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Tuning interactions between Dirac states in graphene has attracted enormous interest because it can modify the electronic spectrum
of the two-dimensional material, enhance electron correlations, and give rise to novel condensed-matter phases such as superconduc-
tors, Mott insulators, Wigner crystals and quantum anomalous Hall insulators. Previous works predominantly focus on the flat band
dispersion of coupled Dirac states from different twisted graphene layers. In this work, we propose a new route to realizing flat band
physics in monolayer graphene under a periodic modulation from substrates. We take graphene/SiC heterostructure as a prototyp-
ical example and demonstrate experimentally that the substrate modulation leads to Dirac fermion cloning and consequently, the
proximity of the two Dirac cones of monolayer graphene in momentum space. Our theoretical modeling captures the cloning mech-
anism of Dirac states and indicates that Moiré flat bands can emerge at certain magic lattice constants of the substrate, specifically
when the period of modulation becomes nearly commensurate with the (

√
3 ×
√

3)R30◦ supercell of graphene. The results show that
epitaxial single monolayer graphene on suitable substrates is a promising platform for exploring exotic many-body quantum phases
arising from interactions between Dirac electrons.

1 Introduction

The discovery of graphene has revolutionized modern condensed matter physics by providing direct ac-
cess to the physics of Dirac fermions in solid-state systems[1, 2, 3]. It also sheds light on the path to-
wards a vast field of novel 2D materials including van der Waals (vdW) materials and topological ma-
terials such as quantum spin Hall insulators [1, 4, 5, 6, 7, 8, 9, 10]. Single layer graphene possesses two
Dirac cones residing at the opposite corners of the Brillouin zone, leaving them essentially isolated from
each other. Stacking graphene layers in the graphite order duplicates Dirac cones in the same valley so
that the two valleys remain decoupled. Recently, new physics in graphene-like systems have arisen as a
consequence of the creation of strongly coupled Dirac states in artificially engineered structures such as
twisted bilayer graphene (TBG). The interaction between Dirac states from the two layers can be effec-
tively tuned by the angle. This leads to emergent collective behaviors of electrons including Mott insu-
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lating states, unconventional superconductivity, emergent ferromagnetism, quantum anomalous Hall ef-
fects [11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. The essential ingredient for these new emergent states is the
nearly dispersionless bands at zero energy in the Moiré Brillouin zone. Achieving the required large pe-
riodicity of Moiré pattern in real space and the closeness of Dirac cones in momentum space generally
requires control over the twist angle between mechanically exfoliated graphene layers. This places strin-
gent constraints on the techniques of sample assembly. Therefore, there is a pressing need for accessing
flat band physics in systems without fine tuning of twist angles.
Here we report an alternative route to enable interactions between Dirac electrons in a single layer of
graphene and realize flat bands. This comes from the supporting substrate potential. We observed the
cloning of Dirac bands in monolayer graphene epitaxially grown on SiC substates by angle-resolved pho-
toemission spectroscopy (ARPES). The periodic substrate potential brings closer the Dirac states from
the two valleys and thus turns on intervalley coupling. This is precisely captured by our tight-binding
simulations. Our theory further indicates that the perturbed graphene system with nearly commensu-
rate epitaxial relations hosts Moiré flat bands similar to those found in the magic-angle twisted bilayer
graphene [11, 21]. The lattice constant of the substate plays the same role as the twist angle in bilayer
graphene in the formation of Moiré flat bands. Dispersionless zero-energy bands occur at certain ”magic”
lattice constants of the substrate.

2 Experimental Results

First, we study the substrate effects on the Dirac states of graphene. Our graphene was grown epitaxi-
ally on the Si-face of a 6H-SiC substrate. The lattice structure and epitaxial relation between the graphene
overlayer and the SiC substrate are plotted in Fig. 1(a). The lattice constant of graphene and SiC(0001)
surface is 2.46 Å and 3.07 Å, respectively. The Brillouin zone of graphene and SiC(0001) is depicted by
red and blue lines, respectively, in Fig. 1(b). KGr and K′Gr represent the location of the two valleys of
graphene Dirac states. The atomic-resolution STM image of the graphene sample is shown in Fig. 1(c).
A superhexagonal Moiré pattern with a period λ = 6(1 + δ)aSiC is observed due to the incommensurate
modulation of the SiC interface layer [22, 23]. To examine the structural quality, we performed high-
resolution TEM measurements on our graphene samples. A typical TEM image is shown in Fig. 1(d).
The sample consists of four well-ordered graphene layers sitting on the carbonized surface of the SiC
substrate. A gap between the graphene and the SiC surface is noticeable, indicating a sharp interface
between the graphene layers and the substrate. In our experiment, the thickness of graphene layers can
be precisely controlled down to a monolayer. We will focus on results obtained from monolayer graphene
samples in the following discussion, but the physics discussed here also applies to thicker graphene films.
The Fermi surface of the graphene sample mapped by ARPES is presented in Fig. 2(a). The Brillouin
zone of graphene is marked by the blue dashed lines. At the corners of the Brillouin zone, the KGr points,
we can see bright Fermi surface contours from the Dirac bands of graphene. Note that our sample is n-
typed doped with a Fermi level above the Dirac point. Therefore, the Fermi surface contours are small
circles surrounding KGr, as marked by the black arrows. Beside the Dirac states of graphene, there are
extra circular contours located inside the Brillouin zone of graphene, which are absent on the Fermi sur-
face of freestanding graphene. These new contours marked by blue, green, yellow, and gray arrows are
referred to as blue, green, yellow, and gray contours (or cones) in the following discussions. The geo-
metric relations between the Brillouin zones of graphene and SiC is depicted in Fig. 2(b). The emer-
gent contour with lesser photoemission intensity are the clones of the graphene Dirac cone generated by
the periodic substrate perturbations. Shifting the K′Gr by a reciprocal lattice vector of SiC as shown in
Fig. 2(c), we can find the location of the blue and green cones. The yellow and gray contours can be ob-
tained through two successive shifts of the graphene states, see Fig. 2(d). Taking the substrate interac-
tion as a perturbation, we can attribute the blue (green) and yellow (gray) cones to the first-order and
second-order perturbation effects, which also explains why the intensity of yellow (gray) cones is appar-
ently lower than that of blue (green) cones. The locations of all the first-order and second-order clones
are summarized in Fig. 2(e). It is consistent with the experimental observations shown in Fig. 2(a).
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The cloning of Dirac states is rooted in the periodic modulation from the substrate on the electrons in
graphene. To understand the mechanism of cloning, we performed a tight-binding simulation in which
the substrate effect is approximated by a periodic potential acting on the the graphene electrons. The
sample is n-type doped, so the fermi level is shifted in the simulation to match the experimental results.
There is a good agreement between the experimental and theoretical Fermi surfaces as shown in Figs. 3(a)
and 3(b). All first-order and second-order clones in the simulation show up at the locations observed in
the experimental results. The spectrum along the line of ‘cut1’ (marked in Fig. 3(a)) is plotted in Figs. 3(c)
and 3(d). The brightness of bands indicates the photoemission intensity in the ARPES spectrum and
the spectral weight (the probability of finding the electron with the corresponding energy and momen-
tum) in the TB simulation. The clones show the same dispersion as the primary Dirac cones but have
lower spectral weight compared to the primary cone, consistent with the perturbative picture. This weight
reflects the strength of the graphene/substrate interaction. It is important to note that the width of these
clones seen in the spectral lineshapes is similar to the main cones, indicating the static nature of the
substrate coupling. This is further corroborated by the ARPES spectrum taken along the lines of ‘cut2’-
‘cut5’. Unlike the primary Dirac cones sitting far apart at the corners of the Brillouin zone, the clones
are much closer to each other in momentum space. For example, the distance between the yellow and
green clones is 0.21 Å−1 while the spacing between neighboring primary cones is 1.7 Å−1. The smaller
distance between clones enables them to overlap in momentum space, see the iso-energy contours in the
supplementary information. The yellow and green cones cross at E = −1.3 eV while the blue and green
cones cross at E = −1.8 eV. Such crossings of Dirac states are unavailable in freestanding graphene
films. It is worth noting that there is no gap opened at the crossings of the green and blue bands. This
is because both green and blue contours originate from the same valley (see Fig. 2(c)) and thus they do
not hybridize. Only Dirac bands from different valleys can interact with each other and open hybridiza-
tion gaps, as discussed below. The cloning of Dirac bands occurs not only in the monolayer graphene
but also in thicker films. Figure 3(f) shows the spectra of the primary Dirac cone from 3-ML and 5-ML
graphene samples. The number of Dirac bands in the spectra indicates the thickness of the sample [24,
25]. Despite of the weaker intensity, the clone bands (the blue cone marked in Figs. 2(a) and 3(c)) are
still observable in the 3-ML and 5-ML samples as shown in Fig. 3(g). We note that similar π-band repli-
cas have been reported in previous ARPES works[23, 26]. However, a detailed theoretical model of the
band duplication remains elusive. In this work, we build up a tight-binding model with the inclusion
of electron hoppings between atomic orbitals of graphene and SiC substrate. It shows that the periodic
substrate modulation not only duplicates the π-band of graphene, but also induces strong couplings be-
tween two valleys of graphene. The effect of Dirac fermion cloning has also been observed in the graphene/h-
BN heterostructure, in which the superlattice potential leads to the emergence of Moiré minibands, second-
generation Dirac cones, and consequently, the self-similar Hofstadter butterfly states in high magnetic
fields[27, 12, 13, 28, 29, 16]. The emergent states are related to the hybridization of the graphene Dirac
cone and its clones in the nearly commensurate graphene/h-BN lattice. Those experimental results indi-
cate that the duplication of Dirac states is an intrinsic property of graphene heterostructures rather than
a final-state photoelectron diffraction effect as suggested in the previous work[26].

3 Discussions

Perturbation theory can capture the essential physics of Dirac Fermion cloning in the graphene/SiC het-
erostructure. The substrate potential can be treated as a small perturbation and exerts a periodic mod-
ulation to the Dirac states of graphene [23]. Taking W (x) as the potential on the SiC(0001) surface, the
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eigenfunction up to the second-order is given by
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where ‘0’ indicates the original wavefunction of the graphene in the absence of the substrate surface po-
tential. The second term in Eq. (1) is the first-order correction. To have non-vanishing 〈Ψ0

p|W |Ψ0
k〉, the

difference between p and k must align with the period of W (x). Here we simulate the substrate surface
potential by using a periodic function in the simplest harmonic form, that is, W (x) = 2w

(
cos(b1 · x) +

cos(b2 · x) + cos(−(b1 + b2)·x)
)
. A detailed discussion on the substrate surface potential can be found

in the Methods Section and Supplementary Information. Since the period of W (x) is described by the
two reciprocal lattice vectors b1 and b2, non-zero spectral weight appears only at p = k ± b1, k ± b2,
and k ± (b1 + b2). As k represents the momentum of the Dirac states, there are 12 duplicates of the first
order (the green and blue clones in Fig. 2(e)) within the Brillouin zone of graphene, which is in agree-
ment with the experimental observation. The strength of the substrate coupling w can be obtained by
comparing the photoemission intensities from the primary Dirac cone and the clones. The observed pho-
toemission intensities from the blue clone, the green clone, and the primary Dirac cone at the energy of
Dirac nodes have ratios of Iblue : Igreen : Iprimary = 0.48:1.00:61.91. According to Eq. 1, the intensity from
the cloned states is that from the primary Dirac state multiplied by the spectral weight of (2w/E0

p)2 (here
we assume the transition matrix element is same for primary and cloned Dirac states), where p is the
momentum of the cloned Dirac nodes. E0

p is 6.65 and 4.39 eV for the blue and green Dirac nodes, re-

spectively. Then, the ratio of the emission from the green and blue nodes is (4.39/6.65)2 = 0.44, which is

close to the observed value. The coupling strength w can be estimated by using w = E0
p

√
Igreen/Iprimary/2.

With E0
p = 4.39 eV for the green node and Igreen : Iprimary = 1:61.91, we find w = 0.279 eV ≈ 0.1t, where

t = 2.8 eV is the nearest-neighbor hopping parameter of graphene[1]. The observed value of w is con-
sistent with the estimate from the tight-binding simulation (see the Supplementary Information). Since
t = 2.8 eV is the characteristic energy scale of the graphene band dispersion, it is justified to consider
the substrate potential of size w ≈ 0.1t as a perturbation in Eq. 1. The last three terms of |Ψk〉 corre-
spond to the second-order perturbations. The second last term on the right side of Eq. (1) vanishes due
to the fact that 〈Ψ0

k|W |Ψ0
k〉 = 0. The last term only induces a renormalization of the primary cone at k.

Only the first term of the second-order survives in certain conditions and give rise to clones in momen-
tum space. To have non-vanishing 〈Ψ0

l |W |Ψ0
k〉, the momentum obeys l = k ± b1,k ± b2,k ± b1 ± b2.

Likewise, the momentum of the final wavefunction satisfies p = k± 2b1,k± 2b2,k± 2(b1 + b2),k± (b1−
b2),k± (2b1 + b2),k± (b1 + 2b2). In this regard, the second-order perturbations duplicate 24 Dirac cones
(the gray and yellow clones in Fig. 2(e)) at various p, consistent with the experimental observation.
The perturbative corrections to the wavefunction in Eq. (1) give rise to the clones of Dirac cones. The
clones represent a redistribution of spectral weight of the primary Dirac cone in the momentum space.
That is why the observed clones share the same band dispersion as the primary Dirac cones. The clones
derived from the same primary Dirac cone do not hybridize with each other. On the other hand, the hy-
bridization are allowed for the clone or primary contours from different valleys. The hybridization be-
tween two valleys is mediated by the substrate potential. Here the two valleys of monolayer graphene
behave like the two sets of Dirac cones from the two layers of TBG. Flat bands can be created under
certain substrate conditions, as discussed below.
Our ARPES and tight-binding results indicate that the substrate potential creates a periodic modula-
tion of the graphene band structure and thus produces clones of the Dirac states. They effectively shorten
the distance between the two valleys by the reciprocal vectors of the substrate. This mechanism yields a
direct coupling between the Dirac states from the two valleys when the substrate lattice is nearly com-
mensurate with graphene. To date, various graphene-based heterostructures such as graphene/metals
[30, 31, 32], graphene/boron nitride [33, 34, 35], and graphene/chalcogenide compounds [36, 37, 38, 4,
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39, 40] have been experimentally realized. To investigate the substrate effects in the nearly commensu-
rate condition, we performed a tight-binding simulation for a generic graphene heterostructure with a
hexagonal substrate rotated by 30◦ relative to the graphene unit cell. The substrate lattice constant is
chosen to be 3.8 Å, which is about 10% smaller than the commensurate value

√
3aGr = 4.26 Å. The

calculated band structure is shown in Fig. 4(a). At the Fermi level, there are two primary Dirac points
(DP) denoted by D and D’ and six duplicated DPs denoted by C1, C1’, C2, C2’, C3, and C3’. The clones
of C1-C3 are from the valley of the ‘D’ Dirac cone while those of C1’-C3’ are from the other valley. When
two Dirac bands from different valleys (for example, C1’ and D, or C2 and C2’) intersect, an energy gap
is opened at the crossing point. The gapped band structure gives rise to van Hove singularities (VHS)
in the density of states (DOS) as marked by the yellow and red arrows. The iso-energy contours at E =
−0.08 eV are plotted in Fig. 4(b). Close to the zero energy, all the primary and cloned contours are iso-
lated in momentum space and thus contribute to the DOS as independent Dirac cones. Therefore, the
DOS vanishes at zero energy as shown in Fig. 4(a). The effective distance between the two primary Dirac
points in the presence of substrate perturbations is

q =
∣∣|K′GrKGr| − b

∣∣ =
∣∣|ΓKGr| − b

∣∣, (2)

where b is the length of the substrate reciprocal lattice vector, as schematically shown in Fig. 4(c). That
is also the separation between DPs C1’ and D in Fig. 4(b). As the substrate constant approaches the
commensurate value

√
3aGr, the clone contours move closer to the the primary cone (see Fig. 4(d)) and

enhance the coupling between the two valleys, since the effective coupling is described by a dimension-
less parameter α = w

~vFq
, where w is the amplitude of the substrate potential and vF is the Fermi velocity

of electrons in graphene [11]. In this simulation, w is set to be 0.05t = 140 meV, a value comparable to
that of TBG, w ≈ 110 meV)[11]. When the substrate lattice constant is equal to 4.166 Å and 4.370 Å,
a sharp peak shows up at zero energy in DOS and an energy gap of size ∼ 2w emerges between the con-
duction and valence bands, as shown in Figs. 4(e,f). The zero-energy peaks in DOS cannot be described
by isolated Dirac cones, therefore there must be dispersionless bands emerging at low energy as a conse-
quence of hybridization of Dirac states from the two valleys.
The effective separation between the two DPs of monolayer gaphene in the presence of substrate modu-

lation is described by three vectors, q1 = q(1, 0), q2 = q(−1
2

, −
√

3
2

), and q3 = q(−1
2

,
√

3
2

). Repeated hop-
ping between the two valleys generates a k-space honeycomb lattice shown in Fig. 5(a). The unit vectors
of this lattice are same as reciprocal vectors of the Moire pattern (MP) of this hybrid structure, namely,
bMP

1 = q1 − q2 and bMP
2 = q1 − q3. The low-energy electron dynamics can be described by an effective

Hamiltonian,

Heff(k) =


D(k) T1 T2 T3

T †1 D(k − q1) 0 0

T †2 0 D(k − q2) 0

T †3 0 0 D(k − q3)

 , (3)

where D(k) = ~vFk·σ, D(k) = −~vFk·σ∗, and Tm = w exp(i2(m−1)π
3

σz), m =1, 2, and 3. Here σ =

(σx, σy) and σz are Pauli matrices associated with the A and B sublattices of graphene. D(k) and D(k)
describe the Dirac cone at K and K′, respectively, as the two cones are time-reversal partners. The deriva-
tion of the effective Hamiltonian can be found in the supplementary information. Using this effective
Hamiltonian, we calculated the band structure along the path A-B-C-D-A and the DOS, see Fig. 5(b).
For α = 0.1, the DPs at B and C remained isolated meanwhile an energy gap is opened at the cross-
ing point of two Dirac bands. The DOS shows a nearly linear dependence of energy and several peaks
from VHSs, which is consistent with the tight-binding result in Fig. 4(a). When α increases to 0.586, a
pair of absolutely flat bands exist at zero energy inside the band gap (∆E ∼ 2w). This leads to a sharp
zero-energy peak in DOS, which agrees remarkably well with the tight-binding DOS with asub = 4.370 Å
and w = 0.05t as shown in the inset of Fig. 5(b). The perfect flatness of zero-energy bands is due to
the chiral symmetry of the Hamiltonian, since Heff is equivalent to the chirally symmetric continuum
model proposed by Tarnopolsky et al.[21] (see the proof in the Methods Section). The intervalley tran-
sition matrices Tm (m = 1, 2, and 3) in Heff contain only the diagonal AA and BB sublattice couplings
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due to the on-site substrate potential and the fact that the wavefunctions of Dirac states at K and K’
are defined with respect to the same A and B sublattices of monolayer graphene. As a result, monolayer
graphene perturbed by an on-site substrate potential is a natural realization of the chirally symmetric
model of flat bands[21]. The unique coupling α∗ = 0.586 corresponds to two ‘magic’ lattice constants
according to Eq. 2,

a∗sub =
√

3aGr ±
3waGr

2πtα∗
. (4)

Plug in α∗ = 0.586, aGr = 2.46 Å and w = 0.05t, we find that a∗sub = 4.161 and 4.361 Å. The magic
lattice constants match the values (4.166 and 4.370 Å) we found in the tight-binding simulations. The
small discrepancy between two results can be attributed to the finite size of the supercell we used in the
tight-binding simulations. The effective Hamiltonian gives rise to a series of magic coupling a∗ with a pe-
riodicity of ∆α ' 1.5 [11, 41, 42]. The second magic coupling is a∗ = 2.221. The band structure with
this magic coupling (the bottom panel of Fig. 5(b)) exhibits absolute flat bands at zero energy and a
smaller band gap (∆E ∼ 0.2w). The second and higher magic couplings correspond to a very small
deviation from the commensurate lattice constant, ∆a . 0.02 Å. It is technically challenging to detect
such small lattice deviations in experiments, just like the smaller twists corresponding the higher magic
couplings in the TBG systems. We note that the perfect flatness of the zero-energy bands is due to the
absence of off-diagonal AB sublattice coupling in the model described by Eqn. 3. A detailed modeling of
the substrate interaction indicates that substrate-mediated AB sublattice coupling exists and is smaller
(< 50%) in magnitue than the on-site AA(BB) coupling. The band calculation shows that the Moiré
bands at zero energy remain highly flat even with the inclusion of off-diagonal AB coupling. The details
can be found in the Supplementary Information.

4 Summary and Outlook

The low-energy dynamics in the graphene heterostructures is essentially governed by the coupling α, and
α is determined by the separation q between two adjacent Dirac cones in the Moiré lattice. For w =

0.05t (∼140 meV) and α∗ = 0.586, q = 0.04 Å
−1 � |ΓKGr| = 1.7 Å

−1
, which means the reciprocal lattice

vectors of substrate must almost connect the two DPs at K and K’ in momentum space, see Fig. 4(c).
This places a constraint on the possible substrate lattice constants and orientations. To have flat bands,
the largest possible substrate lattice constant corresponds to a (

√
3 ×
√

3)R30◦ supercell of graphene,
i.e., asub ≈

√
3aGr = 4.26 Å. This commensurate relation is also known as the Kekulé superlattice[43].

For other commensurate relations between graphene and substrates, the substrate lattice constant has

to be .
√

3
2
aGr = 2.13 Å, which is very rare in real materials. Therefore, the substrate materials for

the flat-band heterostructure must have a surface with C3 rotation symmetry and lattice constant close
to 4.26 Å. In Table 1, we list several materials which can be potentially employed in the proposed het-
erostructures. The suggested materials are all elemental or binary vdW materials and can be straight-
forwardly synthesized, for example, by the method of molecular beam epitaxy (MBE). The vdW nature
of graphene and the suggested substrate materials facilitates the formation of an atomically sharp in-
terface and thus enhances substrate interaction as well as intervalley couplings. In addition to the con-
ventional assembly method by growing or transferring graphene onto the substrate surface, the proposed
flat-band heterostructures can be readily synthesized via a “top-down” approach, as schematically plot-
ted in Fig. 5(c). High-quality graphene layers can be epitaxially grown on the SiC(0001) surface, and the
Dirac states of graphene remain isolated due to the large lattice mismatch. Therefore, the graphene/SiC
structure can serve as a supporting substrate for the growth of various materials with nearly commen-
surate relations as suggested in Table 1. For example, Bi2Se3 (a = 4.136 Å) thin layers have been grown
on the graphene/SiC(0001) surface [44].
Our ARPES experiments demonstrated the cloning of Dirac fermions in the graphene/SiC(0001) het-
erostructure due to the periodic modulation of the substrate potential. Our theoretical calculations showed
this modulation effect from the substrate can effectively couple the two valleys of Dirac states in mono-
layer graphene in the nearly commensurate condition. The graphene heterostructures can be a promising
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alternate system for exploring the intriguing flat-band physics that was found in TBG. The criterion for
realizing flat bands is a matchup of the surface potential strength and the periodicity of the substrate to
reach the magic effective coupling α∗. There are a vast number of possible substrate materials that could
be potentially used in this hybrid structure. In addition, the charge and spin orderings in the substrates
such as antiferromagnetism in MnTe[45], superconductivity in PdTe2[46], and topological surface states
in Bi2Se3[44] can further enrich flat-band physics in graphene via proximity effects, systematic investiga-
tions of which are left to future works.

5 Methods

5.1 Sample synthesis and characterizations

The graphene films were prepared by annealing a 6H-SiC(0001) substrate at 1150 °C in an integrated
MBE-STM-ARPES ultrahigh vacuum (UHV) system with base pressure below 2×10−10 mbar. After the
growth, the graphene samples were in-situ transferred the ARPES stage. ARPES measurements were
performed at 100 K using a SPECS PHOIBOS-150 hemisphere analyzer with a SPECS UVS-300 helium
discharge lamp (photon energy = 21.2 eV). The size of the beam spot on the sample was ∼1.5 mm. The
topography of the sample surface was mapped in-situ by an Aarhus STM equipped in the growth cham-
ber.
The TEM samples were prepared by a lift-out method in a ThermoFisher Scientific Scios focused ion
beam (FIB) instrument at room temperature, and imaged in the ThermoFisher Scientific G2 Tecnai F30
FEG high resolution TEM operated at 300 kV. The SiC substrate was tilted to the [100] zone axis and
the lattice fringes from both the graphene and the SiC can be clearly resolved. Great care has been taken
to reduce the beam damage on the thin film samples both during the FIB lift out and during the sample
tilting and high-resolution image acquisition process.

5.2 Tight-bind modeling

To simulate the observed spectrum of the graphene on the top of the SiC film, we use the simplest graphene
model with the inclusion of only the nearest neighbor hopping. Since SiC is an insulator with large gaps,
the main low energy physics can be described by the graphene monolayer embedded in the surface po-
tential of the SiC substrate. Although the details of the SiC surface potential is unknown, it suffices to
employ an approximate potential that preserves the crystalline symmetry. The SiC surface belongs to
the wallpaper group P3m1, thus the SiC surface potential can be written in this simplest form

W (x, y) =w
(

cos(π
4y

3b
) + cos(π

−2
√

3x− 2y

3b
) + cos(π

2
√

3x− 2y

3b
)
)

(5)

where b (1.77 Å) is the in-plane silicon-carbon distance on the SiC(0001) surface and b1,2 = 2π
3b

(±
√

3,−1).
That is, the SiC potential includes only the first order of the Fourier series and breaks the C6 rotation
symmetry due to the different potentials stemming from Si and C atoms. We can write the effective low-
energy Hamiltonian in the second quantization form

Ĥ =
∑
n,m

[
t(a†n,mbn,m + a†n+1,mbn,m + a†n,m+1bn,m + h.c.) +W (x+

nm, y
+
nm)a†n,man,m

+W (x−nm, y
−
nm)b†n,mbn,m

]
, (6)

where x±nm = (∓1 + 3n − 3m)a/2, y±nm = (
√

3n +
√

3m)a/2 and a ≈ 1.42 Å is the carbon-carbon dis-
tance in graphene. A 400×400 supercell is employed in the calculations of band structure and DOS. By
diagonalizing the Hamiltonian, we find the eigenstates within E ± δ. Then we transform the eigenstates
to momentum space so that at energy E, the density of the wavefunctions can be plotted in momentum
space.
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5.3 Proof of equivalence to the chirally symmetric continuum model

In this section we show that the effective low-energy Hamiltonian of Eq. (3) is equivalent to the chirally
symmetric continuum model of twisted bilayer graphene proposed by Tarnopolsky, Kruchkov, and Vish-
wanath [21], hereafter referred to as the TKV model. This model is noted for producing absolutely flat
bands at special values of the twist angle when the interlayer hopping matrix is assumed to contain only
off-diagonal AB and BA elements.
We start from Eq. (1) of Ref. [21] and rotate the spin matrices so that they are aligned along a common
direction. This gives

HTKV =

(
−i~vF∇ · σ T · σ

T∗ · σ −i~vF∇ · σ

)
(7)

where T is a complex vector field with components in the (x, y)-plane,

Tx = t⊥

3∑
n=1

cos[(n− 1)φ]e−iqi·r , Ty = t⊥

3∑
n=1

sin[(n− 1)φ]e−iqi·r , φ = 2π/3 (8)

and t⊥ is an interlayer hopping amplitude that connects A sites to B sites. The Hamiltonian (7) is a 4×4
matrix in the basis 1 ↑,1 ↓, 2 ↑, 2 ↓, where the first index denotes the layer and the second (pseudospin ↑
or ↓) refers to the A or B sublattices. The Pauli matrices act on the pseudospin indices.
We now perform a unitary transformation which interchanges the basis states 2 ↑ and 2 ↓. It is straight-
forward to verify that after this transformation the TKV Hamiltonian takes the form

H̃TKV =

(
−i~vF∇ · σ Txσ0 − iTyσz
T ∗xσ0 + iT ∗y σz −i~vF∇ · σ∗

)
(9)

Lastly we perform the unitary transformation U = diag {1, σz}, which leads us to

H̃TKV =

(
−i~vF∇ · σ Txσz − iTyσ0

T ∗xσz + iT ∗y σ0 i~vF∇ · σ∗
)

(10)

Two important things have happened. First, the two diagonal blocks now describe a Dirac cone −i~vF∇·
σ and an anti-Dirac cone +i~vF∇ ·σ∗ rather than two homologous Dirac cones. Second, the off-diagonal
blocks have become diagonal in pseudospin space, involving only the matrices σ0 and σz.
Compare this with the real space representation of our effective Hamiltonian, Eq. (3) of the main text.
This is

H̃eff =

(
−i~vF∇ · σ w

∑3
n=1 e

iφ(1−n)σze−iqi·r

w
∑3

n=1 e
−iφ(1−n)σzeiqi·r i~vF∇ · σ∗

)
(11)

where w is the amplitude of the substrate potential. Expanding the exponential we see that the off-diagonal
block of this matrix is

w

3∑
n=1

{cos[(n− 1)φ]σ0 − i sin[(n− 1)φ]σz} e−iqi·r (12)

which, in view of Eqs. (8), coincides with the off-diagonal element of the transformed TKV Hamilto-
nian (10), provided we set t⊥ = w.
Thus the diagonal substrate potential which connects the two valleys of monolayer graphene in our model
corresponds to the off-diagonal interlayer hopping of the TKV model.
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Materials asub (Å) Space group Materials asub (Å) Space group

CuSe 3.980 P63/mmc Cu2Se 4.132 R-3mH
HfTe2 3.960 P -3m1 Bi2Se3 4.136 R-3mH
ZrTe2 3.965 P -3m1 CdS 4.137 P63/mc
InSe 4.000 R-3mH MnTe 4.148 P63/mmc
CrTe 4.005 P63/mmc GeTe 4.156 R-3mH

PdTe2 4.024 P -3m1 PdTe 4.200 P63/mmc
In2Se3 4.026 R-3mH CdSe 4.232 P63/mc
PtTe2 4.026 P -3m1 Cu2Te 4.237 P6/mmm
InSe 4.050 P63/mmc Sb2Te3 4.264 R-3mH

As2Te3 4.058 R3mH SiTe2 4.289 P -3m1
GaTe 4.060 P63/mmc MgSe 4.319 P63/mmc
ZnTe 4.092 P3121 HgSe 4.320 P3221
ScTe 4.097 P63/mmc Sb(111) 4.332 R-3mH

AuTe2 4.107 P -3m1 HgTe 4.392 P3121
PtTe 4.111 P63/mmc Bi2Te3 4.403 R-3mH
AuSe 4.120 P63/mmc MgTe 4.531 P63/mmc
MnSe 4.120 P63/mc Bi(111) 4.546 R-3mH
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Figure 1: Lattice structure and Brillouin zone of graphene/SiC heterostructure. (a) Lattice structure of graphene and
SiC(0001) surface. The unit cell of graphene and SiC surface is depicted by the green and black parallelograms, respec-
tively. (b) Brillouin zone of graphene (blue lines) and SiC(0001) surface (red lines). (c) STM image of graphene with
atomic resolution. A Moiré pattern is observed with a period approximately equal to 6 times the lattice constant of
SiC(0001). (d) Cross-sectional TEM image of graphene/SiC heterostructure.
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Figure 2: ARPES spectrum and momentum-space analysis of Dirac fermion cloning. (a) Fermi surface of
graphene/SiC(0001) heterostructure measured by ARPES. (b) Geometrical relation between the Brillouin zones of
graphene and SiC(0001) surface. (c) The location of green and blue clones from the first-order perturbations. (d) The
location of yellow and gray clones from the second order perturbations. (e) Distribution of first-order and second-order
clones in the Brillouin zone of graphene.

Figure 3: ARPES spectra and tight-binding simulation of Dirac bands and their clones. (a) ARPES and (b) tight-binding
Fermi surface of graphene/SiC heterostructure. (c) ARPES and (d) tight-binding spectrum taken along ‘cut1’ marked in
(a). (e) ARPES spectra taken along ‘cut2-5’. (f) ARPES spectrum of the primary Dirac cone taken along ‘cut2’ from 3-,
5-monolayer graphene films grown on SiC(0001) surface. (g) ARPES spectrum of cloned Dirac bands taken along ‘cut4’
from 3-, 5-monolayer graphene films.
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Figure 4: Tight-binding simulation of epitaxial graphene with various substrate lattice constants. (a) The tight-binding
band structure and density of states with asub = 3.8 Å. (b) Calculated iso-energy contours at E = −0.08 eV . (c) Coupling
mechanism between the two Dirac cones at KGr and K′

Gr. (d) Schematic of the movement of clone contours C1’ as the
substrate approaches to the commensurate value

√
3aGr = 4.26 Å. (e) Calculated density of states for asub = 4.166 Å and

w = 0.05t. f, Same as e but for asub = 4.370 Å.

Figure 5: Effective model of Moiré mini lattice and flat bands. (a) Moiré Brillouin zone of a nearly commensurate
graphene heterostructure. (b) Calculated band structure and density of states with α = 0.1, 0.586, and 2.221. The DOS
plot in the middle panel includes an inset showing the tight-binding DOS (the blue curve) from Fig. 4(f). (c) Schematic of
the two ways of assembling heterostructures with flat bands.
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