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ABSTRACT
Three dimensional (3D) topology data obtained from different optical metrology techniques tend to produce local dis-
agreements which may yield incorrect judgement from inspectors especially under scenarios of precision metrology. This
research explores statistical methods to provide a functional scoring for similarities. The investigation is conducted using
two statistical methods (Pearsons correlation coefficient and image distance), two optical techniques (structured light and
focus variation microscopy) and two application scenarios (metal additive printing and ballistic forensic examination). Ex-
perimental results show the promise of using statistical tools to assist binary decisions for matching/non-matching even if
3D topology data are obtained from different optical techniques.

1. INTRODUCTION
3D imaging techniques have been widely used in many fields such as automobile, manufacturing, and entertainment indus-
tries. These methods are mainly used for quality inspection. One of the recent advancements in the manufacturing industry
is Additive Manufacturing (AM)1 technique. In this method, the part is manufactured by printing layer by layer. In order to
avoid defects between the layers, quality inspection needs to be done. This requires an inspection system which can obtain
the 3D topography of the sample surface without causing any damage to it. Therefore, non-contact 3D imaging techniques
can be used for performing quality inspection of AM parts.

Non-contact optical 3D shape measurement methods such as laser triangulation,2 stereo vision,3 and structured light
system (SLS)4 have been successful in obtaining the 3D topographical information of the object. However, there is a local
disagreement among the different scanning systems mainly because of their working principle, which results in different
topographical data of the sample when scanned using different optical systems. This might create a problem between the
upstream and downstream manufacturers in a cyber-manufacturing system. If the upstream and downstream manufacturer
uses different optical systems for inspecting the shape of the part, they might have different topographical information once
they share the results in the cyber-space. This will lead to disagreement in the quality of the parts. Another application
scenario will be in the case of ballistic forensic examinations. Each bullet will have a unique signature (a permanent
change in the surface topography) when it is fired from the gun .5, 6 This can be very useful in a crime scene to identify
whether two bullets were fired from the same gun. So the ballistic experts need to check for the similarity between the
bullet’s topography scanned by different systems. Therefore, there needs to be a method to check the similarity of the parts
scanned using different optical systems.

Researchers have proposed some methods in the past for estimating the similarity between different optical systems.
Surface roughness obtained from different optical systems was used as a metric to evaluate similarity among the different
scanning systems.7, 8 However, surface roughness depends on one cross-section line, and it does not represent the entire
data set. Launhardt et al.9 proposed to use the arithmetic mean height of the samples for comparison. Though the method
makes use of all the data points, it might neglect the geometrical distribution of the data points. Therefore, there needs to
be a method to evaluate the similarity of the surfaces using the geometrical distribution of the data.

In this research, we propose to make use of the topography data obtained from different optical scanning systems for
evaluating the similarity between them. We have used two statistical methods for comparing the 3D point-cloud data sets
from different systems - Pearson’s correlation coefficient (PCC) 10 and image distance method.11 The optical systems that
we have used in this research are focus variation microscopy (FVM) and structured light system (SLS). We have evaluated
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the similarity between three AM samples and between two bullet samples. The method involves scanning the sample
using the two optical systems and registering the two 3D data sets using Iterative Closest Point (ICP) 12, 13 and k-nearest
regression .14 The topographical map is obtained from the registered 3D data sets and is evaluated for similarity using
PCC and image distance method. The proposed method has the advantage of evaluating the similarity using the entire
three-dimensional data set and is also flexible in comparing systems with different resolutions. The paper is organized as
follows: Section 2 introduces the principle of the two optical systems, data registration, and the two statistical point-cloud
data comparison methods. Section 3 describes the experiments that we conducted using the proposed method. Section 4
summarizes the paper.

2. PRINCIPLES
In this section, the fundamental principles of SLS and FVM will be introduced. Then, the 3D data alignment process will
be introduced. Finally, the proposed 3D point cloud data similarity evaluation method will be discussed.

2.1 Principle of optical methods
2.1.1 Structured light system

The Structured light system is a non-contact 3D measurement method. Figure 1 represents the principle of the structured
light system. Here A represents a projector pixel, D represents a camera pixel, and the B is the point on the object being
scanned. The projector projects preloaded codified fringe patterns on the object. These patterns get distorted based on
the topography of the object. These distorted fringe patterns are captured by a camera. The camera images are then used
to reconstruct the 3D image (of the objects topography) by using the correspondence established between the projector
and camera. The main advantage of SLS is that unlike other methods (such as stereo vision), there is no problem of
establishing correspondence pairs. The codifications in the fringe patterns help to establish a better correspondence between
the projector and camera. In this research, we have attached a telecentric lens to the camera to achieve a high accuracy 3D
shape measurement.

Figure 1: A schematic diagram of structured light system

2.1.2 Focus variation microscopy

Focus variation microscopy is another non-contact 3D measurement method that obtains the surface topography of the
sample by varying the focus levels.15 The principle of the FVM is illustrated in Fig. 2. The light from the light source
is transmitted through the beam splitter and then to the sample surface through the objective lens. Based on the sample’s
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topography, the light will get reflected in different directions. Some parts of the reflected light will be collected by the
objective lens and then passed on to the camera sensor. In order to obtain the best focusing location of the optical element
pointing to the specimen, a driving unit is used. This process is used to generate a depth map of the sample for different
lateral locations.

Figure 2: A schematic diagram of focus variation microscopy

2.1.3 Data processing

The 3D geometrical information of the sample scanned using the two optical systems will be in the form of 3D point-cloud
data set. This point-cloud data set cannot be directly used for evaluating the similarity as the field-of-view, and the data
formatting of the two data sets are different. Therefore, the two data sets need to be processed. The data processing mainly
involves data registration and data resampling. The schematic of our proposed framework is illustrated in Fig. 3
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Figure 3: A schematic diagram of proposed 3D point-cloud data comparison method

First, the 3D data sets are aligned by the Iterative Closest Point (ICP) algorithm.15, 16 The reference point-cloud data
is denoted as P, and the point-cloud that needs to be transformed and aligned with P is Q, the ICP algorithm first finds all
correspondence point pairs and stores them in a set κ = {(p,q)|p ∈ P,q ∈ Q}. Then, an objective function E(T ) will be
minimized by updating the corresponding point pairs κ , rotation matrix R and translation vector t iteratively. This objective
function is defined as the sum of the squared Euclidean distances after transformation:

E(T ) = ∑
(p,q)∈κ

||p− (R ·q+ t)||2 (1)
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The refined rotation matrix R and translation vector t will be obtained after the iterations. Then, this transformation
matrix can be used to closely align the two point-cloud data sets.

Second, the 3D data points should be in the same format to avoid confusion while evaluating the similarity. In the case of
FVM, the 3D data, is obtained by direct depth retrieval via focus analysis, where the lateral data positions (X and Y) are
well-formatted in a raster order of camera pixels. The pixels will be equally spaced in the X-Y plane like that of an evenly
spaced mesh grid shown in Fig. 4. Each corner point (highlighted in green color) in the grid represents a point on the 3D
point-cloud data set. But in case of SLS, the points will not be evenly spaced as it uses triangulation to obtain the 3D
coordinates (X, Y, and Z) of the sample being scanned. Therefore, the lateral data positions (X and Y) are not formatted in
a raster order, similar to a mesh grid. To address this challenge, we propose to transform all 3D point-cloud data sets into

Figure 4: A schematic representation of the raster format of the data points in FVM

an image space, where the locations of all data points are aligned as mesh grid with the index of the image pixels as labels.
This transformation process is only for the 3D data set obtained from SLS data. The transformation process is similar to
data-resampling, where the query points lie on a given mesh grid defined by the region of interest, and the point-clouds
coordinates are the sample values. The heights of the query points can be retrieved by interpolation. At a query point
Pq(Xq,Yq,Zq), Xq and Yq are the horizontal coordinates given by the mesh grid, Zq can be interpolated by a weighted mean
of k nearest points to (Xq,Yq). These points are denoted as ρ = {Pi(Xi,Yi,Zi)}. The weights are assigned as:

ωi =
1

σ
√

2π
exp(− d2

i
2σ2 ) (2)

Where di is the Euclidean distance between (Xq,Yq) and (Xi,Yi). Finally, Zq can be interpolated by

Zq =
1
k ∑

Pi∈ρ

ωi ·Zi (3)

The point-cloud is denser than the mesh grid so there is no need of any interpolation. With this transformation the SLS 3D
point-cloud data set will be transformed into the same depth-coded image space with well-aligned mesh grid.

2.1.4 Statistical methods for comparing point-cloud data sets

In this section, we will describe the two statistical methods used for evaluating the similarity between the two 3D data sets.
Pearson’s correlation coefficient
Let M by N denote the dimensions of the two depth-coded images. This matrix can be transformed into two M×N vectors
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(I1 and I2) by connecting each row. The similarity of the two vectors can be estimated by computing the PCC of the two
vectors. The PCC parameter can be mathematically defined as:

r =
∑

M×N
i=1 (Ii

1− I1)(Ii
2− I2)√

∑
M×N
i=1 (Ii

1− I1)
2
√

∑
M×N
i=1 (Ii

2− I2)
2

(4)

Where Ii
1, Ii

2 are the values of i th dimension of the vectors I1 and I2; I1 =
1

M×N

M×N
∑

i=1
Ii
1(the mean). The result r will range

from -1 to 1. If two images are very similar, then the value of r will be close to 1. If the images are different, the value will
be close to −1.

2.1.5 Image distance

Image distance is another method to evaluate the similarity of two images.11 If the images are similar, then the output will
be equal to 0. The method involves converting the two images (M by N pixels) into two M×N vectors (I1 and I2). The
image distance between the two vectors can be defined as:

d(I1, I2) = [(I1− I2)
T G(I1− I2)]

1
2 (5)

where G is a M×N by M×N matrix,
G = (gi j)M×N∗M×N (6)

and the elements in G are:
gi j = f (|Pi−Pj|), i, j = 1,2...M×N

where |Pi−Pj| is the distance between ith pixel and jth pixel in the image. The function f is defined as:

f (|Pi−Pj|) =
1√

2πσ
exp(−

|Pi−Pj|2

σ2 ) (7)

where σ is a hyperparameter and can be set to any positive number. If two pixels Pi and Pj, are spaced apart then the
distance between them will be a large value resulting in smaller values of gi j. It will contribute significantly to the total
image distance. Therefore, the algorithm is robust to small deformations.

3. EXPERIMENT
To evaluate the accuracy of our proposed similarity evaluation method, we used two optical systems, a FVM and a SLS
system for 3D topographical scanning. The FVM system uses a microscopic camera to capture images of the samples. The
resolution of the camera is set to 1920 × 1200. The depth resolution of the FVM is 1.1 µ . The SLS system consists of
a DLP development kit (model: DLP Lightcrafter 4500, native resolution 910 × 1140 pixels) and a CMOS camera. The
resolution of the camera is set to 1280 × 960. A telecentric lens with a magnification of 0.486 is attached to the camera.
The depth resolution of the SLS is 10 µ . The system is calibrated based on the method described by Li and Zhang.17 We
tested the algorithm with two different samples - AM parts (as shown in Fig. 5(a)-5(c)) and bullets (as shown in Fig. 6(a)).
Both the samples were scanned using the two optical systems, and their corresponding 3D point-cloud data sets were
evaluated for similarity. The 3D point-cloud data of the AM and bullet samples from the two optical systems is shown in
Fig. 5 and Fig. 6, respectively.

First, the similarity/difference between the two 3D point-cloud data sets was estimated using the PCC criteria for all
the samples. We used three AM samples and two bullets for the experiment. The process basically involves scanning of
the three AM samples using the two optical systems and labeling the 3D data sets of the same sample from the different
system as similar using the two statistical methods. The same goes for the bullet samples. The similarity evaluation results
of the AM samples and bullets are illustrated in Fig. 7 and Fig. 8, respectively. From Fig. 7 (a) and Fig. 8 (a), since the PCC
values on the main diagonal are computed using the exact same point-cloud data (self-comparison), the values will be one.
The values around the main diagonal line are the PCC values calculated for the measured data of the same sample using
different optical systems (highlighted with blue color). We can observe that these values are significantly larger than the
rest (non-highlighted ones), which indicates the similarities of different samples. For better visualization, we have plotted
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: (a) - (c) Snapshot of additive manufactured sample surface; (d) - (f) 3D point cloud data obtained from FVM and
(g) - (i) 3D point cloud data obtained from SLS.

(a) (b) (c)

Figure 6: (a) Snapshot of bullet sample surface; (b) 3D point cloud data obtained from FVM and (c) 3D point cloud data
obtained from SLS.

a histogram for all values in this matrix. We can observe that there is a clear gap between the two groups of computed
PCC values. The group of small values is the data pairs that come from different samples, and the group of large values
is the data pairs from the same samples. The results demonstrate that PCC is very useful in identifying whether two 3D
point-cloud data sets correspond to the same sample surface, though they may be scanned using different optical systems.
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FVM 
sample 2 -0.2849 -0.3317 0.6029 1 0.0019 0.1287

SLS 
sample 3 -0.1502 -0.1359 0.2664 0.0019 1 0.6635

FVM 
sample 3 -0.0608 -0.0630 0.1945 0.1287 0.6635 1
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Figure 7: (a) Confusion matrix of PCC values for 3D point-clouds from Samples 1 - 3 measured by FVM and SLS; (b)
Corresponding histogram for PCC values in (a).

Figure 8: (a) Confusion matrix of PCC values for 3D point-clouds of two bullet samples measured by FVM and SLS; (b)
Corresponding histogram for PCC values in (a).

Second, we computed the image distance values between different 3D point-cloud data sets and arranged them in the
matrix, as shown in Fig. 9 and Fig. 10 (a). All the values along the main diagonal are zero as the comparison is within
the same data. In the case of data sets obtained from the same sample using different optical systems, the values are
significantly smaller than the rest (that are calculated from different surfaces), indicating that these data sets have a smaller
image distance between them. In order to have a better visualization, we plotted a histogram (as shown in Fig. 9(b) and
Fig. 10(b)), for all the values in the matrix and we can see a clear gap between the two groups of values. Unlike PCC,
smaller image distance values indicate that the 3D point-cloud data sets are measured from the same sample, while the
group of larger values indicates that the pairs are measured from different samples. The results show that image distance is
also useful in identifying whether the measured data are from the same sample even though they are scanned using different
optical systems.
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Figure 9: (a) Confusion matrix of image distance values for 3D point-clouds of Samples 1 - 3 measured by FVM and SLS;
(b) Corresponding histogram for image distance values in (a).

Figure 10: (a) Confusion matrix of image distance values for 3D point-clouds of two bullet samples measured by FVM
and SLS; (b) Corresponding histogram for image distance values in (a).

4. CONCLUSION
This research proposes a method to evaluate similarities between two 3D point-cloud data sets of the same sample obtained
from different optical metrology systems. After scanning the samples using the two optical systems, the two point-cloud
data sets are registered using ICP and then transformed into one unified image space. We have used two statistical methods
(PCC and image distance) to evaluate the similarity of the 3D data sets. From the experimental results, we can observe that
our proposed method can well distinguish if a pair of 3D point-cloud data sets are measured from the same sample, even
though they were obtained from two optical systems with different spatial resolutions or fields-of-view.

Acknowledgments
The authors would like to thank the support from Research Experience of Undergraduates (REU): Lara Chunko, Kelsey
Benjamin and Jennifer Patterson. This work is supported by the U.S. Department of Energys Office of Energy Efficiency
and Renewable Energy (EERE) under the Advanced Manufacturing Office Award Number DE-EE0007897, and National
Science Foundation (# 1757900).

Proc. of SPIE Vol. 11397  113970A-8
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 05 May 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



REFERENCES
[1] Senin, N., Thompson, A., and Leach, R. K., “Characterisation of the topography of metal additive surface features

with different measurement technologies,” Measurement Science and Technology 28(9), 095003 (2017).
[2] Tay, C. J., Wang, S. H., Quan, C., and Shang, H. M., “In situ surface roughness measurement using a laser scattering

method,” Optics Communications 218, 1–10 (2003).
[3] Zhongxiang, H., Lei, Z., Jiaxu, T., Xuehong, M., and Xiaojun, S., “Evaluation of three-dimensional surface roughness

parameters based on digital image processing,” International Journal of Advanced Manufacturing Technology 40,
342–348 (2009).

[4] Li, B. and Zhang, S., “Flexible calibration method for microscopic structured light system using telecentric lens,”
Optics Express 23, 25795 (2015).

[5] Song, J., “Proposed nist ballistics identification system (nbis) based on 3d topography measurements on correlation
cells,” AFTE Journal 45(2), 184–194 (2013).

[6] Vorburger, T. V., Yen, J. H., Bachrach, B., Renegar, T. B., Ma, L., Rhee, H.-G., Zheng, X. A., Song, J.-F., and
Foreman, C. D., “Surface topography analysis for a feasibility assessment of a national ballistics imaging database,”
tech. rep. (2007).

[7] Poon, C. Y. and Bhushan, B., “Comparison of surface roughness measurements by stylus profiler, afm and non-contact
optical profiler,” Wear 190, 76–88 (1995).

[8] Zhang, X., Zheng, Y., Suresh, V., Wang, S., Li, Q., Li, B., and Qin, H., “Correlation approach for quality assurance of
additive manufactured parts based on optical metrology,” Journal of Manufacturing Processes 53, 310–317 (2020).

[9] Launhardt, M., Wrz, A., Loderer, A., Laumer, T., Drummer, D., Hausotte, T., and Schmidt, M., “Detecting surface
roughness on sls parts with various measuring techniques,” Polymer Testing 53, 217–226 (2016).

[10] Pearson, K., “Liii. on lines and planes of closest fit to systems of points in space,” The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science 2(11), 559–572 (1901).

[11] Wang, L., Zhang, Y., and Feng, J., “On the euclidean distance of images,” IEEE transactions on pattern analysis and
machine intelligence 27(8), 1334–1339 (2005).

[12] Chen, Y. and Medioni, G., “Object modelling by registration of multiple range images,” Image and vision comput-
ing 10(3), 145–155 (1992).

[13] Besl, P. J. and McKay, N. D., “Method for registration of 3-d shapes,” in [Sensor Fusion IV: Control Paradigms and
Data Structures], 1611, 586–607, International Society for Optics and Photonics.

[14] Altman, N. S., “An introduction to kernel and nearest-neighbor nonparametric regression,” The American Statisti-
cian 46(3), 175–185 (1992).

[15] Danzl, R., Helmli, F., and Scherer, S., “Focus variation a robust technology for high resolution optical 3d surface
metrology,” Strojniki vestnik Journal of Mechanical Engineering 2011(03), 245–256 (2011).

[16] Dhond, U. R. and Aggarwal, J. K., “Structure from stereo-a review,” IEEE transactions on systems, man, and cyber-
netics 19(6), 1489–1510 (1989).

[17] Li, B. and Zhang, S., “Flexible calibration method for microscopic structured light system using telecentric lens,”
Optics express 23(20), 25795–25803 (2015).

Proc. of SPIE Vol. 11397  113970A-9
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 05 May 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use


