])

The image of a non-deterministic layer interface (E, Vi) is defined as seen above, while implemen-
tations M : (E,Vg) — (F,VF) are mapped to the same regular map [M] as in §5. We obtain in
this way a commutative diagram:

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

Layered and Object-Based Game Semantics 42:17

inclusion

CertiLayer L} CertiReg —————— CertiRegConc

inclusionl \Linclusion Lm'lusinn

CertiLayerND i} CertiRegND —inclusion , CertiRegConcND

forget\L \Lforget \Lfo rget
[-1

Layer) Reg inclusion RegConC

which may be seen as a map of functorial refinement systems [Melliés and Zeilberger 2015]. This
expresses very concisely in what sense the categories CertiReg and CertiRegND refine the category
Reg in the same way as the categories CertiLayer and CertiLayerND refine the category Layer.
The grayed-out categories will be discussed in §6, except for CertiRegConcND which is the result
of applying the abstract construction from §4 to CertiRegConc.

6 CONCURRENT OBJECT SPACES

So far we have only discussed models of sequential systems. The models we defined are expressive
enough to capture stateful sequential computation with an elegant decomposition of statefulness
into a state-less implementation and a stateful sequential specification. Challenges arise when
attempting to faithfully model concurrent computation. In order to discuss this situation, we take
full advantage of the correspondence shown in §5.

So let us consider a very simple concurrent system, where two variable objects are used concur-
rently to implement two independent counters. This can be modeled by an underlay signature

Var + Var = {l:get : N, 1iset : N — 1} U {2:get : N, 2:set : N — 1}
In coherence spaces this signature nicely corresponds to the product
[Var + Var] = [Var] & [Var]
where the with of coherence spaces A and B, A & B, is defined by
|A & B| := |A| + |B| XxcapYy &= X=Y=>xCxy

The unit for & is the empty coherence space T. For conciseness we will omit applications of the
functor [-] to effect signatures to no harm, so we may write Var & Var, for example.

Now, an implementation in our models corresponds to a regular map f(Var&Var) —o (Counter&
Counter). If we assume each agent can only call the operations labelled with their own name, such
a map corresponds to two maps tVar —o Counter each representing the local implementation that
each agent is running. We will use the usual implementation of Counter in terms of Var, as in
Example 2.8. Then, the implementation for all the agents is given by

M&M : f(Var & Var) — (Counter & Counter)

where M & M is a labelled disjoint union of the implementation M with itself regarded as a set
(including labeling the events within each copy of M). But note that this map only expresses a very
limited form of concurrency. Namely, the implementation of a trace t = (1:inc.ok, 2:inc.ok) by Mis
always given by a sequence of shape

s1 = (l:get.i, 1:set(i + 1).0k, 2:get. j, 2:set(j + 1).0k) € T(Var & Var)

which is completely atomic. The issue lies much deeper. Consider another interleaving on the
underlay corresponding to calls to inc on the overlay. For instance,

sy = (l:get.i, 2:get.j, 1:set(i + 1).0k, 2:set(j + 1).0k) € T(Var & Var)

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

42:18 Arthur Oliveira Vale, Paul-André Melliés, Zhong Shao, Jérémie Koenig, and Léo Stefanesco

A purposed linear map f : t(Var & Var) — f(Counter & Counter) that models the usual counter
implementation on each counter should map both s;, s; to the same sequence t:s; — t € f and
sz > t € f. But note that according to the definition of a linear map (Def. 2.3) this implies that
$1 = S2, @S S| Sy (vargvar) S2. Therefore, there is no such linear map. Despite that, coherence spaces
do support a notion of parallelism in the tensor product ®:

IA® B| == |A| % |Bl (a,b) Saep (a,b)) & acaa Abopb

So that amap f : Var® tVar — tCounter ® TCounter is possible. On the other hand, the category
Reg does not have tensor products, a fact noted by Reddy [1996].

In this section we explore the issue by dissecting the category Reg as the category of free -
coalgebras, that is, coalgebras of the form TA. We then consider a larger category of all -coalgebras
where we pinpoint a particularly elegant class of f-coalgebras, equipped with a tensor product,
and with the expressive power to model a variety of concurrent systems.

6.1 The Replay Modality’s Co-monadic Structure

We start by noting that {— is a comonad in Coh, with the structural maps
0p:TA — TTA €a:TA—o A
Sa={s1 ..o s> {st,...,8n) | s1,...,8n € |TA|} ea={(a) — alaclAl}

which justifies the construction of Reg as the co-Kleisli category of T—. As a functor, the action of
t—onalinear map f : A — Bis

Tf={{a1,...,an) > (b1,....,bn) | Vi < n.a; — b; € f}

which applies f element-wise through the input sequences. Note that in Reg the map €4 plays the
role of the identity morphism. In particular, the identity implementation I is mapped by [—] to
€g, in other words: [Ig] = €g.

As explained in the introduction, see Fig. 2, the "decomposition” map x = 4 plays an essential
role in lifting a map f : TA — B to the regular map]? : TA — 1B defined as the composite

iA—Ls 1B = A2y iia Ly 4B

Example 6.1. With the usual counter implementation M : fVar — Counter we observe the
composition

(get.a, get.b, set(b + 1).0k, get.c) & ((get.a), (get.b, set(b + 1).0k), (get.c)) im (get.a, inc.ok, get.c)

where Jy,, plays the role of decomposing the input trace before M can be replicated to map the
input trace of {Var to a trace of fCounter. Note also that there are many decompositions of the
input trace that do not get mapped though TM and therefore do not appear in M.

Although the role of k = 4 in this setting is rather simple, it is fundamental for the structure
of regular maps. We will see that this decomposition step plays a much subtler role for general
T-coalgebras, which is fundamental to the simplicity of our model.

6.2 Identifying Interleavings

In §6 we noted that it is rather challenging to model the independent composition of objects because
different interleavings of the underlay are all coherent, and we can’t represent a ® in Reg. On the
other hand, as the objects are independent, we could identify all those interleavings as representing

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

Layered and Object-Based Game Semantics 42:19

the same computation. We define a relation R C |f(Var & Var)| X |f(Var & Var)| as the smallest
equivalence relation relating, for any s, t € |f(Var & Var)|, e.v,e’.v” € Var:
i#j=s-(iev) (je'v')y-t R s-(je' v (izev) -t
Then, we can define a coherence space tr(Var & Var) by
|[Tr(Var & Var)| := |t(Var & Var)|/R X Sig(Var&Var) Y €= Vs € x.Vt € y.5 Si(vargvan) t

where |f(Var & Var)|/R is the set of equivalence classes of R over |f(Var & Var)|. Similarly, we can
define an analogous relation S C |¥(Counter & Counter)| X |f(Counter & Counter)| and a space
Ts(Counter & Counter).
The usual Counter implementation in this setting can be formulated instead by defining two
maps M[i] : 1;(Var) — 1;(Counter), one for each i € {1,2}:
M[i] := {(i:get.n) > i:get.n | n € N} U {(i:get.n,i:set(n + 1).0k) — i:inc.ok | n € N}
Then, we can define a map M[1] ® M[2] : Tg(Var & Var) — fs(Counter & Counter) as

—_— JE— S

M[1]@M[2] :=={[s1 ... splr= [t1-... tuls | Vi< ns; > t; € M[1] Vs; > t; € M[2]}

where [s]g denotes the equivalence class of R in which s belongs, and similarly for [—]s (we will
often omit the subscript when it causes no confusion). Then, in our usual graphical presentation
we observe that

[s2] = [(1:get.i, 2:get.j, 1:set(i + 1).0k, 2:set(j + 1).0k)]

_ MUTEOMIZL 1 iinc.ok, 2inc.ok)] = ¢

[s1] = [(1:get.i, 1:set(i + 1).0k, 2:get. j, 2:set(j + 1).0k)]
6.3 Concurrent Object Spaces
We say that an equivalence relation R C |fA| X |{A| is coherent when
Vs,t € |TA|. sRt=sTiat
which we write more concisely R C 4. Furthermore, we say that R is a congruence when
Vp,s, s, t€tA. sRs'"=p-s-tRp-s'-t
Definition 6.2. The coherence space TrA associated to a coherent congruence R is defined as
TRA := |TA|/R XTigalY & VsexVteysiat
A coherence space TrA is called a concurrent object space.

The fact that R is a coherent congruence ensures that there is a linear map kg : TrRA — TTgrA
playing a similar role for frA as the "decomposition” map k = d4 : TA — 1A plays for the free
t-coalgebra TA. The map kg is defined as

krp = [sie...osul = (sl [sal) 0 TRA — TTRA.

An important observation of the paper is that this map equips the concurrent object space TrA with
the structure of a f-coalgebra. Recall that a f-coalgebra is a pair (C,k : C — 1C) of a coherence
space C and linear map « : C —o {C making the diagrams below commute:

C—K)TC CL)TC

l G x % (4)

10— 5 44

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

42:20 Arthur Oliveira Vale, Paul-André Melliés, Zhong Shao, Jérémie Koenig, and Léo Stefanesco

The f-coalgebras define a category t-Coalg, known as the Eilenberg-Moore category associated
to the comonad T. Its objects are the f-coalgebras just described, and its morphisms f : (C, k) —
(C’, k") are the maps f : C — C’ of Coh making the diagram below commute:

c ! Yol
K K 5)
#lc s TlC’ 5

We can summarize the observations made so far into the following proposition:

PROPOSITION 6.3. For every coherence space A and coherent congruence R C |TA| X |TA|, the pair
(TRA, kr : TRA — TTRA)
defines a t-coalgebra.

A detailed proof of proposition 6.3 can be found in Oliveira Vale et al. [2021].

Example 6.4. Note that the equivalence relations R and S introduced in §6.2 are both coherent
congruences, so that fg(Var & Var) and fs(Counter & Counter) assemble into concurrent object
spaces which are f-coalgebras by Proposition 6.3.

It should be noted that coalgebra morphisms of f-coalgebras described in (4) generalize in a
very natural and pleasant way the notion of regular map fA — B defined in §2.4 between object
spaces. Indeed, an important (and well-known) fact is that the map 4 : TA — T7A defines the free
t-coalgebra generated by A:

(TA, 04 : TA — TTA)
It then turns out that a regular map tA — B in the sense of Def. 2.6 in Section §2.4 is same as a
coalgebra morphism tA — 1B between free f-coalgebras in the sense of (5). In particular, every
regular map f : TA — {B associated to the linear map f : A — B makes the diagram below
commute:

5Al) lag (6)

Looking backwards, this means that we have been working all along in the previous sections
with f-coalgebras, even if only the free ones, of the form fA. The challenges which arise with
concurrency lead us to consider more general f-coalgebras such as concurrent object spaces, of
the more general form fRA for R C |fA]| X |fA]| for a coherent congruence. It should come as no
surprise that we can define a full subcategory RegConc of the category of f-coalgebras given by
restricting the objects of ¥-Coalg to such concurrent f-spaces. At the same time, we can recover A
as the concurrent object space T-A associated to the specific identity relation R defined by equality
=. The situation is nicely summarized by the chain of inclusion functors

Reg <—— RegConc — f-Coalg

Note that one main difference is that RegConc and {-Coalg are equipped with a parallel tensor
product (discussed in §6.4), while this is not the case for the original category Reg of regular maps.

We have just seen in (6) how coalgebra morphisms are similar (and in fact extend) the usual
notion of regular map A — B in the category Reg. A special case is of particular relevance to us:
imagine that one is given a linear map f : T1RA — B which, by analogy with regular maps, one

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

Layered and Object-Based Game Semantics 42:21

would like to lift to a map tRA — sB. While this is in general not possible, in the case where S
is the identity relation we may exploit the f-coalgebra structure of frA to construct a morphism
f : TRA — TB in the following way:

trd L5 1B = A =2 ed —15 1B
The structural morphism xg plays here a very similar role as the "decomposition” map k = J4
discussed in the introduction for the sequential setting. One fundamental difference however is
that kg may take advantage of the equational theory encoded in R prior to decomposing a trace.

6.4 A Parallel Tensor Product on Concurrent Object Spaces

Every pair of f-coalgebras (Cy, k1) and (Cy, k;) defines a f-coalgebra C; ® C; with structural map
k12 defined as the composition

GRC —2— {(C®C) = (180 % 0810 —— 1(C10Cy)
where the second map is an instance of the structural map
TA®T—B - T(A®B) (<a1a~'-’an>’ <b19""bn>) = <(a1,bl),~~-’(ambn)> (7)

This construction turns T-Coalg into a symmetric monoidal category. The coherence space 1 (the
usual unit for ®) is equipped with a f-coalgebra structure provided by the structural map
1— 11 s> (%, ..., %) (8)

N——
n times

The monoidal structure of T-Coalg comes from the fact that (7) and (8) equip the comonad { with
the structure of a symmetric monoidal comonad over Coh [Kock 1972][Mellies 2009].

We saw in §6.3 that every concurrent object space TrA defines a f-coalgebra. We establish now
that our class of concurrent object spaces is closed under tensor product in the sense that

PROPOSITION 6.5. Given two concurrent object spaces TrA and TsB the tensor product of TRA and
tsB is a concurrent object space Tres(A & B).

Indeed, given relations R C |[TA| X [fA| and S C |1B| X |¥B| we define the relation
R®S C |f(A&B)| x|1(A & B)| s(R®S)t & staRtlaAsTBSt]B

which in addition to any equations from R and S also adds equations allowing for tokens of A and B
to be swapped. This congruence has the remarkable property that it induces an isomorphism of
t-coalgebras

TRA®TsB = Tregs(A&B) ©)
which elegantly captures an equivalence between a true concurrency and an interleaving con-
currency presentation of the same concurrent object, and should be seen as an analogue of the
Seely isomorphism satisfied by the exponential modality A + !A of linear logic (see Mellies [2009]
for details). Thanks to this isomorphism (9) proved in Oliveira Vale et al. [2021], we establish the
important property that our category RegConc of concurrent object spaces is equipped with a
notion of parallel tensor product:

ProrosITION 6.6. RegConc is a symmetric monoidal category.

Example 6.7. As an illustration, coming back to the motivating equivalence relations R and S
formulated in §6.2, we observe that they satisfy the isomorphisms

tVar ® tVar = fg(Var & Var) 1 Counter ® fCounter = fg(Counter & Counter)

mentioned in (9) because the equivalence relations R and S in §6.2 are equal to = ® =.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

42:22 Arthur Oliveira Vale, Paul-André Melliés, Zhong Shao, Jérémie Koenig, and Léo Stefanesco

6.5 Certified Concurrent Object Spaces

We are now ready to define our category of certified concurrent systems CertiRegConc, which
refines RegConc in the same way CertiReg refines Reg. Its objects are triples (A, R, V4) of a coher-
ence space A, a coherent congruence R C [fA| X |fA| and V4 : 1 —o A a clique of TA. Morphisms
M : (A, R V4) — (B,S, Vp) are coalgebra morphisms M : frRA — B satisfying the additional
requirement that

Vt € Vg.ds € Vy. [slr— [t]ls e M

Identity and composition are as in f-Coalg.

We have seen in §6.4 that RegConc comes equipped with a tensor product. We now extend the
parallel tensor to CertiRegConc. Given (A, R, V,4) and (B, S, V) we would like that the underlying
coherence space of their product

(A,R,V4) ® (B,S,Vg)

be given by A & B so to match the relation R ® S. But taking the tensor product of the cliques V4
and Vg we obtain

Va®Vpg:1—o fAQ®TB

which is not a clique of (A & B). In order to obtain such a clique, we make use of the interleaving
morphism

interap : TA® B — T(A& B) interap :={(sa,sB) — s |sla=saAslp=sp}

which produces all the possible interleavings of the pair of input traces. Then, we define the product
V4 e Vp of the cliques V4 and V3 as the composition

125 a&B) = 1225191 —2% 4 A iB —" 3 {(A&B)
which is simply the set of all possible interleavings of traces in V4 with traces in V. This endows
the category CertiRegConc with a monoidal structure encoding independent parallel composition:

(AR V4) ® (B,S,Vg) = (A& B,R®S,Vy e V)

7 CONCURRENT OBJECT SPACES: TWO CASE STUDIES

In §6 we defined a notion of concurrent object spaces supporting independent parallel composition.
In this section we present two case studies showcasing that concurrent object spaces can express
more complex forms of concurrency. In §7.1 we discuss a simple model of protected shared object
concurrency which uses a lock primitive to synchronize several computational agents. We show
atomic concurrent overlays can be certified by proving a local sequential refinement condition. Then,
§7.2 discusses how the lock interface, which §7.1 uses as underlay, can be encoded in concurrent
object spaces in a simple fashion by means of a carefully constructed equational theory.

7.1 Protected Shared Object Concurrency

A common form of concurrency in systems is protected access to a shared object. By this we mean
that different agents (say threads, or processors) have their accesses to a shared object protected
by a synchronization primitive such as a lock. This allows an object that in principle is shared
concurrently to implement atomic interfaces.

To ground this discussion we will assume a set of computational agents Y. Given an effect
signature E we can construct an effect signature E[Y] which labels the operations described by E
with the name of who is executing the operation, formally defined as the labelled disjoint union

E[Y] = Z E corresponding to the coherence space &[[E]]

TeY TeY

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

Layered and Object-Based Game Semantics 42:23

We define a signature Lock for a lock interface as
Lock := {acq : 1,rel : 1}
which is shared by a set of agents Y in the signature Lock[Y]. We give a simple sequential specifi-
cation to the Lock interface with the (prefix-closed) clique Vi ock defined as
Viock := {s € |tLock| | ¥p,t € |tLock|.V7,7" € Y.¥m € Lock.(s = :m - t = m = acq.ok)

A(s=p-Tacq.ok-:m-t = m=relok A" = 1)

A (s=p-trel.ok-t':im-t = m = acq.ok)},
where each of the conditions say, respectively, that: (1) Every trace starts with an acq move; (2) If
acq is called by agent 7 then the next event is a call to rel by agent 7; (3) Any rel call may only be
followed by an acq call.

Now, given an object encoded by the signature E and a clique Vg : 1 — {E we construct the
interface for its sharing among the agents in Y as the signature E[Y] and the clique

VE[Y] == {{(r1:€1.01, ..., Tnien.0n) € TE[Y] | (€1.01,...,€n.0n) € V5}

that is, all sequences such that if we “forget” which agent is calling each operation the trace obeys
the specification V.
Given an object specification (E, Vg) we can always construct the object specification

(T-g=(Lock & E)[Y], Viock ® VE[Y])
where we make use of the isomorphism
Lock[Y] & E[Y] = (Lock & E)[Y].

The equivalence classes of = ® =, the tensor of the equality relation over {Lock[Y] with the equality
relation over TE[Y] as defined in §6.5, allow for Lock and E events to be commuted liberally.

Then, given an implementation M : E — F we denote by M[z] : E[r] — F[r] the implemen-
tation obtained by labelling every event that appears in M with agent . We construct the protected
implementation (M)[z] : T-g=(Lock & E)[Y] — F[Y] :

(M)[7] := {[(r:acq.ok) - s - {T:rel.ok)] — 7:f.0 | s > T:f v € M[7]}

which surrounds the body of the implementation by acquiring a lock and then releasing it when
done. The implementation on behalf of all the agents is given by

(M[Y] = [+],

TeY

It is easy to check that if Mo Vg 2 Vr that is, the refinement condition holds locally, then

(MY[Y] : ((Lock & E)[Y],= ® =, Vioek ® VE[Y]) — (F, =, Ve [Y]),

that is, (M)[Y] is a certified implementation of CertiRegConc.

Example 7.1. We take our usual example of implementing a counter using a variable. Now,
we consider implementing an atomic concurrent counter interface making use of a lock and a
concurrent shared variable. From our discussion, the underlay can be modeled by the signature
and specification

(Lock & Var)[Y] WViock ® War[Y]

where W, is the usual variable specification, as seen in Example 2.5. The usual implementation
M : tVar — Counter is lifted to

(M)[Y] : T=g=(Lock & Var)[Y] — fCounter[Y].

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

42:24 Arthur Oliveira Vale, Paul-André Melliés, Zhong Shao, Jérémie Koenig, and Léo Stefanesco

Note that the underlay’s equational theory relates the traces s; and s, below:
s1 = (l:acq.ok, 1:get.0, 1:set(1).0k, 1:rel.ok, 2:acq.ok, 2:get.1, 2:set(2).0k, 2:rel.ok)
s2 = (l:acq.ok, 1:rel.ok, 2:acq.ok, 2:rel.ok, 1:get.0, 1:set(1).0k, 2:get.1, 2:set(2).ok)

—_

and therefore both map under (M)[Y] to t = (1:inc.ok, 2:inc.ok) despite the fact that s, does not
match the shape of the implementation M. The presence of the synchronization primitives with
semantics given by the clique Viock ® War[Y] together with the equational theory = ® = means
that s, carries the information that the two increments were indeed performed atomically. Here,
the structural map x-g= plays a very important role as it makes use of the equational theory to
decompose s, in the following way:

[s2] —, ([1:acq.ok, 1:get.0, 1:set(1).0k, 1:rel.ok], [2:acq.ok, 2:get.1, 2:set(2).0k, 2:rel.ok])

which (M) [Y] is then able to map to t. There is no other choice: the synchronization primitives
do not commute with each other and neither do the variable primitives. We note that a more
specialized map that does not protect calls to get could have been used instead.

This example showcases that the coalgebra structural map « plays a much more subtle role than
§ did in the completely sequential models. It does not only split a trace, but it also may transform
the trace according to the equational theory it has access to. We will see that it is a key feature of
our handling of even more complex concurrent objects.

7.2 Ticket Lock

We have just discussed in §7.1 a simple framework for handling protected shared object concurrency.
In that setting we assume a sequentially specified lock interface (Lock[Y], Viock) is available as
underlay. For instance, a particular system architecture may implement an array of ticket locks
to be used throughout the system. Often such a lock interface is implemented using some other
synchronization primitives. In the context of a certified system, the ticket lock implementation
itself might be certified to be correctly implemented using its underlay.

We will take as example a ticket lock algorithm. The ticket lock is implemented using a fetch-and-
increment primitive and a shared counter. We model this underlay with the signature FAl & Counter
where Counter is the usual Counter interface and FAIl is given by the signature and specification

FAI := {fai : N} Veal == {s € |tFAl| | s = p - fai.n - t = n = #fai(p)}

where #fai(p) is the number of fai operations in the sequence p. We construct the interfaces
(FAI[Y], Vear [Y]) and (Counter[Y], Veounter [Y]) as in §7.1. We will define the underlay specification
Vral&Counter t0 be all possible interleavings of traces in Ve [Y] and Veounter [Y]. That is,

VrAl&Counter = {s € |T(FAI & Counter)[Y]| | sTraijx] € Vrai[Y] A sTcounter[v] € Vcounter [Y]}

In order to justify the equational theory we will be using, it is vital to understand exactly how
the ticket lock is implemented. We wish to encode the code:

acq() { rel() {
my_t := fai(); inc();
while (get() != my_t) {3}; return ok
return ok }

}

The intuition for the code is that each contestant for the lock acquires a ticket number from the
FAI object. Then, each contestant keeps checking for the currently serving ticket number obtained
from the shared counter. As soon as a contestant checks for the currently serving ticket number

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

Layered and Object-Based Game Semantics 42:25

\ 1:acq.ok J 1:rel.ok
i 1
I]]
! 2:acq.ok " 2irelok
1:fai.l 2:fai2 1:get.l 2:get.l 1liinc.ok 2:get.2 2:inc.ok
B ———

1:fai.l 1l:get.l1 2:fai.2 2:get.l 1liinc.ok 2:get.2 2:inc.ok

1:fai.1 1:get.l 2:fai.2 1liincok 2:get.l1 2:get.2 2:inc.ok

liacqok Tirel.ok 2:acq.ok | 2rel.ok

1:fai.1 1:get.l 1liinc.ok 2:fai.2 2:get.l1 2:get.2 2:inc.ok

Fig. 3. We depict several L related traces. Vertically adjacent traces require a single swap to be related. Above
the traces are the intervals in which call/return events of the Lock overlay are active. The swaps, from top to
bottom, preserve the happens before ordering of the lock overlay. The bottom-most trace introduces a new
happens before relation, which is allowed by linearizability. Although the bottom-most trace does not satisfy
the sequential specification of Counter, it preserves local program order and behavior. Therefore, from the
perspective of each agent there is no difference between the traces displayed.

and verifies that it is the same as the ticket number it holds it acquires the lock. In order to release
the lock the current lock holder simply increments the currently serving ticket number.

Note that while the underlay interface is atomic, at least with respect to each of the inde-
pendent objects available, the implementation of the overlay events themselves may interleave
non-atomically creating friction with the completely atomic overlay lock specification. A common
correctness criterion for atomicity of concurrent objects is linearizability. In defining our equational
theory for the ticket lock we take inspiration from the fact that the ticket lock implementation
yields a linearizable lock interface. Our equational theory is carefully constructed so to preserve
“happens before” order as defined in Herlihy and Wing [1990].

We are now ready to define the relation

L C |t(FAI & Counter)[Y]]| x |T(FAI & Counter)[Y]|

encoding the equational theory for the Lock implementation. We define L as the smallest congruence
satisfying the rules:

(1) = # ' A (e and e’ are events of different shared objects) = (r:e.v,7’:e’.0") L (t":¢’ .0/, :€.0)
(2) 7 # ¢’ = (r:get.i,t":inc.ok) L (t":inc.ok, :get.i)
(3) v # ¢’ = (r:get.i,t":get.j) L (t':get.j, r:get.i)

Rule (1) says that if two events come from different agents and different shared objects they may
be swapped. Rule (2) might seem counter-intuitive, as it allows an inc event to swap with a get
event. Despite that, it still preserves the program order of each agent involved, as the swap can
only be performed between events of different threads. Therefore, from the local perspective of
each agent they still see the same history. Furthermore, the swap does not change the real-time
ordering of operations from the perspective of the overlay events, it at most refines it. Rule (3)
enforces the passivity of get. In Figure 3 we consider a few traces related by L.

Now that we have carefully described the intuition for the L equational theory, we are ready to
discuss the encoding of the implementation of the ticket lock. Locally the implementation is simply

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

42:26 Arthur Oliveira Vale, Paul-André Melliés, Zhong Shao, Jérémie Koenig, and Léo Stefanesco

given by the map
M]1] : L (FAlI & Counter)[7] — Lock][7]

defined as
M[7]*9 = {[(r:fai.i, T:get.iy, . .., T:get.ip, T:get.i)] — T:acq.ok | Vj < n.ij # i}

M[z]™ := {[{r:inc.ok)] > T:rel.ok}
note that all the equivalence classes involved in M[r] are singleton equivalence classes. It is

notorious that the definition of M is essentially just the code for the implementation.
M can be lifted to the map

M][Y] : FL(FAI & Counter)[Y] —o fLock[Y]

and shown to be correct by verifying the refinement condition:

S

Vt € Vigek-3s € VraigCounter-[S]L > t € M[Y]

For this, the structural map «k; plays a fundamental role. Consider for instance the following

graphical depiction of an input/output pair in M[Y]:

[(1:fai.0, 2:fai.1, 1:get.0, 2:get.0, 1:inc.ok, 2:get.1)]

L

=, ([(1:fai.0, 1:get.0)], [(1:inc.ok)], [(2:fai.1, 2:get.0, 2:get.1)])

M[Y]
—— (l:acq.ok, 1:rel.ok, 2:acq.ok)

The Vraigcounter trace is transformed using the equational theory encoded in L. This transformation
is performed by the structural map x; which then decomposes the trace into the components which
M[Y] is able to map. This is a much more subtle operation than the sequential decomposition per-
formed by §. This nice coalgebraic structure greatly simplifies reasoning and makes for particularly
simple implementation definitions. After the decomposition the map M, which simply encodes the
body of the code implementing each method, is applied directly.

8 RELATED WORK

Object-Based Semantics. While we have already discussed the relationship between our work and
Reddy’s work on object-based semantics [Reddy 1996], we have not mentioned Reddy’s work with
t-coalgebras in the Appendix of Reddy [1996]. Reddy faces similar problems with the tensor product
as we do and presents two solutions. One of them [Reddy 1996] defines a class of f-coalgebras
characterized by partial monoids, which he calls finitary object spaces. Our work in §6 may be
seen as a subcategory of Reddy’s finitary object spaces characterized instead as presentations of
partial monoids. This equational formulation is more convenient for our purposes, as it is leads
to a smooth treatment of concurrency. While Reddy’s finitary object spaces are monoidal closed,
concurrent objects are not. Despite that, concurrent object spaces are still rich enough to encode
Reddy’s model of interference-controlled Algol.

The second approach pioneered by Reddy, called dependence spaces [Reddy 1994], was one of
many inspirations for our work. They differ substantially in that our work remains in the category
of coherence spaces, while dependence spaces endow coherence spaces with extra structure. We
believe there is an instructive embedding of dependence spaces into a generalization of our category
of concurrent object spaces using partial equivalence relations instead of equivalence relations and
mediated by a reformulation of dependence spaces as Mazurkiewicz traces [Mazurkiewicz 1995]
which we leave for future work.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

Layered and Object-Based Game Semantics 42:27

Reddy [1993] has also investigated in detail the categorical structures surrounding object-based
semantics, what he calls a LLMS for Linear Logic Model of State. The appendix in our extended
technical report [Oliveira Vale et al. 2021] places our model from §3 in a standard game-semantics
model by defining a ¥ modality. Although we don’t discuss it there, the 7 is constructed so to endow
the category of games defined with a LLMS. A careful discussion from this point-of-view would be
lengthy, so we curb our remarks on the matter. Reddy’s subsequent work [O’Hearn and Reddy 1999;
Reddy 2002, 2013; Reddy and Dunphy 2012] focused on combining the event-based and state-based
approaches to define the full semantics of Algol-like languages.

Game Semantics. Game semantics has been around for more than 30 years. It has been extremely
successful in describing the fine-grained semantics of a large class of programming languages
including PCF [Abramsky et al. 2000; Hyland and Ong 2000], imperative languages [Abramsky and
McCusker 1997, 1999; Ghica and Murawski 2008], and object-oriented languages [Murawski and
Tzevelekos 2014]. Despite its importance and promising support to compositional reasoning, it has
not been used in large formal verification projects based on proof assistants. Instead, the formal
verification community has preferred to use simple small-step or mixed-step operational semantics
to verify programs because game semantics is often seen as too complex to be smoothly mechanized
in any proof assistant. Our work as well as Koenig and Shao [2020] can be seen as significant steps
toward applying game semantics to the mechanized verification of large systems. We have had a
pleasant experience in mechanizing coherence spaces due to their simplicity. Furthermore, while
we give a traditional game semantics presentation to our model in §3, we believe Koenig [2021]
provides an equivalent model amenable to convenient mechanization.

The game semantics literature focused on giving the semantics for a specific programming
language and then using it to prove the soundness and full abstraction properties. They are complex
because they use game semantics to model command- or expression-level interaction in the core
programs. These languages and their game semantics are not primarily designed for program
verification; and there are no equivalent notions of layer interfaces or certified layers. By focusing
on certified layers, we take the best idea from game semantics to support certified composition. To
make things simple, our key idea is that these certified layers must fully encapsulate their states,
otherwise, their interfaces would be too complex and then make composition difficult.

This is why Reddy’s approach to handling global state is particularly attractive. Starting from
the seminal work by Abramsky and McCusker on Idealized Algol [Abramsky and McCusker 1997],
the game semantics community took inspiration from Reddy’s idea to give fully abstract models to
imperative languages—for programming in the small. Here, we show that the very idea could have
a big impact for certified layer programming in the large. This happens to match the best practice
on how abstraction layers are used by the real-world engineers. Also, despite its early influence on
game semantics, the T modality has been largely forgotten in the game semantics community in
the benefit of linear logic’s ! modality. Our work seeks to bring back into focus the relevance of
the 1 modality by showcasing its simplicity and expressiveness.

Calderon and McCusker [2010] presented a full, faithful strong monoidal embedding of a category
of games into a category of coherence posets and hinted about a possible deep connection between
games semantics and Reddy’s object-based semantics. The correspondence which we established
in §5 can be viewed as a first attempt toward addressing this problem in the context of certified
abstraction layers. Our functor differs from that of Calderon and McCusker [2010] in that it maps
less plays. This way, while their functor is lax with respect to T our functor distributes strictly over .
This is fundamental for our development as we need a precise connection with f in coherence
spaces, and is what prevents us from using the functor in Calderon and McCusker [2010].

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

42:28 Arthur Oliveira Vale, Paul-André Melliés, Zhong Shao, Jérémie Koenig, and Léo Stefanesco

Finally, there are similarities but also intrinsic differences between our model of certified layers
based on concurrent objects and the model of Idealized Concurrent Algol (ICA) developed by Ghica
and Murawski [2008]. A first key difference is that their model is based on arena games, which
means that they have to take care of the intricacies associated to the justification of pointers. Our
model based on coherence spaces and regular functions is for that reason simpler to manipulate and
to certify in a proof assistant, and this is a main point of our work. In particular, regular functions
describe alternating strategies where each token of the coherence space describes a pair consisting
of an Opponent move followed by a Player move. In contrast, the model based on arena games
enables interactions where Opponent moves and Player moves do not necessarily alternate — which
complicates the construction of the model, even on first-order functions. The information provided
by the coherence relation as well as the dagger structure are moreover missing from the game
model of ICA. For these foundational and practical reasons, our model does not coincide with the
game model of ICA restricted to first-order functions.

Certified Abstraction Layers. Koenig and Shao [2020] model certified abstraction layers using
categories whose objects are effect signatures and whose morphisms are strategy specifications,
enriched with a complete refinement lattice structure. Layer interfaces and implementations are
both modeled as strategy specifications. Layer correctness can be stated as Lp & M o Lg, where
Lg : 1 — E is the underlay interface, M : E — F is the layer implementation, and L : 1 — F is the
overlay interface. However, this elegant picture is complicated by their treatment of state. The set of
states used by a layer interface must be encoded as part of its signature, and interactions must follow
a “state-passing” discipline. Likewise, the simulation relation used to establish a layer’s correctness
must be internalized as a morphism, then composed with the implementation to translate between
underlay and overlay states. While Koenig and Shao also explore a model featuring stateful and
reentrant strategies, which could in principle realize the encapsulation of state, this comes at
the cost of the simplicity and elegance of their main development, and they do not extend their
treatment of certified layers to this setting. They also do not consider layers with concurrency.

By contrast, our approach avoids complex combinations of features by maintaining a strong
distinction between layer interfaces and implementations. Layer implementations are two-sided
(they both use underlay operations and provide overlay operations) but they can remain stateless
and deterministic. Layer interfaces are stateful, but because they are one-sided the structure of
their plays can remain simple. In turn, the statefulness of layer interfaces and our direct approach
to formalizing layer correctness mean we do not need an explicit internalization of simulation
relations. This allows us to limit our treatment of nondeterminism to demonic nondeterminism,
which is sufficient to express implementation freedom.

Concurrency. Gu et al. [2018] developed Certified Concurrent Abstraction Layers (CCAL) and
applied them to build a certified concurrent OS kernel [Gu et al. 2019, 2016]. They used game-
semantic strategies to model the interaction behavior of each thread (or CPU core) against its
environment context, and developed a program logic for reasoning about both the safety and
progress of concurrent objects. The marriage of Reddy’s work [Reddy 1994, 1996] with our new
layered game semantics offers a promising direction for developing compositional models for
CCAL-style shared-memory concurrency. An appealing challenge for future work in that direction
will be to articulate the results of this paper with the asynchronous and interactive accounts based
on action and footstep trace semantics [Brookes 2006, 2007] and template game semantics [Melliés
and Stefanesco 2018, 2020] of Concurrent Separation Logic [O’'Hearn 2004].

Similarly, there is a significant body of work on correctness conditions for concurrent programs
[Cerone et al. 2014; Filipovi¢ et al. 2009; Herlihy and Wing 1990; Murawski and Tzevelekos 2019].
Most notably Cerone et al. [2014] and Murawski and Tzevelekos [2019] provide generalizations

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

Layered and Object-Based Game Semantics 42:29

of linearizability to layers encompassing both an underlay and an overlay, including potentially
higher-order computation. As far as we are aware this is the only work in this line that discusses a
notion of layer with underlay and overlay, and we believe that there is an opportunity to connect the
ideas from there with our model. Indeed, while we present a framework for certifying concurrent
programs, we provide no correctness criterion for our coherent congruences. It is a key part
of the proof of some of the claims in §6 and §7 that any congruence which is a subrelation of
the equivalence up-to sequential consistency relation is a coherent congruence. This includes
preservation of happens-before order as in Herlihy and Wing [1990]. As the Lock example in
§7 shows, we often need even more precise coherent congruences. There is a complex interplay
between the coherent congruence and the implementation M. Despite that, as §7.1 shows, once a
synchronization primitive such as Lock has been verified, general compositional rules for shared
state concurrency become available. This is a promising avenue for future work and will likely
involve a connection with concurrent models such as Ghica and Murawski [2008], Cerone et al.
[2014], and Murawski and Tzevelekos [2019].

9 CONCLUSION

The idea of certified abstraction layers [Gu et al. 2015] was inspired by the systems community’s
best practice in using abstraction layers to build large-scale software and hardware systems [Saltzer
and Kaashoek 2009]. Certified abstraction layers rely on using a pair of underlay and overlay
interfaces to encapsulate the implementation effects and eliminate undesirable dependencies from
other components. Gu et al. [2016] has shown the effectiveness of using certified abstraction layers
to build large-scale certified concurrent OS kernels. However, the main semantic ingredients that
make certified abstraction layers so effective have been unclear for many years.

In this paper, we have demonstrated that there is a close connection between certified abstraction
layers and Reddy’s object-based semantics of states based on coherent spaces. The major new
conceptual contribution of this paper is our model of certified layer implementation (e.g., Defini-
tions 3.16 and 4.2). Modeling a layer interface L as a pair of an effect signature E and an object
strategy Vg (or a set of object strategies Vg) is by no means obvious. Here, the signature E imposes
a syntactic well-formedness of the system-environment interface, and Vg (or V&) imposes more
refined semantic constraints to the layer’s behaviors.

This is very different from how existing module languages model a module implementation
and its import and export interfaces, and how Koenig and Shao [2020] model certified layer
implementation which is still based on a simulation relation between the underlay and overlay
states. This reformulation comes with great benefit. Looking to the past, it helps clarify some of
what made certified abstraction layers so effective. Looking to the future, it provides an abstract
model of certified abstraction layers that can be studied and extended in its own right, as the
preliminary advances into the territory of concurrent systems in §6 and §7 showcase.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their helpful feedback. This material is based
upon work supported in part by NSF grants 2019285, 1763399, 1521523, and 2118851, and by the
Defense Advanced Research Projects Agency (DARPA) and Naval Information Warfare Center
Pacific NIWC Pacific) under Contract No. N66001-21-C-4018. The third author is a co-founder of
and has an equity interest in CertiK Global Ltd. CertiK has licensed Yale University’s intellectual
property, which is related to the NSF grants 1521523 and 1763399. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the funding agencies.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

42:30 Arthur Oliveira Vale, Paul-André Melliés, Zhong Shao, Jérémie Koenig, and Léo Stefanesco

REFERENCES

2015-2021. DeepSpec: The Science of Deep Specifications. https://deepspec.org/.

Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. 2000. Full Abstraction for PCF. Inf. Comput. 163, 2 (2000),
409-470. https://doi.org/10.1006/inco.2000.2930

Samson Abramsky and Guy McCusker. 1997. Linearity, Sharing and State: A Fully Abstract Game Semantics for Idealized
Algol with Active Expressions. Birkhduser Boston, Boston, MA, 297-329. https://doi.org/10.1007/978-1-4757-3851-3_10

Samson Abramsky and Guy McCusker. 1999. Game Semantics. In Computational Logic, Ulrich Berger and Helmut Schwicht-
enberg (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1-55.

Andrew W. Appel. 2011. Verified Software Toolchain. In Proceedings of the 20th European Symposium on Programming (ESOP
2011). Springer, Berlin, Heidelberg, 1-17. https://doi.org/10.1007/978-3-642-19718-5_1

Andrew W Appel, Lennart Beringer, Adam Chlipala, Benjamin C Pierce, Zhong Shao, Stephanie Weirich, and Steve
Zdancewic. 2017. Position Paper: The Science of Deep Specification. Phil. Trans. R. Soc. A 375, 2104 (2017), 20160331.
https://doi.org/10.1098/rsta.2016.0331

Ralph-Johan Back and Joakim von Wright. 1998. Refinement Calculus: A Systematic Introduction. Springer, New York.
https://doi.org/10.1007/978-1-4612-1674-2

Andreas Blass. 1992. A Game Semantics for Linear Logic. Ann. Pure Appl. Log. 56, 1-3 (1992), 183-220. https://doi.org/10.
1016/0168-0072(92)90073-9

Stephen Brookes. 2006. A Grainless Semantics for Parallel Programs with Shared Mutable Data. Electronic Notes in Theoretical
Computer Science 155 (2006), 277 — 307. https://doi.org/10.1016/j.entcs.2005.11.060 Proceedings of the 21st Annual
Conference on Mathematical Foundations of Programming Semantics (MFPS XXI).

Stephen Brookes. 2007. A Semantics for Concurrent Separation Logic. Theoretical Computer Science 375, 1 (2007), 227 - 270.
https://doi.org/10.1016/j.tcs.2006.12.034 Festschrift for John C. Reynolds’s 70th birthday.

Ana C. Calderon and Guy McCusker. 2010. Understanding Game Semantics Through Coherence Spaces. Electron. Notes
Theor. Comput. Sci. 265 (Sept. 2010), 231-244. https://doi.org/10.1016/j.entcs.2010.08.014

Andrea Cerone, Alexey Gotsman, and Hongseok Yang. 2014. Parameterised Linearisability. In Automata, Languages, and
Programming, Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 98-109.

Hao Chen, Xiongnan (Newman) Wu, Zhong Shao, Joshua Lockerman, and Ronghui Gu. 2016. Toward Compositional
Verification of Interruptible OS Kernels and Device Drivers. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation (Santa Barbara, CA, USA) (PLDI ’16). Association for Computing
Machinery, New York, NY, USA, 431-447. https://doi.org/10.1145/2908080.2908101

Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich. 2015. Using
Crash Hoare Logic for Certifying the FSCQ File System. In Proceedings of the 25th Symposium on Operating Systems
Principles (Monterey, California) (SOSP ’15). Association for Computing Machinery, New York, NY, USA, 18-37. https:
//doi.org/10.1145/2815400.2815402

Joonwon Choi, Muralidaran Vijayaraghavan, Benjamin Sherman, Adam Chlipala, and Arvind. 2017. Kami: A Platform for
High-Level Parametric Hardware Specification and Its Modular Verification. Proc. ACM Program. Lang. 1, ICFP, Article
24 (Aug. 2017), 30 pages. https://doi.org/10.1145/3110268

David Costanzo, Zhong Shao, and Ronghui Gu. 2016. End-to-End Verification of Information-Flow Security for C and
Assembly Programs. SIGPLAN Not. 51, 6 (June 2016), 648—-664. https://doi.org/10.1145/2980983.2908100

Ivana Filipovi¢, Peter O’'Hearn, Noam Rinetzky, and Hongseok Yang. 2009. Abstraction for Concurrent Objects. In Program-
ming Languages and Systems, Giuseppe Castagna (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 252-266.

Dan R. Ghica and Andrzej S. Murawski. 2008. Angelic Semantics of Fine-Grained Concurrency. Annals of Pure and Applied
Logic 151, 2 (2008), 89 — 114. https://doi.org/10.1016/j.apal.2007.10.005

Jean-Yves Girard. 1987. Linear logic. Theoretical Computer Science 50, 1 (1987), 1-101. https://doi.org/10.1016/0304-
3975(87)90045-4

Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan (Newman) Wu, Shu-Chun Weng, Haozhong
Zhang, and Yu Guo. 2015. Deep Specifications and Certified Abstraction Layers. In Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Mumbai, India) (POPL ’15). Association for
Computing Machinery, New York, NY, USA, 595-608. https://doi.org/10.1145/2676726.2676975

Ronghui Gu, Zhong Shao, Hao Chen, Jieung Kim, Jérémie Koenig, Xiongnan (Newman) Wu, Vilhelm Sjéberg, and David
Costanzo. 2019. Building Certified Concurrent OS Kernels. Commun. ACM 62, 10 (Sept. 2019), 89-99. https://doi.org/10.
1145/3356903

Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Wu, Jieung Kim, Vilhelm Sj6berg, and David Costanzo. 2016. CertiKOS: An
Extensible Architecture for Building Certified Concurrent OS Kernels. In Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation (Savannah, GA, USA) (OSDI’16). USENIX Association, USA, 653-669.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

https://deepspec.org/
https://doi.org/10.1006/inco.2000.2930
https://doi.org/10.1007/978-1-4757-3851-3_10
https://doi.org/10.1007/978-3-642-19718-5_1
https://doi.org/10.1098/rsta.2016.0331
https://doi.org/10.1007/978-1-4612-1674-2
https://doi.org/10.1016/0168-0072(92)90073-9
https://doi.org/10.1016/0168-0072(92)90073-9
https://doi.org/10.1016/j.entcs.2005.11.060
https://doi.org/10.1016/j.tcs.2006.12.034
https://doi.org/10.1016/j.entcs.2010.08.014
https://doi.org/10.1145/2908080.2908101
https://doi.org/10.1145/2815400.2815402
https://doi.org/10.1145/2815400.2815402
https://doi.org/10.1145/3110268
https://doi.org/10.1145/2980983.2908100
https://doi.org/10.1016/j.apal.2007.10.005
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1145/2676726.2676975
https://doi.org/10.1145/3356903
https://doi.org/10.1145/3356903

Layered and Object-Based Game Semantics 42:31

Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan (Newman) Wu, Jérémie Koenig, Vilhelm Sjoberg, Hao Chen, David Costanzo,
and Tahina Ramananandro. 2018. Certified Concurrent Abstraction Layers. In Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation (Philadelphia, PA, USA) (PLDI 2018). Association for
Computing Machinery, New York, NY, USA, 646-661. https://doi.org/10.1145/3192366.3192381

Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness Condition for Concurrent Objects. ACM
Trans. Program. Lang. Syst. 12, 3 (July 1990), 463-492. https://doi.org/10.1145/78969.78972

J. M. E. Hyland and C.-H. L. Ong. 2000. On Full Abstraction for PCF: I, II, and III. Inf. Comput. 163, 2 (2000), 285-408.
https://doi.org/10.1006/inc0.2000.2917

A. Kock. 1972. Strong functors and monoidal monads. Archiv der Mathematik 23 (1972), 113-120.

Jérémie Koenig. 2021. Grounding Game Semantics in Categorical Algebra. In Proceedings of the Fourth International
Conference on Applied Category Theory (ACT 2021), Kohei Kishida (Ed.). To appear.

Jérémie Koenig and Zhong Shao. 2020. Refinement-Based Game Semantics for Certified Abstraction Layers. In Proceedings
of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science (Saarbriicken, Germany) (LICS "20). Association
for Computing Machinery, New York, NY, USA, 633-647. https://doi.org/10.1145/3373718.3394799

Jérémie Koenig and Zhong Shao. 2021. CompCertO: Compiling Certified Open C Components. In Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language Design and Implementation (Virtual, Canada) (PLDI
2021). Association for Computing Machinery, New York, NY, USA, 1095-1109. https://doi.org/10.1145/3453483.3454097

Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Commun. ACM 52, 7 (July 2009), 107-115. https:
//doi.org/10.1145/1538788.1538814

Menggqi Liu, Lionel Rieg, Zhong Shao, Ronghui Gu, David Costanzo, Jung-Eun Kim, and Man-Ki Yoon. 2019. Virtual Timeline:
A Formal Abstraction for Verifying Preemptive Schedulers with Temporal Isolation. Proc. ACM Program. Lang. 4, POPL,
Article 20 (Dec. 2019), 31 pages. https://doi.org/10.1145/3371088

Antoni W. Mazurkiewicz. 1995. Introduction to Trace Theory. In The Book of Traces, Volker Diekert and Grzegorz Rozenberg
(Eds.). World Scientific, 3-41. https://doi.org/10.1142/9789814261456_0001

Paul-André Melliés and Léo Stefanesco. 2018. An Asynchronous Soundness Theorem for Concurrent Separation Logic. In
Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (Oxford, United Kingdom) (LICS ’18).
Association for Computing Machinery, New York, NY, USA, 699-708. https://doi.org/10.1145/3209108.3209116

Paul-André Melliés and Léo Stefanesco. 2020. Concurrent Separation Logic Meets Template Games. In Proceedings of the
35th Annual ACM/IEEE Symposium on Logic in Computer Science (Saarbriicken, Germany) (LICS °20). Association for
Computing Machinery, New York, NY, USA, 742-755. https://doi.org/10.1145/3373718.3394762

Paul-André Melliés and Noam Zeilberger. 2015. Functors Are Type Refinement Systems. In Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Mumbai, India) (POPL ’15). Association for
Computing Machinery, New York, NY, USA, 3-16. https://doi.org/10.1145/2676726.2676970

Paul-André Melliés. 2009. Categorical Semantics of Linear Logic. In Interactive Models of Computation and Program Behaviour,
Panoramas et Synthéses 27. Société Mathématique de France, Paris, France, 1-196.

Andrzej S. Murawski and Nikos Tzevelekos. 2014. Game Semantics for Interface Middleweight Java. In Proceedings of the
41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Diego, California, USA) (POPL ’14).
Association for Computing Machinery, New York, NY, USA, 517-528. https://doi.org/10.1145/2535838.2535880

Andrzej S. Murawski and Nikos Tzevelekos. 2019. Higher-order Linearisability. Journal of Logical and Algebraic Methods in
Programming 104 (2019), 86-116. https://doi.org/10.1016/j.jlamp.2019.01.002

Peter W. O’Hearn. 2004. Resources, Concurrency and Local Reasoning. In CONCUR 2004 - Concurrency Theory, Philippa
Gardner and Nobuko Yoshida (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 49-67.

Peter W. O’'Hearn and Uday S. Reddy. 1999. Objects, interference, and the Yoneda embedding. Theoretical Computer Science
228,1(1999), 253-282. https://doi.org/10.1016/S0304-3975(98)00360-0

Arthur Oliveira Vale, Paul-André Mellies, Zhong Shao, Jérémie Koenig, and Léo Stefanesco. 2021. Layered and Object-Based
Game Semantics. Technical Report YALEU/DCS/TR-1559. Yale Univ. https:/flint.cs.yale.edu/publications/layered.html

Gordon Plotkin and John Power. 2001. Adequacy for Algebraic Effects. In Proceedings of the 4th International Conference
on Foundations of Software Science and Computation Structures (FoSSaCS 2001). Springer, Berlin, Heidelberg, 1-24.
https://doi.org/10.1007/3-540-45315-6_1

Gordon Plotkin and Matija Pretnar. 2009. Handlers of Algebraic Effects. In Proceedings of the 18th European Symposium on
Programming (ESOP 2009). Springer, Berlin, Heidelberg, 80-94. https://doi.org/10.1007/978-3-642-00590-9_7

U.S. Reddy. 1994. Passivity and independence. In Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.
342-352. https://doi.org/10.1109/LICS.1994.316055

Uday S. Reddy. 1993. A Linear Logic Model of State. Technical Report. Dept. of Computer Science, UIUC, Urbana, IL.

Uday S. Reddy. 1996. Global State Considered Unnecessary: An Introduction to Object-Based Semantics. LISP Symb. Comput.
9,1 (1996), 7-76.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

https://doi.org/10.1145/3192366.3192381
https://doi.org/10.1145/78969.78972
https://doi.org/10.1006/inco.2000.2917
https://doi.org/10.1145/3373718.3394799
https://doi.org/10.1145/3453483.3454097
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/3371088
https://doi.org/10.1142/9789814261456_0001
https://doi.org/10.1145/3209108.3209116
https://doi.org/10.1145/3373718.3394762
https://doi.org/10.1145/2676726.2676970
https://doi.org/10.1145/2535838.2535880
https://doi.org/10.1016/j.jlamp.2019.01.002
https://doi.org/10.1016/S0304-3975(98)00360-0
https://flint.cs.yale.edu/publications/layered.html
https://doi.org/10.1007/3-540-45315-6_1
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1109/LICS.1994.316055

42:32 Arthur Oliveira Vale, Paul-André Melliés, Zhong Shao, Jérémie Koenig, and Léo Stefanesco

Uday S. Reddy. 2002. Objects and Classes in Algol-like Languages. Inf. Comput. 172, 1 (Feb. 2002), 63-97. https://doi.org/10.
1006/inco.2001.2927

Uday S. Reddy. 2013. Automata-Theoretic Semantics of Idealized Algol with Passive Expressions. Electronic Notes in
Theoretical Computer Science 298 (2013), 325-348. https://doi.org/10.1016/j.entcs.2013.09.020 Proceedings of the Twenty-
ninth Conference on the Mathematical Foundations of Programming Semantics, MFPS XXIX.

Uday S. Reddy and Brian P. Dunphy. 2012. An Automata-Theoretic Model of Idealized Algol. In Automata, Languages, and
Programming, Artur Czumaj, Kurt Mehlhorn, Andrew Pitts, and Roger Wattenhofer (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 337-350.

Christian Retoré. 1997. Pomset logic: A non-commutative extension of classical linear logic. In Typed Lambda Calculi and
Applications, Philippe de Groote and J. Roger Hindley (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 300-318.

Jerome H. Saltzer and M. Frans Kaashoek. 2009. Principles of Computer System Design. Morgan Kaufmann.

Zhong Shao. 2010. Certified Software. Commun. ACM 53, 12 (December 2010), 56—66.

Vilhelm Sjoberg, Yuyang Sang, Shu-chun Weng, and Zhong Shao. 2019. DeepSEA: A Language for Certified System Software.
Proc. ACM Program. Lang. 3, OOPSLA, Article 136 (Oct. 2019), 27 pages. https://doi.org/10.1145/3360562

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 42. Publication date: January 2022.

https://doi.org/10.1006/inco.2001.2927
https://doi.org/10.1006/inco.2001.2927
https://doi.org/10.1016/j.entcs.2013.09.020
https://doi.org/10.1145/3360562

	Abstract
	1 Introduction
	1.1 Certified Abstraction Layers
	1.2 A Layered and Object-Based Game Model
	1.3 Summary and Main Contributions
	1.4 Connecting Semantics to Code: A Broader Perspective

	2 Object-Based Semantics
	2.1 The Basic Principles
	2.2 Coherence Spaces and Linear Maps
	2.3 The Replay Modality
	2.4 Regular Maps between Object Spaces

	3 An Interactive Model of Certified Layers
	3.1 Effect Signatures as Layer Signatures
	3.2 Layer Implementations
	3.3 Layer Interfaces
	3.4 Certified Layer Implementations

	4 Non-Deterministic Layer Interfaces
	5 Correspondence with Object-Based Semantics in Coherence Spaces
	5.1 The Category Reg of Regular Maps
	5.2 Effect Signatures to Coherence Spaces
	5.3 From Implementations to Certified Regular Maps

	6 Concurrent Object Spaces
	6.1 The Replay Modality's Co-monadic Structure
	6.2 Identifying Interleavings
	6.3 Concurrent Object Spaces
	6.4 A Parallel Tensor Product on Concurrent Object Spaces
	6.5 Certified Concurrent Object Spaces

	7 Concurrent Object Spaces: Two Case Studies
	7.1 Protected Shared Object Concurrency
	7.2 Ticket Lock

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

