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Channel-noise tracking for sub-shot-noise-limited receivers with neural networks
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Non-Gaussian receivers for optical communication with coherent states can achieve measurement sensitivities
beyond the limits of conventional detection, given by the quantum-noise limit (QNL). However, the amount of
information that can be reliably transmitted substantially degrades if there is noise in the communication channel,
unless the receiver is able to efficiently compensate for such noise. Here, we investigate the use of a deep neural
network as a computationally efficient estimator of phase and amplitude channel noise to enable a reliable method
for noise tracking for non-Gaussian receivers. The neural network uses the data collected by the non-Gaussian
receiver to estimate and correct for dynamic channel noise in real time. Using numerical simulations, we find
that this noise tracking method allows the non-Gaussian receiver to maintain its benefit over the QNL across
a broad range of strengths and bandwidths of phase and intensity noise. The noise tracking method based on
neural networks can further include other types of noise to ensure sub-QNL performance in channels with many
sources of noise.
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I. INTRODUCTION

The intrinsic properties of coherent states can enable
efficient and practical classical [1–4] and quantum [5–9]
communications. When utilizing the phase of coherent states
combined with their intensity to encode and transmit infor-
mation, higher rates of information transfer may be achieved
compared to communication schemes using intensity-only
encodings [4,10]. However, channel noise can severely limit
the advantage of communications with coherent encodings. In
conventional coherent communications, the optical receiver
performs a heterodyne measurement with shot-noise-limited
sensitivity, corresponding to the quantum-noise limit (QNL).
This measurement allows for the use of postprocessing meth-
ods of the collected data to estimate channel noise and correct
the data to recover the transmitted information [10–19].
While current coherent optical communications rely on these
conventional approaches, a heterodyne measurement cannot
reach the ultimate limit of sensitivity [20] and information
transfer [1,21,22].

In contrast to conventional strategies, non-Gaussian re-
ceivers can surpass the QNL, providing higher measurement
sensitivities for decoding information [23–30]. However, in
the presence of channel noise, the benefit of non-Gaussian
receivers over conventional strategies critically depends on
the ability to perform efficient channel-noise tracking. Recent
work demonstrated an efficient method for phase tracking
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for non-Gaussian receivers [31]. This phase tracking method
estimates and corrects for the phase noise in real time, which
is required by the strategies used in non-Gaussian receivers,
as opposed to postprocessing of the collected data with het-
erodyne detection. This method enabled sub-QNL sensitivity
in the presence of phase noise, which is particularly damaging
for coherent encodings [31,32].

In more realistic situations there may be multiple sources
of noise present in the communication channel, such as ther-
mal noise [33,34], phase diffusion [35–37], phase noise, and
amplitude noise. In such situations the non-Gaussian receiver
must perform efficient high-dimensional parameter estima-
tion and tracking in order to maintain the expected sub-QNL
performance. However, current methods for single-parameter
noise tracking cannot be efficiently scaled to higher dimen-
sions for tracking and correction of multiple sources of noise.
Thus, enabling noise tracking for non-Gaussian receivers in
channels with complex and dynamic noise requires novel
and efficient methods for multiparameter estimation that scale
favorably to higher dimensions. Practical parameter tracking
also requires estimation on a timescale which is very small
(� 1%) compared to the bandwidth of the channel noise.
For example, realistic kilothertz scale phase noise [4,17,18]
would require estimation on at least megahertz timescales,
and a Bayesian estimator may not be compatible with this
requirement.

Machine learning has been shown to be a powerful tool for
solving many problems in coherent communications where
conventional methods may be inefficient or computationally
difficult [38–42]. In particular, artificial neural networks [43]
have seen broad applications in quantum information [44–53]
and optical communications [54–58], and for channel-noise
estimation and monitoring [59–61]. While machine learning
techniques benefit current communication technologies, their
application for parameter tracking for non-Gaussian receivers
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FIG. 1. Channel-noise tracking method. (a) Schematic of two parties, Alice and Bob, communicating over a noisy channel with Bob at
the receiver performing phase and amplitude noise tracking. The receiver uses an adaptive non-Gaussian measurement strategy to realize state
discrimination below the QNL using interference between the input state and a local oscillator (LO) followed by photon counting with a single
photon detector (SPD). A neural network (NN) takes the data collected from the non-Gaussian receiver and outputs estimates for the current
phase offset and input intensity. The estimates are fed forward to the LO to match the input intensity and counteract phase noise in real time.
(b) Effect of channel noise with (blue) and without (orange) perfect parameter tracking (see main text) for the non-Gaussian receiver. Black
points show a perfectly corrected heterodyne receiver, and black and gray dashed lines show the error for a non-Gaussian and a heterodyne
receiver in the absence of noise, respectively.

with sub-shot-noise-limited performances have yet to be in-
vestigated.

In this work, we numerically investigate a method for mul-
tiparameter channel-noise tracking based on a neural network
(NN) estimator for a non-Gaussian receiver with sub-QNL
sensitivity for state discrimination of quaternary phase-shift-
keyed (QPSK) coherent states. We construct a NN as a precise
and computationally efficient multiparameter estimator for
tracking the time-varying phase and intensity of the input
coherent states, and benchmark its performance against a
Bayesian estimator, which is expected to be accurate but is
computationally expensive to calculate. We find that, across
a broad range of channel-noise strengths and input pow-
ers, the NN-based method for noise tracking shows similar
performance to a Bayesian-based noise tracking approach,
and allows the non-Gaussian receiver to maintain sub-QNL
sensitivity. This shows that a NN estimator is a viable
method for real-time, multiparameter channel-noise tracking
in non-Gaussian receivers due to its efficiency and potential
scalability to higher dimensions. In Sec. II we describe the
non-Gaussian receiver strategy and the NN estimator used
for the noise tracking method. In Sec. III we investigate the
performance of the channel noise tracking. We discuss the
results of the work in Sec. IV.

II. RECEIVER AND ESTIMATION STRATEGY

We numerically study the use of a NN-based method for
noise parameter tracking for non-Gaussian receivers based on
adaptive measurements and photon counting. As a proof-of-
concept, we investigate a NN-based method for tracking phase
and amplitude channel noise, that uses only the data collected
during the state discrimination measurement. This NN-based
method can be easily extended to perform higher dimensional
parameter estimation for tracking additional sources of noise
in the channel such as thermal noise [33,34] or phase diffusion
[35–37]. In this section, we describe (a) the measurement
strategy of the non-Gaussian receiver for coherent state dis-

crimination; (b) how the data from the measurement is used
by the NN; and (c) the NN estimator, which can be used for
estimation of channel noise from multiple sources.

A. State discrimination measurement

Figure 1(a) shows a scenario where a receiver attempts to
perform coherent state discrimination with an adaptive pho-
ton counting measurement with sensitivity below the QNL
[25,26]. Dynamic phase and amplitude noise induced by the
communication channel degrades the attainable sensitivity of
the receiver. Tracking the phase and amplitude noise of the
input states induced in the channel using the data collected
during the discrimination measurement can in principle allow
the receiver to correct its strategy and maintain sub-QNL
sensitivity.

Here, we study a method for channel-noise tracking
for a receiver based on an adaptive non-Gaussian strategy
[26] for phase-coherent states |αk〉 ∈ {|αei2πk/M〉}, where k =
0, 1, . . . , M − 1. For M = 4, this corresponds to QPSK co-
herent states. The state discrimination strategy consists of L
adaptive measurement steps. Each step performs a hypothesis
test of the input state using a local oscillator (LO) to imple-
ment a displacement operation D̂(β ) through interference and
single photon counting. In each adaptive step j = 1, 2, . . . , L,
the receiver attempts to displace the most likely state to
the vacuum state by adjusting the LO phase arg(β ) = θ j ∈
{0, π/2, π, 3π/2} with |β| = |αk|, followed by single photon
detection. The detector has a finite photon number resolution
(PNR) where up to m photons can be resolved, denoted as
PNR(m), before becoming a threshold detector [26]. At the
end of the L adaptive steps, the best guess of the receiver θdisc
for the true input phase is the state with maximum a posteriori
probability given the entire detection history. As described in
Secs. II B and II C, the photon counting data from the adaptive
measurement steps together with θdisc allows the receiver to
perform phase and amplitude tracking, where estimates of the
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channel noise are fed forward to the LO in order to maintain
the sub-QNL performance of the receiver.

Figure 1(b) shows an example of the error probability
for the adaptive non-Gaussian receiver for QPSK states for
an average input mean photon number of 〈n̂〉0 = |α|2 = 5.0,
which is proportional to the intensity, averaged over 5000
noise realizations and obtained through Monte Carlo simu-
lations. For all Monte Carlo simulations in this study, we
assume ideal detection efficiency, zero detector dark counts,
a photon number resolution of PNR(10), and L=10 adaptive
steps. To represent a realistic experiment, we use an interfer-
ence visibility of the displacement operation of 99.7% [26].
The blue (orange) points show the error probability for the
non-Gaussian receiver with (without) perfect noise tracking.
Perfect tracking refers to a situation where the receiver has
complete knowledge of the time-dependent input intensity and
phase noise induced by the channel. The black points show
the error of an ideal heterodyne measurement, performing
at the QNL, with perfect tracking [62]. The dashed lines
show the expected error in the absence of noise for a hetero-
dyne (gray) and non-Gaussian (black) receiver. The error for
the non-Gaussian measurement remaining below the hetero-
dyne limit (QNL) shows that if the receiver can implement
accurate parameter tracking, then its benefit over the QNL
can be maintained. Furthermore, any tracking method for the
non-Gaussian receiver requires correcting for dynamical noise
in real time to ensure sub-QNL performance [31], in contrast
to methods for heterodyne receivers, where estimation and
correction can be done in postprocessing of the data.

B. Detection matrix

The measurement data collected by the non-Gaussian re-
ceiver from the discrimination of N input states is used for
parameter estimation. For the discrimination of one input
state, this data consists of the L photon detections {d j}L and
relative phases {� j}L between the LO and input state for each
adaptive step j. Due to the low error rate achieved by the
non-Gaussian measurement, the guess θdisc of the phase of
the input state corresponds to the true input phase with high
probability. Thus, θdisc can be used to infer the relative phase
� j between the LO and actual input state at every adaptive
measurement step j such that � j = θ j − θdisc, as in [31].
This state discrimination data {� j, d j} is binned into what we
refer to as the detection matrix D, which is a M × (m + 1)
matrix, where m is the PNR of the receiver. After each mea-
surement, the matrix elements Dk,l are incremented by the
total number of times that the number of detected photons
in an adaptive step j was d j = l and the relative phase was
� j = 2πk/M for k ∈ {0, 1, . . . , M − 1}. Thus, the rows of
the matrix D represent the photon number distributions for
different relative phases kπ/2 between the LO (θ j ) and final
hypothesis (θdisc) for QPSK states [31]. After completing N
experiments, the matrix D contains N × L pairs {d j,� j} and
it is used for parameter estimation. Once estimation has been
performed, the matrix is reset such that Dk,l = 0 for all l
and k. In order to extract information from D to correct for
channel noise affecting the measurement, the receiver must
utilize a particular estimator. A Bayesian estimator, which
uses the full likelihood functions, will yield estimates for

FIG. 2. Neural network. The neural network (NN) for noise esti-
mation has ten layers (eight hidden) with sizes described in Table I.
The NN inputs are a flattened version of the detection matrix D
normalized across each row, and the LO intensity B for the measure-
ments whose data is contained in the detection matrix. The outputs
of the NN are estimates for the phase offset φ̂NN and input intensity
ÂNN .

the channel noise with small uncertainty [63]. However, this
estimator is computationally demanding to calculate. Since
the estimation and correction of the channel noise for non-
Gaussian receivers must be performed in real time, a Bayesian
method may be incompatible with applications requiring high
bandwidth sub-QNL receivers. Therefore, to enable practical
implementations of non-Gaussian receivers requires an esti-
mator that is both precise and computationally efficient while
being easily scalable to higher dimensions to track multiple
sources of channel noise. For example, the simple case of sin-
gle parameter estimation for phase tracking for non-Gaussian
measurements has been experimentally demonstrated [31] us-
ing a simple estimator, which is calculated in real time with
minimal computational resources.

C. Neural network estimator

We construct a NN as a multiparameter estimator which
maps the data collected from the state discrimination measure-
ment to estimates for the input intensity and phase offset. We
compare the performance of the NN estimator to a Bayesian
estimator. The Bayesian-based method for noise tracking
serves as a benchmark and is calculated from the same state
discrimination measurement data, i.e., the detection matrix
D. Although we study phase and amplitude tracking, a prop-
erly trained NN can in principle be used as an efficient
high-dimensional estimator for tracking many sources of com-
munication channel noise.

Figure 2 shows a diagram of the NN architecture for the
proposed noise tracking method, which has ten layers (eight
hidden), each with a leaky ReLU activation function [64]. To
obtain the input for the NN, the detection matrix D is first
normalized across each row, and then arranged into a one-
dimensional vector (Dk,l → Dk(m+1)+l ). This vector, along
with the LO intensity for the previous N measurements, are
the inputs to the NN. For ease of notation, we denote the
time-dependent input intensity of the QPSK coherent states
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TABLE I. Neural network and training parameters.

Network parameters

Number of layers Ten (eight hidden)
Hidden layer size (li ) {32, 32, 32, 32, 16, 16, 8, 8}
Activation function Leaky ReLU (a = 0.1)
Initialization Norm(0, σ 2 = 1/li) (Xavier)

Training parameters
Cost function Weighted mean-squared error
Optimizer RMSprop (momentum=0.8)
Learning rate 50 × 10−6

Epochs 2000

as A(τ ) = |α|2(τ ) where τ represents time discretized into
steps of �T , where 1/�T is the experimental repetition rate.
For a single state discrimination measurement at time τ , the
intensity of the LO is denoted as B(τ ) = |β|2(τ ). The NN out-
puts, denoted as ÂNN and φ̂NN , are raw estimates of the input
intensityA(τ ) and relative phase offset φ(τ ) during the previ-
ous N state discrimination measurements. The NN is trained
on 5 × 105 samples of the state discrimination measurement
generated from Monte Carlo simulations of the experiment in
Python. For training the NN, we use the Tensorflow library
[65] with a weighted mean-squared-error cost function (see
Appendix A for details) [66–69]. The trained NN is then
included in the Monte Carlo simulations to perform param-
eter tracking on the state discrimination data such that the
estimates from the NN are fed forward to the LO to correct
the measurement.

III. RESULTS

We simulate the performance of the noise tracking method
based on the NN estimator for a variety of scenarios with
amplitude and phase noise for average input intensities 〈n̂〉0 =
A(0) = 〈A(τ )〉 equal to 2, 5, and 10. Here 〈·〉 denotes the
average across all noise realizations at the time step τ . We
benchmark the NN against a Bayesian estimator where the
prior probability distribution for both parameters is uniform
[31]. For all simulations, we use a single NN to perform
multiparameter estimation and noise tracking across a range
of input powers and noise parameter regimes.

As a model for phase noise φ(τ ), we simulate a discrete
Gaussian random walk in phase [31]. A single step of this
walk has a variance of σ 2

1 = 2π�ν�T where �ν is the phase
noise bandwidth due to finite laser linewidth [4,17,18] or
other phase noise sources [4,70]. The experimental repetition
rate is set to 1/�T = 100 MHz such that �T = 10 ns to
represent a feasible, near-term communication bandwidth for
non-Gaussian receivers [71]. To model amplitude noise of the
input states, we simulate noise in the input intensity A(τ ). As
a noise model, we use an Ornstein-Uhlenbeck (OU) process
[72,73] whose stochastic differential equation is given by

�A(τ ) = γ [〈n̂〉0 − A(τ )]�T + �dW, (1)

where γ is the amplitude noise bandwidth, � controls de-
viation of the walks, and dW denotes a Wiener process.
The long-time variance of A(τ ) is given by �2

∞ = �2/2γ
and the maximum long-time variance we implement is

�2
∞ = {0.25, 1.5, 6.0} for 〈n̂〉0 = {2, 5, 10}, respectively, cor-

responding to a relative noise level of 〈n̂〉0/�∞ ≈ 0.25.
After N state discrimination measurements, estimates are

calculated from the detection matrix D. To implement cor-
rection of the receiver, we set the LO intensity B(τ ) to the
current estimated value Â(τ ) of the input intensity A(τ ). For
phase tracking we add a correction δ(τ ) to the LO phase
such that arg{β} = θ j + δ(τ ). The correction δ(τ ) is equal
to the cumulative sum of individual estimates φ̂ up to the
current time step τ . This is because the receiver is always
estimating only the phase shift accumulated in the previous
N experiments. The phase and intensity corrections remain
fixed at these values for N experiments until new estimates
are made and applied to the LO.

To reduce uncertainty in the phase and intensity estimates
for noise tracking, we implement a Kalman filter [74] for both
estimates (see Appendix B for details). The inputs for the
filter are the current raw estimates for the input intensity and
phase offset (ÂNN , φ̂NN ), and the filter outputs are updated,
filtered estimates for the intensity Â(τ ) and phase φ̂. The
same procedure is done to obtain filtered Bayesian estimates
from the raw estimates (ÂB, φ̂B). To implement the Kalman
filter, we assume that the raw NN estimates are Gaussian
distributed, and use Monte Carlo simulations with fixed phase
offset and input intensity to empirically obtain the variance
of the NN estimator. We note that although we study two
particular models for phase and amplitude noise, we believe
this NN-based tracking method can be applied to a variety of
noise forms such as power-law amplitude noise or damping
noise. To study different noise models, the NN would need
to be retrained using data generated from the new model and
the noise dynamics would need to be incorporated into the
Kalman filter accordingly.

Figure 3 shows (a) the error probability of the non-
Gaussian receiver with noise tracking for 1000 different
realizations with both phase (�ν = 2 kHz), and intensity
(γ = 25 kHz, �2

∞ = 1.5) noise shown in (b) and (c), re-
spectively, for an input intensity 〈n̂〉0 = 5.0 and N = 10
experiments per estimation period. The blue (orange) points
show the results of the noise tracking method based on NN
(Bayesian) estimators. The black points show the error prob-
ability with perfect correction, which corresponds to the case
where the receiver has complete knowledge of the phase and
intensity noise, so that B(τ ) = A(τ ) and δ(τ ) = φ(τ ). The
green points show the error probability of an uncorrected
non-Gaussian measurement, and the gray points show that of
an ideal heteroydne measurement with perfect phase tracking
[equivalent to φ(τ ) = 0]. We note that even though the re-
ceiver may have perfect knowledge of the noise, the overall
effect of the amplitude noise increases the error probability.
This is because input powers smaller than the average power
[A(τ ) < 〈n̂〉0] increase the errors more than the reduction
of error for larger powers [A(τ ) > 〈n̂〉0]. The dashed black
and gray lines show the error for an adaptive non-Gaussian
measurement, and an ideal heterodyne measurement with
no noise, respectively. By comparing the error of the non-
Gaussian measurement with perfect correction (black points)
to the black dashed reference line, we observe that non-
Gaussian measurements are more sensitive to amplitude noise
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FIG. 3. Probability of error as a function of time. (a) Error prob-
ability as a function of time for 〈n̂〉0 = 5.0 when both phase (b) and
intensity (c) noise are applied and tracked. Here the noise parameters
are γ = 25 kHz, �2

∞ = 1.5, and �ν = 2 kHz. Blue (orange) points
show the error for the NN- (Bayes-) based estimator. Green and
black points show the error with no correction and perfect correction,
respectively. Gray points show the effective QNL of a perfectly cor-
rected heterodyne measurement. Black and gray dashed lines show
the error for a non-Gaussian and heterodyne receiver, respectively,
with no noise.

than a heterodyne measurement (gray points vs gray dashed
line), even when they are perfectly corrected. We observe that
the NN-based tracking method performs equivalently to the
Bayesian method, and both can allow the receiver to maintain
an error probability significantly below the QNL. This result
demonstrates the capabilities of a NN for efficient and reliable
noise tracking for non-Gaussian receivers for state discrimina-
tion.

We study the robustness of the NN-based method in sce-
narios with different noise strengths and bandwidths in the
phase and amplitude. For these studies, we use the heterodyne
measurement with perfect phase tracking as the limit for con-
ventional strategies, serving as the effective QNL when the
same noise is applied to both receivers. In this section, we
study (a) the error probability as a function of phase noise
with fixed amplitude noise, and (b) the error probability when
the amplitude noise levels are varied with phase noise with a
fixed bandwidth.

A. Phase noise with different bandwidths

We study the performance of the noise tracking method
based on the NN estimator as a function of the phase noise
bandwidth �ν for fixed values of amplitude noise �2

∞ and
γ . We compare these results to the tracking method based

on a Bayesian estimator, as well as a perfectly corrected
non-Gaussian measurement. We use different amplitude noise
parameters for different values of 〈n̂〉0 such that the relative
amplitude noise strength 〈n̂〉0/�∞ is constant. For an average
intensity of 〈n̂〉0 = 2, 5, and 10 we simulate 250, 250, and
500 different realizations of the noise, respectively. The sim-
ulations are run for 2 × 103 time bins of N = 10 experiments
each, giving a total of 2 × 104 individual experiments per
noise realization. We calculate the average error across all
realizations for all time bins.

Figure 4 shows the average error probability as a function
of the bandwidth �ν for intensities 〈n̂〉0 = 2, 5, and 10. Fig-
ures 4(a)–4(c) have no amplitude noise (γ = 0, �2

∞ = 0), and
4(d)–4(f) have γ = 2 kHz, and�2

∞ = {0.25, 1.5, 6.0}, respec-
tively, corresponding to the relative strength of 〈n̂〉0/�∞ ≈
0.25. The performance of the noise tracking method based on
the NN estimator (blue) is equivalent to the Bayesian-based
method (orange) while being computationally efficient to im-
plement. The purple and gray dashed lines show the average
error of the non-Gaussian and ideal heterodyne receivers with
perfect parameter tracking, respectively.

We observe that for all the investigated average input in-
tensities 〈n̂〉0, the NN-based method performs as well as the
Bayesian method both with and without amplitude noise. The
NN-based method can enable the non-Gaussian receiver to
surpass the QNL up to a phase noise bandwidth of �ν ≈
15 kHz, even in the presence of significant amplitude noise.
We note that the situation in Figs. 4(a)–4(c) with no amplitude
noise is equivalent to the single parameter problem of phase
tracking for non-Gaussian receivers as demonstrated in [31].
For large phase noise bandwidths for 〈n̂〉0 = 5, and 10, we
observe that a NN estimator can perform slightly better than
a Bayesian estimator. We believe this is due to the relatively
small number of samples (N = 10) from which estimates are
made. In this regime with a few samples for estimation, there
may be estimators which perform better than the Bayesian es-
timator, which is asymptotically optimal in the limit of many
samples. Another potential cause of this effect is that in the
training process of the NN, the relative weight between error
in phase estimates and error in mean photon number estimates
can be adjusted. This freedom may allow for fine-tuning of
the overall training error to allow for a slightly better overall
performance, in terms of error probability, for specific channel
models.

B. Amplitude noise with different bandwidths

To investigate the effect of the amplitude noise band-
width γ , we fix the long-time variance �2

∞ and the phase
noise bandwidth �ν. This allows for studying the perfor-
mance of the NN-based method when the amplitude noise
bandwidth γ ranges from much smaller to much larger than
the bandwidth for parameter estimation 1/N�T . Figure 5
shows the average probability of error for different ampli-
tude noise bandwidths γ without and with phase noise of
bandwidth �ν = 5 kHz, for 〈n̂〉0 = {2, 5, 10} with �2

∞ =
{0.25, 1.5, 6.0}, respectively. Blue (orange) lines show the
error rates for the NN- (Bayesian-) based tracking method.
Purple and gray dashed lines show the error probability for
a non-Gaussian and heterodyne measurement with perfect
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FIG. 4. Phase noise tracking. Error probability as a function of phase noise bandwidth (BW) �ν without (a)–(c) and with (d)–(f) amplitude
noise of γ = 25 kHz and �2

∞ = 0.25, 1.5, and 6.0 for average intensities 〈n̂〉0 = 2, 5, and 10, respectively. Blue and orange lines show the
performance of the noise tracking methods based on NN and Bayesian estimators, respectively. The orange dashed line shows the error
probability for a non-Gaussian receiver with no correction. The purple and gray dashed lines show the error probability for a non-Gaussian
and heterodyne measurement with perfect correction, respectively.

correction, respectively. We find that the NN-based method
performs closely to the Bayesian-based method, and enables
the receiver to achieve sub-QNL error rates across a broad
range of amplitude noise bandwidths even in the presence of
phase noise.

We note that for intensity 〈n̂〉0 = 2 in Fig. 5(a), the error
for both the noise tracking methods is below the perfectly
corrected non-Gaussian measurement when �ν = 0. At low
input powers, strategies that optimize the LO intensity (|β|2 >

|α|2) yield lower error probabilities than when |β|2 = |α|2

[28]. Due to the small number of samples (N × L) used for
estimation, the NN and Bayesian estimators have a bias in
ÂB,NN , such that B(τ ) > A(τ ). The effect of this bias in the
intensity estimates ÂB,NN is that the corrected measurement
unintentionally approximates an optimized strategy [28]. This
effect results in error probabilities of the corrected receiver
with both NN- and Bayesian-based methods that are below the
error of a perfectly corrected nulling receiver where B(τ ) =
A(τ ), which is due to the bias of the estimators from finite
sampling. Further investigation is needed to determine the

FIG. 5. Amplitude noise tracking. Error probability as a function of amplitude noise bandwidth (BW) γ for 〈n̂〉0 = {2, 5, 10} without and
with phase noise with bandwidth �ν = 5 kHz. Purple and gray dashed lines show the error for a non-Gaussian and heterodyne measurement
with perfect correction, respectively. Beyond γ ≈ 107 Hz, the amplitude noise is effectively random across the N experiments.

013200-6



CHANNEL-NOISE TRACKING FOR … PHYSICAL REVIEW RESEARCH 3, 013200 (2021)

capabilities of NN-based noise tracking for optimized non-
Gaussian receivers [28].

The performance of the non-Gaussian receiver also de-
pends on the long-time variance �2

∞ of the amplitude noise.
In our main results, �2

∞ was set to represent a “worst-case”
scenario of ≈25% relative amplitude noise (see Fig. 3). Ap-
pendix C describes our study of noise tracking of amplitude
noise with different long-time variance �2

∞. In our findings,
we observe that in the absence of phase noise, both the NN-
and Bayesian-based tracking methods enable the receiver to
perform below the QNL, and close to the performance of
perfect noise correction. In the presence of phase noise with
bandwidth �ν = 5 kHz, the sub-QNL performance of the
receiver is maintained, and the effect of increasing �2

∞ is
small compared to the effects of increasing phase or amplitude
bandwidths.

IV. DISCUSSION

The numerical studies in this work show that methods
for channel-noise tracking based on NN estimators are able
to accurately track dynamic phase and amplitude noise to
allow an adaptive non-Gaussian measurement to maintain
performance below the QNL. We note that in the asymptotic
limit of many samples available for parameter estimation for
noise tracking, a Bayesian estimator can achieve minimal
mean-square error [63]. However, when noise tracking and
correction need to be realized in real time to reduce errors
in the state discrimination measurement and generate reli-
able data for parameter estimation, there is always a limited
number of samples from which estimates are made. In these
situations, there is a trade-off between estimation precision
and noise tracking bandwidth. Other estimators, such as a
NN, may balance these two parameters better than a Bayesian
estimator for increased precision with finite samples. This
property can enable efficient methods for high-dimensional
parameter tracking of complex dynamic channel noise.

The computational efficiency of the NN estimator is rooted
in the small number of multiplications required to calculate
a single estimate, the limited memory requirements, and in
the fact that the NN method does not explicitly depend on
the value of N or the number of adaptive steps L, as opposed
to the Bayesian approach. For example, the NN-based esti-
mator in this work requires ≈5500 multiplications. On the
other hand, a Bayesian estimator using likelihood functions
which are discretized into a 100 × 100 grid would require
1002 × N × L = 106 multiplications, which may not be com-
patible with devices such as field-programmable gate arrays
[26,31]. While there may be methods to reduce this computa-
tional cost, the Bayesian estimator also would require storage
in memory of the full photon counting likelihood functions,
putting stringent requirements on the device memory. For
example, the 100 × 100 grid for the Bayesian estimator with
16 bit precision would require 800 kB of memory simply to
store the likelihood functions. Moreover, to extend the noise
tracking method for estimation of three noise parameters, a
NN would simply require a single added output and proper
retraining, while a Bayesian estimator would require possibly
108 multiplications and 80 MB of memory.

The robustness and versatility of the NN-based noise track-
ing method described here, shows that NN-based methods
can be practical and very useful tools for non-Gaussian re-
ceivers. In addition, other machine learning techniques, such
as reinforcement learning [75,76], could provide further ben-
efits to these nonconventional measurements when the best
detection strategy may be unknown or infeasible to calculate.
We anticipate that neural networks and machine learning will
have a great benefit for non-Gaussian measurements, just as
these techniques have proven worthwhile for conventional
measurement strategies [54–61].

V. CONCLUSION

We investigate the use of a NN as a computationally ef-
ficient multiparameter estimator of dynamic channel noise,
enabling robust noise tracking for adaptive non-Gaussian
measurements for coherent state discrimination. We study the
NN-based tracking method for simultaneous amplitude and
phase noise and find that the NN estimator can perform as
well as a more complex Bayesian estimator. This performance
is observed across a broad range of noise strengths and band-
widths for different average powers of the input coherent
states. The non-Gaussian receiver used in this study can have
broad applications in classical [26,27] and quantum commu-
nication [77,78] due to its ability to attain sensitivities beyond
the QNL. Moreover, the proposed method for noise tracking
uses only the data collected during the state discrimination
measurement without requiring extra resources such as strong
reference pulses. This makes the receiver and the proposed
method for noise tracking well suited for energy efficient
low power communications. Thus, NN-based methods are
ideal candidates for real-time tracking of multiple sources of
channel noise for non-Gaussian receivers, allowing them to
maintain their sub-QNL sensitivity in the presence of complex
dynamic channel noise.
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APPENDIX A: NEURAL NETWORK ESTIMATOR
TRAINING

To generate training data, we use Monte Carlo simula-
tions of the adaptive non-Gaussian measurement described
in Sec. II A [26]. For a single training data element, the
strategy is simulated using a randomly chosen intensity for
the input state A and LO intensity B, both sampled from a
uniform distribution U (0.05, 25.0). A constant value for the
phase noise φ is then sampled from a Gaussian distribution
N (0, σ = 0.25). In addition, we randomly sample the number
of experiments N that comprise each sample from a uniform
distribution U (2, 200). This random sampling of the three
parameters enables the NN to be used for different values of
N depending on the noise characteristics. During the training
of the NN, we use true values of the input parameters (φ,A)
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as the target values. This procedure using random sampling of
multiple input noise parameters ensures sufficient sampling
of the input parameter space, enabling training of a robust NN
estimator.

To train the NN we use the Tensorflow framework [65]
in Python. Table I summarizes the relevant NN and train-
ing parameters. We use the RMSprop optimizer [80] with a
weighted mean-squared-error cost function. The weight wi of
each training sample is given by

wi = e−(Ai−Bi )2/2 + 0.1, (A1)

whereAi and Bi are the intensity of the input states and LO of
the ith sample, respectively. This allows the NN to accurately
estimate the parameters when the LO and input intensities are
close to each other, as one would expect in practice, while also
being somewhat robust to large amplitude fluctuations.

APPENDIX B: KALMAN FILTER

We implement Kalman filtering [74,81] of both the phase
estimate and intensity estimate in order to reduce the uncer-
tainty in the applied corrections to the adaptive non-Gaussian
measurement. For the phase estimates, the predicted mean
value ŷφ and variance σ̂ 2

φ are

ŷφ = 0, (B1)

σ̂ 2
φ = σ 2

φ + Nσ 2
1 ,

where ŷφ represents the predicted average value for the phase,
σ 2

φ the variance of the current prior probability distribution
for the phase, σ 2

1 = 2π�ν�T , and σ̂ 2
φ the predicted phase

variance. The filtered estimate φ̂ is then obtained from the raw
estimate φ̂NN and (B1) by

φ̂ = Kφφ̂NN + (1 − Kφ )ŷφ,

σ 2
φ = (1 − Kφ )σ̂

2
φ ,

Kφ = σ̂ 2
φ

σ̂ 2
φ + σ 2

φ,NN

,

(B2)

where Kφ is the Kalman gain for the phase estimate, σ 2
φ,NN is

the variance of the NN phase estimate, and σ 2
φ is the updated

variance of the filtered phase estimate.
Similarly, the equations for the predicted input intensity

mean value ŷA and variance σ̂ 2
A are given by

ŷA = (1 − γ�T )NBN + γ 〈n̂〉0�T
N−1∑

k=0

(1 − γ�T )k,

σ̂ 2
A = (1 − γ�T )2Nσ 2

A + �2�T
N−1∑

k=0

(1 − γ�T )2k,

(B3)

where γ is the amplitude noise bandwidth, 〈n̂〉0 is the average
input intensity equal to A(0), and BN is the LO intensity
for the previous N experiments. These equations result from
propagating the mean and variance of Eq. (1) for N time steps
of duration �T .

The filtered intensity estimate Â and variance σ 2
A are then

obtained from the raw estimate ÂNN and (B3) by

Â = KAÂNN + (1 − KA)ŷA,

σ 2
A = (1 − KA)σ̂ 2

A,

KA = σ̂ 2
A

σ̂ 2
A + σ 2

A,NN

,

(B4)

where KA is the Kalman gain for the intensity estimate and
σ 2
A,NN is the variance of the NN phase estimate. The initial

(τ = 0) variances for both phase and intensity are set to
zero.

In order to empirically obtain the variances σ 2
φ,NN and

σ 2
A,NN we use Monte Carlo simulations of the experiment and

the NN estimator without the Kalman filter. For all average
intensities, we fix the input intensity to A(t ) = {2, 5, 10} and
phase noise to zero, and calculate the variance of 106 esti-
mates. The variance is calculated for a range of the number
of experiments per estimation N . We fit the variance as a
function of N to a power-law function so that the filter may
be used for different values of N . For N = 10, as used in the
simulations, σ 2

A,NN = {3.37, 5.63, 5.35} × 10−1 and σ 2
φ,NN =

{4.77, 3.61, 2.66} × 10−3 for 〈n̂〉0 = {2, 5, 10}, respectively.
As discussed in Sec. IV B, the NN estimator is not necessarily
unbiased across the range of parameters it is trained on due to
the small sample size of only N × L as well as imperfections
in the NN training process.

Employing a Kalman filter allows for construction of the
full NN-based parameter tracking method. Algorithm 1 shows
the pseudocode for running the NN-based method including
the filtering steps. For every time step τ , a single state discrim-
ination measurement is completed, which yields detections
{dj}L and relative phases {� j}L which populate the detection
matrix D, as described in Sec. II B. Every N time steps,
i.e., every N measurements, the NN is evaluated to provide
raw estimates ÂNN , φ̂NN of the intensity and phase offset
within the previous N measurements. These raw estimates
are then passed through the Kalman filter, which returns the
current, filtered estimates for the intensity Â(τ ) and phase
offset φ̂. These current estimates are then used to update the
LO parameters B(τ ), δ(τ ) for the next N state discrimination
measurements.

APPENDIX C: DIFFERENT MAGNITUDES OF
AMPLITUDE NOISE

We further investigate the performance of the NN estimator
when varying the long-time strength of the amplitude noise
�2

∞. Figure 6 shows the error probability of the receiver for
〈n̂〉0 = 5 across a range of �2

∞ for fixed γ = 25 kHz without
and with phase noise of bandwidth �ν = 5 kHz. We find that
the NN-based tracking method performs similar to the one
based on the Bayesian estimator, and enables an error prob-
ability below that of the ideal heterodyne measurement. We
have observed in other studies that the behavior for average
input intensities 〈n̂〉0 = 2 and 10 is similar to the one for
〈n̂〉0 = 5 in Fig. 6.
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Algorithm 1. NN Parameter Tracking Algorithm

function KALMANFILTER(ÂNN , φ̂NN )
Predict: ŷφ, σ̂ 2

φ , ŷA, σ̂ 2
A � Eqs. (B1), (B3)

φ̂ ← Kφφ̂NN + (1 − Kφ )ŷφ � Eq. (B2)
Â(τ ) ← KAÂNN + (1 − KA)ŷA � Eq. (B4)
Update: Kφ, σ 2

φ , KA, σ 2
A � Eqs. (B2), (B4)

return φ̂, Â(τ )
end function
Initial
B(0) ← Â(0)
δ(0) ← 0
τ ← 0 � Time in increments of symbol time
n ← 0 � Number of measurements performed
loop

{dj}L, {� j}L ← Single discrimination measurement
Add {dj}L, {� j}L to detection matrix D
τ ← τ + �T
n ← n + 1
if n = N then � Update LO every N measurements

ÂNN , φ̂NN ← Evaluate NN with inputs D, B(τ )
Reset D to zeros
φ̂, Â(τ ) ← KALMANFILTER(ÂNN , φ̂NN )
B(τ ) ← Â(τ ) � Correct LO intensity
δ(τ ) ← δ(τ ) + φ̂ � Add estimate to phase correction
n ← 0 � Reset measurement counter

else � Don’t update LO
B(τ ) ← B(τ − �T )
δ(τ ) ← δ(τ − �T )

end if
end loop

APPENDIX D: ESTIMATION TIME-BANDWIDTH
TRADE-OFF

The overall performance of the phase tracking also depends
on the number of experiments N used to obtain a single
estimate. For this study, we fixed N=10 for all simulations

FIG. 6. Error probability as a function of the long-time variance
�2

∞ of the amplitude noise for 〈n̂〉0 = 5, γ = 25 kHz without and
with phase noise of bandwidth �ν = 5 kHz.

FIG. 7. Error probability as a function of N for three differ-
ent noise strengths: low noise (blue), moderate noise (orange),
and high noise (yellow). The black circles show the minimum er-
ror probability PE ,MIN and corresponding optimal value for N for
each noise regime. The inset shows the error probability normal-
ized by the minimum error given by the black circles in the main
figure.

to demonstrate the versatility of the NN estimator. Although,
realistic implementations may use a particular channel with
specific noise characteristics. In this scenario, the value of N
can be fine-tuned to optimize the performance of the phase
tracking method to balance the estimation bandwidth (smaller
N) and estimation accuracy (larger N). The optimization aims
to find a value of N such that the overall error probability
is minimized when implementing the noise tracking method.
The Kalman filtering attempts to balance the effects of the es-
timation variance and the noise variance over N measurements
in an optimal way through the Kalman gain K . However, there
is still a trade-off between these two variances and a value
of N which achieves minimal PE for specific channel-noise
conditions.

Figure 7 shows the overall error probability as a function
of N when implementing the NN estimator with filter-
ing for three different sets of channel-noise parameters for
〈n̂〉0 = 5.0. The blue line corresponds to �ν = 0.5 kHz, γ =
2.5 kHz, and�2

∞ = 0.1. The orange line corresponds to�ν =
5 kHz, γ = 25 kHz, and �2

∞ = 0.5. The yellow line corre-
sponds to �ν = 50 kHz, γ = 250 kHz, and �2

∞ = 1.0. For
small noise bandwidth and strength (blue), the optimal value
of N (black circles) is approximately N = 40, but decreases
to N = 10 and N = 3 as the noise bandwidth and strength
increase (orange and yellow). The inset shows the error prob-
ability normalized by the minimum for each noise strength for
clarity. These optimal values of N for specific channel-noise
parameters represent the optimal balance between estimation
uncertainty and accumulated uncertainty from the channel
noise. Thus, for a channel with known noise characteristics,
an optimal value of N can be found. In the studies presented
in the main text, we fixed N=10, since we found that this value
allows the receiver to be versatile and operate well across
a wide range of noise bandwidths. In the inset, N = 10 is
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optimal for moderate noise levels. For small and large noise
levels, the error at N = 10 is only slightly higher compared
to their respective minimums. Thus, for a specific well-known

channel an optimal N can be implemented, but for a robust
and versatile implementation a different value of N may be
beneficial.
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