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Abstract— Graph Neural Networks (GNNs) are a variant of
Deep Neural Networks (DNNs) operating on graphs. GNNs have
attributes of both DNNs and graph computation. However,
training GNNs on manycore architectures is a challenging task
because it involves heavy communication that bottlenecks
performance. DropEdge and Dropout, which we collectively
refer to as DropLayer, are regularization techniques that can
improve the predictive accuracy of GNNs. Moreover, when
implemented on a manycore architecture, DropEdge and
Dropout are capable of reducing the on-chip traffic. In this
paper, we present a ReRAM-based 3D manycore architecture
called DARe, tailored for accelerating on-chip training of GNNs.
The key component of the DARe architecture is a Network-on-
Chip (NoC) that reduces the amount of communication using
DropLayer. The reduced traffic prevents communication
hotspots and leads to better performance. We demonstrate that
DARe outperforms conventional GPUs by up to 6.7X (5.6X on
average) in terms of execution time, while being up to 30X (23X
on average) more energy efficient for GNN training.

Keywords—3D architectures, GNNs, NoC, ReRAM,
DropEdge, Dropout

L INTRODUCTION

Graph Neural Networks (GNNs) are used for predictive
analytics using graph-structured data. This makes them
different from traditional Deep Neural Networks (DNNs) that
operate on regular data structures such as images or
sequences. GNNs have various real-life applications such as
recommendation systems [1], quantum chemistry [2], social
networks [3] [4] etc. To learn representation using the
relational structure of graphs, GNNs perform iterative
neighborhood aggregation, where each node aggregates
features of its neighbors to compute new features [5]. This
gives rise to repeated message-passing operations. GNNs
exhibit characteristics of both DNN training (involving
trainable weights) and graph analytics (accumulating
neighboring vertices’ information along graph edges). Hence,
GNN training is both compute- and communication-intensive.

Project.All the computations associated with GNN training
can be represented as multiply-and-accumulate (MAC)
operations. Resistive random-access memory (ReRAM) can
implement such MAC operations efficiently [6]. Moreover,
ReRAMs allow for processing-in-memory (PIM), which
greatly reduces the communication between the computing
cores and the main memory. However, GNN training involves
repeated message-passing operations to accumulate neighbor
information in a recursive manner [7]. When implemented on
a ReRAM-based manycore architecture, this can give rise to a
substantial amount of on-chip traffic that creates performance
bottlenecks if not addressed appropriately.

DropEdge and Dropout are regularization techniques that
can help in reducing the amount of traffic during GNN
training; normally, these layers are used to prevent over-
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smoothing and over-fitting during GNN training. Over-fitting
limits the generalization ability on small datasets, while over-
smoothing isolates output representations from the input
features as network depth increases; both these phenomena
lead to poor model accuracy [8]. As the name suggests,
DropEdge involves randomly dropping a few edges of the
input graph during training. In practice, this is realized when
information from a few randomly selected neighbors of each
node of the input graph is not accumulated during the
message-passing stage of GNN training. Thus, DropEdge
reduces the number of messages communicated among
adjacent nodes, which in turn improves performance. The
Dropout operation in DNNs randomly skips a neural unit in
the network (along with the associated connections)
temporarily [9]. This process simulates the creation of a large
ensemble of sparse DNNs resulting in a single trained GNN
with small weights to approximate the effect of average
predictions from this ensemble. Overall, both Dropout and
DropEdge reduce the generalization error (error on testing
instances drawn from the target data distribution) in GNN
training, while also reducing the amount of on-chip
communication. Note that the overall goal of learning is to
achieve low error on unseen data (i.e., low generalization
error). In the rest of this paper, we collectively refer to
DropEdge and Dropout as “DropLayer”.

Despite these advantages, implementing DropLayer in
manycore ReRAM-based architectures is a challenging task.
It is well-known that the output of one GNN layer is the input
to the next GNN layer, and so on [10]. However, due to the
inherently random nature of DropLayer, different edges of the
graph and neural units are dropped in each iteration. This
results in a randomly varying traffic pattern where the data
exchanged between two adjacent GNN layers keeps changing
in every iteration; the change can be in terms of the data size,
content, and/or the source-destination pair. Hence reliable
communication is impossible without an appropriate control
mechanism. In this work, we enable DropLayer in the NoC-
enabled manycore architecture using variable-sized packets
and a suitable control mechanism. We call the NoC
incorporating DropLayer as the Drop-aware NoC architecture.
Overall, the Drop-aware NoC reduces the communication,
thereby leading to better performance.

Reducing the amount of on-chip communication through
the Drop-aware NoC is one aspect of reducing the traffic
bottleneck. The other desirable characteristics of the NoC
should be to support the randomly varying traffic pattern
exhibited by GNN training. Moreover, GNN training exhibits
heavy many-to-few and multicast traffic [11]. Traditional
planar (2D) architectures are not well-suited for such traffic
patterns. As the large physical separation between processing
elements (PEs) causes high-latency and low-throughput, it is
not ideal for high-performance GNN training. Prior work has
shown that three-dimensional (3D) NoC enables the design of
a high-throughput and low-latency communication backbone
for manycore chips by lowering the physical distance among
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the PEs [12]. Moreover, 3D NoCs can support high-
throughput multicast, which is essential for GNN training. In
this paper, we present the design of a ReRAM-based
manycore architecture integrated via a Drop-aware 3D NoC.
The NoC architecture helps to alleviate the communication
bottleneck in GNN training. We call this manycore
architecture as “DARe”. The main contributions of this paper
include:

e We design a manycore architecture (DARe) for
accelerating GNN training. DARe leverages the
benefits introduced by the ReRAM-based PEs and an
efficient on-chip communication infrastructure
enabled by a Drop-aware 3D NoC.

e To maximize performance gain and energy
efficiency, we balance the computation and
communication latencies. The communication

latency is reduced via the Drop-aware NoC, whereas
the computation latency is reduced by allocating
adequate number of ReRAM PEs to each GNN layer.

e Through extensive performance evaluation, we
demonstrate that DARe outperforms both traditional
GPU-based designs and state-of-the-art ReRAM-
based architectures for training GNNs using diverse
real-world graphs with millions of nodes and edges.

To the best of our knowledge, this is the first work that
proposes a Drop-aware NoC architecture to accelerate GNN
training in a ReRAM-based manycore system. The rest of the
paper is organized as follows. Section II describes relevant
prior work. In Section III, we discuss GNN characteristics and
the effect of DropLayer on GNN traffic. In Section IV, we
introduce the proposed DARe architecture, the design
methodology for the Drop-aware 3D NoC, and the policy for
mapping the GNN layers to the DARe architecture. Section V
presents experimental results. We conclude the paper in
Section VI by summarizing the findings of this work.

II.  RELATED PRIOR WORK

A. GNN training algorithms

The primary idea behind GNNss is to aid learning on graph
structured data by using a neural network that can operate
directly on graphs [10]. However, GNN training on large-
scale graphs is very memory intensive, which necessitates the
use of efficient graph partitioning. Using graph partitioning,
the Cluster-GCN approach enables scalable GNN training
over large graphs with high accuracy and speed [13].
However, even with graph partitioning, GNN training is
communication intensive due to recursive message-passing
operations. DropEdge is a regularization technique similar to
Dropout in DNNs that reduces the number of times the
neighboring node features are aggregated in GNN training
while also reducing over-fitting and over-smoothing, thereby
resulting in improved accuracy [8]. However, as mentioned
earlier, the hardware implementation of DropLayer
(DropEdge and Dropout) requires a suitable control
mechanism to ensure proper synchronization between the
communicating PEs. Hence, a Drop-aware communication
protocol is necessary for high-performance GNN training in a
manycore architecture, without sacrificing accuracy.

B. Hardware for GNN computation

The design of hardware architectures for GNN
computation using commodity processors, FPGAs and custom
ASICs has been considered in recent work [7], [11], [14] [15].

However, all these architectures primarily focus on GNN
inference but not on training. The training of GNN is
considerably more challenging due to the additional data
exchange between the forward and backward phases. GNN
training is primarily implemented using GPUs. It is well
known that GPUs are not optimized for GNN training, which
leads to sub-optimal performance [14]. Moreover, all these
custom architectures (e.g., [7], [11], [15]) are limited to
relatively small graph structures, which do not require large
amounts of memory and computation. In contrast, this paper
focuses on an on-chip architecture enabled by ReRAM-based
PEs for GNN training with large graphs.

C. ReRAM-based architectures

ReRAMs enable processing-in-memory (PIM) that allows
for in-situ MAC (IMA) operations [6]. Computations in both
DNN and graph analytics can be decomposed into simple
MAC operations [11]. ReRAM-based accelerators for graph
analytics have been shown to significantly outperform CPU-
or GPU-based systems, both in terms of execution time and
energy [16] [17] [18]. Moreover, ReRAMs have been used
extensively to accelerate both DNN training and inference
[19][20] [21] [22]. However, these solutions focus mainly on
accelerating only the computation [19] [20]. The maximum
achievable performance will be bottlenecked unless the
communication is also optimized [23]. In addition, all these
ReRAM-based accelerators are fine-tuned for either DNN or
graph analytics and are not suitable for GNN training; GNN
training exhibits features of both DNN and graph computation
simultaneously. An NoC-enabled ReRAM-based architecture
for high-performance training of GNNs, referred as
ReGraphX, has been proposed in [24]. However, as we show
in this work, ReGraphX does not realize the full potential of
ReRAM:s due to communication bottlenecks inherent in GNN
training. Our work addresses a key shortcoming of the state-
of-the art by proposing an architecture that focuses on inherent
communication bottleneck of GNN training. The DARe
architecture incorporates a Drop-aware 3D NoC and ReRAM-
based PEs that enable high-performance training of GNNSs.

III.  GNN KERNEL AND COMMUNICATION TRAFFIC

In this section, we discuss the GNN training process. Next,
we explain how DropLayer reduces GNN traffic when
implemented on the DARe architecture.

A. The GNN Kernel

Computation: A graph consists of (a) vertices: each
vertex is represented using a feature vector that characterizes
the node; and (b) edges: the edges are represented by an
adjacency matrix indicating the vertex connectivity (a), where
a is a sparse matrix. Together, vertices and edges define a
graph and are crucial for the computational kernel of GNNs.
A GNN consists of multiple back-to-back neural layers. Each
neural layer further consists of two sub-layers that perform
two different types of computations: (a) Vertex sub-layer: the
computations associated with this layer are MAC operations
similar to conventional DNNs, and (b) Edge sub-layer: this
resembles the message passing operation in graph analytics.

Fig. 1(a) depicts the two types of computations in a GNN
for an example graph with four nodes (A, B, C and D) and
three edges (for forward phase only). The vertex sub-layer of
the GNN resembles a fully connected DNN layer with input
and output nodes denoted as P; and Q; respectively.
Computations associated with the vertex sub-layer involve
multiplying the node features with weights (w; for layer [) to
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compute the updated feature vectors of each node in the graph.
The updated feature vector is then accumulated by each node
in the graph during the computation of edge sub-layer as
shown in Fig. 1. For instance, node A accumulates the
information of its neighbors (nodes B, C and D) as shown in
Fig. 1(a); other nodes perform the same task in parallel as well.
This neighbor information aggregation is similar to message
passing in graphs and can be represented as multiplication of
the updated node feature vectors with the graph adjacency
matrix (« ). Hence, the edge computation can also be
decomposed as MAC operations that can benefit from a
ReRAM-based architecture such as DARe. These two sub-
layers (vertex and edge sub-layers) are executed repeatedly
one-after-another to get the final output as shown in Fig. 1(a).

Similar to traditional DNNs, the backward phase
computations of GNN consist of error/gradient calculation
and weight updates, both of which are also predominantly
MAC operations [20]. As a result, the backward phase
computations can also be efficiently implemented using
ReRAM-based PEs similar to the forward phase. The error
gradients of one layer can then be communicated to its
preceding layer via the NoC. Hence, both forward and
backward phases of GNN training are executed using
ReRAM-based PEs in the DARe architecture.

Communication: To train a GNN using ReRAMs, the
weights of each vertex sub-layer (w;) and the graph adjacency
matrices (&) must be first mapped to the ReRAM-based PEs
[19]. Let us consider a GNN with three neural layers as an
example. As each layer consists of two sub-layers, there will
be three vertex sub-layers (V;,V, and V3 ) and three edge sub-
layers (E; E, and E3). The vertex sub-layer (V;) and edge sub-
layer (E;) of a neural layer [ are executed alternately as shown
in Fig. 1(a). The loop in Fig. 1(a) is repeated three times (as
there are three neural layers). The output of a vertex sub-layer
V; is used as an input for the edge sub-layer, E;; the output of
E; is then used as an input to the next vertex sub-layer, V;,
and so on. Each vertex sub-layer involves a unique set of
weights, i.e., the vertex sub-layers V; V, and V5 have weights
w1, W, and w3 associated with them respectively and w; #
W, # w3 (similar to conventional DNN). Hence, each set of
weights need to be mapped/assigned to a unique set of PEs for
computation. These PEs compute the updated feature vectors
(vertex sub-layer), which is then used by the edge sub-layer.

The computation in the edge sub-layer involves the graph
adjacency matrix that must also be stored in ReRAM
crossbars [16]. The adjacency matrix a is mapped to a
separate set of PEs than weights w,, w,, and w;. However,
unlike the vertex sub-layers, the adjacency matrix is constant
across different edge sub-layers, i.e., E; E, and E5 share the
same . Hence, the computation of edge sub-layers associated
with different neural layers must be done on the same PE that
stores the adjacency matrix i.e., the PEs storing the adjacency
matrix will be shared by all the neural layers in the GNN.
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Fig. 1. Illustration of (a) GNN kernel and message passing without
DropLayer (b) GNN training with DropLayer.

As shown in Fig. 1, the output of one computation is used
as the input for the next set of computations. Hence, the PEs
storing w;, w, and w3 need to communicate their outputs to
the PEs storing a, and vice-versa. However, as the PEs storing
«a is shared by all neural layers, the data transfer will result in
a many-to-few communication pattern. Without a suitable
NoC, such a traffic pattern can result in traffic hotspots,
resulting in poor performance [23]. Hence, the manycore
architecture needs to be supported by a suitable NoC for
accelerating GNN training.

B. Effect of DropLayer on GNN Traffic

Both DropEdge and Dropout (recall that they are
collectively referred as DropLayer in this paper) are data-
augmentation techniques that address over-fitting and over-
smoothing in GNN training [8]. In this sub-section, we explain
how DropLayer can reduce communication during GNN
training. As shown in Fig. 1(a), without DropEdge, all the
nodes (A, B, C and D) aggregate neighbor information from
all their neighbors in every epoch during the edge sub-layer.
For instance, node A aggregates information from all three
neighbors (B, C and D). Hence, three sets of messages are
passed in every epoch; here a message represents the data that
is gathered from each neighboring node. Similarly, without
Dropout in the vertex sub-layer, all the weights are used for
MAC operations. Hence, all the inputs and outputs associated
with the vertex sub-layer must be communicated.

Fig.1(b) shows how DropLayer can reduce
communication during GNN training. DropEdge temporarily
removes few edges randomly at each epoch during
computation in the edge sub-layer while Dropout temporarily
removes a few nodes in the vertex layer. For instance, as
shown in Fig. 1(b), DropEdge omits the edge between node
“A” & “B”; hence, the data from node “B” is not accumulated
by node “A”. This leads to one fewer message during the
message passing stage of GNN training. Similarly, Dropout
omits the node P; and Q; in Fig. 1(b). As a result, the
computations associated with these nodes are omitted.
Consequently, the associated inputs and outputs to these nodes
need not be communicated between the PEs as well. As a
result, collectively DropLayer reduces the amount of data that
need to be communicated between the PEs. We utilize this
property in the proposed DARe architecture to achieve high-
performance, without sacrificing accuracy.

IV. OVERALL DARE ARCHITECTURE

In this section, we first present the ReRAM crossbar
configuration of the DARe architecture. Then, we present the
design of a control mechanism that enables the DropLayer
operations. Next, we discuss the overall GNN training strategy
on DARe.

A. ReRAM Crossbar Configuration in DARe

Fig. 2 shows the overall DARe architecture. As shown in
Fig. 2, each ReRAM-based PE contains multiple crossbars for
executing MAC operations and a router for data exchange.
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Fig. 2. DARe architecture. This figure is for illustration purposes only.
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First, we must determine the most suitable crossbar
configuration for GNN training. Conventionally, graph
computations involve sparse adjacency matrices. Hence,
relatively smaller ReRAM crossbars are used as they
avoid/reduce the storage of zeros (zeros are redundant in MAC
operations) [17]. On the other hand, DNNs are implemented
using relatively larger ReRAM crossbars (e.g., 128x128 as
shown in [19]) because weight matrices tend to be relatively
dense. As elaborated in Section III, the training process of
GNNs exhibits attributes of both DNNs and graph
computations. This presents a challenge while choosing the
suitable crossbar size for training GNN3s.

From prior work, it is well-known that peripheral circuits
dominate the ReRAM tile area [19]. Hence, the ReRAM tile’s
area and power consumption do not vary significantly with the
crossbar size. However, smaller crossbars have significantly
lower storage capacity or density (bits stored per unit area). A
crossbar of size N X N can store up to N2 values. Hence, to
match the storage capability of one 128x128 crossbar, we will
need up to 256 (=128%/82) 8x8 crossbars [19]. Higher crossbar
requirement leads to more tiles, which necessitate more area
(for more peripherals such ADC, DAC, etc.). Moreover, more
tiles consume more energy overall despite having lower
energy consumption per tile due to more efficient zero storage
and low-resolution ADCs.

To determine a suitable ReRAM crossbar configuration
for training GNNs, we consider different ReRAM crossbar
sizes varying from 8x8 to 256x256 for DARe. The choice of
crossbar size should be such that the overall area (and power
consumption) is minimized. We observe that smaller
crossbars lead to many tiles but store fewer zeros, and larger
crossbars necessitate fewer tiles but store many zeros. Our
analysis, as shown in Section V, indicates that for all input
graphs considered in this work for GNN training, 128x128
sized crossbars are the best choice in terms of storage-power-
area trade-offs. Hence, we use 128x128 sized crossbars as the
ReRAM configuration of choice for DARe.

B. Implementing DropLayer in DARe

As discussed earlier, DropLayer translates to reduced
inter-PE traffic in the manycore architecture. However, the
randomness inherent in DropLayer makes it challenging to
implement on conventional manycore architectures.
Randomly dropping data results in a dynamically changing
traffic pattern, where the change can be with respect to the size
or content of data that need to be communicated. This makes
communication especially challenging because the destination
PE must be able to correctly decode the received data every
time. Fig. 3 highlights the control mechanism needed to
implement DropLayer on ReRAM-based manycore
architectures. For instance, let us assume that the ReRAM
computations of a neural layer yields the output: (d,, d,, d3,
d,); this needs to be communicated to the ReRAM PEs
responsible for the next neural layer, as shown in Fig. 1. It
should be noted that, d; is a 16-bit fixed point number [19].
The data must then be communicated via the NoC using

packets. In NoC packet structure, d; represents a flit and
multiple such flits together constitute a packet. Without
DropLayer, none of this data is omitted and we would
communicate all the flits (d;, d,, d;,and d,) in a single
packet, to the appropriate destination PEs for further
processing. However, due to the incorporation of DropLayer,
some flits will be omitted. For instance, if we omit d, and d,,
the destination PE will receive a packet with the following flits
only: (d, d3); the receiver PE must ideally interpret the data
packet as: (d4, 0, d3, 0) i.e., d, and d, are omitted. However,
without additional information, the receiver PE will not be
able to correctly identify the missing flits, thereby leading to
erroneous interpretations. In addition, the position and number
of the missing flit keeps changing every epoch due to the
inherent randomness within DropLayer. Hence, this
dynamically changing packet structure and content requires a
control mechanism to ensure seamless data exchange between
the PEs. Here, it should be noted that, the omitted flits in each
packet are determined in a random manner. Therefore, it is
difficult to merge flits from different packets to create a new
uniform packet structure.

In this paper, we solve this challenging problem and
enable DropLayer using a dynamically varying packet
structure in the manycore architecture [25]. In wormhole
routing [26], this implies that the data packets will contain
different number of flits. In order to implement DropLayer in
the NoC-based architecture, we use a reconfigurable Linear
Feedback Shift Register (LFSR) based control mechanism to
decide which data to omit in each epoch.

Fig. 3(a) and Fig. 3(b) explain the proposed methodology
in more detail using the example of four data flits in a packet.
The LFSR-based control mechanism in Fig. 3(b) generates a
4-bit binary pattern, referred as the key (each bit of the key is
represented by k;) to capture the effects of DropLayer in the
NoC. Each bit of the LFSR is used to decide whether to
keep/discard a flit represented as d; in Fig. 3, i.e., d; will be
omitted if k; = 0, and vice versa (as shown in Fig. 3(b)). For
instance, for the 4-flit packet structure, when the LFSR bit
pattern (key) is “1010”, outputs d, & d, are omitted while d
& d; are included in the packet following the proposed
control mechanism shown in Fig. 3(a). The LFSR pattern
(key) is then added to the header flit and sent to the destination
PE. The key is used to decode the received data packet at the
destination PE. For instance, the LFSR pattern (“10107)
indicates that rows R; and R of the destination crossbar will
receive the information contained in d; and d, respectively.
The size of the key is always equal to the bit-width of the
LFSR. The number of 1’s in the key is used by the NoC router
to determine the packet size i.e., the number of body flits. For
instance, the key 1010 indicates that there will be two body
flits in the packet.

As mentioned in Section III, DropLayer results in some
messages being omitted from the packet due to the randomly
dropped edges (or neural units). As a result, each message
generated by the neural layers need to be associated with one

Ni | La / i 1 i
Nl i | sk | LFSR {keyﬂ Variable number of body flits o d, R,
My x Ky ko sk, - R,
] E.p d R
LS5 irser [0 [ o
'ln‘,,‘_;'ck:t" _ i YVVY DroplLayer: W - Dfecode i R,
[ 7DE&;I;JET= Decode no data d]rdb dstd.: kt@dl using key
des:'sri'::::' 5 t:gz:tk[- -0 Sender PE Destination PE

(b)

(a)
Fig. 3. (a) The control mechanism to enable DropLayer in DARe. (b) Hardware block emulating DropLayer. The figure is for illustration purposes only.
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bit from the LFSR bit pattern. The bit width of the LFSR is
determined considering the throughput (number of outputs
generated in one cycle) of the ReRAM crossbar. For instance,
if the ReRAM crossbar generates N outputs in one cycle, we
must have an L-bit LFSR where,

L = N * (freram/f1rsr) (1)

Here, firsg and freram are the clock frequencies of the
LFSR and ReRAM crossbars, respectively. Note that,
ReRAM crossbars and LFSRs have different clock
frequencies. Generally, ReRAMs operate with a significantly
slower clock frequency than the CMOS peripherals [19].
Using Equation (1), we determine the bit width of the specific
LFSR configuration necessary for DARe.

C. Overall GNN training on DARe

In addition to the variable sized packets due to
DropLayer, GNN training exhibits many-to-few (discussed in
Section III) and multicast traffic patterns as shown in Fig. 4.
Fig. 4(a) illustrates the communication pattern of GNN
training for a 3-layer GNN. Fig. 4(b) and Fig. 4(c) show the
resulting traffic pattern when the aforementioned GNN is
trained on a manycore architecture. Note that the mappings
shown in Fig. 4(b) and Fig. 4(c) are only examples. The
many-to-few traffic pattern can create traffic hotspots (shown
in Fig. 4(b)), which affects the achievable performance of the
DARe architecture. Moreover, the multicast communication
primarily arises as data from PEs executing layer [ is shared
with PEs responsible for layer [ + 1 (next layer) and PEs
executing the backward phase of layer [. Note that the
forward and backward phases of training are often
implemented on separate sets of PEs for high throughput [19].
Also, the same neural layer is often distributed across
multiple PEs, creating even more multicast traffic. As an
example, if layer [ + 1 is mapped to three different PEs, the
same output from layer [ needs to be communicated to all
three PEs (multicast traffic) as shown in Fig. 4(c). Traditional
planar architectures are not suited for such traffic patterns,
which result in a significant amount of long-range
communication and multi-hop traffic due to the larger
physical separation between communicating PEs. Hence, the
overall system throughput is affected [12].

3D integration alleviates this problem by stacking planar
tiers on top of each other. This reduces the physical separation
between the PEs, resulting in faster communication. By
adding an extra z-dimension to the NoC, path diversity during
communication is improved [12]. This results in higher
throughput, a key requirement for training GNNs. In addition,
3D NoC architectures can enable high-performance multicast
support, which is essential for GNN training [23]. Fig. 2 shows
the overall 3D architecture. In DARe, each planar tier consists
of an equal number of ReRAM-based PEs connected by a 3D
mesh-based NoC with tree-based multicast.

Finally, the mapping of the GNN weights and adjacency
matrix to the ReRAM PEs also play a big role in determining
the amount of communication during GNN training.
ReRAM-based architectures adopt a pipelined training
strategy to avoid repeated writing of weights to the ReRAM
crossbars [20]. However, pipelining cannot be implemented
with GNNs that operate on one large monolithic input graph
[10]. Following [13], we use graph-partitioning to enable
pipelining for training GNNs on DARe. However, pipelining
requires that all neural layers be computed simultaneously.
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Fig. 4. Simplified illustration of the communication during GNN training in
DARe. (a) communication pattern in GNN training for a 3-layer GNN, (b)
many-to-few communication pattern and resulting traffic hotspot, and (c)
Multicast communication between different PEs.

Hence, all the weights and sub-graphs need to be present on-
chip to fill up the computation pipeline at a certain instance
of time and minimize the stall [20]. The weights and graph
adjacency matrices are mapped suitably to PEs to reduce
communication. For instance, if two highly communicating
neural layers are mapped far from each other, there will be a
significant amount of multi-hop communication, which will
create performance bottlenecks as shown in Fig. 4(b). As an
example, in Fig. 4(b), if layers V; V, V5 and E are mapped to
PEs physically closer to each other, it is possible to reduce
hop count and therefore reduce latency. Furthermore, by
mapping the neural layers to PEs appropriately, it is possible
to avoid traffic hotspots, including the scenario shown in Fig.
4(b). Hence, a suitable mapping strategy is necessary to
further reduce the amount of multi-hop communication and
complement the advantages introduced by the Drop-aware
control mechanism and multicast in the NoC.

For DARe, we employ an efficient Simulated Annealing
(SA) based mapping strategy as proposed in [23], as SA can
uncover high-quality solutions in a reasonable amount of time.
The mapping of weights and the adjacency matrix to the PEs
can be seen as a combinatorial optimization problem: Given a
total of P PEs, L layers and A adjacency matrices, we need to
distribute all the weights of the L layers and A adjacency
matrices to P PEs such that the highly communicating layers
are mapped to nearby PEs. The optimized mapping enables
high-throughput communication, reduces long-range traffic
and promotes efficient multicast. Taken together, Drop-aware
3D NoC and optimized mapping policy enable high-
performance GNN training on DARe.

V.  EXPERIMENTAL RESULTS

In this section, we present a comprehensive performance
evaluation of the proposed DARe architecture and compare it
with appropriate baseline solutions.

A. Experimental Setup

The specific embodiment of the DARe architecture
considered in our performance assessment consists of 36
homogeneous ReRAM-based PEs. The PEs are distributed
evenly across four planar tiers and every planar tier is
connected to each other using Through Silicon Vias (TSVs).
The ReRAM crossbar configuration is chosen based on the
storage-power-area trade-offs (shown in Fig. 5). The selected
crossbar and tile configurations are shown in Table I [19].
The ReRAM crossbars operate at 10 MHz, which is typical
[19][27]. Each PE has four tiles as shown in Table I, and each
tile contains one 16-bit reconfigurable LFSR operating at
1GHz. The default packet structure with no DropLayer has
16 flits, where each flit is a 16-bit fixed-point number
generated by ReRAM crossbars. We follow the Garnet packet
structure in the NoC [28]. The LFSR bit width is determined
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TABLE I. DARE PARAMETERS FOR PERFORMANCE
EVALUATION

4 planar tiers, 9 cores per tier, 4 tiles per core
ReRAM Tile (12 1 IMA has: 8-ADCs (8-bits), 128x8 DACs (1-bit), 8

IMAs, In-situ crossbars, 128x128 crossbar size, 10MHz, 2-bit
Multiply-Accumlate resolution,
Units) 1 Programmable LFSR (16-bit)
TABLE II. GRAPH DATA STATISTICS
No. of
Datasets No. of No. of Edges No. of No. of
atase Nodes Edges per Features Labels
Node
PPI 56,944 818,716 ~14 50 121
Reddit 232,965 11,606,919 ~49 602 41
Amazon2M 2,449,029 61,859,140 ~25 100 47

using (1). The LFSR is designed to be reconfigurable (using
weighted outputs, e.g., as in [29]) so that different DropLayer
probabilities can be implemented. The LFSR is synthesized
from a register-transfer level (RTL) design using a TSMC 28
nm CMOS process in Synopsys Design Vision. It adds
negligible area and power overheads (less than 1% of an
ReRAM PE). The PEs communicate with each other via the
3D Mesh NoC with tree-based multicast. ReRAM arrays
always execute instructions in-order, and the instruction
latencies are deterministic [19]. Hence, deterministic models
are used to evaluate execution time, on-chip traffic, etc. The
mapping of GNN weights and adjacency matrices on the tiles
are determined offline. We do not discuss the ReRAM
execution models in detail for the sake of brevity as it has
been elaborated in previous work [20].

The popular graph convolutional network (GCN)
algorithm Cluster-GCN from [13] (implemented in
TensorFlow) is used as a representative GNN for the
performance evaluation. The GCN configuration in our
experiments employs the METIS graph partitioning tool [30]
to reduce memory overhead and enable pipelined training.
This allows us to evaluate GNNSs for large-scale graphs, which
are otherwise impossible to process in an on-chip
environment. Note that, our findings and the proposed
architecture are equally applicable to other GNNs relying on
the recursive message-passing scheme for neighbor
information aggregation. For the evaluation of training GNNs
on DARe, we choose three popular graph datasets — PPI,
Reddit, and Amazon2M (details provided in Table II). The
GCN for each dataset consists of four neural layers. As Table
IT shows, the graph datasets are diverse in nature (in terms of
size, partitioning, etc.). This allows for comprehensive
performance evaluation of DARe.

B. Crossbar Configuration

In this sub-section, we first determine the appropriate
crossbar configuration for the DARe architecture. As
discussed earlier, smaller crossbars are preferred for graph
computations while larger crossbars are used for DNN

Accuracy
b3

97

0.4 0.2
0.3 o g 3 \\\
Nou “ -
0.2 (orov
E

0.2

o
. 0.3
%,
oty

oo

04 04

(@) (b)

e Area e Power e PEs Required

—_

0.1

I
=

/J

64x64 128x128  256x256
Crossbar Size

Fig. 5. Storage Efficiency-Power-Area trade-offs for different ReRAM
crossbar configurations, normalized w.r.t. 8x8 crossbar configuration

operations. As GNN training involves both types of
operations, we must first determine the appropriate crossbar
configuration based on the storage efficiency, power, and area
trade-offs by varying the crossbar sizes from 8x8 to 256x256.
Fig. 5 shows the PE requirement, area and power needed to
store one input sub-graph of the Reddit dataset. Similar trends
were seen for other datasets. As shown in Fig. 5, larger
crossbars (e.g., 128x128) require 28X times fewer PEs than
the smaller (8x8) configuration to store the same amount of
information. This happens because smaller crossbars are able
to store much less information in each crossbar. Hence, more
PEs are needed, necessitating more peripheral circuits (ADC,
DAC etc.). On the other hand, larger crossbars require fewer
PEs, eliminating extra overhead required by peripheral
circuits. Note that larger crossbars store more redundant zeros
[17]. Despite that, they are more efficient in terms of area and
power. However, extremely large crossbars (beyond
128x128) are relatively hard to design and require more area
and power. This happens as peripheral circuits for such large
crossbars are big. For instance, a 256x256 crossbar requires a
9-bit ADC [19], which is not only difficult to design but is
extremely area- and power-hungry, overshadowing any
benefit of the larger crossbars (note that ADC/DAC power and
area grow with increasing resolution). Thus, from Fig. 5 we
see that the most suitable crossbar configuration in terms of
power, area and storage efficiency is the 128x128
configuration, even though it stores more zeros compared to
smaller crossbar configurations.

Normalized Area
and Power
~ No. of PEs
(Normalzied)

0.01

o
=)

8x8 16x16

C. Effect of DropLayer on accuracy and traffic

In this subsection, we explore the effect of DropLayer on
GNN accuracy and inter-PE traffic in a manycore system. Fig.
6 shows the accuracy of GNN training on unseen validation
data for the (a) PPI, (b) Reddit, and (¢) Amazon2M datasets.
In practice, the DropLayer probabilities are hyper-parameters
determined by the user. In this work, we undertake a grid
search to determine the probability of DropLayer that leads to
best accuracy. It can be seen that both DropEdge and Dropout
help improve the accuracy of the GNN model as expected. In
Fig. 6, DropEdge (or Dropout) of 0.1 indicates that 10% of the
graph edges (or neural layer weights) are temporarily removed
randomly in each epoch, and so on. Increasing the probability
of DropEdge (represented as Prob. of DropEdge in Fig. 6 and
Fig. 7) initially causes a slight increase in accuracy for all
datasets as it reduces over-fitting and over-smoothing [8].
However, increasing the probability of DropEdge excessively

=
S
=
88 .
~ - —~
\\ 4/' 0.6
///< 0.4 /,/‘" <
¢ Avs oy = < oe =

/ 03 ‘\\‘\»‘ "I \\ /‘ \.\\\- -
v ), 0.8 X =\ =
02 oot o, N Ot etV =)
“ 0.6 - 03 e -

L6 0.0

(©)

Fig. 6. GNN model accuracy by varying probabilities of DropEdge & Dropout for (a) PPL, (b) Reddit and (c) Amazon2M datasets
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Fig. 7. Effect of varying probabilities of DropEdge & Dropout on total inter-
PE traffic during GNN training for Reddit dataset.

(greater than 0.3 for PPI and 0.5 for both Reddit and
Amazon2M) causes loss in accuracy. This happens as
relatively higher probability of DropEdge causes information
loss as multiple graph edges are omitted every epoch during
GNN training. Hence, omitting too many edges has an adverse
impact on accuracy.

It should also be noted that the probability of DropEdge to
achieve best accuracy is dataset dependent. As seen from
Table II, PPI dataset has relatively lower degree distribution
(number of nodes per graph edge) when compared to Reddit
and Amazon2M. As a result, even a relatively lower
probability of DropEdge can cause a large number of edges
being omitted per node, which leads to a significant accuracy
loss in case of PPL. Reddit and Amazon2M both have
relatively higher number of edges per node. Hence, we can
achieve higher accuracy even with greater probability of
DropEdge for both Reddit and Amazon2M datasets.

Similar to DropEdge, increasing the probability of
Dropout initially improves accuracy due to reduced over-
fitting. However, as is the case for DropEdge, the probability
of Dropout for the best possible accuracy is different for each
dataset. The Dropout probability for Reddit and Amazon2M
can be as high as 0.5, whereas for PPI the accuracy falls
significantly with a Dropout probability higher than 0.3. The
probability of Dropout for a dataset depends on the number of
features used for training. In case of PPI, each node has fewer
features but a larger number of labels to classify from. With
high Dropout, the classification becomes even harder with the
lack of information as more features are omitted due to
Dropout. In contrast, Reddit and Amazon2M both have more
features for each node and a smaller number of labels. Hence,
it allows for relatively higher probability of Dropout as the
GNN has many features to work with even at relatively larger
probability of Dropout. Overall, Reddit and Amazon2M have
similar accuracy trend with varying probability of DropEdge
and Dropout as shown in Fig. 6(b) and Fig.6(c). On the other
hand, PPI (Fig. 6(a)) allows for a relatively smaller probability
of DropEdge and Dropout without loss of accuracy.

Next, we investigate how varying DropEdge and Dropout
affects communication during GNN training. As mentioned in
Section III, DropEdge and Dropout reduce on-chip traffic
during GNN training. Fig. 7 shows inter-PE traffic during
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GNN training for the Reddit dataset as an example with
different probabilities of DropEdge and Dropout. As shown in
Fig. 7, the amount of traffic monotonically decreases as the
probabilities of DropEdge and Dropout are increased. As an
example, the amount of traffic is highest when the
probabilities of both DropEdge and Dropout are zero, while
the traffic decreases as the probabilities of DropEdge and
Dropout are reduced. For all further experiments, we choose
the value of Dropout and DropLayer for each dataset that
achieves less than 1% drop in accuracy (relative to the best-
case accuracy observed in our experiments) and leads to the
highest reduction in traffic. Interestingly, we found that this
condition is satisfied when the probabilities of both DropEdge
and Dropout are the same. Hence, for all further analysis, we
use DropLayer probability of 0.3, 0.5 and 0.5 for PPI, Reddit
and Amazon dataset respectively. Recall that we refer to
DropEdge and Dropout collectively as DropLayer.

D. Performance Evaluation of the Drop-aware NoC

In this subsection, we evaluate the performance of the
Drop-aware 3D NoC, which serves as the communication
backbone for DARe. As GNN training on DARe is
implemented in a pipelined fashion, we examine the
computation and communication pipeline stage delays. The
communication delay includes the timing overhead introduced
by the LFSR-based control mechanism. It is well-known that
the slowest stage in a pipeline determines the overall stage
delay. In turn, the overall stage delay governs the latency of
the system. Hence, to maximize the overall performance, our
aim is to balance the pipeline stage delays. In order to establish
the efficiency of the 3D Drop-aware NoC used in DARe, we
consider four ReRAM-based manycore architectures with
different NoC configurations as follows: (a) 2D Mesh without
DropLayer (2D NoDrop), (b) 2D Mesh with DropLayer (2D
Drop), (¢) 3D Mesh without DropLayer (3D NoDrop) and
finally, (d) proposed Drop-aware 3D NoC architecture used in
DARe. Note that all the NoCs adopt tree-based multicast to
handle the GNN traffic.

Each GNN layer involves both computation (MAC
operations) and communication (the data of one layer must be
sent to the next layer as shown in Fig. 1 and Fig. 4(a)). Hence,
the overall stage delay for GNN training is determined by the
worst-case delay among the computation and communication
stages. Fig. 8 shows the worst-case computation and
communication delays when a GNN is trained on ReRAM-
based architectures with 2D NoDrop, 2D Drop, 3D NoDrop
NoCs, and the DARe architecture. The computation delay is
the maximum time needed to finish all the MAC operations of
any given layer. Similarly, the communication delay
represents the maximum time needed to communicate all
required data from one neural layer to another. It should be
noted that there is no change in computation time for different
NoC architectures because the number of ReRAM-based PEs
for computation does not vary with the choice of the NoC.

Fig. 8 compares the computation, communication, and
overall stage delays between 2D NoDrop, 2D Drop, 3D

m Stage Delay

D NoDrop 2D Drop 3D NoDrop DARe

eddit Amazon2M
ataset

Fig. 8. Computation and communication delay for 2D NoDrop, 2D Drop, 3D NoDrop and DARe; all delays are normalized with respect to the communication

delay of 2D NoDrop.
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NoDrop and DARe. Here, we consider 2D NoDrop as our
baseline. In order to utilize all (or most) of the available
ReRAM resources, we replicate the parameters of the GNN
layers (such as weights) on different sets of ReRAM tiles
following [20]. Replicating the weights of a neural layer
results in faster execution as more data can be processed in
parallel [20]. However, the replication of weights requires
additional ReRAM resources. Hence, the number of times we
can replicate the GNN parameters is limited by the total
number of available ReRAM crossbars. In Fig. 8, we show the
computation delay of each architecture with the maximum
amount of weight duplication possible for all the datasets. This
duplication ensures maximum ReRAM utilization and results
in the best possible computation delay.

Without DropLayer, GNN training is bottlenecked by the
heavy data traffic. As a result, the communication delay
dominates the overall performance (as seen for 2D NoDrop in
Fig. 8). The slowest stage determines the overall execution
time in a pipelined implementation; therefore, the high
communication latency will bottleneck performance. Even
though the computation latency is improved by using
ReRAMs, the overall latency will be limited by the time to
communicate. This will affect the full-system execution time
as we show later. As mentioned in Section III and IV,
implementing DropLayer during GNN training reduces the
inter-PE traffic (as shown in Fig. 6). Implementing DropLayer
in the 2D NoC (2D Drop) reduces the communication delay
by 40% on an average compared to 2D NoDrop. However,
despite the reduction in latency, communication still remains
the bottleneck in both of the 2D architectures. The 3D NoDrop
NoC reduces the communication delay by 9% compared to the
2D Drop architecture. In spite of not incorporating DropLayer,
the 3D NoC (3D NoDrop) achieves better overall performance
compared to the 2D Drop counterpart. This happens due to the
inherently lower average hop count of 3D NoC compared to
its 2D counterpart. Moreover, as shown in Fig. 8, in case of
the architectures with 2D NoDrop, 2D Drop and 3D NoDrop
NoC, the stage delay is always bottlenecked by the
communication. As a result, the stage delay is the same as the
communication delay.

Implementing DropLayer in the 3D NoC enables
reduction in traffic and communication stage latency
noticeably. Compared to the 2D NoDrop baseline, DARe
improves communication delay by 65%, 73% and 72% for
PPI, Reddit and Amazon2M datasets, respectively. The
reduction in communication stage delay compared to the
NoDrop NoC architectures can be attributed to the traffic
reduction enabled by DropLayer. The variable packet sizing-
based control scheme creates packets with lower number of
flits (some flits are omitted), which reduces the overall time
needed to communicate all the packets. By combining the low
hop count feature of 3D NoC and the traffic reduction using
DropLayer, we reduce the communication stage delay
significantly in DARe. For PPI, the overall stage delay is
bottlenecked by the computation as it cannot be further
accelerated by duplicating weights with the available ReRAM
resources considered in this work. As a result, the overall
improvement for PPI is governed by the computational stage
delay. On the other hand, the communication delay improves
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significantly for Reddit and Amazon2M, but it still remains
the bottleneck due to the accelerated computation. We can
conclude that for all the datasets, DARe achieves significant
performance improvement with respect to the baseline 2D
NoDrop architecture.

E. Full System Performance Evaluation

Next, we undertake a full-system performance evaluation
of DARe. We consider the baseline architecture (2D NoDrop),
a state-of-the-art ReRAM-based GNN accelerator, ReGraphX
[24] and a conventional GPU (Nvidia V100 in this case) while
benchmarking the performance of DARe. ReGraphX is also a
3D NoC-enabled ReRAM-based manycore architecture.
However, it does not incorporate any DropLayer feature. Fig.
9(a) and Fig. 9(b) show the execution time and energy
consumption (normalized with respect to the GPU) for GNN
training, respectively, on DARe, 2D NoDrop and ReGraphX.
DARe achieves 5.6X, 3.2X and 1.9X lower overall execution
time on an average compared to GPU, 2D NoDrop and
ReGraphX respectively. The lower execution time achieved
by DARe compared to 2D NoDrop and ReGraphX is attributed
to the Drop-aware 3D NoC. The Drop-aware 3D NoC in
DARe reduces the inter-PE traffic by enabling the DropLayer
feature and thus improves the overall performance by
reducing communication latency. Note that all the ReRAM-
based architectures (even 2D No Drop) outperform the GPU.
The inherent advantages of ReRAM-based architectures in
implementing high-throughput MAC is the reason behind this.
Fig. 9(b) shows that the DARe architecture on an average
consumes 23X, 3.3X and 2.5X less energy than conventional
GPUs, 2D NoDrop and ReGraphX, respectively. This is also
enabled by the lower latency and higher throughput of the
Drop-aware 3D NoC in DARe. Overall, DARe is up to 6.7X
faster while consuming up to 30X less energy for GNN
training than the traditional GPU-based implementation.

VL

Graph neural networks (GNNs) have a multitude of real-
world applications such as social media, drug discovery, and
recommendation systems. Software techniques such as —
DropEdge and Dropout (together referred as DropLayer in this
work) are regularization techniques that help improve GNN
accuracy. When incorporated in a manycore architecture,
DropLayer reduces the inter-PE traffic. However, this traffic
reduction is dynamic in nature due to randomness of the
DropLayer mechanism. In this work, We have presented a
Drop-aware ReRAM-based manycore architecture for
training GNNs called “DARe”. The proposed DARe
architecture is able to achieve high performance by combining
the efficient MAC operations of ReRAM-based PEs and a
high-throughput, low-latency Drop-aware 3D NoC. The
Drop-aware 3D NoC incorporates a control mechanism that
emulates the effects of DropLayer in the hardware to reduce
heavy data traffic inherent in GNN training. The control
mechanism enables handshaking between the source and
destination PEs in presence of the dynamically varying traffic.
DARe outperforms conventional GPUs by up to 6.7X in terms
of execution time and is up to 30X more energy efficient.

CONCLUSION
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Fig. 9 (a) Execution time, (b) Energy consumption of DARe compared to 2D NoDrop, ReGraphX and GPU (normalized with respect to GPU)
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