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Abstract—Resistive random-access memory (ReRAM) is a promising

technology for designing hardware accelerators for deep neural network

(DNN) inferencing. However, stochastic noise in ReRAM crossbars can

degrade the DNN inferencing accuracy. We propose the design and

optimization of a high-performance, area-and energy-efficient ReRAM-

based hardware accelerator to achieve robust DNN inferencing in the

presence of stochastic noise. We make two key technical contributions.

First, we propose a stochastic-noise-aware training method, referred to

as ReSNA, to improve the accuracy of DNN inferencing on ReRAM

crossbars with stochastic noise. Second, we propose an information-

theoretic algorithm, referred to as CF-MESMO, to identify the Pareto

set of solutions to trade-off multiple objectives, including inferencing

accuracy, area overhead, execution time, and energy consumption. The

main challenge in this context is that executing the ReSNA method to

evaluate each candidate ReRAM design is prohibitive. To address this

challenge, we utilize the continuous-fidelity evaluation of ReRAM designs

associated with prohibitive high computation cost by varying the number

of training epochs to trade-off accuracy and cost. CF-MESMO iteratively

selects the candidate ReRAM design and fidelity pair that maximizes the

information gained per unit computation cost about the optimal Pareto

front. Our experiments on benchmark DNNs show that the proposed algo-

rithms efficiently uncover high-quality Pareto fronts. On average, ReSNA

achieves 2.57% inferencing accuracy improvement for ResNet20 on the

CIFAR-10 dataset with respect to the baseline configuration. Moreover,

CF-MESMO algorithm achieves 90.91% reduction in computation cost

compared to the popular multi-objective optimization algorithm NSGA-II

to reach the best solution from NSGA-II.

Index Terms—ReRAM crossbar, stochastic noise, DNN inferencing,

efficient hardware, multi-objective optimization.

I. INTRODUCTION

Resistive random access memory (ReRAM) has emerged as a

promising nonvolatile memory technology due to its multi-level cell,

small cell size, and low access time and energy consumption. Prior

work has shown that the crossbar structure of ReRAM arrays can effi-

ciently execute matrix-vector multiplication [1], [2], the predominant

computational kernel associated with deep neural networks (DNNs).

ReRAM-based accelerators for fast and efficient DNN training and

inferencing have been extensively studied [3]–[8].

However, a key challenge in executing DNN inferencing [9]–

[11] on ReRAM-based architecture arises due to nonidealities of

ReRAM devices, which can degrade the accuracy of inferencing.

Since DNN inferencing involves a sequence of forward computations

over DNN layers, errors due to device nonidealities can propagate and

accumulate, resulting in incorrect predictions. The nonidealities of

ReRAM crossbars can be classified into two broad categories. The

first category includes device defects (e.g., stuck-at-high or stuck-

at-low resistance [12]) and device reliability issues (e.g., retention

failure [13] and resistance drift [14]) that are mostly deterministic

in nature and have been addressed in prior work [15]–[20]. The
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second category includes stochastic noise in ReRAM devices that

includes thermal noise [21], shot noise [22], random telegraph noise

(RTN) [23], and programming noise [24]. These nonidealities have

not been studied for DNN inferencing in prior work.

This paper studies the impact of stochastic noise on DNN inferenc-

ing and shows that there is a significant degradation in inferencing ac-

curacy due to the high amplitude of noise and reduced noise margin of

high-resolution ReRAM cells. Prior algorithmic solutions [25], [26]

mitigate the accuracy degradation due to programming variations,

but they are not effective in the presence of stochastic noise [27]. To

overcome this challenge, we propose a ReRAM-based Stochastic-

Noise-Aware DNN training method (ReSNA) that considers both

hardware design configurations and stochastic noise.

For DNN inferencing on ReRAM using ReSNA, key efficiency

metrics include hardware area, execution time (latency), and energy

consumption. Therefore, we need to solve a complex multi-objective

optimization (MOO) problem to achieve robust DNN inferencing on

ReRAM crossbars. The input space consists of different ReRAM

crossbar configurations, e.g., ReRAM cell resolution, crossbar size,

temperature, and operational frequency. The output space consists of

the accuracy of DNN inferencing and hardware efficiency metrics,

e.g., hardware area, execution time, and energy consumption. The

main challenge in solving this optimization problem is that the

input space over ReRAM configurations contains a large number (up

to 107) of available data points, and evaluation of each candidate

ReRAM configuration involves executing the ReSNA method, which

is computationally prohibitive (e.g., it takes nearly 30 GPU days to

run the training on the crossbar simulator [27] for 100 configurations).

Our goal is to efficiently uncover the Pareto optimal set of solutions

representing the best possible trade-offs among multiple objectives.

To solve this challenging MOO problem, we propose an

information-theoretic algorithm referred to as Continuous-Fidelity

Max-value Entropy Search for Multi-Objective Optimization (CF-

MESMO). We formulate the continuous-fidelity evaluation by varying

the number of training epochs for ReSNA to establish an appropriate

trade-off between computation cost and accuracy. In each MOO iter-

ation, the candidate ReRAM design and fidelity (number of iterations

of ReSNA training) pair is selected based on the maximization of the

information gained per unit computation cost about the optimal Pareto

front. We perform comprehensive experiments on benchmark DNNs

and datasets to evaluate the proposed algorithms. Our results show

that ReSNA can significantly increase DNN inferencing accuracy

in the presence of stochastic noise on ReRAM crossbars, and CF-

MESMO can achieve faster convergence and efficiently uncover high-

quality Pareto fronts when compared to prior methods, including

NSGA-II [28] and a state-of-the-art single-fidelity multi-objective

optimization method called MESMO [29].

The main contributions of this paper are as follows.

• Study of the impact of stochastic noise on DNN inferencing

executed on ReRAM crossbars.









in Table II demonstrate that this technique can further improve DNN

inferencing accuracy, even under the combination of high-amplitude

noise and high-resolution cells.

In summary, ReSNA incorporates stochastic noise and enhances

stability, leading to better inferencing accuracy than the baseline and

previous work, as shown in Fig. 3.

VI. CF-MESMO: EFFICIENT MOO ALGORITHM

Evaluating DNN inferencing accuracy and hardware efficiency

requires execution of the ReSNA training for each ReRAM design

configuration; this step is, however, computationally expensive (e.g.,

taking over seven hours to execute 100 training epochs for one

ReRAM design configuration for ResNet20 with CIFAR10 data). To

address this challenge, we propose an efficient information-theoretic

MOO algorithm referred to as Continuous-Fidelity Max-value En-

tropy Search for Multi-objective Optimization (CF-MESMO). Two

key innovations here are: first, we formulate continuous-fidelity

evaluation of objective functions by varying the number of training

epochs of ReSNA. Second, we propose a principled approach to

intelligently select the ReRAM configurations and fidelity of ReSNA

for evaluation guided by learned statistical models.

A. MOO Formulation with Continuous-Fidelity Evaluations

For each candidate ReRAM design x ∈ X , we need to execute

the ReSNA method to obtain the DNN weights. Subsequently,

we evaluate the objective functions f1(x) (inferencing accuracy),

f2(x) (hardware area), f3(x) (execution time), f4(x) (energy con-

sumption). The cost of evaluation of each ReRAM design config-

uration can be reduced by making an approximation of the objective

function(s). We propose to vary the number of training epochs in

ReSNA to trade-off computation cost and accuracy of objective

function evaluations (i.e., continuous-fidelity evaluation): small train-

ing epochs correspond to lower-fidelity evaluation and vice versa.

Therefore, we formulate this problem as a continuous-fidelity MOO

problem where we have access to an alternative function gj(x, zj)
for all j ∈ {1, 2, 3, 4}. Function gj(x, zj) can make cheaper

approximations of fj(x) by varying the fidelity variable zj ∈ Z .

Without loss of generality, let Z = [0, 1] be the fidelity space.

Fidelities for each function vary in the amount of computational

resources consumed and the accuracy of evaluation, where zj = 0
and z∗j = 1 refer to the lowest and highest fidelity, respectively.

At the highest fidelity z∗j , gj(x, z
∗
j ) = fj(x). Let Cj(x, zj) be the

cost of evaluating gj(x, zj), i.e., runtime to perform training using

ReSNA for the selected number of training epochs. Evaluation of

each ReRAM design configuration x ∈ X with fidelity vector z =
[z1, z2, z3, z4] generates the evaluation vector y ≡ [y1, y2, y3, y4],
where yj = gj(x, zj), and the normalized cost of evaluation is

C(x, z) = ∑4
j=1

(

Cj(x, zj)/Cj(x, z∗j )
)

. Our goal is to approximate

the Pareto set X ∗ by minimizing the overall cost of evaluating

candidate ReRAM designs.

B. Overview of CF-MESMO

CF-MESMO learns a surrogate model using data obtained from

past ReRAM design evaluations and then intelligently selects the next

candidate ReRAM design and the fidelity of ReSNA pair for evalua-

tion by trading-off exploration with exploitation to quickly direct the

search towards Pareto-optimal solutions. We perform the following

steps in each iteration of CF-MESMO as shown in Algorithm 1: 1)

Select the ReRAM design and fidelity of ReSNA for evaluation that

maximizes the information gain per unit cost about the optimal Pareto

front based on the current surrogate model. 2) Execute the hardware-

aware training approach ReSNA to evaluate objective functions with

the selected ReRAM design and fidelity pair. 3) Employ the new

training example in the form of ReRAM design configurations (i.e.,

input) and four objective function evaluations (i.e., output) to update

the surrogate model. After convergence is achieved (i.e., Pareto front

solution doesn’t change in several consecutive iterations), we compute

the Pareto front from the aggregate set of objective evaluations

and obtain the ReRAM design configurations and DNN weights

corresponding to the Pareto front as the resulting solution.

Algorithm 1 CF-MESMO Algorithm

Input: ReRAM design space X ; DNN π; four objective functions fj and their

continuous approximations gj using ReSNA training; total cost budget Ctotal.

1: Initialize GP models GP1, · · · ,GP4 via ReRAM design evaluations D

2: While Ct ≤ Ctotal and not converged do

3: for each sample s ∈ 1, · · · , S:

4: Sample highest-fidelity functions f̃j ∼ GPj(., z
∗

j )

5: F∗

s ← Solve cheap MOO over (f̃1, · · · , f̃K)
6: Select ReRAM design and fidelity pair:

(xt, zt)← argmaxx∈X ,z∈Z αt(x, z,F
∗) Equation (9)

7: Perform ReSNA training of DNN π with ReRAM design and fidelity pair (xt, zt)
8: Evaluate objectives f1, f2, f3, f4 for trained DNN on ReRAM design xt

9: Update the total cost: Ct ← Ct + C(xt, zt)
10: Aggregate training data: D ← D ∪ {(xt,yt, zt)}
11: Update surrogate statistical models GP1, · · · ,GP4

12: t← t + 1
13: end

14: return Pareto set and Pareto front of objective functions f1(x), · · · , f4(x)

Surrogate models for continuous-fidelity. Surrogate models guide

the selection of candidate ReRAM designs to quickly uncover high-

quality Pareto fronts. Our training data D for surrogate models after

t iterations consists of t training examples of input-output pairs. We

employ Gaussian processes (GPs) [45] as our choice of the statistical

model due to their superior uncertainty quantification ability. We learn

four surrogate statistical models GP1, · · · ,GP4 from D, where each

model GPj corresponds to the jth function gj . Continuous-fidelity

GPs (CF-GPs) are capable of modeling functions with continuous

fidelities within a single model. Hence, we employ CF-GPs to build

surrogate statistical models for each function [46]. A CF-GP is a

random process defined over the input space and the fidelity space,

characterized by a mean function µ : X × Z → R and a covariance

or kernel function κ : (X × Z)2 → R. We denote the posterior

mean and standard deviation of gj by µgj (x, zj) and σgj (x, zj).
We denote the posterior mean and standard deviation of the highest

fidelity functions fj(x) = gj(x, z
∗
j ) by µfj (x) = µgj (x, z

∗
j ) and

σfj (x) = σgj (x, z
∗
j ), respectively.

C. Selecting ReRAM Design to Evaluate via Information Gain

The effectiveness of CF-MESMO critically depends on the reason-

ing mechanism to select the candidate ReRAM design and fidelity of

ReSNA pair for evaluation in each iteration. Therefore, we propose an

information-theoretic approach to perform this selection. The key idea

is to find the ReRAM design and fidelity pair {xt, zt} that maximizes

the information gain (I) per unit cost about the Pareto front of

the highest fidelities (denoted by F∗), where {xt, zt} represents a

candidate ReRAM design configuration xt evaluated at fidelities zt
at iteration t. CF-MESMO performs the joint search over the input

space X and the fidelity space Z:

(xt, zt)← argmax
x∈X ,z∈Z

αt(x, z), (1)

where αt(x, z) = I({x,y, z},F∗|D)/C(x, z). (2)

In this joint search, the computation cost C(x, z) is considered in

Equation (2). The information gain in Equation (2) is the expected

reduction in entropy H(.) of the posterior distribution P (F∗|D)
due to the evaluation of the ReRAM design x at fidelity vector z.



According to the symmetric property, the information gain can be

rewritten as follows:

I({x,y, z},F∗|D) = H(y|D,x, z)− EF∗ [H(y|D,x, z,F∗)].
(3)

The first term in Equation (3) is the entropy of a four-dimensional

Gaussian distribution that can be computed as follows:

H(y|D,x, z) =
4

∑

j=1

ln(
√
2πe σgj (x, zj)). (4)

The second term in Equation (3) is an expectation over F∗ and can

be approximated using Monte-Carlo sampling:

EF∗ [H(y|D,x, z,F∗)] ' 1

S

S
∑

s=1

[H(y|D,x, z,F∗

s )], (5)

where S denotes the number of samples, and F∗
s denotes a sample

Pareto front achieved over the highest fidelity functions sampled from

the surrogate models. To solve Equation (5), we provide solutions to

construct Pareto front samples F∗
s and to compute the entropy of a

given Pareto front sample F∗
s .

Computation of Pareto front samples: We sample the highest

fidelity functions f̃1, · · · , f̃4 from the posterior CF-GP models. Then,

we solve a cheap MOO problem over the sampled functions with the

NSGA-II algorithm [28] and compute the sample Pareto front F∗
s .

Entropy computation for a given Pareto front sample: Let F∗
s =

{v1, · · · ,vl} be the sample Pareto front, where l denotes the size of

the Pareto front and each element vi = {vi1, · · · , vi4} is evaluated at

the sampled highest-fidelity function. The following inequality holds

for each component yj of y in the entropy term H(y|D,x, z,F∗
s ):

yj ≤ f j∗
s ∀j ∈ {1, · · · , 4}, (6)

where f j∗
s = max{v1j , · · · vlj}. Essentially, this inequality means that

the jth component of y is upper-bounded by the maximum of jth

components of sample Pareto front F∗
s .

The proof of Equation (6) falls in two cases1: a) If yj is evaluated

at the highest fidelity (i.e, zj = z∗j and yj = fj), we prove by

contradiction. Suppose there exists some component fj of f such

that fj > f j∗
s . However, by definition, since no point dominates

f in the jth dimension, f is a non-dominated point. This results in

f ∈ F∗
s , which is a contradiction. Thus, Equation (6) holds. b) If yj is

evaluated at one of the lower fidelities (i.e, zj 6= z∗j ), we refer to the

assumption that the value of an objective evaluated at lower fidelity is

smaller than that evaluated at higher fidelity, i.e., yj ≤ fj ≤ f j∗
s . This

assumption is true in our problem setting, where the DNN inferencing

accuracy improves with more training epochs of ReSNA.

Following Equation (6) and the independence of CF-GP models,

we further decompose the entropy of a set of independent variables

according to the entropy measure property [47]:

H(y|D,x, z,F∗

s ) '
4

∑

j=1

H(yj |D,x, zj , f j∗
s ). (7)

Equation (7) requires the entropy computation of p(yj |D,x, zj , f j∗
s ).

This conditional distribution can be expressed as H(yj |D,x, zj , yj ≤
f j∗
s ). As Equation (6) states that yj ≤ f j∗

s holds under all fidelities,

the entropy of p(yj |D,x, zj , f j∗
s ) can be approximated by the

entropy of a truncated Gaussian distribution as:

H(yj |D,x, zj , yj ≤ f j∗
s ) = ln(

√
2πe σgj ) + lnΦ(γ

(gj)
s )

− γ
(gj)
s φ(γ

(gj)
s )

2Φ(γ
(gj)
s )

, (8)

1For ease of notation, we drop the dependency on x and z. We use fj to
denote fj(x) = gj(x, z

∗
j ) the evaluation of the highest fidelity z∗j and yj to

denote gj(x, zj) the evaluation of gj at a lower fidelity zj 6= z∗j .

where γ
(gj)
s =

fj∗
s −µgj

σgj

. Functions φ and Φ are the probability

density and cumulative distribution function of the standard normal

distribution, respectively. From Equations (4), (5), and (8), we get

the expression as shown below:

αt(x, z,F∗) =
1

C(x, z)S

4
∑

j=1

S
∑

s=1

γ
(gj)
s φ(γ

(gj)
s )

2Φ(γ
(gj)
s )

− ln(Φ(γ
(gj)
s )).

(9)
Therefore, in Algorithm 1, we select the next ReRAM design and

the fidelity of ReSNA pair that maximizes the information gain per

unit cost about the optimal Pareto front based on Equation (9).

VII. EXPERIMENTS AND RESULTS

In this section, we first explain the details of the experimental

setup. Next, we evaluate the effectiveness of ReSNA in improving the

inferencing accuracy. Finally, we show that CF-MESMO can achieve

high-quality Pareto fronts for DNN inferencing on ReRAM crossbars

and analyze the Pareto sets for different DNN models.

A. Experimental Setup

We evaluate ReSNA with five different DNNs—ResNet20,

ResNet32, ResNet44 [48], VGG11, and VGG13 [49] on the CIFAR-

10 dataset [50]. The CIFAR-10 dataset contains 50, 000 training

images and 10, 000 testing images, which belong to 10 classes.

Furthermore, to validate the scalability of our method, we also

evaluate the performance of ResNet18 [48] using the CIFAR-100

dataset [50]. The number of training and testing images in CIFAR-

100 is the same as in CIFAR-10, but these images belong to 100
classes. The image size is 28 × 28 × 3, and the training and

testing batch size is 64. Table III(a) summarizes deep neural network

configurations, including the numbers of channels in Conv layers, the

inferencing accuracy with unquantized weights and activations, and

the inferencing accuracy for 8-bit weights and activations. Note that

testing on diverse DNNs is more important to test the effectiveness of

our approach. Hence, due to space constraints, we provide results on

limited datasets noting that our methodology and findings are general.

TABLE III: Experiments setup details.

(a) Network configurations.

Network # of channels in Conv layers
Unquantized

Accuracy
Quantized
Accuracy

ResNet20
16, [16,16]×3, [32, 32]×3,

[64, 64]×3
91.65% 89.61%

ResNet32
16, [16,16]×5, [32, 32]×5,

[64, 64]×5
92.81% 90.06%

ResNet44
16, [16,16]×7, [32, 32]×7,

[64, 64]×7
93.24% 91.54%

VGG11
64, 128, 256, 256, 512, 512,

512, 512
92.18% 88.07%

VGG13
64, 64, 128, 128, 256, 256,

512, 512, 512, 512
93.64% 91.14%

ResNet18
for CIFAR-100

64, [64, 64]×2, [128,128]×2,
[256,256]×2, [512,512]×2

74.57% 71.92%

(b) ReRAM parameters in ReSNA.

Parameter Value

Bitquan 8 bit
Ron, Roff 3.03 kΩ, 3.03MΩ

ResDAC , ResADC 8 bits, 8 bits
Vr 1.65V

σprog 0.0658

(c) Design space configurations.

Parameter Candidate values

Rescell 8/4/3/2/1-bit
Freq 10MHz-1000MHz
T 300K-400K

Xbarsize 32× 32, 64× 64, 128× 128
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