
DARe: DropLayer-Aware Manycore ReRAM

architecture for Training Graph Neural Networks

Aqeeb Iqbal Arka*, Biresh Kumar Joardar†, Janardhan Rao Doppa*, Partha Pratim Pande*, and Krishnendu Chakrabarty†

*School of EECS, Washington State University

 Pullman, WA 99164, USA.

{aqeebiqbal.arka, jana.doppa, pande}@wsu.edu

†Department of ECE, Duke University

Durham, NC 27708, USA.

{bireshkumar.joardar, krish}@duke.edu

Abstract— Graph Neural Networks (GNNs) are a variant of

Deep Neural Networks (DNNs) operating on graphs. GNNs have

attributes of both DNNs and graph computation. However,

training GNNs on manycore architectures is a challenging task

because it involves heavy communication that bottlenecks

performance. DropEdge and Dropout, which we collectively

refer to as DropLayer, are regularization techniques that can

improve the predictive accuracy of GNNs. Moreover, when

implemented on a manycore architecture, DropEdge and

Dropout are capable of reducing the on-chip traffic. In this

paper, we present a ReRAM-based 3D manycore architecture

called DARe, tailored for accelerating on-chip training of GNNs.

The key component of the DARe architecture is a Network-on-

Chip (NoC) that reduces the amount of communication using

DropLayer. The reduced traffic prevents communication

hotspots and leads to better performance. We demonstrate that

DARe outperforms conventional GPUs by up to 6.7X (5.6X on

average) in terms of execution time, while being up to 30X (23X

on average) more energy efficient for GNN training.

Keywords—3D architectures, GNNs, NoC, ReRAM,

DropEdge, Dropout

I. INTRODUCTION

Graph Neural Networks (GNNs) are used for predictive
analytics using graph-structured data. This makes them
different from traditional Deep Neural Networks (DNNs) that
operate on regular data structures such as images or
sequences. GNNs have various real-life applications such as
recommendation systems [1], quantum chemistry [2], social
networks [3] [4] etc. To learn representation using the
relational structure of graphs, GNNs perform iterative
neighborhood aggregation, where each node aggregates
features of its neighbors to compute new features [5]. This
gives rise to repeated message-passing operations. GNNs
exhibit characteristics of both DNN training (involving
trainable weights) and graph analytics (accumulating
neighboring vertices’ information along graph edges). Hence,
GNN training is both compute- and communication-intensive.

Project.All the computations associated with GNN training
can be represented as multiply-and-accumulate (MAC)
operations. Resistive random-access memory (ReRAM) can
implement such MAC operations efficiently [6]. Moreover,
ReRAMs allow for processing-in-memory (PIM), which
greatly reduces the communication between the computing
cores and the main memory. However, GNN training involves
repeated message-passing operations to accumulate neighbor
information in a recursive manner [7]. When implemented on
a ReRAM-based manycore architecture, this can give rise to a
substantial amount of on-chip traffic that creates performance
bottlenecks if not addressed appropriately.

DropEdge and Dropout are regularization techniques that
can help in reducing the amount of traffic during GNN
training; normally, these layers are used to prevent over-

smoothing and over-fitting during GNN training. Over-fitting
limits the generalization ability on small datasets, while over-
smoothing isolates output representations from the input
features as network depth increases; both these phenomena
lead to poor model accuracy [8]. As the name suggests,
DropEdge involves randomly dropping a few edges of the
input graph during training. In practice, this is realized when
information from a few randomly selected neighbors of each
node of the input graph is not accumulated during the
message-passing stage of GNN training. Thus, DropEdge
reduces the number of messages communicated among
adjacent nodes, which in turn improves performance. The
Dropout operation in DNNs randomly skips a neural unit in
the network (along with the associated connections)
temporarily [9]. This process simulates the creation of a large
ensemble of sparse DNNs resulting in a single trained GNN
with small weights to approximate the effect of average
predictions from this ensemble. Overall, both Dropout and
DropEdge reduce the generalization error (error on testing
instances drawn from the target data distribution) in GNN
training, while also reducing the amount of on-chip
communication. Note that the overall goal of learning is to
achieve low error on unseen data (i.e., low generalization
error). In the rest of this paper, we collectively refer to
DropEdge and Dropout as “DropLayer”.

Despite these advantages, implementing DropLayer in
manycore ReRAM-based architectures is a challenging task.
It is well-known that the output of one GNN layer is the input
to the next GNN layer, and so on [10]. However, due to the
inherently random nature of DropLayer, different edges of the
graph and neural units are dropped in each iteration. This
results in a randomly varying traffic pattern where the data
exchanged between two adjacent GNN layers keeps changing
in every iteration; the change can be in terms of the data size,
content, and/or the source-destination pair. Hence reliable
communication is impossible without an appropriate control
mechanism. In this work, we enable DropLayer in the NoC-
enabled manycore architecture using variable-sized packets
and a suitable control mechanism. We call the NoC
incorporating DropLayer as the Drop-aware NoC architecture.
Overall, the Drop-aware NoC reduces the communication,
thereby leading to better performance.

Reducing the amount of on-chip communication through
the Drop-aware NoC is one aspect of reducing the traffic
bottleneck. The other desirable characteristics of the NoC
should be to support the randomly varying traffic pattern
exhibited by GNN training. Moreover, GNN training exhibits
heavy many-to-few and multicast traffic [11]. Traditional
planar (2D) architectures are not well-suited for such traffic
patterns. As the large physical separation between processing
elements (PEs) causes high-latency and low-throughput, it is
not ideal for high-performance GNN training. Prior work has
shown that three-dimensional (3D) NoC enables the design of
a high-throughput and low-latency communication backbone
for manycore chips by lowering the physical distance among

This work was supported in part by the US National Science Foundation
(NSF) under grants CNS-1955353, CNS-1955196, and by the USA Army
Research Office grant W911NF-17-1-0485. Biresh Kumar Joardar was also
supported in part by NSF Grant # 2030859 to the Computing Research
Association for the CIFellows Project.

978-1-6654-4507-8/21/$31.00 ©2021 IEEE

20
21

 IE
EE

/A
CM

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

O
n

Co
m

pu
te

r A
id

ed
 D

es
ig

n
(IC

CA
D)

 |
 9

78
-1

-6
65

4-
45

07
-8

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
CA

D5
19

58
.2

02
1.

96
43

51
1

Authorized licensed use limited to: Duke University. Downloaded on May 05,2022 at 03:08:17 UTC from IEEE Xplore. Restrictions apply.

the PEs [12]. Moreover, 3D NoCs can support high-
throughput multicast, which is essential for GNN training. In
this paper, we present the design of a ReRAM-based
manycore architecture integrated via a Drop-aware 3D NoC.
The NoC architecture helps to alleviate the communication
bottleneck in GNN training. We call this manycore
architecture as “DARe”. The main contributions of this paper
include:

• We design a manycore architecture (DARe) for
accelerating GNN training. DARe leverages the
benefits introduced by the ReRAM-based PEs and an
efficient on-chip communication infrastructure
enabled by a Drop-aware 3D NoC.

• To maximize performance gain and energy
efficiency, we balance the computation and
communication latencies. The communication
latency is reduced via the Drop-aware NoC, whereas
the computation latency is reduced by allocating
adequate number of ReRAM PEs to each GNN layer.

• Through extensive performance evaluation, we
demonstrate that DARe outperforms both traditional
GPU-based designs and state-of-the-art ReRAM-
based architectures for training GNNs using diverse
real-world graphs with millions of nodes and edges.

To the best of our knowledge, this is the first work that
proposes a Drop-aware NoC architecture to accelerate GNN
training in a ReRAM-based manycore system. The rest of the
paper is organized as follows. Section II describes relevant
prior work. In Section III, we discuss GNN characteristics and
the effect of DropLayer on GNN traffic. In Section IV, we
introduce the proposed DARe architecture, the design
methodology for the Drop-aware 3D NoC, and the policy for
mapping the GNN layers to the DARe architecture. Section V
presents experimental results. We conclude the paper in
Section VI by summarizing the findings of this work.

II. RELATED PRIOR WORK

A. GNN training algorithms

The primary idea behind GNNs is to aid learning on graph
structured data by using a neural network that can operate
directly on graphs [10]. However, GNN training on large-
scale graphs is very memory intensive, which necessitates the
use of efficient graph partitioning. Using graph partitioning,
the Cluster-GCN approach enables scalable GNN training
over large graphs with high accuracy and speed [13].
However, even with graph partitioning, GNN training is
communication intensive due to recursive message-passing
operations. DropEdge is a regularization technique similar to
Dropout in DNNs that reduces the number of times the
neighboring node features are aggregated in GNN training
while also reducing over-fitting and over-smoothing, thereby
resulting in improved accuracy [8]. However, as mentioned
earlier, the hardware implementation of DropLayer
(DropEdge and Dropout) requires a suitable control
mechanism to ensure proper synchronization between the
communicating PEs. Hence, a Drop-aware communication
protocol is necessary for high-performance GNN training in a
manycore architecture, without sacrificing accuracy.

B. Hardware for GNN computation

The design of hardware architectures for GNN
computation using commodity processors, FPGAs and custom
ASICs has been considered in recent work [7], [11], [14] [15].

However, all these architectures primarily focus on GNN
inference but not on training. The training of GNN is
considerably more challenging due to the additional data
exchange between the forward and backward phases. GNN
training is primarily implemented using GPUs. It is well
known that GPUs are not optimized for GNN training, which
leads to sub-optimal performance [14]. Moreover, all these
custom architectures (e.g., [7], [11], [15]) are limited to
relatively small graph structures, which do not require large
amounts of memory and computation. In contrast, this paper
focuses on an on-chip architecture enabled by ReRAM-based
PEs for GNN training with large graphs.

C. ReRAM-based architectures

ReRAMs enable processing-in-memory (PIM) that allows
for in-situ MAC (IMA) operations [6]. Computations in both
DNN and graph analytics can be decomposed into simple
MAC operations [11]. ReRAM-based accelerators for graph
analytics have been shown to significantly outperform CPU-
or GPU-based systems, both in terms of execution time and
energy [16] [17] [18]. Moreover, ReRAMs have been used
extensively to accelerate both DNN training and inference
[19] [20] [21] [22]. However, these solutions focus mainly on
accelerating only the computation [19] [20]. The maximum
achievable performance will be bottlenecked unless the
communication is also optimized [23]. In addition, all these
ReRAM-based accelerators are fine-tuned for either DNN or
graph analytics and are not suitable for GNN training; GNN
training exhibits features of both DNN and graph computation
simultaneously. An NoC-enabled ReRAM-based architecture
for high-performance training of GNNs, referred as
ReGraphX, has been proposed in [24]. However, as we show
in this work, ReGraphX does not realize the full potential of
ReRAMs due to communication bottlenecks inherent in GNN
training. Our work addresses a key shortcoming of the state-
of-the art by proposing an architecture that focuses on inherent
communication bottleneck of GNN training. The DARe
architecture incorporates a Drop-aware 3D NoC and ReRAM-
based PEs that enable high-performance training of GNNs.

III. GNN KERNEL AND COMMUNICATION TRAFFIC

In this section, we discuss the GNN training process. Next,
we explain how DropLayer reduces GNN traffic when
implemented on the DARe architecture.

A. The GNN Kernel

Computation: A graph consists of (a) vertices: each
vertex is represented using a feature vector that characterizes
the node; and (b) edges: the edges are represented by an
adjacency matrix indicating the vertex connectivity (𝛼), where 𝛼 is a sparse matrix. Together, vertices and edges define a
graph and are crucial for the computational kernel of GNNs.
A GNN consists of multiple back-to-back neural layers. Each
neural layer further consists of two sub-layers that perform
two different types of computations: (a) Vertex sub-layer: the
computations associated with this layer are MAC operations
similar to conventional DNNs, and (b) Edge sub-layer: this
resembles the message passing operation in graph analytics.

Fig. 1(a) depicts the two types of computations in a GNN
for an example graph with four nodes (A, B, C and D) and
three edges (for forward phase only). The vertex sub-layer of
the GNN resembles a fully connected DNN layer with input
and output nodes denoted as 𝑃𝑖 and 𝑄𝑖 respectively.
Computations associated with the vertex sub-layer involve
multiplying the node features with weights (𝜔𝑙 for layer 𝑙) to

Authorized licensed use limited to: Duke University. Downloaded on May 05,2022 at 03:08:17 UTC from IEEE Xplore. Restrictions apply.

First, we must determine the most suitable crossbar
configuration for GNN training. Conventionally, graph
computations involve sparse adjacency matrices. Hence,
relatively smaller ReRAM crossbars are used as they
avoid/reduce the storage of zeros (zeros are redundant in MAC
operations) [17]. On the other hand, DNNs are implemented
using relatively larger ReRAM crossbars (e.g., 128x128 as
shown in [19]) because weight matrices tend to be relatively
dense. As elaborated in Section III, the training process of
GNNs exhibits attributes of both DNNs and graph
computations. This presents a challenge while choosing the
suitable crossbar size for training GNNs.

From prior work, it is well-known that peripheral circuits
dominate the ReRAM tile area [19]. Hence, the ReRAM tile’s
area and power consumption do not vary significantly with the
crossbar size. However, smaller crossbars have significantly
lower storage capacity or density (bits stored per unit area). A
crossbar of size 𝑁 × 𝑁 can store up to 𝑁2 values. Hence, to
match the storage capability of one 128x128 crossbar, we will
need up to 256 (=1282/82) 8x8 crossbars [19]. Higher crossbar
requirement leads to more tiles, which necessitate more area
(for more peripherals such ADC, DAC, etc.). Moreover, more
tiles consume more energy overall despite having lower
energy consumption per tile due to more efficient zero storage
and low-resolution ADCs.

To determine a suitable ReRAM crossbar configuration
for training GNNs, we consider different ReRAM crossbar
sizes varying from 8x8 to 256x256 for DARe. The choice of
crossbar size should be such that the overall area (and power
consumption) is minimized. We observe that smaller
crossbars lead to many tiles but store fewer zeros, and larger
crossbars necessitate fewer tiles but store many zeros. Our
analysis, as shown in Section V, indicates that for all input
graphs considered in this work for GNN training, 128x128
sized crossbars are the best choice in terms of storage-power-
area trade-offs. Hence, we use 128x128 sized crossbars as the
ReRAM configuration of choice for DARe.

B. Implementing DropLayer in DARe

As discussed earlier, DropLayer translates to reduced
inter-PE traffic in the manycore architecture. However, the
randomness inherent in DropLayer makes it challenging to
implement on conventional manycore architectures.
Randomly dropping data results in a dynamically changing
traffic pattern, where the change can be with respect to the size
or content of data that need to be communicated. This makes
communication especially challenging because the destination
PE must be able to correctly decode the received data every
time. Fig. 3 highlights the control mechanism needed to
implement DropLayer on ReRAM-based manycore
architectures. For instance, let us assume that the ReRAM
computations of a neural layer yields the output: (𝑑1, 𝑑2, 𝑑3, 𝑑4); this needs to be communicated to the ReRAM PEs
responsible for the next neural layer, as shown in Fig. 1. It
should be noted that, 𝑑𝑖 is a 16-bit fixed point number [19].
The data must then be communicated via the NoC using

packets. In NoC packet structure, 𝑑𝑖 represents a flit and
multiple such flits together constitute a packet. Without
DropLayer, none of this data is omitted and we would
communicate all the flits (𝑑1, 𝑑2 , 𝑑3 ,and 𝑑4) in a single
packet, to the appropriate destination PEs for further
processing. However, due to the incorporation of DropLayer,
some flits will be omitted. For instance, if we omit 𝑑2 and 𝑑4,
the destination PE will receive a packet with the following flits
only: (𝑑1, 𝑑3); the receiver PE must ideally interpret the data
packet as: (𝑑1, 0, 𝑑3, 0) i.e., 𝑑2 and 𝑑4 are omitted. However,
without additional information, the receiver PE will not be
able to correctly identify the missing flits, thereby leading to
erroneous interpretations. In addition, the position and number
of the missing flit keeps changing every epoch due to the
inherent randomness within DropLayer. Hence, this
dynamically changing packet structure and content requires a
control mechanism to ensure seamless data exchange between
the PEs. Here, it should be noted that, the omitted flits in each
packet are determined in a random manner. Therefore, it is
difficult to merge flits from different packets to create a new
uniform packet structure.

In this paper, we solve this challenging problem and
enable DropLayer using a dynamically varying packet
structure in the manycore architecture [25]. In wormhole
routing [26], this implies that the data packets will contain
different number of flits. In order to implement DropLayer in
the NoC-based architecture, we use a reconfigurable Linear
Feedback Shift Register (LFSR) based control mechanism to
decide which data to omit in each epoch.

Fig. 3(a) and Fig. 3(b) explain the proposed methodology
in more detail using the example of four data flits in a packet.
The LFSR-based control mechanism in Fig. 3(b) generates a
4-bit binary pattern, referred as the key (each bit of the key is
represented by 𝑘𝑖) to capture the effects of DropLayer in the
NoC. Each bit of the LFSR is used to decide whether to
keep/discard a flit represented as 𝑑𝑖 in Fig. 3, i.e., 𝑑𝑖 will be
omitted if 𝑘𝑖 = 0, and vice versa (as shown in Fig. 3(b)). For
instance, for the 4-flit packet structure, when the LFSR bit
pattern (key) is “1010”, outputs 𝑑2 & 𝑑4 are omitted while 𝑑1
& 𝑑3 are included in the packet following the proposed
control mechanism shown in Fig. 3(a). The LFSR pattern
(key) is then added to the header flit and sent to the destination
PE. The key is used to decode the received data packet at the
destination PE. For instance, the LFSR pattern (“1010”)
indicates that rows 𝑅1 and 𝑅3 of the destination crossbar will
receive the information contained in 𝑑1 and 𝑑3, respectively.
The size of the key is always equal to the bit-width of the
LFSR. The number of 1’s in the key is used by the NoC router
to determine the packet size i.e., the number of body flits. For
instance, the key 1010 indicates that there will be two body
flits in the packet.

As mentioned in Section III, DropLayer results in some
messages being omitted from the packet due to the randomly
dropped edges (or neural units). As a result, each message
generated by the neural layers need to be associated with one

 (a) (b)
Fig. 3. (a) The control mechanism to enable DropLayer in DARe. (b) Hardware block emulating DropLayer. The figure is for illustration purposes only.

Authorized licensed use limited to: Duke University. Downloaded on May 05,2022 at 03:08:17 UTC from IEEE Xplore. Restrictions apply.

bit from the LFSR bit pattern. The bit width of the LFSR is
determined considering the throughput (number of outputs
generated in one cycle) of the ReRAM crossbar. For instance,
if the ReRAM crossbar generates 𝑁 outputs in one cycle, we
must have an 𝐿-bit LFSR where,

 𝐿 = 𝑁 ∗ (𝑓𝑅𝑒𝑅𝐴𝑀/𝑓𝐿𝐹𝑆𝑅) (1)

Here, 𝑓𝐿𝐹𝑆𝑅 and 𝑓𝑅𝑒𝑅𝐴𝑀 are the clock frequencies of the
LFSR and ReRAM crossbars, respectively. Note that,
ReRAM crossbars and LFSRs have different clock
frequencies. Generally, ReRAMs operate with a significantly
slower clock frequency than the CMOS peripherals [19].
Using Equation (1), we determine the bit width of the specific
LFSR configuration necessary for DARe.

C. Overall GNN training on DARe

In addition to the variable sized packets due to

DropLayer, GNN training exhibits many-to-few (discussed in

Section III) and multicast traffic patterns as shown in Fig. 4.

Fig. 4(a) illustrates the communication pattern of GNN

training for a 3-layer GNN. Fig. 4(b) and Fig. 4(c) show the

resulting traffic pattern when the aforementioned GNN is

trained on a manycore architecture. Note that the mappings

shown in Fig. 4(b) and Fig. 4(c) are only examples. The

many-to-few traffic pattern can create traffic hotspots (shown

in Fig. 4(b)), which affects the achievable performance of the

DARe architecture. Moreover, the multicast communication

primarily arises as data from PEs executing layer 𝑙 is shared

with PEs responsible for layer 𝑙 + 1 (next layer) and PEs

executing the backward phase of layer 𝑙 . Note that the

forward and backward phases of training are often

implemented on separate sets of PEs for high throughput [19].

Also, the same neural layer is often distributed across

multiple PEs, creating even more multicast traffic. As an

example, if layer 𝑙 + 1 is mapped to three different PEs, the

same output from layer 𝑙 needs to be communicated to all

three PEs (multicast traffic) as shown in Fig. 4(c). Traditional

planar architectures are not suited for such traffic patterns,

which result in a significant amount of long-range

communication and multi-hop traffic due to the larger

physical separation between communicating PEs. Hence, the

overall system throughput is affected [12].

3D integration alleviates this problem by stacking planar
tiers on top of each other. This reduces the physical separation
between the PEs, resulting in faster communication. By
adding an extra 𝑧-dimension to the NoC, path diversity during
communication is improved [12]. This results in higher
throughput, a key requirement for training GNNs. In addition,
3D NoC architectures can enable high-performance multicast
support, which is essential for GNN training [23]. Fig. 2 shows
the overall 3D architecture. In DARe, each planar tier consists
of an equal number of ReRAM-based PEs connected by a 3D
mesh-based NoC with tree-based multicast.

Finally, the mapping of the GNN weights and adjacency

matrix to the ReRAM PEs also play a big role in determining

the amount of communication during GNN training.

ReRAM-based architectures adopt a pipelined training

strategy to avoid repeated writing of weights to the ReRAM

crossbars [20]. However, pipelining cannot be implemented

with GNNs that operate on one large monolithic input graph

[10]. Following [13], we use graph-partitioning to enable

pipelining for training GNNs on DARe. However, pipelining

requires that all neural layers be computed simultaneously.

Hence, all the weights and sub-graphs need to be present on-

chip to fill up the computation pipeline at a certain instance

of time and minimize the stall [20]. The weights and graph

adjacency matrices are mapped suitably to PEs to reduce

communication. For instance, if two highly communicating

neural layers are mapped far from each other, there will be a

significant amount of multi-hop communication, which will

create performance bottlenecks as shown in Fig. 4(b). As an

example, in Fig. 4(b), if layers 𝑉1, 𝑉2,𝑉3 and 𝐸 are mapped to

PEs physically closer to each other, it is possible to reduce

hop count and therefore reduce latency. Furthermore, by

mapping the neural layers to PEs appropriately, it is possible

to avoid traffic hotspots, including the scenario shown in Fig.

4(b). Hence, a suitable mapping strategy is necessary to

further reduce the amount of multi-hop communication and

complement the advantages introduced by the Drop-aware

control mechanism and multicast in the NoC.

For DARe, we employ an efficient Simulated Annealing
(SA) based mapping strategy as proposed in [23], as SA can
uncover high-quality solutions in a reasonable amount of time.
The mapping of weights and the adjacency matrix to the PEs
can be seen as a combinatorial optimization problem: Given a
total of 𝑃 PEs, 𝐿 layers and 𝐴 adjacency matrices, we need to
distribute all the weights of the 𝐿 layers and 𝐴 adjacency
matrices to 𝑃 PEs such that the highly communicating layers
are mapped to nearby PEs. The optimized mapping enables
high-throughput communication, reduces long-range traffic
and promotes efficient multicast. Taken together, Drop-aware
3D NoC and optimized mapping policy enable high-
performance GNN training on DARe.

V. EXPERIMENTAL RESULTS

In this section, we present a comprehensive performance
evaluation of the proposed DARe architecture and compare it
with appropriate baseline solutions.

A. Experimental Setup

The specific embodiment of the DARe architecture

considered in our performance assessment consists of 36

homogeneous ReRAM-based PEs. The PEs are distributed

evenly across four planar tiers and every planar tier is

connected to each other using Through Silicon Vias (TSVs).

The ReRAM crossbar configuration is chosen based on the

storage-power-area trade-offs (shown in Fig. 5). The selected

crossbar and tile configurations are shown in Table I [19].

The ReRAM crossbars operate at 10 MHz, which is typical

[19] [27]. Each PE has four tiles as shown in Table I, and each

tile contains one 16-bit reconfigurable LFSR operating at

1GHz. The default packet structure with no DropLayer has

16 flits, where each flit is a 16-bit fixed-point number

generated by ReRAM crossbars. We follow the Garnet packet

structure in the NoC [28]. The LFSR bit width is determined

 (a) (b) (c)
Fig. 4. Simplified illustration of the communication during GNN training in
DARe. (a) communication pattern in GNN training for a 3-layer GNN, (b)
many-to-few communication pattern and resulting traffic hotspot, and (c)
Multicast communication between different PEs.

Authorized licensed use limited to: Duke University. Downloaded on May 05,2022 at 03:08:17 UTC from IEEE Xplore. Restrictions apply.

NoDrop and DARe. Here, we consider 2D NoDrop as our
baseline. In order to utilize all (or most) of the available
ReRAM resources, we replicate the parameters of the GNN
layers (such as weights) on different sets of ReRAM tiles
following [20]. Replicating the weights of a neural layer
results in faster execution as more data can be processed in
parallel [20]. However, the replication of weights requires
additional ReRAM resources. Hence, the number of times we
can replicate the GNN parameters is limited by the total
number of available ReRAM crossbars. In Fig. 8, we show the
computation delay of each architecture with the maximum
amount of weight duplication possible for all the datasets. This
duplication ensures maximum ReRAM utilization and results
in the best possible computation delay.

 Without DropLayer, GNN training is bottlenecked by the
heavy data traffic. As a result, the communication delay
dominates the overall performance (as seen for 2D NoDrop in
Fig. 8). The slowest stage determines the overall execution
time in a pipelined implementation; therefore, the high
communication latency will bottleneck performance. Even
though the computation latency is improved by using
ReRAMs, the overall latency will be limited by the time to
communicate. This will affect the full-system execution time
as we show later. As mentioned in Section III and IV,
implementing DropLayer during GNN training reduces the
inter-PE traffic (as shown in Fig. 6). Implementing DropLayer
in the 2D NoC (2D Drop) reduces the communication delay
by 40% on an average compared to 2D NoDrop. However,
despite the reduction in latency, communication still remains
the bottleneck in both of the 2D architectures. The 3D NoDrop
NoC reduces the communication delay by 9% compared to the
2D Drop architecture. In spite of not incorporating DropLayer,
the 3D NoC (3D NoDrop) achieves better overall performance
compared to the 2D Drop counterpart. This happens due to the
inherently lower average hop count of 3D NoC compared to
its 2D counterpart. Moreover, as shown in Fig. 8, in case of
the architectures with 2D NoDrop, 2D Drop and 3D NoDrop
NoC, the stage delay is always bottlenecked by the
communication. As a result, the stage delay is the same as the
communication delay.

Implementing DropLayer in the 3D NoC enables
reduction in traffic and communication stage latency
noticeably. Compared to the 2D NoDrop baseline, DARe
improves communication delay by 65%, 73% and 72% for
PPI, Reddit and Amazon2M datasets, respectively. The
reduction in communication stage delay compared to the
NoDrop NoC architectures can be attributed to the traffic
reduction enabled by DropLayer. The variable packet sizing-
based control scheme creates packets with lower number of
flits (some flits are omitted), which reduces the overall time
needed to communicate all the packets. By combining the low
hop count feature of 3D NoC and the traffic reduction using
DropLayer, we reduce the communication stage delay
significantly in DARe. For PPI, the overall stage delay is
bottlenecked by the computation as it cannot be further
accelerated by duplicating weights with the available ReRAM
resources considered in this work. As a result, the overall
improvement for PPI is governed by the computational stage
delay. On the other hand, the communication delay improves

significantly for Reddit and Amazon2M, but it still remains
the bottleneck due to the accelerated computation. We can
conclude that for all the datasets, DARe achieves significant
performance improvement with respect to the baseline 2D
NoDrop architecture.

E. Full System Performance Evaluation

Next, we undertake a full-system performance evaluation
of DARe. We consider the baseline architecture (2D NoDrop),
a state-of-the-art ReRAM-based GNN accelerator, ReGraphX
[24] and a conventional GPU (Nvidia V100 in this case) while
benchmarking the performance of DARe. ReGraphX is also a
3D NoC-enabled ReRAM-based manycore architecture.
However, it does not incorporate any DropLayer feature. Fig.
9(a) and Fig. 9(b) show the execution time and energy
consumption (normalized with respect to the GPU) for GNN
training, respectively, on DARe, 2D NoDrop and ReGraphX.
DARe achieves 5.6X, 3.2X and 1.9X lower overall execution
time on an average compared to GPU, 2D NoDrop and
ReGraphX respectively. The lower execution time achieved
by DARe compared to 2D NoDrop and ReGraphX is attributed
to the Drop-aware 3D NoC. The Drop-aware 3D NoC in
DARe reduces the inter-PE traffic by enabling the DropLayer
feature and thus improves the overall performance by
reducing communication latency. Note that all the ReRAM-
based architectures (even 2D No Drop) outperform the GPU.
The inherent advantages of ReRAM-based architectures in
implementing high-throughput MAC is the reason behind this.
Fig. 9(b) shows that the DARe architecture on an average
consumes 23X, 3.3X and 2.5X less energy than conventional
GPUs, 2D NoDrop and ReGraphX, respectively. This is also
enabled by the lower latency and higher throughput of the
Drop-aware 3D NoC in DARe. Overall, DARe is up to 6.7X
faster while consuming up to 30X less energy for GNN
training than the traditional GPU-based implementation.

VI. CONCLUSION

Graph neural networks (GNNs) have a multitude of real-
world applications such as social media, drug discovery, and
recommendation systems. Software techniques such as –
DropEdge and Dropout (together referred as DropLayer in this
work) are regularization techniques that help improve GNN
accuracy. When incorporated in a manycore architecture,
DropLayer reduces the inter-PE traffic. However, this traffic
reduction is dynamic in nature due to randomness of the
DropLayer mechanism. In this work, We have presented a
Drop-aware ReRAM-based manycore architecture for
training GNNs called “DARe”. The proposed DARe
architecture is able to achieve high performance by combining
the efficient MAC operations of ReRAM-based PEs and a
high-throughput, low-latency Drop-aware 3D NoC. The
Drop-aware 3D NoC incorporates a control mechanism that
emulates the effects of DropLayer in the hardware to reduce
heavy data traffic inherent in GNN training. The control
mechanism enables handshaking between the source and
destination PEs in presence of the dynamically varying traffic.
DARe outperforms conventional GPUs by up to 6.7X in terms
of execution time and is up to 30X more energy efficient.

(a) (b)

Fig. 9 (a) Execution time, (b) Energy consumption of DARe compared to 2D NoDrop, ReGraphX and GPU (normalized with respect to GPU)

0
0.2
0.4
0.6
0.8

1

PPI Reddit Amazon2M

E
x
ec

u
ti

o
n

T
im

e

Datasets

GPU 2D No Drop ReGraphX DARe

0.01

0.1

1

PPI Reddit Amazon2M

E
n
er

g
y

C
o

m
su

m
p

ti
o

n

(L
o

g
 S

ca
le

)

Datasets

GPU 2D NoDrop ReGraphX DARe

Authorized licensed use limited to: Duke University. Downloaded on May 05,2022 at 03:08:17 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] R. Ying et al., "Graph Convolutional Neural Networks for Web-Scale

Recommender Systems," in ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining, London, 2018.

[2] F. Ding, "Graph Neural Networks for Quantum Chemistry," July

2019. [Online]. Available: https://github.com/ifding/graph-neural-

networks.

[3] W. Fan et al., "Graph Neural Networks for Social Recommendation,"

in The World Wide Web Conference, San Fransisco, CA, 2019.

[4] J. Zhou et al., "Graph Neural Networks: A Review of Methods," in
arXiv:1812.08434, 2018.

[5] M. Zhang et al., "An End-to-End Deep Learning Architecture for

Graph Classification," in AAAI, New Orleans, LA, 2018.

[6] D. Fujiki, S. Mahlke and R. Das, "In-memory Data Flow Processor,"

in International Conference on Parallel Architectures and

Compilation Techniques (PACT), Portland, OR, 2017.

[7] K. Kiningham, C. Re and P. Levis, "GRIP: A Graph Neural Network

Accelerator Architecture," in arXiv eprint 2007.13828, 2020.

[8] Y. Rong, W. Huang, T. Xu and J. Huang, "DropEdge: Towards Deep
Graph Convolutional Networks on Node Classification," in

International Conference on Learning Representations (ICLR), 2020.

[9] N. Srivastava et al., "Dropout: a simple way to prevent neural
networks from overfitting," The Journal of Machine Learning

Research, vol. 15, no. 1, pp. 1929-1958, 2014.

[10] T. N. Kipf and M. Welling, "Semi-Supervised Classification with
Graph Convolutional Networks," in International Conference on

Learning Representations (ICLR), Toulon, 2017.

[11] T. Geng et al, "AWB-GCN: A Graph Convolutional Network
Accelerator with Runtime Workload Rebalancing," in IEEE/ACM

International Symposium on Microarchitecture (MICRO), 2020.

[12] B. Feero and P. P. Pande, "Networks-on-Chip in a Three-Dimensional
Environment: A Performance Evaluation," IEEE Transactions on

Computers, vol. 58, no. 1, pp. 32-45, 2009.

[13] W. L. Chiang et al., "Cluster-GCN: An Efficient Algorithm for
Training Deep and Large Graph Convolutional Networks," in ACM

SIGKDD International Conference on Knowledge Discovery & Data

Mining, Anchorage, AK, 2019.

[14] A. Auten, M. Tomei and R. Kumar, "Hardware Acceleration of Graph

Neural Networks," in IEEE/ACM Design Automation Conference
(DAC), 2020.

[15] M. Yan et al., "HyGCN: A GCN Accelerator with Hybrid

Architecture," in IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2020.

[16] L. Song et al, "GraphR: Accelerating Graph Processing Using

ReRAM," in IEEE International Symposium on High-Performance
Computer Architecture (HPCA), Vienna, 2018.

[17] G. Dai et al, "GraphSAR: a sparsity-aware processing-in-memory

architecture for large-scale graph processing on ReRAMs," in Asia
and South Pacific Design Automation Conference (ASP-DAC), New

York, NY, 2019.

[18] L. Zheng et al, "Spara: An Energy-Efficient ReRAM-Based
Accelerator for Sparse Graph Analytics Applications," in IEEE

International Parallel & Distributed Processing Symposium (IPDPS),

New Orleans, LA, 2020.

[19] A. Shafiee et al, "ISAAC: a convolutional neural network accelerator

with in-situ analog arithmetic in crossbars.," in International

Symposium on Computer Architecture (ISCA), 2016.

[20] L. Song et al, "PipeLayer: A Pipelined ReRAM-Based Accelerator for

Deep Learning," in IEEE International Symposium on High-

Performance Computer Architecture (HPCA), Austin, TX, 2017.

[21] P. Chi et al., "PRIME: A Novel Processing-in-Memory Architecture

for Neural Network Computation in ReRAM-Based Main Memory,"

in International Symposium on Computer Architecture (ISCA), South
Korea, 2016.

[22] Z. He, J. Lin, R. Ewetz, J. Yuan and D. Fan, "Noise Injection

Adaption: End-to-End ReRAM Crossbar Non-ideal Effect Adaption
for Neural Network Mapping," in IEEE/ACM Design Automation

Conference (DAC), 2019.

[23] B. K. Joardar et al, "AccuReD: High Accuracy Training of CNNs on

ReRAM/GPU Heterogeneous 3-D Architecture," IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol.

40, no. 5, pp. 971-984, 2020.

[24] A. I. Arka et al., "ReGraphX: NoC-enabled 3D Heterogeneous
ReRAM Architecture for Training Graph Neural Networks," in

Design, Automation and Test in Europe Conference and Exhibition

(DATE), 2021.

[25] W. T. Flynn, D. A. Shedivy and K. M. Valk, "Using variable length

packets to embed extra network control information". USA Patent

US8514885B2, 2010 .

[26] J. Duato, S. Yalamanchil and N. Lionel, Interconnection Networks:

An Engineering Approach, vol. 54, San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc, 2002, pp. 1025-1040.

[27] Y. Long, T. Na and S. Mukhopadhyay, "ReRAM-Based Processing-

in-Memory Architecture for Recurrent Neural Network Acceleration,"

IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 26, no. 12, pp. 2781-2794, 2018.

[28] N. Agarwal, T. Krishna, L. Peh and N. Jha, "GARNET: A detailed on-

chip network model inside a full-system simulator," in Proc. of the
ISPASS, Boston, MA, 2009.

[29] M. Bushnell and V. Agrawal, Essentials of Electronic Testing for

Digital, Memory and Mixed-Signal VLSI Circuits, Springer US, 2006.

[30] G. Karypis and V. Kumar, "A Fast and High Quality Multilevel

Scheme for Partitioning Irregular Graphs," SIAM Journal on Scientific

Computing, vol. 20, no. 6, p. 359–392, 1998.

Authorized licensed use limited to: Duke University. Downloaded on May 05,2022 at 03:08:17 UTC from IEEE Xplore. Restrictions apply.

