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Abstract—Resistive random-access memory (ReRAM)-based 

processing-in-memory (PIM) architectures have recently become 

a popular architectural choice for deep-learning applications. 

ReRAM-based architectures can accelerate inferencing and 

training of deep learning algorithms and are more energy efficient 

compared to traditional GPUs. However, these architectures have 

various limitations that affect the model accuracy and 

performance. Moreover, the choice of the deep-learning 

application also imposes new design challenges that must be 

addressed to achieve high performance. In this paper, we present 

the advantages and challenges associated with ReRAM-based PIM 

architectures by considering Convolutional Neural Networks 

(CNNs) and Graph Neural Networks (GNNs) as important 

application domains. We also outline methods that can be used to 

address these challenges. 
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I. INTRODUCTION 

Deep learning (DL) has revolutionized application domains 
such as image processing, autonomous driving, and remote 
healthcare. However, DL is both compute- and data-intensive in 
nature. As a result, a major portion of the computations (e.g., 
training for DL) have remained traditionally confined to 
datacenters. CPU and GPU-based manycore architectures are 
the most common choice of hardware for deep learning 
applications. However, general purpose CPU- and GPU-based 
systems are not customized for deep learning and often suffer 
from: (a) high area and power overheads, and (b) memory 
bottleneck. These limitations of traditional manycore systems 
have resulted in many studies aimed at developing the next 
generation of DL accelerators.  

Resistive Random-Access Memory (ReRAM)-based 
Processing-in-Memory (PIM) architecture is one of the most 
promising technologies in this direction. ReRAM crossbars can 
efficiently perform matrix-vector multiplications, which form 
the backbone of most deep learning algorithms [1]. Prior work, 
e.g., Pipelayer [1] and AccuReD [2], has shown that ReRAM- 
based architectures can outperform GPUs for training 
Convolutional Neural Networks (CNNs) while consuming 
considerably less energy. ReRAM-based PIM architectures 
have also been used to accelerate other DL models, such as 
Graph Neural Networks [3], Recurrent Neural Networks [4] and 

Generative Adversarial Networks [5]. In addition, ReRAM-
based systems are more area-efficient compared to their GPU-
based counterparts and do not require expensive off-chip 
memory access due to their “in-memory” nature of computation 
[6] [7].  

Despite the above-mentioned advantages, ReRAM-based 
PIM architectures have several shortcomings, which can lead to 
sub-optimal power-performance-accuracy trade-offs. In 
addition, the choice of deep learning algorithm also imposes 
new design challenges that must be solved. For instance, CNN 
training often involves the use of Batch Normalization (BN) and 
SoftMax layers. Both these layers are precision critical and must 
be implemented using high precision arithmetic [8] [9]. 
Moreover, the backward phase during CNN training is also 
sensitive to precision [10]. ReRAMs have limited representation 
capability (16-bit fixed point) compared to conventional GPUs 
(which use 32-bit floating-point precision). This aggressive 
reduction of precision can make the training process unstable, 
thereby compromising prediction accuracy [2]. These 
limitations present a barrier towards the widespread adoption of 
ReRAM-based architectures for CNN training. Hence, it is of 
utmost importance to address these shortcomings of current 
ReRAM-based implementations.  

Similarly, other DL techniques such as GNNs introduce new 
sets of design challenges that cannot be solved using 
conventional ReRAM-based architectures. For instance, GNNs 
involve sparse matrices and heavy data exchange due to 
message-passing operations to accumulate neighbor information 
in a recursive manner [11]. Storing sparse matrices on ReRAMs 
is challenging as they contain many zeros. Computations with 
zeros are redundant and hence, we must avoid storing zeros on 
ReRAM cells. However, the inherent crossbar structure of 
ReRAMs is not suited for storing irregular sparse matrices [12] 
[13]. Similarly, the iterative message passing in GNNs gives rise 
to significant data exchange among the ReRAM tiles, which 
limits the overall achievable performance [3]. The data 
exchange during GNN training exhibits many-to-one, and 
multicast patterns, both of which can cause performance 
bottleneck without a suitable communication backbone [14].  

Apart from the unique design requirements imposed by the 
choice of DL techniques, ReRAMs also suffer from numerous 
nonidealities. ReRAMs are susceptible to noise, “hard faults” 
such as stuck-at-faults (SAFs), process variations, and wear out 
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ReRAM cell has a 2-bit resolution, we will require eight 
different ReRAM cells to represent the same 16-bit weight value 
[20]. The input to ReRAM crossbar is generated by sliding a 
window of dimension 𝐾 × 𝐾 × 𝐼𝐶 across the 𝐼 × 𝐼 input matrix, 
which is then fed to the ReRAM array in a sequential manner. 
Overall, 𝑂 × 𝑂  inputs need to be processed to complete the 
convolution layer (forward phase). Importantly, other layers, 
e.g., fully connected, as well as the backward phase of training 
also involve similar operations. Hence, they can be similarly 
mapped to ReRAM crossbars with minimal adjustments [1]. 

C. Limitations of existing ReRAM-based architectures 

Despite the advantages of an ReRAM-based accelerator for 
deep learning algorithms, there are numerous challenges that 
must be addressed. In this sub-section, we enumerate and 
explain some of these challenges. 

Lack of BN support: Exploding/Vanishing gradients is one 
of the primary challenges associated with training deep CNNs 
(i.e., CNNs with many Conv/FC layers). BN layers are 
commonly used to address this problem. However, BN layers 
are precision sensitive and involves complex math operations 
(such as division and square root); both operations are difficult 
to implement using ReRAMs. As a result, training deep CNNs 
is challenging using sole-ReRAM based architectures. 
Specialized initialization schemes such as Xavier [21] or 
Kaiming [22] are alternative ways to train deep CNNs in the 
absence of BN. By carefully setting the weights, these 
techniques can prevent exploding/vanishing gradients. 
However, these initialization schemes require careful hyper-
parameter tuning (i.e., expert domain knowledge) and yet, do not 
work all the time. To demonstrate the sensitivity of these 
methods to the choice of hyper-parameters, we consider two 
cases: (a) All-BN: BN layers are placed after every Conv layer 
as is usually done in traditional CNNs, and (b) No-BN: BN 
layers are not used at all, and varied five hyper-parameters: 
learning-rate (LR), number of epochs, LR schedule, batch size, 
and the initialization scheme (Xavier and Kaiming only; other 
initialization methods resulted in significantly low training 
accuracy in the absence of BN). The results are shown in Fig. 3. 
Overall, CNN training with 150 different hyper-parameter 
settings were performed and the best accuracy achieved at the 
end of each training instance is noted. Fig. 3 shows the range of 
observed accuracy (represented by the blue line, whose ends 
indicate the minimum and maximum accuracy; the red line 
represents the average accuracy) considering all 150 
experiments with VGG-11/16/19 and ResNet-18.  

Fig. 3 clearly shows that it is possible to train CNNs in the 
absence of BN sometimes, which is in line with previous 
findings [21] [22]. However, it is not reliable and fails to train 
most of the time. For instance, the average accuracy of No-BN 
with Xavier/Kaiming initialization considering all 150 instances 
of training is a mere 57.8% for VGG-19. This happens as 

multiple combinations of hyper-parameters (among the 150 
chosen here), either failed to train or resulted in unacceptable 
accuracies. This is problematic as an ML-practitioner (or user) 
will have to repeatedly train a CNN to find out the valid hyper-
parameter combination(s) for a successful training. This process 
can be time consuming, particularly for deep CNNs and larger 
datasets, which require more time to train. On the other hand, 
CNN training with BN is more robust to the choice of hyper-
parameters and is effective in all cases considered here. Unlike 
No-BN, All-BN achieves an average accuracy (considering all 
150 All-BN training instances) of 85.1% for VGG-19 indicating 
that all these 150 experiments succeeded. Hence, hardware 
support for BN is important to train deep CNNs and should be 
incorporated in ReRAM-based architectures. 

Low precision computations: ReRAM-based architectures 
typically utilize 16-bit fixed point precision as opposed to 32-bit 
floating point precision in GPUs. However, CNNs often fail to 
train or reach unacceptable accuracy when trained using low 
precision. This happens as the backward phase of training is 
precision sensitive. Basic rounding schemes that are used to 
convert higher precision data to lower precision representation 
often lose important information (round-off error). This results 
in erroneous gradients, which get accumulated after each weight 
update. Eventually, the training becomes unstable and reaches 
unacceptable accuracy. This problem must be addressed for 
successful training and inferencing.  

Fig. 4 shows the accuracy after 50 epochs of training for 
VGG-19. Here, we consider two different cases: 1) GPU-based 
training with 32-bit floating-point scheme (GPU); 2) ReRAM-
based training (16-bit fixed point) with the default rounding 
scheme in Pytorch. Normalization layers are used in both cases 
to rule out exploding/vanishing gradients scenario. From Fig. 4, 
we note that even with Normalization, VGG-19 fails to train 
successfully on ReRAM-based architectures. VGG-11 and 
ResNet-18 exhibit similar behavior as VGG-19 (i.e., failure to 
train meaningfully) due to low precision. However, smaller 
CNNs, such as LeNet, train successfully and only experience a 
slight drop in model accuracy despite low precision. From Fig. 
4, we can conclude that for training deep CNNs on ReRAM-
based architectures, we must address the problem of accuracy 
loss due to low precision.  

Inter-tile communication: PIM architectures reduce the 
amount of off-chip data communication that happens between 
processor and memory in a typical Von-Neumann architecture. 
Hence, it is often assumed that communication is not an issue 
for PIM-based architectures. However, inter-tile communication 
in PIM can be significant for some deep learning applications. 
For instance, GNN computation requires a neighborhood 
aggregation operation, where each node aggregates the features 
of its k-hop neighbors to learn node representations [11]. This in 
turn gives rise to repeated message passing that can lead to high 

 
Fig. 4: Accuracy of VGG19 trained with 32-bit floating point (32b Float) and 
16-bit fixed point (16b fixed) representations. [2] 
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Fig. 3: Accuracy of No-BN and All-BN CNNs trained with various 
hyperparameter settings. [27] 

0

50

100

No-BN All-BN No-BN All-BN No-BN All-BN No-BN All-BN

VGG11 VGG16 VGG19 Res18

A
cc

u
ra

cy
 (

%
)

Authorized licensed use limited to: Duke University. Downloaded on May 05,2022 at 03:19:27 UTC from IEEE Xplore.  Restrictions apply. 





Addressing lack of BN: As mentioned earlier, BN layers 
require high precision computing support due to its precision 
critical nature and it also involves more complex arithmetic 
operations. As a result, BN layers are difficult to implement 
using ReRAMs only. The GPUs can be used to implement the 
BN layers. GPUs provide a full-precision computing platform 
and can perform more complex arithmetic. However, the naïve 
methodology of using BN layers after every Conv layer, leads 
to the use of too many BN layers, which overloads the GPUs. 
On further analysis, we found that we can reduce the number BN 
layers necessary for training CNNs significantly [27]; this will 
necessitate fewer GPUs. We can achieve this by using a 
Bayesian Optimization formulation which can quickly 
determine the most suitable locations for BN layers. The BO 
optimized CNNs prevent exploding/vanishing gradients in deep 
CNNs, while using significantly fewer BN layers than their 
traditional counterparts; hence, fewer GPUs are needed.  

Handling accuracy drop due to low precision: As 
mentioned earlier, ReRAMs use 16-bit fixed point precision. 
Lower precision reduces power and area requirements and leads 
to better performance. However, it can lead to accuracy drop 
during training. In the architecture shown in Fig. 7, the problem 
of accuracy loss due to low precision is solved by using 
stochastic rounding. Stochastic rounding is a probabilistic 
rounding scheme with a zero expected rounding error and is 
crucial for low-precision training [28]. The stochastic rounding 
circuit is shown in Fig. 7(b) [29]. It consists of three parts: 1) 
LFSR: generates pseudorandom 16-bit number; 2) Adder: adds 
the 32-bit ReRAM output with the 16-bit number generated by 
the LFSR; and 3) Truncate: this truncates the data to 16 bits after 
addressing over-/under-flow conditions. Stochastic rounding 
enables high accuracy CNN training under low precision.  

Addressing resistance change due to temperature and 
thermal noise: The resistance instability of ReRAMs can affect 
the reference and output currents. This would lead to misjudging 
the stored data, which can corrupt the subsequent computed 
CNN outputs. This can lead to accuracy loss for CNN training. 
Therefore, a thermal reference cell (TRC) that averages out these 
fluctuations in the architecture is necessary [as shown in Fig. 
7(c)] [30]. The inclusion of a TRC in each ReRAM tile ensures 
that any change in output current (due to change in temperature) 
will be tracked. Next, to address thermal noise, the CNN layers 
can be mapped to the tiles following a joint performance-thermal 
aware multi-objective optimization algorithm. The more 
compute intensive layers should be mapped to ReRAMs closer 
to the sinks (considering the 3D architecture). As a result, heat 
generated in these layers will be dissipated fast, which reduces 
thermal noise in ReRAMs; this leads to better training accuracy.  

Solving accuracy loss due to faults: Fig. 8 demonstrates the 
effects of faults on CNN weights. Fig. 8 shows the maximum 
and average weight values observed for Conv-2 layer in VGG-
11 during training considering both faulty and ideal hardware. 
The maximum (M) and the average (A) of all the weights in the 
chosen CNN layer (Conv-2) for the ideal training, are referred 
as M-Ideal and A-Ideal in Fig. 8. Similarly, the average and 
maximum weight values for training using faulty hardware is 
referred as A-Fault and M-Fault respectively; here we assume 
fault density of 2% as an example. Fault density is defined as the 
fraction of cells that are faulty in an ReRAM tile. Fig. 8 shows 
that on an average, weights have identical values, irrespective of 
whether they are trained with ideal or faulty ReRAMs. However, 
the maximum weight values (M-Fault and M-Ideal) show a stark 
difference. It is clear from Fig. 8 that a handful of weights 
explode (increase very fast) in the presence of faults. This 
increase at a rapid pace makes the CNN training unstable after a 
few iterations. Compared to M-Fault, M-Ideal increases 
gradually over time (number of iterations), leading to successful 
training. This suggests that this rapid explosion is an anomalous 
behavior exhibited by only a handful of weights [31].  

From the observations in Fig. 8, we conclude that ReRAM 
faults result in exploding weights, which in turn leads to unstable 
training and poor accuracy. Hence, clipping these exploding 
weights to a relatively lower value 𝜖, where 𝜖 >  0, will enable 
the CNNs to train successfully. The clipping operation can be 
mathematically expressed using the following equation: |𝑤| =  {|𝑤|, if |𝑤| < 𝜖𝜖, otherwise                                      (6)  

Weight clipping prevents accuracy loss in the presence of 
static and dynamic faults. This happens as clipping the 
unrealistically large weights prevents the CNN training from 
becoming unstable. As a result, the backpropagation algorithm 
has a much better chance to train the remaining weights and 
compensate for the ones mapped to the faulty cells. Hence, we 
can use weight clipping as a solution for reliable CNN training 
on faulty ReRAM-based PIM architectures. The operations 
associated with weight clipping are simple and can be 
implemented using the GPUs without additional overhead.  

IV.  RERAM-BASED PIM FOR GNNS 

In this section, we present a ReRAM-based architecture for 
accelerating GNN training and inferencing. Unlike CNNs, 
GNNs present a unique set of problems for ReRAM-based 
architectures that must be addressed. For instance, GNNs are 
typically only a few layers deep. Hence, low precision and BN 
layers are not important for GNN training. However, the amount 
of data communicated during GNN training is extraordinarily 
high. The amount of traffic is proportional to the total number 

 
Fig. 8: Absolute values of weights when CNN is trained using ideal and faulty 
ReRAM-based architecture 

0
0.1
0.2
0.3
0.4

1 5 10 15 20 25 30 35 40 45 50A
b

so
lu

te
 

v
a

lu
e

s

Iteration

M-Ideal A-Ideal M-Fault A-Fault

 
                                                                                                     (a)                                                                         (b)                                              (c) 
Fig. 7: (a)Heterogeneous ReRAM/GPU architecture for training CNNs [2] (b) Stochastic rounding unit [29] (c) Thermal reference cell  [30] 
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