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Abstract— Graph Neural Networks (GNNs) are a variant of 

Deep Neural Networks (DNNs) operating on graphs. GNNs have 

attributes of both DNNs and graph computation. However, 

training GNNs on manycore architectures is a challenging task 

because it involves heavy communication that bottlenecks 

performance. DropEdge and Dropout, which we collectively 

refer to as DropLayer, are regularization techniques that can 

improve the predictive accuracy of GNNs. Moreover, when 

implemented on a manycore architecture, DropEdge and 

Dropout are capable of reducing the on-chip traffic. In this 

paper, we present a ReRAM-based 3D manycore architecture 

called DARe, tailored for accelerating on-chip training of GNNs. 

The key component of the DARe architecture is a Network-on-

Chip (NoC) that reduces the amount of communication using 

DropLayer. The reduced traffic prevents communication 

hotspots and leads to better performance. We demonstrate that 

DARe outperforms conventional GPUs by up to 6.7X (5.6X on 

average) in terms of execution time, while being up to 30X (23X 

on average) more energy efficient for GNN training. 

Keywords—3D architectures, GNNs, NoC, ReRAM, 

DropEdge, Dropout 

I. INTRODUCTION  

Graph Neural Networks (GNNs) are used for predictive 
analytics using graph-structured data. This makes them 
different from traditional Deep Neural Networks (DNNs) that 
operate on regular data structures such as images or 
sequences. GNNs have various real-life applications such as 
recommendation systems [1], quantum chemistry [2], social 
networks [3] [4] etc. To learn representation using the 
relational structure of graphs, GNNs perform iterative 
neighborhood aggregation, where each node aggregates 
features of its neighbors to compute new features [5]. This 
gives rise to repeated message-passing operations. GNNs 
exhibit characteristics of both DNN training (involving 
trainable weights) and graph analytics (accumulating 
neighboring vertices’ information along graph edges). Hence, 
GNN training is both compute- and communication-intensive.  

Project.All the computations associated with GNN training 
can be represented as multiply-and-accumulate (MAC) 
operations. Resistive random-access memory (ReRAM) can 
implement such MAC operations efficiently [6]. Moreover, 
ReRAMs allow for processing-in-memory (PIM), which 
greatly reduces the communication between the computing 
cores and the main memory. However, GNN training involves 
repeated message-passing operations to accumulate neighbor 
information in a recursive manner [7]. When implemented on 
a ReRAM-based manycore architecture, this can give rise to a 
substantial amount of on-chip traffic that creates performance 
bottlenecks if not addressed appropriately.  

DropEdge and Dropout are regularization techniques that 
can help in reducing the amount of traffic during GNN 
training; normally, these layers are used to prevent over-

smoothing and over-fitting during GNN training. Over-fitting 
limits the generalization ability on small datasets, while over-
smoothing isolates output representations from the input 
features as network depth increases; both these phenomena 
lead to poor model accuracy [8]. As the name suggests, 
DropEdge involves randomly dropping a few edges of the 
input graph during training. In practice, this is realized when 
information from a few randomly selected neighbors of each 
node of the input graph is not accumulated during the 
message-passing stage of GNN training. Thus, DropEdge 
reduces the number of messages communicated among 
adjacent nodes, which in turn improves performance. The 
Dropout operation in DNNs randomly skips a neural unit in 
the network (along with the associated connections) 
temporarily [9]. This process simulates the creation of a large 
ensemble of sparse DNNs resulting in a single trained GNN 
with small weights to approximate the effect of average 
predictions from this ensemble. Overall, both Dropout and 
DropEdge reduce the generalization error (error on testing 
instances drawn from the target data distribution) in GNN 
training, while also reducing the amount of on-chip 
communication. Note that the overall goal of learning is to 
achieve low error on unseen data (i.e., low generalization 
error). In the rest of this paper, we collectively refer to 
DropEdge and Dropout as “DropLayer”. 

Despite these advantages, implementing DropLayer in 
manycore ReRAM-based architectures is a challenging task. 
It is well-known that the output of one GNN layer is the input 
to the next GNN layer, and so on [10]. However, due to the 
inherently random nature of DropLayer, different edges of the 
graph and neural units are dropped in each iteration. This 
results in a randomly varying traffic pattern where the data 
exchanged between two adjacent GNN layers keeps changing 
in every iteration; the change can be in terms of the data size, 
content, and/or the source-destination pair. Hence reliable 
communication is impossible without an appropriate control 
mechanism. In this work, we enable DropLayer in the NoC-
enabled manycore architecture using variable-sized packets 
and a suitable control mechanism. We call the NoC 
incorporating DropLayer as the Drop-aware NoC architecture. 
Overall, the Drop-aware NoC reduces the communication, 
thereby leading to better performance. 

Reducing the amount of on-chip communication through 
the Drop-aware NoC is one aspect of reducing the traffic 
bottleneck. The other desirable characteristics of the NoC 
should be to support the randomly varying traffic pattern 
exhibited by GNN training. Moreover, GNN training exhibits 
heavy many-to-few and multicast traffic [11]. Traditional 
planar (2D) architectures are not well-suited for such traffic 
patterns. As the large physical separation between processing 
elements (PEs) causes high-latency and low-throughput, it is 
not ideal for high-performance GNN training. Prior work has 
shown that three-dimensional (3D) NoC enables the design of 
a high-throughput and low-latency communication backbone 
for manycore chips by lowering the physical distance among 
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the PEs [12]. Moreover, 3D NoCs can support high-
throughput multicast, which is essential for GNN training. In 
this paper, we present the design of a ReRAM-based 
manycore architecture integrated via a Drop-aware 3D NoC. 
The NoC architecture helps to alleviate the communication 
bottleneck in GNN training. We call this manycore 
architecture as “DARe”. The main contributions of this paper 
include: 

• We design a manycore architecture (DARe) for 
accelerating GNN training. DARe leverages the 
benefits introduced by the ReRAM-based PEs and an 
efficient on-chip communication infrastructure 
enabled by a Drop-aware 3D NoC. 

• To maximize performance gain and energy 
efficiency, we balance the computation and 
communication latencies. The communication 
latency is reduced via the Drop-aware NoC, whereas 
the computation latency is reduced by allocating 
adequate number of ReRAM PEs to each GNN layer.   

• Through extensive performance evaluation, we 
demonstrate that DARe outperforms both traditional 
GPU-based designs and state-of-the-art ReRAM-
based architectures for training GNNs using diverse 
real-world graphs with millions of nodes and edges. 

To the best of our knowledge, this is the first work that 
proposes a Drop-aware NoC architecture to accelerate GNN 
training in a ReRAM-based manycore system. The rest of the 
paper is organized as follows. Section II describes relevant 
prior work. In Section III, we discuss GNN characteristics and 
the effect of DropLayer on GNN traffic. In Section IV, we 
introduce the proposed DARe architecture, the design 
methodology for the Drop-aware 3D NoC, and the policy for 
mapping the GNN layers to the DARe architecture. Section V 
presents experimental results. We conclude the paper in 
Section VI by summarizing the findings of this work. 

II. RELATED PRIOR WORK 

A. GNN training algorithms  

The primary idea behind GNNs is to aid learning on graph 
structured data by using a neural network that can operate 
directly on graphs [10]. However, GNN training on large-
scale graphs is very memory intensive, which necessitates the 
use of efficient graph partitioning. Using graph partitioning, 
the Cluster-GCN approach enables scalable GNN training 
over large graphs with high accuracy and speed [13]. 
However, even with graph partitioning, GNN training is 
communication intensive due to recursive message-passing 
operations. DropEdge is a regularization technique similar to 
Dropout in DNNs that reduces the number of times the 
neighboring node features are aggregated in GNN training 
while also reducing over-fitting and over-smoothing, thereby 
resulting in improved accuracy [8]. However, as mentioned 
earlier, the hardware implementation of DropLayer 
(DropEdge and Dropout) requires a suitable control 
mechanism to ensure proper synchronization between the 
communicating PEs. Hence, a Drop-aware communication 
protocol is necessary for high-performance GNN training in a 
manycore architecture, without sacrificing accuracy.  

B. Hardware for GNN computation 

The design of hardware architectures for GNN 
computation using commodity processors, FPGAs and custom 
ASICs has been considered in recent work [7], [11], [14] [15]. 

However, all these architectures primarily focus on GNN 
inference but not on training. The training of GNN is 
considerably more challenging due to the additional data 
exchange between the forward and backward phases. GNN 
training is primarily implemented using GPUs. It is well 
known that GPUs are not optimized for GNN training, which 
leads to sub-optimal performance [14]. Moreover, all these 
custom architectures (e.g., [7], [11], [15]) are limited to 
relatively small graph structures, which do not require large 
amounts of memory and computation. In contrast, this paper 
focuses on an on-chip architecture enabled by ReRAM-based 
PEs for GNN training with large graphs. 

C. ReRAM-based architectures  

ReRAMs enable processing-in-memory (PIM) that allows 
for in-situ MAC (IMA) operations [6]. Computations in both 
DNN and graph analytics can be decomposed into simple 
MAC operations [11]. ReRAM-based accelerators for graph 
analytics have been shown to significantly outperform CPU- 
or GPU-based systems, both in terms of execution time and 
energy [16] [17] [18]. Moreover, ReRAMs have been used 
extensively to accelerate both DNN training and inference 
[19] [20] [21] [22]. However, these solutions focus mainly on 
accelerating only the computation [19] [20]. The maximum 
achievable performance will be bottlenecked unless the 
communication is also optimized [23]. In addition, all these 
ReRAM-based accelerators are fine-tuned for either DNN or 
graph analytics and are not suitable for GNN training; GNN 
training exhibits features of both DNN and graph computation 
simultaneously. An NoC-enabled ReRAM-based architecture 
for high-performance training of GNNs, referred as 
ReGraphX, has been proposed in [24]. However, as we show 
in this work, ReGraphX does not realize the full potential of 
ReRAMs due to communication bottlenecks inherent in GNN 
training. Our work addresses a key shortcoming of the state-
of-the art by proposing an architecture that focuses on inherent 
communication bottleneck of GNN training. The DARe 
architecture incorporates a Drop-aware 3D NoC and ReRAM-
based PEs that enable high-performance training of GNNs. 

III. GNN KERNEL AND COMMUNICATION TRAFFIC 

In this section, we discuss the GNN training process. Next, 
we explain how DropLayer reduces GNN traffic when 
implemented on the DARe architecture.  

A. The GNN Kernel 

Computation: A graph consists of (a) vertices: each 
vertex is represented using a feature vector that characterizes 
the node; and (b) edges: the edges are represented by an 
adjacency matrix indicating the vertex connectivity (𝛼), where 𝛼 is a sparse matrix. Together, vertices and edges define a 
graph and are crucial for the computational kernel of GNNs. 
A GNN consists of multiple back-to-back neural layers. Each 
neural layer further consists of two sub-layers that perform 
two different types of computations: (a) Vertex sub-layer: the 
computations associated with this layer are MAC operations 
similar to conventional DNNs, and (b) Edge sub-layer: this 
resembles the message passing operation in graph analytics.  

Fig. 1(a) depicts the two types of computations in a GNN 
for an example graph with four nodes (A, B, C and D) and 
three edges (for forward phase only). The vertex sub-layer of 
the GNN resembles a fully connected DNN layer with input 
and output nodes denoted as 𝑃𝑖  and 𝑄𝑖  respectively. 
Computations associated with the vertex sub-layer involve 
multiplying the node features with weights (𝜔𝑙  for layer 𝑙) to 
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First, we must determine the most suitable crossbar 
configuration for GNN training. Conventionally, graph 
computations involve sparse adjacency matrices. Hence, 
relatively smaller ReRAM crossbars are used as they 
avoid/reduce the storage of zeros (zeros are redundant in MAC 
operations) [17]. On the other hand, DNNs are implemented 
using relatively larger ReRAM crossbars (e.g., 128x128 as 
shown in [19]) because weight matrices tend to be relatively 
dense. As elaborated in Section III, the training process of 
GNNs exhibits attributes of both DNNs and graph 
computations. This presents a challenge while choosing the 
suitable crossbar size for training GNNs.  

From prior work, it is well-known that peripheral circuits 
dominate the ReRAM tile area [19]. Hence, the ReRAM tile’s 
area and power consumption do not vary significantly with the 
crossbar size. However, smaller crossbars have significantly 
lower storage capacity or density (bits stored per unit area). A 
crossbar of size 𝑁 × 𝑁 can store up to 𝑁2 values. Hence, to 
match the storage capability of one 128x128 crossbar, we will 
need up to 256 (=1282/82) 8x8 crossbars [19]. Higher crossbar 
requirement leads to more tiles, which necessitate more area 
(for more peripherals such ADC, DAC, etc.). Moreover, more 
tiles consume more energy overall despite having lower 
energy consumption per tile due to more efficient zero storage 
and low-resolution ADCs.  

To determine a suitable ReRAM crossbar configuration 
for training GNNs, we consider different ReRAM crossbar 
sizes varying from 8x8 to 256x256 for DARe. The choice of 
crossbar size should be such that the overall area (and power 
consumption) is minimized. We observe that smaller 
crossbars lead to many tiles but store fewer zeros, and larger 
crossbars necessitate fewer tiles but store many zeros. Our 
analysis, as shown in Section V, indicates that for all input 
graphs considered in this work for GNN training, 128x128 
sized crossbars are the best choice in terms of storage-power-
area trade-offs. Hence, we use 128x128 sized crossbars as the 
ReRAM configuration of choice for DARe.  

B. Implementing DropLayer in DARe 

As discussed earlier, DropLayer translates to reduced 
inter-PE traffic in the manycore architecture. However, the 
randomness inherent in DropLayer makes it challenging to 
implement on conventional manycore architectures. 
Randomly dropping data results in a dynamically changing 
traffic pattern, where the change can be with respect to the size 
or content of data that need to be communicated. This makes 
communication especially challenging because the destination 
PE must be able to correctly decode the received data every 
time. Fig. 3 highlights the control mechanism needed to 
implement DropLayer on ReRAM-based manycore 
architectures. For instance, let us assume that the ReRAM 
computations of a neural layer yields the output: (𝑑1, 𝑑2, 𝑑3, 𝑑4 ); this needs to be communicated to the ReRAM PEs 
responsible for the next neural layer, as shown in Fig. 1. It 
should be noted that, 𝑑𝑖 is a 16-bit fixed point number [19]. 
The data must then be communicated via the NoC using 

packets. In NoC packet structure, 𝑑𝑖  represents a flit and 
multiple such flits together constitute a packet. Without 
DropLayer, none of this data is omitted and we would 
communicate all the flits (𝑑1,  𝑑2 , 𝑑3 ,and 𝑑4 ) in a single 
packet, to the appropriate destination PEs for further 
processing. However, due to the incorporation of DropLayer, 
some flits will be omitted. For instance, if we omit 𝑑2 and 𝑑4, 
the destination PE will receive a packet with the following flits 
only: (𝑑1, 𝑑3); the receiver PE must ideally interpret the data 
packet as: (𝑑1, 0, 𝑑3, 0) i.e., 𝑑2 and 𝑑4 are omitted. However, 
without additional information, the receiver PE will not be 
able to correctly identify the missing flits, thereby leading to 
erroneous interpretations. In addition, the position and number 
of the missing flit keeps changing every epoch due to the 
inherent randomness within DropLayer. Hence, this 
dynamically changing packet structure and content requires a 
control mechanism to ensure seamless data exchange between 
the PEs. Here, it should be noted that, the omitted flits in each 
packet are determined in a random manner. Therefore, it is 
difficult to merge flits from different packets to create a new 
uniform packet structure. 

In this paper, we solve this challenging problem and 
enable DropLayer using a dynamically varying packet 
structure in the manycore architecture [25]. In wormhole 
routing [26], this implies that the data packets will contain 
different number of flits. In order to implement DropLayer in 
the NoC-based architecture, we use a reconfigurable Linear 
Feedback Shift Register (LFSR) based control mechanism to 
decide which data to omit in each epoch.  

Fig. 3(a) and Fig. 3(b) explain the proposed methodology 
in more detail using the example of four data flits in a packet. 
The LFSR-based control mechanism in Fig. 3(b) generates a 
4-bit binary pattern, referred as the key (each bit of the key is 
represented by 𝑘𝑖) to capture the effects of DropLayer in the 
NoC. Each bit of the LFSR is used to decide whether to 
keep/discard a flit represented as 𝑑𝑖 in Fig. 3, i.e., 𝑑𝑖 will be 
omitted if 𝑘𝑖 = 0, and vice versa (as shown in Fig. 3(b)). For 
instance, for the 4-flit packet structure, when the LFSR bit 
pattern (key) is “1010”, outputs 𝑑2 & 𝑑4 are omitted while 𝑑1 
& 𝑑3  are included in the packet following the proposed 
control mechanism shown in Fig. 3(a). The LFSR pattern 
(key) is then added to the header flit and sent to the destination 
PE. The key is used to decode the received data packet at the 
destination PE. For instance, the LFSR pattern (“1010”) 
indicates that rows 𝑅1 and 𝑅3 of the destination crossbar will 
receive the information contained in 𝑑1 and 𝑑3, respectively. 
The size of the key is always equal to the bit-width of the 
LFSR. The number of 1’s in the key is used by the NoC router 
to determine the packet size i.e., the number of body flits. For 
instance, the key 1010 indicates that there will be two body 
flits in the packet. 

As mentioned in Section III, DropLayer results in some 
messages being omitted from the packet due to the randomly 
dropped edges (or neural units). As a result, each message 
generated by the neural layers need to be associated with one 

  
                             (a)                                                                                                                          (b) 
Fig. 3. (a) The control mechanism to enable DropLayer in DARe. (b) Hardware block emulating DropLayer. The figure is for illustration purposes only. 

Authorized licensed use limited to: Duke University. Downloaded on May 05,2022 at 03:08:17 UTC from IEEE Xplore.  Restrictions apply. 



bit from the LFSR bit pattern. The bit width of the LFSR is 
determined considering the throughput (number of outputs 
generated in one cycle) of the ReRAM crossbar. For instance, 
if the ReRAM crossbar generates 𝑁 outputs in one cycle, we 
must have an 𝐿-bit LFSR where,  

                         𝐿 =  𝑁 ∗  (𝑓𝑅𝑒𝑅𝐴𝑀/𝑓𝐿𝐹𝑆𝑅)              (1) 

Here, 𝑓𝐿𝐹𝑆𝑅  and 𝑓𝑅𝑒𝑅𝐴𝑀  are the clock frequencies of the 
LFSR and ReRAM crossbars, respectively. Note that, 
ReRAM crossbars and LFSRs have different clock 
frequencies. Generally, ReRAMs operate with a significantly 
slower clock frequency than the CMOS peripherals [19]. 
Using Equation (1), we determine the bit width of the specific 
LFSR configuration necessary for DARe. 

C. Overall GNN training on DARe 

In addition to the variable sized packets due to 

DropLayer, GNN training exhibits many-to-few (discussed in 

Section III) and multicast traffic patterns as shown in Fig. 4. 

Fig. 4(a) illustrates the communication pattern of GNN 

training for a 3-layer GNN. Fig. 4(b) and Fig. 4(c) show the 

resulting traffic pattern when the aforementioned GNN is 

trained on a manycore architecture. Note that the mappings 

shown in Fig. 4(b) and Fig. 4(c) are only examples. The 

many-to-few traffic pattern can create traffic hotspots (shown 

in Fig. 4(b)), which affects the achievable performance of the 

DARe architecture. Moreover, the multicast communication 

primarily arises as data from PEs executing layer 𝑙 is shared 

with PEs responsible for layer 𝑙 + 1 (next layer) and PEs 

executing the backward phase of layer 𝑙 . Note that the 

forward and backward phases of training are often 

implemented on separate sets of PEs for high throughput [19]. 

Also, the same neural layer is often distributed across 

multiple PEs, creating even more multicast traffic. As an 

example, if layer 𝑙 + 1 is mapped to three different PEs, the 

same output from layer 𝑙 needs to be communicated to all 

three PEs (multicast traffic) as shown in Fig. 4(c). Traditional 

planar architectures are not suited for such traffic patterns, 

which result in a significant amount of long-range 

communication and multi-hop traffic due to the larger 

physical separation between communicating PEs. Hence, the 

overall system throughput is affected [12].  

3D integration alleviates this problem by stacking planar 
tiers on top of each other. This reduces the physical separation 
between the PEs, resulting in faster communication. By 
adding an extra 𝑧-dimension to the NoC, path diversity during 
communication is improved [12]. This results in higher 
throughput, a key requirement for training GNNs. In addition, 
3D NoC architectures can enable high-performance multicast 
support, which is essential for GNN training [23]. Fig. 2 shows 
the overall 3D architecture. In DARe, each planar tier consists 
of an equal number of ReRAM-based PEs connected by a 3D 
mesh-based NoC with tree-based multicast.  

Finally, the mapping of the GNN weights and adjacency 

matrix to the ReRAM PEs also play a big role in determining 

the amount of communication during GNN training. 

ReRAM-based architectures adopt a pipelined training 

strategy to avoid repeated writing of weights to the ReRAM 

crossbars [20]. However, pipelining cannot be implemented 

with GNNs that operate on one large monolithic input graph 

[10]. Following [13], we use graph-partitioning to enable 

pipelining for training GNNs on DARe. However, pipelining 

requires that all neural layers be computed simultaneously. 

Hence, all the weights and sub-graphs need to be present on-

chip to fill up the computation pipeline at a certain instance 

of time and minimize the stall [20]. The weights and graph 

adjacency matrices are mapped suitably to PEs to reduce 

communication. For instance, if two highly communicating 

neural layers are mapped far from each other, there will be a 

significant amount of multi-hop communication, which will 

create performance bottlenecks as shown in Fig. 4(b). As an 

example, in Fig. 4(b), if layers 𝑉1, 𝑉2,𝑉3 and 𝐸 are mapped to 

PEs physically closer to each other, it is possible to reduce 

hop count and therefore reduce latency. Furthermore, by 

mapping the neural layers to PEs appropriately, it is possible 

to avoid traffic hotspots, including the scenario shown in Fig. 

4(b). Hence, a suitable mapping strategy is necessary to 

further reduce the amount of multi-hop communication and 

complement the advantages introduced by the Drop-aware 

control mechanism and multicast in the NoC.  

For DARe, we employ an efficient Simulated Annealing 
(SA) based mapping strategy as proposed in [23], as SA can 
uncover high-quality solutions in a reasonable amount of time. 
The mapping of weights and the adjacency matrix to the PEs 
can be seen as a combinatorial optimization problem: Given a 
total of 𝑃 PEs, 𝐿 layers and 𝐴 adjacency matrices, we need to 
distribute all the weights of the 𝐿  layers and 𝐴  adjacency 
matrices to 𝑃 PEs such that the highly communicating layers 
are mapped to nearby PEs. The optimized mapping enables 
high-throughput communication, reduces long-range traffic 
and promotes efficient multicast. Taken together, Drop-aware 
3D NoC and optimized mapping policy enable high-
performance GNN training on DARe.  

V. EXPERIMENTAL RESULTS 

In this section, we present a comprehensive performance 
evaluation of the proposed DARe architecture and compare it 
with appropriate baseline solutions.  

A. Experimental Setup 

The specific embodiment of the DARe architecture 

considered in our performance assessment consists of 36 

homogeneous ReRAM-based PEs. The PEs are distributed 

evenly across four planar tiers and every planar tier is 

connected to each other using Through Silicon Vias (TSVs). 

The ReRAM crossbar configuration is chosen based on the 

storage-power-area trade-offs (shown in Fig. 5). The selected 

crossbar and tile configurations are shown in Table I [19]. 

The ReRAM crossbars operate at 10 MHz, which is typical 

[19] [27]. Each PE has four tiles as shown in Table I, and each 

tile contains one 16-bit reconfigurable LFSR operating at 

1GHz. The default packet structure with no DropLayer has 

16 flits, where each flit is a 16-bit fixed-point number 

generated by ReRAM crossbars. We follow the Garnet packet 

structure in the NoC [28]. The LFSR bit width is determined 

 

 
       (a)                             (b)                                                (c)        
Fig. 4. Simplified illustration of the communication during GNN training in 
DARe. (a) communication pattern in GNN training for a 3-layer GNN, (b) 
many-to-few communication pattern and resulting traffic hotspot, and (c) 
Multicast communication between different PEs. 
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NoDrop and DARe. Here, we consider 2D NoDrop as our 
baseline. In order to utilize all (or most) of the available 
ReRAM resources, we replicate the parameters of the GNN 
layers (such as weights) on different sets of ReRAM tiles 
following [20]. Replicating the weights of a neural layer 
results in faster execution as more data can be processed in 
parallel [20]. However, the replication of weights requires 
additional ReRAM resources. Hence, the number of times we 
can replicate the GNN parameters is limited by the total 
number of available ReRAM crossbars. In Fig. 8, we show the 
computation delay of each architecture with the maximum 
amount of weight duplication possible for all the datasets. This 
duplication ensures maximum ReRAM utilization and results 
in the best possible computation delay.  

 Without DropLayer, GNN training is bottlenecked by the 
heavy data traffic. As a result, the communication delay 
dominates the overall performance (as seen for 2D NoDrop in 
Fig. 8). The slowest stage determines the overall execution 
time in a pipelined implementation; therefore, the high 
communication latency will bottleneck performance. Even 
though the computation latency is improved by using 
ReRAMs, the overall latency will be limited by the time to 
communicate. This will affect the full-system execution time 
as we show later. As mentioned in Section III and IV, 
implementing DropLayer during GNN training reduces the 
inter-PE traffic (as shown in Fig. 6). Implementing DropLayer 
in the 2D NoC (2D Drop) reduces the communication delay 
by 40% on an average compared to 2D NoDrop. However, 
despite the reduction in latency, communication still remains 
the bottleneck in both of the 2D architectures. The 3D NoDrop 
NoC reduces the communication delay by 9% compared to the 
2D Drop architecture. In spite of not incorporating DropLayer, 
the 3D NoC (3D NoDrop) achieves better overall performance 
compared to the 2D Drop counterpart. This happens due to the 
inherently lower average hop count of 3D NoC compared to 
its 2D counterpart. Moreover, as shown in Fig. 8, in case of 
the architectures with 2D NoDrop, 2D Drop and 3D NoDrop 
NoC, the stage delay is always bottlenecked by the 
communication. As a result, the stage delay is the same as the 
communication delay. 

Implementing DropLayer in the 3D NoC enables 
reduction in traffic and communication stage latency 
noticeably. Compared to the 2D NoDrop baseline, DARe 
improves communication delay by 65%, 73% and 72% for 
PPI, Reddit and Amazon2M datasets, respectively. The 
reduction in communication stage delay compared to the 
NoDrop NoC architectures can be attributed to the traffic 
reduction enabled by DropLayer. The variable packet sizing-
based control scheme creates packets with lower number of 
flits (some flits are omitted), which reduces the overall time 
needed to communicate all the packets. By combining the low 
hop count feature of 3D NoC and the traffic reduction using 
DropLayer, we reduce the communication stage delay 
significantly in DARe. For PPI, the overall stage delay is 
bottlenecked by the computation as it cannot be further 
accelerated by duplicating weights with the available ReRAM 
resources considered in this work. As a result, the overall 
improvement for PPI is governed by the computational stage 
delay. On the other hand, the communication delay improves 

significantly for Reddit and Amazon2M, but it still remains 
the bottleneck due to the accelerated computation. We can 
conclude that for all the datasets, DARe achieves significant 
performance improvement with respect to the baseline 2D 
NoDrop architecture. 

E. Full System Performance Evaluation 

Next, we undertake a full-system performance evaluation 
of DARe. We consider the baseline architecture (2D NoDrop), 
a state-of-the-art ReRAM-based GNN accelerator, ReGraphX 
[24] and a conventional GPU (Nvidia V100 in this case) while 
benchmarking the performance of DARe. ReGraphX is also a 
3D NoC-enabled ReRAM-based manycore architecture. 
However, it does not incorporate any DropLayer feature. Fig. 
9(a) and Fig. 9(b) show the execution time and energy 
consumption (normalized with respect to the GPU) for GNN 
training, respectively, on DARe, 2D NoDrop and ReGraphX. 
DARe achieves 5.6X, 3.2X and 1.9X lower overall execution 
time on an average compared to GPU, 2D NoDrop and 
ReGraphX respectively. The lower execution time achieved 
by DARe compared to 2D NoDrop and ReGraphX is attributed 
to the Drop-aware 3D NoC. The Drop-aware 3D NoC in 
DARe reduces the inter-PE traffic by enabling the DropLayer 
feature and thus improves the overall performance by 
reducing communication latency. Note that all the ReRAM-
based architectures (even 2D No Drop) outperform the GPU. 
The inherent advantages of ReRAM-based architectures in 
implementing high-throughput MAC is the reason behind this. 
Fig. 9(b) shows that the DARe architecture on an average 
consumes 23X, 3.3X and 2.5X less energy than conventional 
GPUs, 2D NoDrop and ReGraphX, respectively. This is also 
enabled by the lower latency and higher throughput of the 
Drop-aware 3D NoC in DARe. Overall, DARe is up to 6.7X 
faster while consuming up to 30X less energy for GNN 
training than the traditional GPU-based implementation.  

VI. CONCLUSION  

Graph neural networks (GNNs) have a multitude of real-
world applications such as social media, drug discovery, and 
recommendation systems. Software techniques such as – 
DropEdge and Dropout (together referred as DropLayer in this 
work) are regularization techniques that help improve GNN 
accuracy. When incorporated in a manycore architecture, 
DropLayer reduces the inter-PE traffic. However, this traffic 
reduction is dynamic in nature due to randomness of the 
DropLayer mechanism. In this work, We have presented a 
Drop-aware ReRAM-based manycore architecture for 
training GNNs called “DARe”. The proposed DARe 
architecture is able to achieve high performance by combining 
the efficient MAC operations of ReRAM-based PEs and a 
high-throughput, low-latency Drop-aware 3D NoC. The 
Drop-aware 3D NoC incorporates a control mechanism that 
emulates the effects of DropLayer in the hardware to reduce 
heavy data traffic inherent in GNN training. The control 
mechanism enables handshaking between the source and 
destination PEs in presence of the dynamically varying traffic. 
DARe outperforms conventional GPUs by up to 6.7X in terms 
of execution time and is up to 30X more energy efficient.  

  
(a)                                                                                                                           (b) 

Fig. 9 (a) Execution time, (b) Energy consumption of DARe compared to 2D NoDrop, ReGraphX and GPU (normalized with respect to GPU) 
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