
Nature | Vol 599 | 4 November 2021 | 57

Article

Reconstruction of Bloch wavefunctions of 
holes in a semiconductor

J. B. Costello1,4, S. D. O’Hara1,4, Q. Wu1,4, D. C. Valovcin2, L. N. Pfeiffer3, K. W. West3 & 
M. S. Sherwin1ಞᅒ

A central goal of condensed-matter physics is to understand how the diverse 
electronic and optical properties of crystalline materials emerge from the wavelike 
motion of electrons through periodically arranged atoms. However, more than  
90 years after Bloch derived the functional forms of electronic waves in crystals1  
(now known as Bloch wavefunctions), rapid scattering processes have so far prevented 
their direct experimental reconstruction. In high-order sideband generation2–9, 
electrons and holes generated in semiconductors by a near-infrared laser are 
accelerated to a high kinetic energy by a strong terahertz field, and recollide to emit 
near-infrared sidebands before they are scattered. Here we reconstruct the Bloch 
wavefunctions of two types of hole in gallium arsenide at wavelengths much longer 
than the spacing between atoms by experimentally measuring sideband polarizations 
and introducing an elegant theory that ties those polarizations to quantum 
interference between different recollision pathways. These Bloch wavefunctions are 
compactly visualized on the surface of a sphere. High-order sideband generation can, 
in principle, be observed from any direct-gap semiconductor or insulator. We thus 
expect that the method introduced here can be used to reconstruct low-energy Bloch 
wavefunctions in many of these materials, enabling important insights into the origin 
and engineering of the electronic and optical properties of condensed matter.

Bloch’s theorem tells us how to calculate both the Bloch wavefunctions 
and the spectrum of electronic energies (the ‘band structure’)1. A typi-
cal Bloch wave contains spatial oscillations with wavelengths ranging 
from atomic to macroscopic length scales. Of special interest is the 
low-energy, long-wavelength physics where the excited Bloch waves 
can be described by a finite-dimensional effective Hamiltonian (Meth-
ods). Knowledge about both the low-energy Bloch wavefunctions and 
band structure are essential to calculating the response of crystalline 
solids to most external stimuli. The band structure of many crystalline 
materials can be experimentally reconstructed from angle-resolved 
photoemission spectroscopy (ARPES) of electrons emitted from their 
surfaces10,11. ARPES enables determination of the energies of electronic 
waves as functions of their wavelengths and directions of propagation. 
However, there are no comparably direct methods to reconstruct Bloch 
wavefunctions. As a result, estimates of Bloch wavefunctions typically 
depend on parameters derived from the fits of complex models12,13 to 
a few pieces of experimental data—such as the orbital frequency of an 
electron in a magnetic field (cyclotron resonance)14—that are sensitive 
only to averages over a range of electronic wave propagation directions 
and wavelengths. A key obstacle to directly probing Bloch wavefunc-
tions in solids has been that, unlike molecules, where reconstructed 
electron wavefunctions have been reported15–17, electronic waves in 
solids are typically distorted in a few picoseconds by scattering.

Recently, strong laser fields have been used to significantly acceler-
ate electronic waves in solids before they are scattered. For example, 

high-harmonic generation has been demonstrated in solids18–21 and led 
to an alternative method to probe band structures22,23. However, com-
plicated interference between quantum pathways of electronic waves 
across multiple bands in high-harmonic-generation experiments19 
hinders the reconstruction of Bloch wavefunctions.

High-order sideband generation
Here we present a direct experimental reconstruction of Bloch wave-
functions of holes in bulk gallium arsenide (GaAs) using high-order 
sideband generation (HSG)2–9. In HSG, a relatively weak near-infrared 
(NIR) laser with frequency fNIR and a strong laser with terahertz (THz) 
frequency fTHz simultaneously interact with a semiconductor, resulting 
in the emission of sideband photons with frequencies fSB = fNIR + nfTHz 
where n is an integer. If the band structure is symmetric under inver-
sion, as in the (001) plane of GaAs studied here, n must be even. HSG 
experiments have been conducted with both extremely narrow-band 
quasi-continuous-wave fields with fTHz < 1 THz, which have enabled the 
resolution of sidebands with n > 60 (ref. 7), and broader-band pulsed 
fields with fTHz > 10 THz, which have enabled time resolution of the 
recollision process even in materials with dephasing times of less than 
10 fs (ref. 5). A quasi-continuous-wave HSG spectrum from bulk GaAs 
at 60 K is shown in Fig. 1a. In the experiment, a 100-mW NIR laser, and 
2.01 ± 0.13 mJ, 40 ns, 0.447 ± 0.001 THz pulses generated by the Univer-
sity of California, Santa Barbara (UCSB) millimetre-wave free-electron 
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laser24 were linearly polarized and collinearly focused on a 500-nm GaAs 
epilayer (Fig. 1a, inset). The THz electric field strength in the epilayer was 
70 ±2 kV cm−1 (Methods). In GaAs, HSG can be described by the following 
three-step process (Fig. 1b, Methods). First, electrons (E) and two species 
of hole—light holes (LH) and heavy holes (HH)—are created by the NIR 
laser. Second, the E–LH and E–HH pairs are driven apart and then back 
towards each other along the direction defined by the THz field (Fig. 1b). 
Crucially, during this acceleration phase, the Bloch waves associated 
with the E–LH and E–HH pairs interfere with each other. Third, they 
recollide with significant kinetic energy and emit sideband photons.

Information about the Bloch wavefunctions sampled by electrons 
and holes on their journeys through the Brillouin zone is imprinted 
on the polarization state of each sideband, which we measured by 
Stokes polarimetry (Methods). As light from a particular sideband 
can be associated with a quasi-momentum that is controlled by the 
THz field, its polarization will be different from the incoherent light 
emitted at the same energy in the absence of a strong THz field (pho-
toluminescence), which is a superposition of emission from electron–
hole pairs with all quasi-momenta satisfying energy conservation. 
The linear orientation angle, α, and the ellipticity angle, γ, for each 
sideband are shown in Fig. 1c for four different NIR polarizations. The 
polarizations of sidebands depend on the sideband index n and the 
NIR polarization in a manifestation of dynamical birefringence6. 
Although sideband intensities have a highly nonlinear dependence 
on THz power, they are proportional to the NIR power if it is sufficiently 
small2. All data reported here were taken in this regime of linear NIR 
response. In this linear regime, the sideband polarization can be 
mapped onto the polarization state of the NIR laser by a dynamical 
Jones matrix T (ref. 6), defined in a basis of circularly polarized fields 
σ± (with helicity ±1) as
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where E±,n and E±,NIR denote the σ± components of the electric field associ-
ated with the nth sideband and NIR laser, respectively, and T±±,n denote 
the dynamical Jones matrix elements associated with the nth sideband. 
T-matrix elements were determined by measuring the sideband polari-
zations for four different linear NIR laser polarizations.

Dynamical Jones matrices
To understand the physics underlying each T-matrix element, it is nec-
essary to consider the spins of electrons and holes. The four recollision 
pathways from the excitations generated by the σNIR

−  component of the 
NIR laser are shown in Fig. 2. The electrons have spin 1/2, whereas the 
HHs and LHs have total spin 3/2. Driven by the THz field from time t' to 
t, an electron–hole pair acquires a dynamic phase

k k ℏ∫A t t t E t E t( ′, ) = − d ′′( [ ( ′′)]− [ ( ′′)])/ ,
′t

t

HH(LH) c HH(LH)

where Ec and EHH(LH) are the energies associated with the E and HH (LH) 
bands, respectively, shown schematically in Fig. 1b, k is the quasi- 
momentum and ħ is the reduced Planck’s constant (Methods, Supple-
mentary Discussion). The spin ±1/2 of the electron does not change dur-
ing acceleration. As the Bloch wavefunctions in both the HH and the LH 
bands are superpositions of states with spin ±1/2 and spin ±3/2, the σNIR

−  
component can generate sidebands with either σHSG

−  or σHSG
+  while satisfy-

ing angular-momentum conservation, giving rise to dynamical Jones 
matrix elements T−−,n and T+−,n, respectively. Similar recollision pathways 
follow from the excitations generated by the σNIR

+  component, giving rise 
to T−+,n and T++,n (Supplementary Discussion, Extended Data Fig. 4).

The properties of dynamical Jones matrices can be derived from the 
Luttinger Hamiltonian25, which describes the physics of the HH and 

LH states at the relatively small energies and quasi-momenta probed 
in this experiment. We tune the NIR laser just below the bandgap and 
direct the THz field to propagate along the z axis to ensure the electrons 
and holes have no z component of quasi-momentum k. In this case the 
Luttinger Hamiltonian takes a block diagonal form
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 where τ0 is the identity matrix, τ is the vector of Pauli matrices, θ is the 
angle between the THz field and the [110] crystal direction (Fig. 3d, 
inset), γ1, γ2 and γ3 are the scalar Luttinger parameters, m0 is the electron 
rest mass, and n± is
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The Bloch wavefunctions are found by diagonalizing equation (1) 
and only depend on the n± · τ term because the first term is proportional 
to the identity. As n± depends only on the crystal angle θ and γ3/γ2, an 
experimental measurement of γ3/γ2 allows the reconstruction of the 
Bloch wavefunctions. Even for kz ≠ 0, although the Luttinger Hamilto-
nian is not block diagonal, knowing γ3/γ2 is still sufficient to reconstruct 
the Bloch wavefunctions.

Reconstruction of Bloch wavefunctions
We use ratios of T-matrix elements to check the validity of the theory 
and measure γ3/γ2. As the diagonal elements of equation (1) are real, 
when sideband and NIR laser polarizations are the same, for each path-
way producing a σHSG

+  photon there is an equivalent pathway producing 
a σHSG

−  photon (Fig. 2, Supplementary Discussion, Extended Data Fig. 4) 
through states related by time-reversal symmetry. Therefore, the ratio 
of diagonal dynamical Jones matrix elements for all sideband indices 
and crystal angles is
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As the off-diagonal elements of equation (1) are complex, when side-
band and NIR laser polarizations are different, for each pathway pro-
ducing a σHSG

+  photon there is an equivalent pathway producing a σHSG
−  

photon with a complex-conjugated phase factor (Supplementary 
Discussion). Therefore, the ratio of off-diagonal dynamical Jones matrix 
elements for all sideband indices is
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The magnitude of χn(θ) in equation (4) is 1 for all angles, but the argu-
ment depends on γ3/γ2 and θ.

The experimentally measured values χn(θ) and ξn(θ) at various θ are 
compared with the predictions of equations (3) and (4) in Fig. 3 and 
Extended Data Fig. 5 using values for γ3 and γ2 recommended in ref. 13. 
Within experimental error, χ θ| ( )|n  and ξ θ| ( )|n  are 1, as predicted by equa-
tions (3) and (4) (Fig. 3a, Extended Data Fig. 5b, c). The arguments of 
χn(θ) for eight different θ are independent of n (Fig. 3b), lying within 
22° of the constant values predicted by equation 4 (dashed lines) for 
all θ except −45°. The values of χ θ χ θ( ) ≡ * ( )+n  and ξ θ ξ θ( ) ≡ * ( )+n , where 
averages are over n, are plotted at each θ in Fig. 3c, d. The magnitudes 
χ θ| ( )| and ξ θ| ( )| are independent of θ, with a value of 1, as predicted by 
equations (3) and (4) (Fig. 3c). The argument of χ(θ) is plotted with 
respect to θ in Fig. 3d, and is close to the prediction provided by 
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equation (4). Averaging the argument of χ(θ) over experimentally 
sampled θ gives γ3/γ2 = 1.47 ± 0.48, within experimental error of the 
value 1.42 recommended in ref. 13. We attribute the deviations in meas-
ured χn(θ) and ξn(θ) from theoretical predictions, as well as much of 
the experimental error in the determination of γ3/γ2, to small 

inhomogeneous strain in the GaAs membrane (Methods, Extended 
Data Fig. 2).

From γ3/γ2, we reconstruct the Bloch wavefunctions of the Luttinger 
Hamiltonian in GaAs. For two coupled bands, the Bloch wavefunctions 
can be represented as spinors on a Bloch sphere26. In the kz = 0 plane, 
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Fig. 1 | High-order sideband generation in bulk GaAs. a, An HSG spectrum 
(blue). The red dash-dot line indicates the NIR laser photon energy. Sidebands 
(peaks) are spaced by twice the THz frequency. Inset: experimental set-up 
schematic. b, Three-step model of HSG in GaAs. E–HH and E–LH recollision 
trajectories are denoted in red and blue, respectively, and are classical 
representations of interfering quantum pathways. The y axis (into page) 
corresponds to time. Bottom plane: real-space trajectories of E–HH and E–LH 
pairs. Three-dimensional mesh plot: k-space trajectories of the same pairs.  
The z axis corresponds to energy and the x axis corresponds to dimensionless 
quasi-momentum ka, where a is the lattice constant. Step 1: creation of E–HH 
and E–LH pairs by NIR laser (up arrows of equal length). Step 2: acceleration by 
the THz field. Electrons and holes begin at k = 0, and recollide with substantial 
kinetic energy at |ka| > 0.1. Step 3: recombination of E–HH and E–LH pairs and 

emission of sideband (down arrows of equal length). Top line: linearly polarized 
NIR laser photons (black double arrow) lead to emission of E–HH and E–LH 
sideband components (red and blue double arrows) with rotated linear 
polarizations and different phases, which combine to emit an elliptically 
polarized sideband. Classical calculations of trajectories (Methods) are for the 
24th order sideband. c, Sideband linear orientation angle α and ellipticity angle 
γ as functions of sideband index for NIR laser linear orientation αNIR = 0° (cyan), 
αNIR = 90° (red), αNIR = 45° (orange) and αNIR = −45° (green) defined in upper 
inset. NIR laser polarization (pol.) angles are plotted as sidebands with n = 0. 
The lower inset defines α and γ with respect to the linearly polarized THz field. 
The measured polarization at each sideband index is displayed directly below 
the corresponding peak in the HSG spectrum in a. The error bars denote the 
standard deviation.
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each block of the Luttinger Hamiltonian is a two-by-two matrix, whose 
eigenfunctions—the Bloch wavefunctions—depend on θ but not on 

k k| | = . Thus, in the kz = 0 plane, for any θ, a single point on the Bloch 

sphere represents the Bloch wavefunctions for arbitrary k. The closed 
black curves in the northern and southern hemispheres of the Bloch 
sphere in Fig. 4 represent the most likely Bloch wavefunctions consist-
ent with our measured γ3/γ2 for the LH and HH, respectively. The north 
and south poles represent the states with spin −3/2 and +1/2, respec-
tively. The Bloch wavefunctions for the degenerate partners of those 
represented in Fig. 4 are related by time-reversal symmetry.

Discussion
The complete electronic structure of a crystalline solid should include 
both its band structure and Bloch wavefunctions. We have recon-
structed low-energy Bloch wavefunctions of holes in GaAs from pola-
rimetry of high-order sideband spectra. GaAs is one of the most widely 
studied semiconductors, and the consistency of our results with the 
vast body of complementary previous work validates the novel method 
presented here. HSG can, in principle, be observed from any direct-gap 
semiconductor or insulator, and has been observed in semiconduc-
tor quantum wells2,3,6,7 and both monolayer and bulk semiconducting 
transition metal dichalchogenides5,8,9. Thus, we expect polarimetry 
of high-order sidebands can be measured from a large class of bulk 
and nanostructured materials. As a probe of electronic structure, the 
sensitivity of HSG to the bulk of electrically insulating materials has 
the potential to complement ARPES, which works best on surfaces.

Holes in GaAs are an interesting special case because the Luttinger 
Hamiltonian is one of the simplest non-trivial, low-energy effective 
Hamiltonians in solids. However, HSG spectra contain a wealth of infor-
mation about the portions of the Brillouin zone explored during the 
acceleration phase, and straightforward extensions of the work pre-
sented here will enable reconstruction of Bloch wavefunctions from a 
wide range of low-energy Hamiltonians. Each peak in a HSG spectrum 
can be thought of as the output of an interferometer for Bloch waves. 
During acceleration by the THz field, Bloch wavepackets generally 
accumulate two types of phase: dynamic phases AHH(LH), which have 
been extensively discussed here, and geometric phases (also called 
Berry phases)6. Dynamic phases depend on only the time-dependent 
energy eigenvalues of electrons and holes during acceleration. Geo-
metric phases accumulate if the Bloch wavefunctions of electrons or 
holes change along their trajectories. The Luttinger model predicts 
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+  photon with helicity +3/2 −1/2 = +1. The interference of the 
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− ) produces the dynamical Jones 
matrix element T+− (T−−). Photons with σNIR

+  result in similar pathways to produce 
to T−+ and T++ (Supplementary Discussion, Extended Data Fig. 4).
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that, along special trajectories that are straight lines through the Γ point 
oriented along the constant angle θ defined by the linearly polarized 
THz electric field, electron–hole pairs acquire dynamic phases AHH(LH), 
but no Berry phases (Supplementary Discussion, Extended Data Fig. 7). 
Experimental conditions (linearly polarized THz electric field and NIR 
excitation with k = 0) were chosen to excite only such trajectories to 
simplify analysis. However, in Hamiltonians with lower symmetry, 
even for these simple experimental conditions, Berry phases will, in 
general, accumulate during acceleration. For example, the addition of 
a small biaxial strain to GaAs lowers the symmetry, splits degeneracy 
between HH and LH bands at the Γ point, and makes it inevitable that 
both dynamic and non-Abelian Berry phases contribute to the intensity 
and polarization of sidebands (Supplementary Discussion, Extended 
Data Fig. 8). We are currently investigating the hypothesis that the 
imperfect agreement between experiment and theory in Fig. 3 is due 
to small strains in this sample.

We expect Bloch wavefunctions of nearly degenerate bands can 
be reconstructed for a wide range of semiconducting and insulating 
materials by minimizing the difference between measured Jones matrix 
elements and those predicted by the appropriate effective Hamilto-
nian. We anticipate the following requirements on materials and light 
sources to enable Bloch wavefunction reconstruction. The carrier 
density should be sufficiently low that it does not interfere with the 
recollision process. One must know the space group of the material 
and the spin and orbital angular momenta associated with each of the 
optically excited bands at the band edge to construct a low-energy 
effective Hamiltonian with the correct symmetry and set of parameters 
using k · p theory. The laser tuned to the bandgap of the material should 
be sufficiently weak that sideband intensities are in the linear regime. 
The strong THz laser should have sufficiently narrow bandwidth and 
low-enough frequency to resolve multiple sidebands in the portion of 
the Brillouin zone of interest. The THz electric field should be strong 

enough to ionize electron–hole pairs in a fraction of a cycle, and for 
acceleration and recollision to occur for a detectable fraction of photo-
excited quasiparticles before scattering disrupts the process, but not so 
strong that it creates electron–hole pairs spontaneously. By leveraging 
a variety of state-of-the-art narrow-band THz sources27, we believe that 
Bloch wavefunction reconstruction from polarimetry of high-order 
sidebands can become an important technique for determining the 
complete low-energy electronic structure of charged quasiparticles 
in both weakly and strongly correlated materials.
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Fig. 4 | Reconstruction of the Bloch wavefunctions for kz = 0. The Bloch 
wavefunctions of HH and LH bands associated with H+ in equation (1) are 
plotted as black lines. The orange shaded area corresponds to the uncertainty 
in the wavefunction associated with one standard deviation in the 
measurement of γ2/γ3. For a given θ, each wavefunction is represented by a 
point on the Bloch sphere. The arrows within the Bloch sphere point from the 
origin to the LH and HH Bloch wavefunctions for the values of θ defined by their 
Miller indices in the inset below. The poles correspond to the spin −3/2 and spin 
+1/2 states. The wavefunctions for H− are paths reflected across the x–z plane 
on a Bloch sphere with poles representing the spin +3/2 and spin −1/2 states.
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Methods
Fabrication of GaAs sample
A 500-nm-thick GaAs epilayer was grown via molecular beam epitaxy 
and then transferred onto a sapphire substrate through van der Waals 
bonding28–31. The sapphire was transparent to both NIR and THz radia-
tion. The fact that the thermal expansion coefficients of sapphire and 
GaAs are closely matched ensures relatively small strains in the GaAs 
epilayer upon thermal cycling. To make the strain as small and homoge-
neous as possible, the GaAs epilayer was etched to be circular. A layer of 
indium tin oxide (ITO)—which reflects THz radiation while transmitting 
NIR radiation—was grown on the sapphire surface that was opposite to 
the GaAs epilayer to create a low-quality-factor cavity that enhanced the 
THz field in GaAs at selected THz frequencies. At the 447 GHz frequency 
used in this study, the THz field is enhanced by a factor of 1.5 from the 
ITO layer (Extended Data Fig. 1). A silicon dioxide (SiO2) anti-reflection 
coating was grown on top of the ITO to minimize its NIR reflection and 
avoid NIR Fabry–Perot oscillations in the sideband spectra. See Sup-
plementary Methods for a step-by-step fabrication procedure.

The absorbance spectra of the GaAs epilayer were measured in a 
cryogenic chamber as a preliminary characterization on strains, as well 
as the excitation gap, which motivated our choice of NIR laser wave-
lengths for HSG experiments. Extended Data Fig. 2 shows an absorbance 
spectrum measured at a sample temperature of 60 K using a white light 
source, and calculated as A = −10 log(Transmitted power with sample 
in cryostat/Transmitted power with cryostat (and sample) removed). 
The sharp peaks are assigned to exciton resonances associated with 
band-edge states with different angular momenta. These peaks are 
separated by 2.6 meV. A recent study has associated a similar split-
ting with a strain of order 0.1% (ref. 32). The absorbance spectra in the 
immediate neighbourhood of the illuminated spot chosen for the HSG 
experiments in this study showed little variation.

Optical methods
The NIR laser was generated from an M Squared SolTiS titanium:sapphire 
laser, with a 7-W, 532-nm Sprout laser as the pump. The M Squared cavity 
is tunable via piezoelectric response, with a precision of 0.01-Å out-
put NIR wavelength, measured in real time by a WS6-600 wavemeter. 
The linewidth of the SolTiS is less than 5 MHz, enabling excitation of 
electron–hole pairs with very well defined energy and contributing 
negligibly to sideband linewidth, which is determined primarily by 
pulse-to-pulse fluctuations in the free-electron-laser (FEL) frequency7. 
An acousto-optic modulator was used to direct the NIR laser onto the 
sample for 1 µs at a 0.0001% duty cycle, synchronized with the THz 
output pulse from the FEL. After the modulation, only the first-order 
beam propagated through the rest of the optical elements. The polariza-
tion of the NIR laser beam incident onto the GaAs epilayer was set with 
a quarter-wave plate and a half-wave plate, and measured by a Thorlabs 
PAX polarimeter. The NIR beam was focused down to about 500 µm at 
the GaAs epilayer using a 500-mm lens.

The THz radiation was generated from the cavity-dumped UCSB 
millimetre-wave free-electron laser24,33,34. Most of the variance in the 
output frequency was due to variance in the terminal voltage of the elec-
trostatic accelerator that drives the FEL7. The THz beam output from an 
optical transport system was split into two beam paths. Ten per cent of 
the THz output power was directed into a fast-response pyroelectric ref-
erence detector, which measured the output power of each FEL pulse. 
The other 90% of the THz output power was directed onto the cryostat 
containing the GaAs epilayer. A 12.5-cm, gold-coated off-axis parabolic 
mirror was used to focus the THz beam into a 1.2-mm-diameter spot. 
An ITO slide, which was transmissive in the NIR but reflective in the THz 
range, was used to adjust the THz beam spot on the GaAs epilayer and 
make sure that the NIR and THz fields were collinear. The pulse energy 
was measured on each day before the HSG experiments using a Thomas 
Keating absolute power/energy meter placed after the beam splitter 

but before the parabolic mirror. The pulse energy measured by the 
Thomas Keating power meter was used to calibrate the fast pyroelectric 
reference detector.

The THz field strength in the GaAs epilayer is estimated to be 
70 ± 2 kV cm−1. This high THz field strength resulted in the large num-
ber of sidebands reported here. However, the dependence of sideband 
polarization angles on NIR laser polarization angles measured at fields 
as low as 35 kV cm−1 was similar to the dependence reported in Fig. 1c. In 
the calculation of THz field strength, we assume that the gold-coated 
off-axis parabolic mirror is 100% reflective, the ITO slide is 70% reflec-
tive, the cryostat window is 95% transmissive and the ITO coating on 
the sapphire provides a 150% field enhancement on the sample.

The sidebands generated from the GaAs sample were first transmitted 
through a Stokes polarimeter, which includes a rotating quarter-wave 
plate (RQWP) and a horizontal linear polarizer. The Stokes polarimeter 
was calibrated by measuring the NIR laser polarizations with the Thor-
labs PAX polarimeter, which was impractical for Stokes polarimetry of 
the sidebands because it is optimized for use with a continuous-wave 
laser beam at a single frequency. The intensity of each sideband was 
measured either by a photomultiplier tube or a charge-coupled device 
(CCD), each coupled to a dedicated monochromator6. The photomulti-
plier tube measured the lowest-order sidebands, while the CCD imaged 
many higher-order sidebands simultaneously. To optimize the efficien-
cies of the diffraction gratings, a half-wave plate was placed after the 
Stokes polarimeter to rotate the sideband polarizations.

All measurements were performed at 60 K, which was the base 
temperature of the cryostat during this experimental campaign. HSG 
polarimetry spectra recorded at lower temperatures were similar to 
those reported here.

Extraction of γ3/γ2 from Stokes polarimetry
We characterize the polarization of each sideband using the four Stokes 
parameters defined as S I=0 , S Ip α γ= cos2 cos21 , S Ip α γ= sin2 cos22  and 
S Ip γ= sin23 , where I is the total intensity, p is the degree of polarization, 
and the orientation angle α and ellipticity angle γ are defined in the 
inset of Extended Data Fig. 3b. After a sideband passes through the 
RQWP and horizontal linear polarizer, the intensity of the outgoing 
light, S φ( )out , can be expressed as

S φ
S S S

φ
S

φ
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4
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2
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where φ is the angle between the fast-axis of the RQWP and the horizon-
tal. By measuring Sout as a function of φ, the four Stokes parameters can 
be extracted from the Fourier transform ∫ S φ φ= ( )e d /2πmφ

m 0

2π
out

−iF : 
F FS = 2 − 4Re( )0 0 4 , FS = 8Re( )1 4 , FS = − 8Im( )2 4  and S = 4Im( )3 2F .  

We sampled the intensities of each sideband at 16 different angles φ. 
We define plots of Sout as functions of the angle φ as ‘polaragrams’ (see 
Extended Data Fig. 3a, c for examples). For each angle φ, four CCD scans 
were taken to establish the variance of the intensity Sout. From the Stokes 
parameters of the nth-order sideband, Si,n, the polarization state of the 
sideband can be extracted by calculating the angles αn and γn from 
relations
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Examples of extracted polarization states of sidebands are shown in 
Extended Data Fig. 3b, d.

To reconstruct the dynamical Jones matrices, the polarization states 
of the sidebands were measured for four different polarization states 



of the NIR laser. All polarizations of the NIR laser were linear (γ = 0°NIR ) 
with orientation angles α = 0°NIR , α = 45°NIR , α = 90°NIR  and α = − 45°NIR , 
respectively. Each dynamical Jones matrix J  connects the electric fields 
of the NIR laser and a sideband through
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which is linear with respect to the ratios J J/yx n xx n, , , /yy n xx n, ,J J  and 
/xy n xx n, ,J J . Measurements for three polarization states of the NIR laser 

give three such linear equations, which uniquely determine the ratios 
between the dynamical Jones matrix elements. From the measurements 
for the four NIR polarizations, we obtained four linear equations, which 
were solved by the method of least squares. The absolute values of the 
dynamical Jones matrix elements, which are not concerns of this study, 
can be determined through the absolute values of the Stokes param-
eters.

Each dynamical Jones matrix J  was converted to the T-matrix in a 
basis of circular polarizations through unitary transformation JT U U= † , 
where
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Here, φ is the angle between the THz polarization and the [100] crys-
tal direction.

From equation (4), with the measured T-matrix, the ratio γ3/γ2 can 
be calculated as

γ
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T T
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= | tan2 |
1− cosArg( / )
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n n
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where T TArg( / )n n+−, −+,  is the argument of T T/n n+−, −+, , and θ is the angle 
between the THz polarization and the [110] crystal direction. From 
each angle θ ( θ θsin2 , cos2 ≠ 0) and the ratio T T/n n+−, −+,  for each side-
band, one value of γ3/γ2 was obtained. An average over sideband index 
n and angle θ yields γ γ/ = 1.47 ± 0.483 2 , where the quoted error is the 
standard deviation of γ3/γ2.

A Monte Carlo simulation was performed to estimate the errors in 
the dynamical Jones matrix elements from two sources, which were 
added in quadrature: (1) the variance in the sideband intensity meas-
urements and (2) the deviation ηδ  of RQWP retardance η from its ideal 
value π/2. A small deviation ηδ  in the RQWP retardance modifies the 
relations between the Fourier transforms Fm and Stokes parameters 
as: F FS η η= 2 − 4Re( )(1− δ )/(1 + δ )0 0 4 , S η= 8Re( )/(1 + δ )1 4F , S = − 8Im2   
F η( )/(1 + δ )4  and S η= 4Im( )/(1− δ /2)3 2

2F . The deviation ηδ  was cali-
brated to be in the range [−π/36, π/36] . The angles αn and γn of the 

nth-order sideband were randomly sampled from normal distributions, 
with the mean and standard deviation set as the measured mean values 
and errors as shown in Extended Data Fig. 6a. Each set of αn and γn were 
sampled 10,000 times, generating 10,000 values for each of the dynam-
ical Jones matrix elements. As an example, Extended Data Fig. 6b shows 
the distribution of 1,000 sets of α12 and γ12 for four polarization states 
of the NIR laser. The value and error of each dynamical Jones matrix 
element was calculated as the mean and the standard deviation of the 
generated distribution, respectively. Note that the dynamical Jones 
matrix elements are complex valued, and we set J = 1xx n,  in this study. 
Extended Data Fig. 6c shows the distributions of the dynamical Jones 
matrix elements produced from the distributions of α12 and γ12 in 
Extended Data Fig. 6b.

Effective Hamiltonian and low-energy Bloch wavefunctions
In the basis consisting the eigenvectors of the position operator r̂, a 
Bloch wavefunction with band index N  and quasi-momentum k has 
the form ψ u* | += e ( ),N N,

i +
,r rk

k r
k  where u u( ) = * | +N N, ,r rk k  is a periodic 

function with the periodicity of the crystal. The eigenvalue problem 
of the Bloch wave functions, H ψ E ψ| += | +N N N, , ,k k k , can be equivalently 
stated as an eigenvalue problem of the state ku| +N ,  in the form 
H u E u( )| += | +,N N N, , ,k k k k  where k k r k rH H( ) ≡ e e−i ⋅ ˆ i ⋅ ˆ. According to the ⋅k p 
method35, in cases where the excited Bloch waves are located in energy 
bands that are relatively isolated and their quasi-momenta are restricted 
in a small portion of the Brillouin zone, a finite number of states ku| +N , 0

 
at quasi-momentum k 0 can be approximately taken as a complete basis. 
On this finite basis, the Hamiltonian kH( ) can be represented as a 
finite-dimensional matrix—the effective Hamiltonian, whose eigenfunc-
tions, the low-energy Bloch wavefunctions, are linear combinations 
of the states ku{| +}N , 0

. Determination of the effective Hamiltonian does 
not rely on the exact representations of the states u{| +}N , 0k  in real-space 
coordinates but their symmetry properties. The Luttinger Hamiltonian 
is an effective Hamiltonian with the basis chosen as four 
valence-band-edge states (Supplementary Discussion).

Interference of Bloch waves
We consider the case where the photon energy of the NIR laser lies 
just below the bandgap and assume that the sideband amplitudes are 
dominantly determined by electron–hole pairs created at k = 0. Under 
an approximation of free electrons and holes, the amplitude of the nth 
sideband can be written as (Supplementary Discussion)
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where ω and Ω are the angular frequencies of the THz field and the NIR 
laser, respectively, V  is the volume of the material, E Ft( ) = e Ωt

NIR NIR
−i  is 

the electric field of the NIR laser under the rotating wave approximation, 
the two components of σ σd= − ( , / 3 )T+ − +D  (D σ σd= − ( , / 3 )T− + − ) are 
dipole matrix elements between spin-down (spin-up) electron and hole 
states with spin +3/2 (−3/2) and spin −1/2 (+1/2), respectively (d is a con-
stant dipole matrix element), and R± is a two-by-two unitary matrix that 
diagonalizes the hole Hamiltonian kH[ ( )]v

± 2  through R R τ(ˆ ) = z±
†

±
2

±∙n τ  
with ˆ ≡ /| |± ± ±n n n . The first and second column of R+ (R−), respectively, 
represent the wavefunction of HH and LH on the basis of hole states 
with spin +3/2 (−3/2) and −1/2 (+1/2). The first (second) component of 
the quantity R ≡±

†
±D  (�핯HH,±, �핯LH,±)T represents the dipole matrix elements 

between E and HH (LH) bands. The acceleration process is described 
by the dynamic phase A t t( ′, )HH(LH) , which contains the quasi-momentum 

t e ωt ωt( ′′) = (sin ′ − sin ′′)t ′ THzk F  satisfying the initial condition t( ′) =t ′k 0 
indicated by the subscript t ′ and ℏ k Et e t∂ ( ′′) = − ( ′′)′′t t ′ THz , with e being 
the elementary charge and E Ft ωt( ) = cosTHz THz  the THz electric field. 
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The three-step process of HSG can thus be described as interference of 
the following recollision pathways: a Bloch wave associated with an 
electron–hole pair E–HH (E–LH) is first created by the NIR laser with 
amplitude proportional to �핯HH(LH),± t⋅ ( ′)NIRE , acquires a dynamic phase 
A t t( ′, )HH(LH)  during the acceleration phase from t ′ to t, and generates 
sidebands through the dipole vector �핯HH(LH),±. The major contribution 
to the sideband amplitudes comes from the recollision pathways around 
the saddle-points (t t′, ) given by the stationary-phase conditions:

ℏ ℏ

k
k kk k∫

A t t
t

t
t
t

E t E t

−
∂ ( ′, )

∂ ′
+ Ω

= d ′′
∂ ( ′′)

∂ ′
⋅ (∇ [ ( ′′)]−∇ [ ( ′′)]) = 0

t

t

t
t t

HH(LH)

′

′
c ′ HH(LH) ′

k kℏ ℏ ℏ
A t t

t
E t E t Ω n ω−

∂ ( ′, )
∂

= [ ( )]− [ ( )] = +t t
HH(LH)

c ′ HH(LH) ′

We have used the condition 0 0E E E( ) − ( ) = = Ωc HH(LH) g ℏ , where Eg is the 
bandgap. Substituting the energy dispersion relations kE E( ) = + ħ k
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the effective masses of the HH and LH bands, respectively) into the 
stationary-phase conditions, we obtain
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 is the reduced 

mass of the E–HH (E–LH) pair. The first equation has the meaning that 
the electron–hole pairs return to the position where they are created. 
The second equation states energy conservation at recollision. For each 
sideband order n, these two equations can be solved for the saddle-points 
(t t′, ), which determine k-space trajectories t( ′′)t ′k , as well as classical 
real-space trajectories with the velocities of E, HH and LH given by 
ħ t m( ′′)/t ′ ck , ħ t m− ( ′′)/t ′ HHk   and kħ t m− ( ′′)/t ′ LH . Figure 1b shows the  
shortest trajectory for the 24th-order sideband, and parameters 
m m= 0.067c 0 , m m= 0.711HH 0  and m m= 0.081LH 0  are used in the  
calculation.

Representation of Bloch wavefunctions
The wavefunctions of the Hamiltonian kH ( )v

±  are eigenfunctions of ˆ ±n τ∙ , 
which is defined on the basis of spin ∓3/2 and ±1/2 states. We define 

Θ Φ Θ Φ Θˆ = (sin cos , sin sin , cos )±n  as a point on a Bloch sphere with polar 
angle Θ and azimuthal angle Φ, and write the eigenfunctions of H ( )v

± k  as:
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The point on the Bloch sphere with coordinates ˆ ±n  ( n−ˆ ±) represents 
the state HH±  ( LH )±  for the HH (LH) band. The angles Θ and Φ  
are determined from the measured γ γ/3 2 and angle θ through the  

definition  
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Extended Data Fig. 1 | Field enhancement at the GaAs epilayer from the ITO-coated sapphire substrate. The field enhancement is calculated as r f|1 + ( )|THz  
with the complex reflection coefficient r f( )THz  measured by a Vector Network Analyzer.
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Extended Data Fig. 2 | An absorbance spectrum of the GaAs epilayer 
mounted on the ITO-coated sapphire substrate. The measurement was 
taken at the spot illuminated by a white light source (left inset). The right inset 
shows a zoom-in of the spectrum, with the bandgap and the photon energy of 

the NIR laser denoted by dash-dot blue and red lines, respectively. The two 
peaks are strain-split exciton resonances associated with band-edge states 
with different angular momenta. The temperature was 60 K.



Extended Data Fig. 3 | Stokes polarimetry with linearly polarized NIR laser 
(γNIR = 0°). a, Polaragrams for sideband index n= 12 and orientation angle of 
the NIR laser α = 0°NIR . b, The polarization state of the sideband extracted from 
the polaragrams in a. c, Polaragrams for sideband index n= 24 and orientation 
angle of the NIR laser α = 45°NIR . d, The polarization state of the sideband 
extracted from the polaragrams in c. In a and c, the black dots show the 
measured polaragrams, with error bars showing the standard deviation over 4 
measurements, and the red solid lines are the reconstructed polaragram 
through Fourier transform, with the red dotted lines showing the bounds. In b 
and d, the polarization states of the sidebands are represented as trajectories 
of the tips of the electric field vectors E E( , )x y  over time. The orientation angle α 
and ellipticity angle γ are defined in the inset in b.
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Extended Data Fig. 4 | Quantum interference in three-step model of HSG 
leading to sideband polarization. A photon from the NIR laser is decomposed 
into components σNIR

± , with helicity ±1. a, A σNIR
−  photon excites either a spin-up 

electron and hole of spin −3/2 or a spin-down electron and hole of spin −1/2.  
A σNIR

+  photon excites either a spin-up electron and hole of spin +1/2 or a 
spin-down electron and hole of spin +3/2. b, Driven by the THz field, an 
electron-hole pair accumulates dynamic phase AHH or ALH, depending on the 
band of the hole state (HH or LH). The electron spin is unchanged, while the 

hole states originating from the spin −3/2 state are superpositions of spin −3/2 
and +1/2 states and the states originating from the spin −1/2 state are 
superpositions of spin −1/2 and +3/2 states. c, Upon recollision, either σHSG

+  or 
σHSG

−  photons are produced following angular momentum conservation—for 
example, a spin +3/2 hole recombining with a spin-down (−1/2) electron 
produces a σHSG

+  photon with helicity +3/2 −1/2 = +1. The interference of the 
evolution pathways from σNIR

±  to σHSG
+  (σHSG

− ) produces the dynamical Jones 
matrix element T+± T( )−± .



Extended Data Fig. 5 | Additional data for ratios of Jones matrix elements, 
ξξ θθ( )nn  and χχ θθ( )nn . a, The argument of ξξ θθ( )nn . The dash-dot line marks the expected 
value of 0. b, The magnitude of ξξ θθ( )nn . The dash-dot line marks the expected value 
of 1. c, The magnitude of χχ θθ( )nn . The dash-dot line marks the expected value of 1. 
All quantities are presented as functions of sideband index n for eight values of 
angle θθ. Inset, The definition of θθ  by using the GaAs crystal lattice and the THz 
electric field.
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Extended Data Fig. 6 | Monte Carlo simulation in calculating the dynamical 
Jones matrices. a, The polarization state of the n= 12 sideband (θ = 23°) for all  
4 initial NIR polarizations (i-α = 0°NIR , ii-α = 45°NIR , iii- α = 90°NIR , iv- α = − 45°NIR ).  
The horizontal and vertical axes represent α and γ, respectively. Dashed ovals 
correspond to confidence intervals in the measurement of α and γ.  
b, Histograms of α and γ for the 4 measured sidebands' polarizations. Normal 
distributions of α and γ were sampled, with the central value and standard 
deviation of the distributions set by the measured values. In this figure,  

1,000 iterations are shown, but the results of this paper are calculated from 
10,000 iterations. c, The complex J -matrix elements resulting from the α and γ 
in b. The horizontal and vertical axes represent the real and imaginary part, 
respectively. Each red dashed line shows one standard deviation of the 
distribution of each J -matrix element resulting from the Monte Carlo 
simulation. All three plots have the same scale. The value of xx n,J  is set as 1 in 
these calculations.



Extended Data Fig. 7 | Berry connection matrix element HH HH+, +A  in the 
kz = 0 plane of the Brillouin zone. The double-headed black dotted arrow 
represents a path of a hole accelerated by a linearly polarized THz field, which 
is perpendicular to the Berry connection (color arrows) at all points. The Berry 
connection is plotted in units of a, which is the lattice constant of GaAs.
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Extended Data Fig. 8 | Effect of a biaxial strain on the valence band 
structure and non-Abelian Berry connection along the direction of 
quasi-momentum k in the kz = 0 plane of the Brillouin zone. The strain is 
chosen as tensile along [001] direction to be consistent with the splitting of the 
exciton peaks in the absorbance spectrum (Extended Data Fig. 2). a, Valence 
band structures along k k= = 0x z  for unstrained (top) and strained (bottom) 
GaAs. The blue and orange curves represent the heavy-hole and light-hole 
bands, respectively. b, The magnitude of the diagonal Berry connection matrix 

element AHH HH+, + along the direction of quasi-momentum for unstrained (top) 
and strained (bottom) GaAs. c, The magnitude of the off-diagonal Berry 
connection matrix element HH LH+, +A  along the direction of quasi-momentum 
for unstrained (top) and strained (bottom) GaAs. For the unstrained case, the 
Berry connection along the quasi-momentum is identically zero in the plots 
except for the singularity at kk=0. The Berry connection is plotted in units of a, 
which is the lattice constant of GaAs.


