
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Heterogeneous Manycore Architectures Enabled by
Processing-in-Memory for Deep Learning: From

CNNs to GNNs
(ICCAD Special Session Paper)

Biresh Kumar Joardar*, Aqeeb Iqbal Arka†, Janardhan Rao Doppa†, Partha Pratim Pande†, Hai Li*, Krishnendu Chakrabarty*

*Department of ECE
Duke University
Durham, NC, US

{bireshkumar.joardar, hai.li, krish}@duke.edu

†School of EECS

Washington State University
Pullman, WA, US

{aqeebiqbal.arka, jana.doppa, pande}@wsu.edu

Abstract—Resistive random-access memory (ReRAM)-based

processing-in-memory (PIM) architectures have recently become

a popular architectural choice for deep-learning applications.

ReRAM-based architectures can accelerate inferencing and

training of deep learning algorithms and are more energy efficient

compared to traditional GPUs. However, these architectures have

various limitations that affect the model accuracy and

performance. Moreover, the choice of the deep-learning

application also imposes new design challenges that must be

addressed to achieve high performance. In this paper, we present

the advantages and challenges associated with ReRAM-based PIM

architectures by considering Convolutional Neural Networks

(CNNs) and Graph Neural Networks (GNNs) as important

application domains. We also outline methods that can be used to

address these challenges.

Keywords—Deep Learning, Processing-in-memory, ReRAM, 3D

I. INTRODUCTION

Deep learning (DL) has revolutionized application domains
such as image processing, autonomous driving, and remote
healthcare. However, DL is both compute- and data-intensive in
nature. As a result, a major portion of the computations (e.g.,
training for DL) have remained traditionally confined to
datacenters. CPU and GPU-based manycore architectures are
the most common choice of hardware for deep learning
applications. However, general purpose CPU- and GPU-based
systems are not customized for deep learning and often suffer
from: (a) high area and power overheads, and (b) memory
bottleneck. These limitations of traditional manycore systems
have resulted in many studies aimed at developing the next
generation of DL accelerators.

Resistive Random-Access Memory (ReRAM)-based
Processing-in-Memory (PIM) architecture is one of the most
promising technologies in this direction. ReRAM crossbars can
efficiently perform matrix-vector multiplications, which form
the backbone of most deep learning algorithms [1]. Prior work,
e.g., Pipelayer [1] and AccuReD [2], has shown that ReRAM-
based architectures can outperform GPUs for training
Convolutional Neural Networks (CNNs) while consuming
considerably less energy. ReRAM-based PIM architectures
have also been used to accelerate other DL models, such as
Graph Neural Networks [3], Recurrent Neural Networks [4] and

Generative Adversarial Networks [5]. In addition, ReRAM-
based systems are more area-efficient compared to their GPU-
based counterparts and do not require expensive off-chip
memory access due to their “in-memory” nature of computation
[6] [7].

Despite the above-mentioned advantages, ReRAM-based
PIM architectures have several shortcomings, which can lead to
sub-optimal power-performance-accuracy trade-offs. In
addition, the choice of deep learning algorithm also imposes
new design challenges that must be solved. For instance, CNN
training often involves the use of Batch Normalization (BN) and
SoftMax layers. Both these layers are precision critical and must
be implemented using high precision arithmetic [8] [9].
Moreover, the backward phase during CNN training is also
sensitive to precision [10]. ReRAMs have limited representation
capability (16-bit fixed point) compared to conventional GPUs
(which use 32-bit floating-point precision). This aggressive
reduction of precision can make the training process unstable,
thereby compromising prediction accuracy [2]. These
limitations present a barrier towards the widespread adoption of
ReRAM-based architectures for CNN training. Hence, it is of
utmost importance to address these shortcomings of current
ReRAM-based implementations.

Similarly, other DL techniques such as GNNs introduce new
sets of design challenges that cannot be solved using
conventional ReRAM-based architectures. For instance, GNNs
involve sparse matrices and heavy data exchange due to
message-passing operations to accumulate neighbor information
in a recursive manner [11]. Storing sparse matrices on ReRAMs
is challenging as they contain many zeros. Computations with
zeros are redundant and hence, we must avoid storing zeros on
ReRAM cells. However, the inherent crossbar structure of
ReRAMs is not suited for storing irregular sparse matrices [12]
[13]. Similarly, the iterative message passing in GNNs gives rise
to significant data exchange among the ReRAM tiles, which
limits the overall achievable performance [3]. The data
exchange during GNN training exhibits many-to-one, and
multicast patterns, both of which can cause performance
bottleneck without a suitable communication backbone [14].

Apart from the unique design requirements imposed by the
choice of DL techniques, ReRAMs also suffer from numerous
nonidealities. ReRAMs are susceptible to noise, “hard faults”
such as stuck-at-faults (SAFs), process variations, and wear out

This work was supported in part by the US National Science Foundation
(NSF) under grants CNS-1955353, CNS-1955196, and by the USA Army
Research Office grant W911NF-17-1-0485. Biresh Kumar Joardar was also
supported in part by NSF Grant # 2030859 to the Computing Research
Association for the CIFellows Project.

978-1-6654-4507-8/21/$31.00 ©2021 IEEE

20
21

 IE
EE

/A
CM

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

O
n

Co
m

pu
te

r A
id

ed
 D

es
ig

n
(IC

CA
D)

 |
 9

78
-1

-6
65

4-
45

07
-8

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
CA

D5
19

58
.2

02
1.

96
43

55
9

Authorized licensed use limited to: Duke University. Downloaded on May 05,2022 at 03:19:27 UTC from IEEE Xplore. Restrictions apply.

ReRAM cell has a 2-bit resolution, we will require eight
different ReRAM cells to represent the same 16-bit weight value
[20]. The input to ReRAM crossbar is generated by sliding a
window of dimension 𝐾 × 𝐾 × 𝐼𝐶 across the 𝐼 × 𝐼 input matrix,
which is then fed to the ReRAM array in a sequential manner.
Overall, 𝑂 × 𝑂 inputs need to be processed to complete the
convolution layer (forward phase). Importantly, other layers,
e.g., fully connected, as well as the backward phase of training
also involve similar operations. Hence, they can be similarly
mapped to ReRAM crossbars with minimal adjustments [1].

C. Limitations of existing ReRAM-based architectures

Despite the advantages of an ReRAM-based accelerator for
deep learning algorithms, there are numerous challenges that
must be addressed. In this sub-section, we enumerate and
explain some of these challenges.

Lack of BN support: Exploding/Vanishing gradients is one
of the primary challenges associated with training deep CNNs
(i.e., CNNs with many Conv/FC layers). BN layers are
commonly used to address this problem. However, BN layers
are precision sensitive and involves complex math operations
(such as division and square root); both operations are difficult
to implement using ReRAMs. As a result, training deep CNNs
is challenging using sole-ReRAM based architectures.
Specialized initialization schemes such as Xavier [21] or
Kaiming [22] are alternative ways to train deep CNNs in the
absence of BN. By carefully setting the weights, these
techniques can prevent exploding/vanishing gradients.
However, these initialization schemes require careful hyper-
parameter tuning (i.e., expert domain knowledge) and yet, do not
work all the time. To demonstrate the sensitivity of these
methods to the choice of hyper-parameters, we consider two
cases: (a) All-BN: BN layers are placed after every Conv layer
as is usually done in traditional CNNs, and (b) No-BN: BN
layers are not used at all, and varied five hyper-parameters:
learning-rate (LR), number of epochs, LR schedule, batch size,
and the initialization scheme (Xavier and Kaiming only; other
initialization methods resulted in significantly low training
accuracy in the absence of BN). The results are shown in Fig. 3.
Overall, CNN training with 150 different hyper-parameter
settings were performed and the best accuracy achieved at the
end of each training instance is noted. Fig. 3 shows the range of
observed accuracy (represented by the blue line, whose ends
indicate the minimum and maximum accuracy; the red line
represents the average accuracy) considering all 150
experiments with VGG-11/16/19 and ResNet-18.

Fig. 3 clearly shows that it is possible to train CNNs in the
absence of BN sometimes, which is in line with previous
findings [21] [22]. However, it is not reliable and fails to train
most of the time. For instance, the average accuracy of No-BN
with Xavier/Kaiming initialization considering all 150 instances
of training is a mere 57.8% for VGG-19. This happens as

multiple combinations of hyper-parameters (among the 150
chosen here), either failed to train or resulted in unacceptable
accuracies. This is problematic as an ML-practitioner (or user)
will have to repeatedly train a CNN to find out the valid hyper-
parameter combination(s) for a successful training. This process
can be time consuming, particularly for deep CNNs and larger
datasets, which require more time to train. On the other hand,
CNN training with BN is more robust to the choice of hyper-
parameters and is effective in all cases considered here. Unlike
No-BN, All-BN achieves an average accuracy (considering all
150 All-BN training instances) of 85.1% for VGG-19 indicating
that all these 150 experiments succeeded. Hence, hardware
support for BN is important to train deep CNNs and should be
incorporated in ReRAM-based architectures.

Low precision computations: ReRAM-based architectures
typically utilize 16-bit fixed point precision as opposed to 32-bit
floating point precision in GPUs. However, CNNs often fail to
train or reach unacceptable accuracy when trained using low
precision. This happens as the backward phase of training is
precision sensitive. Basic rounding schemes that are used to
convert higher precision data to lower precision representation
often lose important information (round-off error). This results
in erroneous gradients, which get accumulated after each weight
update. Eventually, the training becomes unstable and reaches
unacceptable accuracy. This problem must be addressed for
successful training and inferencing.

Fig. 4 shows the accuracy after 50 epochs of training for
VGG-19. Here, we consider two different cases: 1) GPU-based
training with 32-bit floating-point scheme (GPU); 2) ReRAM-
based training (16-bit fixed point) with the default rounding
scheme in Pytorch. Normalization layers are used in both cases
to rule out exploding/vanishing gradients scenario. From Fig. 4,
we note that even with Normalization, VGG-19 fails to train
successfully on ReRAM-based architectures. VGG-11 and
ResNet-18 exhibit similar behavior as VGG-19 (i.e., failure to
train meaningfully) due to low precision. However, smaller
CNNs, such as LeNet, train successfully and only experience a
slight drop in model accuracy despite low precision. From Fig.
4, we can conclude that for training deep CNNs on ReRAM-
based architectures, we must address the problem of accuracy
loss due to low precision.

Inter-tile communication: PIM architectures reduce the
amount of off-chip data communication that happens between
processor and memory in a typical Von-Neumann architecture.
Hence, it is often assumed that communication is not an issue
for PIM-based architectures. However, inter-tile communication
in PIM can be significant for some deep learning applications.
For instance, GNN computation requires a neighborhood
aggregation operation, where each node aggregates the features
of its k-hop neighbors to learn node representations [11]. This in
turn gives rise to repeated message passing that can lead to high

Fig. 4: Accuracy of VGG19 trained with 32-bit floating point (32b Float) and
16-bit fixed point (16b fixed) representations. [2]

0%

25%

50%

75%

100%

1 5 10 15 20 25 30 35 40 45 50

A
cc

u
ra

cy
 (

%
)

Epoch

32b Float 16b Fix

Fig. 3: Accuracy of No-BN and All-BN CNNs trained with various
hyperparameter settings. [27]

0

50

100

No-BN All-BN No-BN All-BN No-BN All-BN No-BN All-BN

VGG11 VGG16 VGG19 Res18

A
cc

u
ra

cy
 (

%
)

Authorized licensed use limited to: Duke University. Downloaded on May 05,2022 at 03:19:27 UTC from IEEE Xplore. Restrictions apply.

Addressing lack of BN: As mentioned earlier, BN layers
require high precision computing support due to its precision
critical nature and it also involves more complex arithmetic
operations. As a result, BN layers are difficult to implement
using ReRAMs only. The GPUs can be used to implement the
BN layers. GPUs provide a full-precision computing platform
and can perform more complex arithmetic. However, the naïve
methodology of using BN layers after every Conv layer, leads
to the use of too many BN layers, which overloads the GPUs.
On further analysis, we found that we can reduce the number BN
layers necessary for training CNNs significantly [27]; this will
necessitate fewer GPUs. We can achieve this by using a
Bayesian Optimization formulation which can quickly
determine the most suitable locations for BN layers. The BO
optimized CNNs prevent exploding/vanishing gradients in deep
CNNs, while using significantly fewer BN layers than their
traditional counterparts; hence, fewer GPUs are needed.

Handling accuracy drop due to low precision: As
mentioned earlier, ReRAMs use 16-bit fixed point precision.
Lower precision reduces power and area requirements and leads
to better performance. However, it can lead to accuracy drop
during training. In the architecture shown in Fig. 7, the problem
of accuracy loss due to low precision is solved by using
stochastic rounding. Stochastic rounding is a probabilistic
rounding scheme with a zero expected rounding error and is
crucial for low-precision training [28]. The stochastic rounding
circuit is shown in Fig. 7(b) [29]. It consists of three parts: 1)
LFSR: generates pseudorandom 16-bit number; 2) Adder: adds
the 32-bit ReRAM output with the 16-bit number generated by
the LFSR; and 3) Truncate: this truncates the data to 16 bits after
addressing over-/under-flow conditions. Stochastic rounding
enables high accuracy CNN training under low precision.

Addressing resistance change due to temperature and
thermal noise: The resistance instability of ReRAMs can affect
the reference and output currents. This would lead to misjudging
the stored data, which can corrupt the subsequent computed
CNN outputs. This can lead to accuracy loss for CNN training.
Therefore, a thermal reference cell (TRC) that averages out these
fluctuations in the architecture is necessary [as shown in Fig.
7(c)] [30]. The inclusion of a TRC in each ReRAM tile ensures
that any change in output current (due to change in temperature)
will be tracked. Next, to address thermal noise, the CNN layers
can be mapped to the tiles following a joint performance-thermal
aware multi-objective optimization algorithm. The more
compute intensive layers should be mapped to ReRAMs closer
to the sinks (considering the 3D architecture). As a result, heat
generated in these layers will be dissipated fast, which reduces
thermal noise in ReRAMs; this leads to better training accuracy.

Solving accuracy loss due to faults: Fig. 8 demonstrates the
effects of faults on CNN weights. Fig. 8 shows the maximum
and average weight values observed for Conv-2 layer in VGG-
11 during training considering both faulty and ideal hardware.
The maximum (M) and the average (A) of all the weights in the
chosen CNN layer (Conv-2) for the ideal training, are referred
as M-Ideal and A-Ideal in Fig. 8. Similarly, the average and
maximum weight values for training using faulty hardware is
referred as A-Fault and M-Fault respectively; here we assume
fault density of 2% as an example. Fault density is defined as the
fraction of cells that are faulty in an ReRAM tile. Fig. 8 shows
that on an average, weights have identical values, irrespective of
whether they are trained with ideal or faulty ReRAMs. However,
the maximum weight values (M-Fault and M-Ideal) show a stark
difference. It is clear from Fig. 8 that a handful of weights
explode (increase very fast) in the presence of faults. This
increase at a rapid pace makes the CNN training unstable after a
few iterations. Compared to M-Fault, M-Ideal increases
gradually over time (number of iterations), leading to successful
training. This suggests that this rapid explosion is an anomalous
behavior exhibited by only a handful of weights [31].

From the observations in Fig. 8, we conclude that ReRAM
faults result in exploding weights, which in turn leads to unstable
training and poor accuracy. Hence, clipping these exploding
weights to a relatively lower value 𝜖, where 𝜖 > 0, will enable
the CNNs to train successfully. The clipping operation can be
mathematically expressed using the following equation: |𝑤| = {|𝑤|, if |𝑤| < 𝜖𝜖, otherwise (6)

Weight clipping prevents accuracy loss in the presence of
static and dynamic faults. This happens as clipping the
unrealistically large weights prevents the CNN training from
becoming unstable. As a result, the backpropagation algorithm
has a much better chance to train the remaining weights and
compensate for the ones mapped to the faulty cells. Hence, we
can use weight clipping as a solution for reliable CNN training
on faulty ReRAM-based PIM architectures. The operations
associated with weight clipping are simple and can be
implemented using the GPUs without additional overhead.

IV. RERAM-BASED PIM FOR GNNS

In this section, we present a ReRAM-based architecture for
accelerating GNN training and inferencing. Unlike CNNs,
GNNs present a unique set of problems for ReRAM-based
architectures that must be addressed. For instance, GNNs are
typically only a few layers deep. Hence, low precision and BN
layers are not important for GNN training. However, the amount
of data communicated during GNN training is extraordinarily
high. The amount of traffic is proportional to the total number

Fig. 8: Absolute values of weights when CNN is trained using ideal and faulty
ReRAM-based architecture

0
0.1
0.2
0.3
0.4

1 5 10 15 20 25 30 35 40 45 50A
b

so
lu

te

v
a

lu
e

s

Iteration

M-Ideal A-Ideal M-Fault A-Fault

 (a) (b) (c)
Fig. 7: (a)Heterogeneous ReRAM/GPU architecture for training CNNs [2] (b) Stochastic rounding unit [29] (c) Thermal reference cell [30]

M
-ReR

A
M

layers

N
-G

PU

layers

GPU

L1

Memory
controller

16-bit

LFSR

32-bit

Adder

32-bit input

All-Zeros

(16-bit)

16-bit output

32-bit

Truncate

IMA

Max
Pool

Sigmoid
unit

Output
Register

Shift &
Add

eD
RA

M

IMA

IMA

TRC

Shift &
Add

ADC Output
register

XB

Sample&
hold

Stochastic rounding

XB

XBXB

DAC
ReRAM

array

Vdd

Iref

N:1
Current
Mirror

NoC router Vertical linksHeat Sink

ReRAM cluster

ReRAM tile

Authorized licensed use limited to: Duke University. Downloaded on May 05,2022 at 03:19:27 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] L. Song et al, "PipeLayer: A Pipelined ReRAM-Based Accelerator for

Deep Learning," in IEEE International Symposium on High-
Performance Computer Architecture (HPCA), Austin, TX, 2017.

[2] B. K. Joardar et al, "AccuReD: High Accuracy Training of CNNs on
ReRAM/GPU Heterogeneous 3-D Architecture," IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 40, no.
5, pp. 971-984, 2020.

[3] A. I. Arka et al., "ReGraphX: NoC-enabled 3D Heterogeneous ReRAM
Architecture for Training Graph Neural Networks," in Design,
Automation and Test in Europe Conference and Exhibition (DATE),
2021.

[4] Y. Long, T. Na and S. Mukhopadhyay, "ReRAM-Based Processing-in-
Memory Architecture for Recurrent Neural Network Acceleration,"
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.
26, no. 12, pp. 2781-2794, 2018.

[5] F. Chen, L. Song and Y. Chen, "ReGAN: A pipelined ReRAM-based
accelerator for generative adversarial networks," in Asia and South
Pacific Design Automation Conference (ASP-DAC), 2018.

[6] D. Fujiki, S. Mahlke and R. Das, "In-memory Data Flow Processor," in
International Conference on Parallel Architectures and Compilation
Techniques (PACT), Portland, OR, 2017.

[7] M. Hu et al., "Dot-product engine for neuromorphic computing:
Programming 1T1M crossbar to accelerate matrix-vector
multiplication," in ACM/EDAC/IEEE Design Automation Conference
(DAC), Austin, TX, USA, 2016.

[8] P. Micikevicius et. al., "Mixed precision training," in International
Conference on Learning Representations (ICLR), Vancouver, Canada,
2018.

[9] S. Ioffe and C. Szegedy, "Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift,," in Internation
Conference on Machine Learnig (ICML), 2015.

[10] B. K. Joardar, B. Li, J. R. Doppa, H. Li, P. P. Pande and K. Chakrabarty,
"REGENT: A Heterogeneous ReRAM/GPU-based Architecture
Enabled by NoC for Training CNNs," in IEEE/ ACM Design,
Automation & Test in Europe Conference & Exhibition (DATE),
Florence, 2019.

[11] T. N. Kipf and M. Welling, "Semi-Supervised Classification with Graph
Convolutional Networks," in International Conference on Learning
Representations (ICLR), Toulon, 2017.

[12] L. Song et al, "GraphR: Accelerating Graph Processing Using ReRAM,"
in IEEE International Symposium on High-Performance Computer
Architecture (HPCA), Vienna, 2018.

[13] G. Dai et al, "GraphSAR: a sparsity-aware processing-in-memory
architecture for large-scale graph processing on ReRAMs," in Asia and
South Pacific Design Automation Conference (ASP-DAC), New York,
NY, 2019.

[14] B. K. Joardar et al., "GRAMARCH: A GPU-ReRAM based
Heterogeneous Architecture for Neural Image Segmentation," in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2020 .

[15] Z. He, J. Lin, R. Ewetz, J. Yuan and D. Fan, "Noise Injection Adaption:
End-to-End ReRAM Crossbar Non-ideal Effect Adaption for Neural
Network Mapping," in IEEE/ACM Design Automation Conference
(DAC), 2019.

[16] A. Chaudhuri and K. Chakrabarty, "Analysis of Process Variations,
Defects, and Design-Induced Coupling in Memristors," in IEEE
International Test Conference (ITC), Phoenix, AZ, USA, 2018.

[17] L. Xia, M. Liu, X. Ning, K. Chakrabarty and Y. Wang, "Fault-Tolerant
Training Enabled by On-Line Fault Detection for RRAM-Based Neural
Computing Systems," IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 38, no. 9, pp. 1611-1624, Sept.
2019.

[18] P. O. Vontobel, W. Robinett, P. J. Kuekes, D. R. Stewart, J. Straznicky
and R. S. Williams, "Writing to and reading from a nano-scale crossbar
memory based on memristors," Nanotechnology, vol. 20, 2009.

[19] C. Xu et al., "Overcoming the Challenges of Crossbar Resistive Memory
Architectures," in IEEE International Symposium on High-Performance
Computer Architecture (HPCA), 2015.

[20] A. Shafiee et al, "ISAAC: a convolutional neural network accelerator
with in-situ analog arithmetic in crossbars.," in International Symposium
on Computer Architecture (ISCA), 2016.

[21] X. Glorot and Y. Bengio, "Understanding the difficulty of training
deepfeedforward neural networks," in AISTATS, 2010.

[22] K. He, X. Zhang, S. Ren and J. Sun, "Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification," in
ICCV, 2015.

[23] B. K. Joardar et al., "Learning-Based Application-Agnostic 3D NoC
Design for Heterogeneous Manycore Systems," IEEE Transactions on
Computers, vol. 68, no. 6, pp. 852-866, 2019.

[24] E. Esmanhotto et al., "High-Density 3D Monolithically Integrated
Multiple 1T1R Multi-Level-Cell for Neural Networks," in IEEE
International Electron Devices Meeting (IEDM), San Francisco, CA,
USA, 2020.

[25] M. V. Beigi and G. Memik, "Thermal-aware Optimizations of ReRAM
based Neuromorphic Computing Systems," in Design Automation
Conference (DAC), 2018.

[26] Y. Yu and N. K. Jha, "A Monolithic 3D Hybrid Architecture for Energy
Efficient Computation," IEEE Transactions on Multi-Scale Computing
Systems, vol. 4, no. 4, pp. 533-547, 2018.

[27] B. K. Joardar et al, "High-Throughput Training of Deep CNNs on
ReRAM-based Heterogeneous Architectures via Optimized
Normalization Layers," IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2021.

[28] S. Gupta, A. Agrawal, K. Gopalakrishnan and P. Narayanan, "Deep
learning with limited numerical precision," in International Conference
on Machine Learning, 2015.

[29] T. Na et. al., "On-chip training of recurrent neural networks with limited
numerical precision," in ICJNN, 2017.

[30] Y. H. Lin et al., "Device Instability of ReRAM and a Novel Reference
Cell Design for Wide Temperature Range Operation," IEEE Electron
Device Letters, vol. 38, no. 9, pp. 1224-1227.

[31] B. K. Joardar et al., "Learning to Train CNNs on Faulty ReRAM-based
Manycore Accelerators," ACM Transactions on Embedded Computing
Systems (TECS), as part of ESWEEK, 2021.

[32] W. L. Chiang et al., "Cluster-GCN: An Efficient Algorithm for Training
Deep and Large Graph Convolutional Networks," in ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
Anchorage, AK, 2019.

[33] T. Geng et al, "AWB-GCN: A Graph Convolutional Network
Accelerator with Runtime Workload Rebalancing," in IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2020.

[34] B. Murmann, "ADC Performance Survey 1997-2020," 2020. [Online].
Available:
https://web.stanford.edu/~murmann/publications/ADCsurvey_rev2020
0802.xls.

Authorized licensed use limited to: Duke University. Downloaded on May 05,2022 at 03:19:27 UTC from IEEE Xplore. Restrictions apply.

