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Abstract. We present a proof under a generalization of the Riemann Hy-

pothesis that the class group algorithm of Hafner and McCurley runs in ex-

pected time e(3/
√
8+o(1))

√
log d log log d where −d is the discriminant of the in-

put imaginary quadratic order. In the original paper, an expected run time of

e(
√
2+o(1))

√
log d log log d was proven, and better bounds were conjectured. To

achieve a proven result, we rely on a mild modification of the original algo-

rithm, and on recent results on the properties of the Cayley graph of the ideal

class group.

1. Introduction

Let K be an imaginary quadratic field , and O−d be an order of K of discriminant
−d, the computation of the ideal class group Cl(−d) of O−d consists in finding
positive integers m1, ...mk such that m1 | m2 | ... | mk and

Cl(−d) ∼=
k⊕
i=1

Z/miZ.

The computation of the ideal class group is one of the four major tasks in com-
putational number theory postulated by Zassenhaus [31, p. 2] (together with the
computation of the unit group, the Galois group and the ring of integers). In par-
ticular, the efficient computation of the ideal class group has applications in the
study of unproved heuristics in number theory and in the resolution of Diophan-
tine equations. This problem is also equivalent to the computation of the group of
SL(2,Z)-equivalence classes of positive definite binary quadratic forms of discrimi-
nant −d.

1.1. Prior Work. The first algorithms to compute the ideal class group of a
quadratic number field had exponential complexity. In 1968, Shanks [35, 36] pro-
posed an algorithm relying on the baby-step giant-step method to compute the
class number and the regulator of a quadratic number field in time O

(
|d|1/4+ε

)
,

or O
(
|d|1/5+ε

)
under a generalization of the Riemann hypothesis (GRH) [28]. A
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major breakthrough came in 1989 with the first subexponential algorithm for the
computation of the ideal class group of an imaginary quadratic field by Hafner and
McCurley [24] (under GRH). More specifically, they described a Las Vegas algo-

rithm for the computation of Cl(−d) that runs in expected time L(d)
√

2+o(1) where
the subexponential function L(d) is defined as

L(d) = e
√

log d log log d

where log denotes the natural logarithm. After that, most of the improvements
on the computation of the ideal class group of a quadratic number field focused
on the practical implementation of the Hafner-McCurley algorithm rather than on
the improvement of its asymptotic run time. For instance, practical improvements
were presented in [22] by Cohen, Diaz Y Diaz and Olivier, and Jacobson success-
fully applied sieving techniques borrowed from factoring algorithms to reach signif-
icantly larger discriminants [26]. In [6, 13], Biasse and Jacobson incorporated more
practical optimizations adapted from factoring algorithms to establish new records
including the calculation of the class group of a 110-digit discriminant. Kleinjung
further improved this with the computation of the class group of a 130-digit dis-
criminant [27]. As of today, the largest d for which Cl(−d) was calculated is a
154-digit discriminant [5].

In parallel to these practical improvements to the original Hafner-McCurley al-
gorithm, significant effort has been devoted to generalizing it to number fields of
higher degree. This poses non-trivial challenges as lattice reduction (which is in-
efficient in large degree) is needed to emulate the subexponential approach of [24].
First, Buchmann [18] generalized this result to the case of infinite classes of num-
ber fields with fixed degree (which essentially circumvents issues related to lattice
reduction). Then a new line of work started by Biasse [7] showed that despite the
issues caused by lattice reduction, there were some infinite families of fields with
degree growing to infinity where the computation of the ideal class group can be
done in heuristic complexity better than that of Hafner and McCurley’s algorithm.
In [8, 10], Biasse and Fieker showed that there was a heuristic subexponential al-
gorithm for the computation of the ideal class group in all classes of number fields.
The methods of [10] can be specialized to the case of cyclotomic fields for a better
asymptotic complexity [9]. Based on [2], Biasse and van Vredendaal [16] described
an algorithm for computing the class group of K = Q(

√
d1, . . . ,

√
dn) in heuristic

asymptotic runtime in Poly(log|d|)eÕ(
√

log|d0|) with d0 = d1 · · · dn. For some fami-
lies of d1, . . . , dn, this yields a polynomial time algorithm. The strategy behind this
algorithm was later generalized by Biasse, Fieker, Hofmann and Page who described
a systematic method to leverage computations in subfields [11]. This allowed the
computation of the class group of K = Q(ζ6552) of degree 1728 with a 5258-digit
discriminant. These improvements in high degree number fields that reduced as-
ymptotic complexity and achieved record-breaking computations do not impact the
quadratic case, where until now the best known asymptotic complexity was the one
stated by Hafner and McCurley [24]. Finally, note that due to an algorithm of Bi-
asse and Song, ideal class group computation runs in polynomial time on quantum
computers for all classes of number fields [15].

1.2. Relevance to cryptography. Recently, ideal class group computation in
large degree number fields received significant attention from the cryptographic
research community because of the connection between this task and the search for
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(small) generators of principal ideals. However, this line of work does not include
quadratic number fields. On the other hand, there are several areas in cryptography
where class group computation in quadratic fields directly applies.
Schemes based on the DLP. The first and most obvious way where ideal class
group computations occur in cryptography is through schemes based on the Discrete
Logarithm Problem (DLP). Indeed, Quadratic fields were proposed as a setting for
public key cryptosystems in the late 1980s by Buchmann and Williams [20, 19].
Two types of schemes were described: those that use imaginary fields, and the
others that use real fields. In the imaginary case, cryptosystems are based on
arithmetic in the ideal class group (which is a finite abelian group), and the discrete
logarithm problem is the computational problem on which the security is based.
In the real case, the so-called infrastructure is used instead, and the security is
based on the analogue of the discrete logarithm problem in this structure, namely
the principal ideal problem. The most up-to-date security estimates deriving from
computational data on the resolution of the underlying hard problems (which derive
from the hardness of computing the ideal class group) are due to Biasse, Jacobson
and Silvester [14].
Computation of isogenies. In ordinary elliptic curves defined over finite fields,
as well as in supersingular elliptic curves defined over prime fields, the ring of endo-
morphisms is isomorphic to an order in an imaginary quadratic field. Isomorphism
classes of curves are in correspondence with classes of ideals in Cl(−d), and the
class of a split prime ideal of norm ` acts as an isogeny of degree `. As shown by
Biasse, Fieker and Jacobson in [12, Prop. 6.2], the computation of a reduced basis
of relations yields efficient ideal decompositions in Cl(−d), which in turns allows the
fast evaluation of isogenies of large degree. This strategy was used in the signature
scheme CSI-FiSh [5] where the precomputation of the class group of a 154-digit dis-
criminant field enables good performances because signing involves the evaluation
of large degree isogenies through the decomposition of the corresponding ideal class.
Groups of unknown order. One of the interesting features of the ideal class
group is that it allows analogues of certain cryptographic schemes based on group
arithmetic (in particular for schemes based on the DLP) despite the fact that the
order of the group is unknown. Computing the cardinality of the class group seems
to be similar to the computation of Cl(−d). Other groups have been suggested to
run protocols requiring a group of unknown order, most notably the units modulo
an RSA integer N = pq. However, in this case, since |Z∗N | = (p − 1)(q − 1), the
entity that sets up the public parameter N needs to be trusted not to reveal the
factorization of N to certain users. On the other hand, computations in Cl(−d) do
not need a trusted setup, which makes them very appealing for these families of
schemes. A notable example of cryptographic schemes relying on groups of unknown
order is the Verifiable Delay Functions (VDF) based on repeated exponentiation
such as those of Pietrzak [30] and Wesolowski [40]. In such schemes, one of the

participants needs to compute g2T for a large T and convince a verifier of the validity
of the computation. Clearly, the use of Cl(−d) requires that the computation of
the structure of this group be intractable. However, it is worth noting that other
assumptions may be needed to allow a succinct verification of this computation,
including the low-order assumption which states that it is hard to find elements of
low order. Recent work from Belabas, Kleinjung, Sanso and Wesolowski [3] suggests
that there are wrong choices of discriminant for which the low-order assumption
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does not hold true. Other applications of groups of unknown orders include secure
Multi-Party Computation (see for example [23, Sec. 3.2]).

1.3. Our contribution. In this paper, we propose a proof of the conjectured run
time of our modified Hafner-McCurley class group algorithm.

Main Theorem. Under a generalization of the Riemann hypothesis, there is a Las
Vegas algorithm which computes Cl(−d) with probability 1− 1

d1+o(1)
in time

L(d)3/
√

8+o(1) = e(3/
√

8+o(1))
√

log d log log d.

The complexity proved in the main result is not surprising. Indeed, as early
as 1988, McCurley [29] gave heuristic arguments showing that |Cl(−d)| should

be computable in time L(d)3/
√

8+o(1) (note that this conjecture only concerns the
computation of the cardinality of Cl(−d), not the group structure itself). Then,
in [24, Sec. 5], Hafner and McCurley described conjectural improvements to their
subexponential techniques for computing Cl(−d) that included the observation that
the collection of the relations could be improved, and that such an improvement (as

proposed in the present paper) would yield a run time of L(d)2/
√

3+o(1). Combined
with better linear algebra methods than the ones used in [24], this yields the run

time of L(d)3/
√

8+o(1) we prove in this paper. In 2000, Ulrich Vollmer even claimed
a proof of this run time [38, Th. 2]. However, this claim was retracted in the
Corrigendum of a 2002 follow-up paper [39]. In 2016, Biasse, Fieker, and Jacobson
conjectured the main result of our paper [12, Conj. 1].

Our methods rely on a result from Jao, Miller and, Venkatesan [25] showing that
under the GRH, the Cayley graph of Cl(−d) is an expander graph (for a good choice
of edges). This allowed us to show that relations between generators of Cl(−d)
could be obtained from short products of generators. With that knowledge, we
prove that a minor modification of the original algorithm of Hafner and McCurley
yields the conjectured expected run time. We do not rule out the existence of a
more elementary proof involving techniques available at the time of Hafner and
McCurley’s paper [24] in addition to cubic complexity linear algebra methods (as
observed in [24, Sec. 5], linear algebra with quartic complexity can only yield a

total run time of L(d)2/
√

3+o(1)).
On the other hand, we do not foresee any improvement of these methods that

would yield a subexponential run time that is not conditional on a generalization of
the Riemann Hypothesis being true. Indeed, all variations around the subexponen-
tial algorithm of [24] rely on the manipulation of vectors whose length is given by
the first n primes generating the class group. So far, the only known unconditional
bounds on the length of such vectors are all exponential in the input size. We state
the relevant generalization of the Riemann hypothesis which we assume to be true to
guarantee the validity of the main theorem. We abbreviate it by “GRH”. Note that
the same assumption is sometimes referred to as Extended Riemann Hypothesis
(ERH), in particular in [24] and [1].

Conjecture 1 (GRH). Let K be an number field and χ be a Hecke character on K.

Then the Hecke L-function given by L(s, χ) =
∑

a
χ(a)
N(a) is zero-free in the half-plane

Re(s) > 1/2.
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2. Background

In this section, we briefly discuss quadratic fields. In particular, we define the
ideal class group, we highlight the connection between positive definite quadratic
forms and ideal classes, and we give a high level explanation of the class group
computation of Hafner and McCurley [24].

2.1. Quadratic fields. An integer ∆ is a quadratic discriminant if it is not a
perfect integral square and ∆ ≡ 0, 1 mod 4. In this paper, we assume that d > 0 and
that −d is a quadratic discriminant. The imaginary quadratic order of discriminant

−d is defined as the Z-module O−d = Z+−d+
√
−d

2 Z. A quadratic order O−d is called
a maximal order if it is not contained in a larger quadratic order. The discriminant
of a maximal order is called fundamental discriminant. Let −d be a fundamental
discriminant. Then, the quadratic field of discriminant −d is the Q-vector space
Q(
√
−d) = Q +

√
−dQ.

2.2. The ideal class group. An ideal of O−d is a two dimensional Z-module

a = m(aZ + b+
√
−d

2 Z), where a, b,m ∈ Z and 4a|b2 + d. The integers a and m are
unique, and b is defined modulo 2a.The ideal a is said to be primitive if m = 1. The
norm of an ideal is N(a) = am2. The prime ideals of O−d have the form p = pO−d
for p prime with Kronecker symbol

(
−d
p

)
= −1 and p = pZ+

bp+
√
−d

2 Z for primes p

with Kronecker symbol
(
−d
p

)
6= −1 and bp the uniquely determined square root b of

−d modulo 4p in [0, p]. In both cases, we say that p lies over p and we denote this by

p | p. When
(
−d
p

)
≤ 0, only one prime ideal lies over p. When

(
−d
p

)
= 1, there are

two prime ideals lying over p, which correspond to the two possible roots modulo
p. If the prime ideal p corresponds to the choice of root bp, then its conjugate p
corresponds to −bp mod 4p. Since O−d is a Dedekind domain, every ideal can be
factored uniquely as a product of prime ideals. An ideal a can be decomposed as
a product of primes ideals by factoring N(a). For each prime p dividing the norm,
the prime ideal p or p necessarily divides a for p | p. We can decide which one does
depending on whether b is congruent to bp or −bp. A subset a of Q(

√
−d) is said to

be a fractional ideal of Od if there is an integer d0 > 0 such that d0a is an ideal of
O−d. The minimal such d0 is called the denominator of a and is denoted d(a). If

d(a)a = m(aZ + b+
√
−d

2 Z), then

a = q

(
aZ +

b+
√
−d

2
Z
)

for q = m/d(a), and this representation is unique. A fractional ideal a is said to be
invertible if there exists another fractional ideal a−1 such that aa−1 = O−d. The

inverse of a is given by a−1 = q
N(a)

(
aZ + −b+

√
−d

2 Z
)

, and the invertible fractional

ideals form a multiplicative group with neutral element O−d. Two fractional ideals
a and b are said to be equivalent, which is denoted by a ∼ b, if there exist u, v ∈ O−d
such that (u)a = (v)b, where (u) denotes the principal ideal generated by u. This
is an equivalence relation and the class group is the set of equivalence classes, that
is

Cl(−d) =
{Invertible fractional ideals of O−d}

{Principal invertible fractional ideals of O−d}
.
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In particular, Cl(−d) is a finite abelian group. The order of the class group is called
the class number. An ideal a is reduced if it is primitive and N(a) is a minimum

in a. Reduced ideals have the property that a, b <
√
d. So the reduced ideals gives

reasonably small representative for each element of Cl(−d). The group operation
is multiplication of two reduced ideals and computing a reduced ideal equivalent
to the product. This operation is efficient and can be performed in O(log2 d) bit
operations.

2.3. Binary quadratic forms. A binary quadratic form is a bivariate polynomial

f = ax2 + bxy + cy2

where a, b, c ∈ Z. The discriminant of the form f is d = b2 − 4ac. Two forms f
and g of discriminant d are said to be equivalent if there is a linear, unimodular
transformation of variables such that when applied to f yields g. Under this notion
of equivalence, the binary quadratic forms of discriminant −d partition themselves
into equivalence classes and this forms a group under the composition of forms.
This group is isomorphic to the class group of the quadratic order O−d. Also, there
is a correspondence between binary quadratic forms and the ideals, given by the
following map:

ax2 + bxy + cy2 →
(
aZ +

b+
√
−d

2
Z
)
.

Since we have a natural bijection between the set of classes of quadratic forms
and the class group, we can transport the group structure of class group to the
set of equivalence classes of quadratic forms. The multiplication between ideals
corresponds to the composition of quadratic forms, while a reduction procedure
returns the unique reduced form in its equivalence class. The reduction algorithm is
a variant of Euclid’s algorithm as in Algorithm 5.4.2 of [21]. Also, the composition of
quadratic forms can be done by using the Algorithm 5.4.7 of [21]. Both composition
and reduction of quadratic forms can be done in O(log2 d) bit operations. Given two
reduced forms f, g of discriminant −d, we denote by f ·g the reduced form obtained
by composing f and g and then reducing the result. This allows us to efficiently
implement arithmetic operations between elements of Cl(−d). We also denote the
quadratic form f = ax2 +bxy+cy2 by (a, b, c) and its equivalence class by [(a, b, c)].
We use the notation Cl(−d) to denote the class group formed by the equivalence
classes of binary quadratic forms of negative discriminant −d and h(−d) to denote
its class number.

2.4. Subexponential class group computation. The set of generators for the
class group Cl(−d) is given by the following result from [33, Th. 6.1].

Theorem 2.1. Let pi be the ith prime with (−d/pi) = 1, and let

bi = min{b ∈ Z≥0 : b2 ≡ −d(mod 4pi)}.

Then, under GRH, there exists an absolute, effectively computable constant c such
that the classes [(pi, bi, .)], 1 ≤ i ≤ n0, generate Cl(−d), where n0 is the largest
integer such that pno ≤ c log2 d.

Let us use fi to denote the reduced prime form (pi, bi, .). Let n = L(d)z for a
fixed positive number z. Then the classes [(pi, bi, .)], 1 ≤ i ≤ n generate the class
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group Cl(−d) by Theorem 2.1. Also, as in [34] and [29], we define a homomorphism
ϕ : Zn → Cl(−d) by

ϕ(x1, ..., xn) =
n∏
i=1

fxii

An integer relation on f1, ..., fn is a vector (x1, ..., xn) ∈ Zn such that ϕ(x1, ..., xn) =∏n
i=1 f

xi
i = 1Cl(−d) where 1Cl(−d) is the identity element of the class group Cl(−d).

Relations in f1, ..., fn form an additive subgroup of Zn (i.e. a Euclidean lattice)
which we denote as Λ. Since ϕ is surjective, we have

Zn/Λ ∼= Cl(−d).

Therefore, the computation of Cl(−d) reduces to the search for relations between
the f1, . . . , fn. Once enough relations are collected to generate Λ, a polynomial time
linear algebra phase yields the quotient Zn/Λ, and therefore the ideal class group
Cl(−d).

3. Overview of the algorithm

As we have seen in the previous section, the subexponential algorithm of Hafner
and McCurley consists in the choice of a factor basis f1, . . . , fn, and the resolution
of the following two main tasks

• Finding a generating set of elements of Λ, the lattice of relations between
factor basis elements.
• Computing the quotient Zn/Λ.

The quotient computation is well understood, and essentially corresponds to the
computation of the Smith Normal Form (SNF) of the matrix representing a basis
for Λ. Such a basis is typically obtained by computing the Hermite Normal Form
(HNF) of a rectangular matrix representing a generating set for Λ. Polynomial
time methods for the computation of HNF and SNF of integer matrices are known.
Therefore, the main challenge of the algorithm is the calculation of a generating set
for Λ.

The main issue with computing a basis of Λ is that we cannot easily sample
random elements of Λ. In practice, products of the generators f1, . . . , fn with
exponents drawn uniformly at random seem to be equivalent to random smooth
form, and thus yield relations between the generators that appear to be distributed
closely to the uniform distribution. This explains why in practical implementations,
the randomization of the elements in Λ that are calculated is never an issue, and
the number m of elements of Λ we need to draw is never significantly larger than n.
At the end of the procedure, we can efficiently test whether enough relations were
collected, thus certifying the computation. This test is based on a bound h∗ that
we can efficiently compute, which satisfies h∗ ≤ det(Λ) < 2h∗. If det(Λ) ≥ 2h∗,
then more relations are needed.

Making a formal case for the run time without the heuristic that elements sam-
pled in Λ are distributed uniformly at random is more difficult. This was achieved
by Hafner and McCurley in their original paper [24] at the price of a procedure that
makes relation collection artificially more expensive than what is done in practical
implementations in order to prove its expected run time under the ERH. In this
paper, we show how to enhance this phase of the algorithm without having to rely
on additional heuristics. The relation collection can be divided into phases. The
original algorithm of Hafner and McCurley has two phases. The first one consists
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in the creation of n relations that are linearly independent. This means that at
the end of it, we know Λ0 ⊆ Λ of full rank. However, since we typically have
det(Λ0) � det(Λ), more relations are needed to find a generating set of Λ. Then
the second phase consists in creating new relations with an expensive randomization
strategy such that the the corresponding lattices (Λi)i≤m they generate satisfy

Λ0 ⊆ Λ1 ⊆ ... ⊆ Λm ⊆ Λ

Our algorithm introduces an intermediate phase before the expensive randomization
strategy of Hafner and McCurley in order to make sure that Λ1 has a moderate
determinant. We label our phases from 1 to 3.
Phase 1. For each k = 1, . . . , n, we compute a relation whose k-th coefficient is
significantly larger than the others. This method due to Seysen [34] ensures the
fact that at the end of the collection of the first n relations, the lattice Λ0 they
generate has full rank.
Phase 2. We construct additional relations in order to ensure that at the end
of this phase, the lattice Λ1 they generate satisfies det(Λ1) ∈ 2O(log4 d). This is
our main technical addition to the original method from [24]. We achieve this by

observing that as long as det(Λ1) > elog4 d, the lattice Λ1 is very sparse within Λ,
and therefore we can ensure the creation of new relations outside of Λ1 with large
enough probability.

Phase 3. Once we have det(Λ1) ∈ 2O(log4 d), we resume the creation of new relations
with the expensive last phase of [24]. Since |Λ/Λ1| is small, the number of expensive
steps is significantly less than in [24].

4. Phase 1

In this section, we show how to create n linearly independent relations between
the (fi)i≤n. We follow the approach of Seysen [34, Sec. 4] which consists in ensuring
that the matrix (ai,j) whose rows are the relation vectors satisfies |aii| >

∑
j 6=i |ai,j |,

which in turns guarantees that the matrix (ai,j) has full rank. To improve on the
run time of Seysen, we use the fact that the Cayley graph of Cl(−d) is an expander
graph.

Proposition 1 (Deriving from Cor.1.3 of [25]). Let d > 0 such that −d is a fun-
damental discriminant, ε > 0 a constant, and let n0 be such that

f1, . . . , fn0 =

{
Prime forms corresponding to p ≤ log2+ε(d) and

(
d

p

)
6= 1

}
.

Then let f be an arbitrary form of Cl(−d) and S ⊆ Cl(−d). There is a constant
C > 0 such that under GRH, the probability that a vector ~x ∈ Zn0 chosen uniformly

at random among the vectors of `1-norm t for any t ≥ C log |Cl(−d)|
log log d satisfies

f ·

∏
i≤n0

fxii

 ∈ S
is at least 1

2
|S|

|Cl(−d)| .

The above means that a random walk of length at least C log |Cl(−d)|
log log d starting from

any vertex of the Cayley graph of Cl(−d) ends on a node whose distribution is close
to the uniform one.
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We can use this result to produce an analogue of the method of Seysen [34, Sec.
4] which requires only short products in order to produce a sparse relation with a
dominant i-th coefficient. Here we assume that

B = f1, . . . , fn =

{
Prime forms corresponding to p ≤ L(d)z and

(
d

p

)
6= 1

}
,

which means that n = L(d)z+o(1). Choosing t = log(d) � C log |Cl(−d)|
log log d , we draw

random vectors ~x of `1-norm t until f ·
(∏

i≤n0
fxii

)
factors as a product of ele-

ments of B (i.e. is B-smooth). The cost and the chances of success are given by
Proposition 1 applied to the set S of B-smooth reduced forms. We fix an amount of
attempts such that the probability of obtaining the desired decomposition is high
enough. To test for smoothness, we use Bernstein’s batch smoothness test [4] rather
than trial division, which allows us to reduce the asymptotic complexity. If at the
end of the procedure, no smooth form was found, we declare a failure. If not, the
result is guaranteed to be correct. This is compatible with a Las Vegas algorithm.
All procedures presented throughout this paper satisfy this property.

Input : Fundamental discriminant −d < 0, reduced form f , set of prime
forms B = {f1, . . . , fn}, ε > 0

Output: ~x ∈ Zn such that
∏
i≤n f

xi
i = f , or FAILURE

1 B ← 4 · eu(log u+log log u+c(ε)) for c(.) as in [34, Th. 5.2] and u =
log(
√
d/2)

log(L(d)z) ;

2 f ′1, . . . , f
′
n0
←
{

Prime forms with p ≤ log2+ε(d) and
(
d
p

)
6= 1
}

;

3 if (fi)i≤n0
6= (f ′i)i≤n0

then
4 return: FAILURE

5 end

6 t← log d. Initiate an empty list Lforms;

7 for k ← 1 to dBe do
8 Draw ~y ∈ Zn0 uniformly at random among the `1-norm t vectors;

9 Store ~y and
(∏

i≤n0
fyii

)
· f in Lforms;

10 end

11 Test the B-smoothness of all forms in Lforms using [4];

12 if There is
(∏

i≤n0
fyii

)
· f that is B-smooth in Lforms then

13 Let ~x′ ∈ Zn with
(∏

i≤n0
fyii

)
· f =

∏
i≤n f

x′i
i and ~y′ = (~y || ~0) ∈ Zn;

14 return: ~x = ~x′ − ~y′;

15 else
16 return: FAILURE

17 end

Algorithm 1: Relation search algorithm

Proposition 2. Under GRH, Algorithm 1 with input

B =

{
Prime forms corresponding to p ≤ L(d)z and

(
d

p

)
6= 1

}
,
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succeeds with probability at least 1− 1
d1+o(1)

in time L(d)1/4z+o(1) + L(d)z+o(1) and
returns a vector ~x whose `1-norm is in O(log d).

Proof. We denote by S the set of B-smooth reduced forms of Cl(−d). From the

proof of [34, Prop. 4.4], we know that the probability |S|
2|Cl(−d)| that a single product

of the form
(∏

i≤n0
fyii

)
· f be B-smooth satisfies

|S|
2|Cl(−d)|

≥ ψ−d(
√
d/2, L(d)z)

2
√
d log d

,

where the function ψ−d(x, y) satisfies

ψ−d(x, y) ≥ x · e−u(log u+log log u+c(ε)) for u =
log x

log y
,

provided that x > 10 and log(x)1+ε, log2+ε(d) ≤ y ≤ elog1−ε d. The pair x =
√
d/2

and y = L(d)z satisfies these constraints, and we can thus deduce that

ψ−d(
√
d/2, L(d)z)

2
√
d log d

≥ 1

4 log d
e−u(log u+log log u+c(ε)) for u =

log
(√

d/2
)

log (L(d)z)
.

Let us denote by ps the probability of smoothness of one of the forms in the list.
We repeat the experiment dBe times where B ≥ log d

ps
. Therefore the probability of

failure is given by

(1− ps)dBe = e−dBeps(1+o(1)) ≤ e− log d(1+o(1)).

Moreover, as shown in the proof of [34, Prop. 4.4], the number of times Steps 8
and 9 are repeated satisfies dBe = L(d)1/4z+o(1).

To test the B-smoothness of the elements of Lforms, we use Bernstein’s batch
smoothness test [4] on the set S of first coefficients of the corresponding reduced
form, with the set of primes P that are bounded by L(d)z. This algorithm takes
time b log(b)2+o(1) where b is the total number of bits of all integers in S and P
combined, which is in L(d)1/4z+o(1) +L(d)z+o(1). Therefore, the time taken for this
step is in L(d)1/4z+o(1) + L(d)z+o(1).

Algorithm 1 will be used for different input forms f in the rest of this paper. To
use it in the context of Seysen’s relation collection method [34], we set f = f2nd

i

to ensure the creation of a row vector of the relation matrix that satisfies |aii| >∑
j 6=i |ai,j |.

Proposition 3. Assuming GRH, Algorithm 2 is valid, and succeeds with probability
at least 1− 1

d1+o(1)
in time

L(d)z+o(1)
(
L(d)z+o(1) + L(d)1/4z+o(1)

)
.

Proof. The running time for Algorithm 1 is L(d)1/4z+o(1) +L(d)z+o(1). So the run-
ning time for Algorithm 2 is n.

(
L(d)z+o(1) + L(d)1/4z+o(1)

)
. Since n = L(d)z+o(1),

the running time for Algorithm 2 is L(d)z+o(1)
(
L(d)z+o(1) + L(d)1/4z+o(1)

)
. The

probability of success of Algorithm 2 is at least (1− 1
d1+o(1)

)n. Since n/d1+o(1) � 1
for large d, we can use the binomial approximation, (1 +x)α ≈ 1 +xα, which yields
(1− 1

d1+o(1)
)n = 1− n

d1+o(1)
(1+o(1)). Then, since n = do(1), the Algorithm 2 succeeds

with probability at least 1 − 1
d1+o(1)

.
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Input : Fundamental discriminant −d < 0, set of prime forms
B = {f1, . . . , fn}, ε > 0

Output: Matrix (ai,j) with ∀i,
∏
j f

ai,j
j = 1Cl(−d), |aii| >

∑
j 6=i |ai,j |, or

FAILURE

1 (ai,j)← 0n×n;

2 for i ≤ n do
3 Use Algorithm 1 with input f = f2nd

i , B and ε and add the vector

~x− 2nd~ei to the i-th row of (ai,j);

4 if Algorithm 1 outputs FAILURE then return FAILURE;

5 end

6 return (ai,j)i,j ;

Algorithm 2: Phase 1

5. Phase 2

The second phase is where a modification of the strategy of Hafner and McCurley
needs to be made in order to lower the cost of the search for relations with good
guarantees of randomness. From a high level perspective, we quantify how sparse
the relation lattice Λ′ is at a given step to measure the chances of drawing a relation
outside of it. When the determinant of Λ′ ⊆ Λ is large enough, new relations are
outside of Λ′ with overwhelming probability. When this happens, the addition of
a new vector to Λ′ means that its determinant gets divided by at least a factor 2.
At some point, success in enriching Λ′ with new relations results in a determinant
that is no longer large enough to guarantee the probability that new relations are
outside of it. At this point, we need to switch to Phase 3 to finish the calculation

of Λ. We fix the target determinant for the switch to elog4 d. The determinant is
calculated only once after collecting n1+o(1) relations. If it does not fall below the
required bound, then the procedure returns a failure.

The specificity of the method to search for relations in Phase 2 is that for
each new attempt at finding a relation, we first draw a large vector of exponents
~x = (x1, . . . , xn) and compute the form f =

∏
i f

xi
i . This product is expensive to

evaluate, and the odds of f being B-smooth are low. Then, rather than drawing
a new f , we multiply short random products to f in order to generate a relation
involving f via Algorithm 1. Due to the properties of Algorithm 1 analyzed in
the previous section, each short product, which is inexpensive to evaluate, has a
reasonable chance to yield a relation. Moreover, once a relation ~v ∈ Λ is found, we
have that ‖~v − ~x‖ is short, which means that if we were able to argue that ~x was
far enough from Λ′, then we know that the new relation satisfies v /∈ Λ′.

To efficiently test the determinant at the end of Phase 2, we need to introduce a
new building block to the algorithm. The original Hafner-McCurley algorithm [24]
proceeds with computing the (row) Hermite Normal Form of the integer matrix
whose rows are the vectors of exponents of the relations that are collected (i.e. the
relation matrix ). However, the Hermite normal form takes time n4+o(1) to compute
for a n1+o(1)×n matrix with polynomial sized entries such as the one we have at the
end of Phase 2. Better techniques are now available to find the Smith Normal Form
(SNF) of a basis of the lattice generated by the rows of the relation matrix without
having to compute the Hermite Normal Form at all. The advantage of using such
a method is two-fold:
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• It allows the intermediate verification of the determinant of a full-rank Λ′ ⊆ Λ
at a lower cost.
• Once a generating set for Λ is found, the SNF of a basis for Λ is diag(d1, . . . , dn)

where Cl(−d) = Z/d1Z × . . . × Z/dnZ, thus giving us the final result of the
class group algorithm.

Lemma 5.1. Given n1+o(1) vectors in Zn with polynomial-sized entries that gen-
erate a full-rank sublattice Λ1 ⊆ Λ, there is a Las Vegas algorithm to compute the
SNF of a basis for Λ1 in time n3+o(1).

Proof. First, we need to reduce the problem to the computation of the SNF of
a square matrix. This is a direct application of [37, Th. 58] which states that
there is a Las Vegas algorithm to compute a matrix B ∈ Z(2m+5)×(2m+5) (where
m = n1+o(1) is the number of input vectors) whose Hermite Normal Form has the

shape

(
H (0)
(0) I

)
with entries of polynomial bit-size, in time nω+o(1), where ω ≤ 3

is the exponent for the complexity of matrix multiplication. This directly implies
that the SNF of B is diag(d1, . . . , dn, 1 . . . , 1) where diag(d1, . . . , dn) is the SNF of
H, which is a basis of Λ1. The Las Vegas SNF algorithm recently introduced in [17]
allows us to compute the SNF of B in time n3+o(1), which concludes this proof.

We summarize Phase 2 in Algorithm 3. We analyze its run time and correctness
separately from its probability of success, as the former is straightforward, while
the latter requires a careful analysis of the odds of the random vector ~z being far
enough from the lattice Λ1 in Step 3.

Proposition 4. Algorithm 3 is valid, and terminates in time

L(d)3z+o(1) + L(d)z+1/4z+o(1).

Proof. The validity immediately derives from the results previously stated. In par-
ticular, note that if f =

∏
i f

zi
i =

∏
i f

xi
i where ~x is the output of Algorithm 1 on

input f , then ~x − ~z ∈ Λ. The running time of the “for loop” of Steps 2 to 11 is
L(d)z(L(d)z+o(1) + L(d)1/4z+o(1)) as Algorithm 1 is repeated n1+o(1) times. Then
Step 12 takes time L(d)3z+o(1), and therefore the overall time is

L(d)z(L(d)z+o(1) + L(d)1/4z+o(1)) + L(d)3z+o(1) = L(d)3z+o(1) + L(d)z+1/4z+o(1).

We now turn to the analysis of the probability of success of Algorithm 3. When-
ever we generate a new relation in Step 5, we need to find a bound on the probability
that it does not belongs to Λ1 already. Each time ~x − ~z /∈ Λ1, the update Step 9
divides the index Λ1 within Λ by a factor at least 2, thus getting us one step closer
to passing the test of Step 13 on the determinant of Λ1. Let us denote the box
{x : x ∈ Zn, ‖x‖∞ ≤ d2} by Wn(d2) as in [24]. We also denote an n-dimensional
sphere of radius r for the Euclidean distance, centered at x by B(x, r). We define
the subspace of Wn(d2) ,

V :=
{⋃

B(x, (2 + ε) log d) : x ∈ Λ1 ∩Wn(d2)
}
∩Wn(d2)

By construction, the relations added to the sublattice Λ1 on Step 9 of Algorithm 3
are within distance log(d) for the `1-norm of a vector ~x ∈Wn(d2) drawn uniformly
at random. This means that they are also at distance log(d) of ~x for the Euclidean
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Input : Fundamental discriminant −d < 0, B = (fi)i≤n for n = L(d)z,
ε > 0, and n generators of Λ0 ⊆ Λ of full rank

Output: n+ log2

(
n5n/2dn

)
generators of Λ1 ⊆ Λ with det(Λ1) ≤ elog4 d

or FAILURE

1 Λ1 ← Λ0;

2 for i ≤ log2

(
n5n/2dn

)
do

3 Choose ~z ∈ [−d2, d2]n uniformly at random ;

4 f̃ ←
∏n
k=1 f

zk
k ;

5 Use Algorithm 1 with input f = f̃ , B and ε ;

6 if Algorithm 1 outputs FAILURE then
7 return FAILURE;

8 else
9 Λ1 ← Λ1 + Z(~x− ~z);

10 end

11 end

12 Compute the determinant h1 of Λ1 using Lemma 5.1;

13 if h1 > elog4 d then
14 return: FAILURE

15 else
16 return: the n+ log2

(
n5n/2dn

)
generators of Λ1

17 end

Algorithm 3: Phase 2

distance. By the triangular inequality, they cannot be in Λ1 as long as the random
vector ~x is outside of V .

Lemma 5.2. Let Λ1 be a full rank sublattice of Λ with discriminant greater than

elog4 d. Then the probability that a vector ~x drawn uniformly at random in Wn(d2)
be outside of V is at least 1− 1

elog4 d(1+o(1))
.

Proof. We obtain a lower bound on the cardinality Wn(d2) \ V by subtracting an
upper bound on the total number of integer points contained inside V from |Wn(d2)|.
According to [32, Corollary 1.4], the number of integer elements contained inside

each individual n-dimensional sphere is bounded from above by 3.eπ.k
2.r2

2 , where r
is the radius of the sphere and k = 10(log n+ 2). According to [24, Lemma 1], the

number of elements of Λ1 inside the box Wn(d2) is (2d2)n

det(Λ1) .(1 + O(nD/d2)), where

D is a bound on the diameter of the fundamental domain of Λ1. In the proof of [24,
Lem. 2], it is specified that the diameter of the fundamental domain of Λ0 is in
O(n2d) by a triangular inequality argument on the vectors of the basis of Λ0. Since
the fundamental domain of Λ1 is contained in that of Λ0, it satisfies the same bound
and ∣∣Λ1 ∩Wn(d2)

∣∣ ∈ (2d2)n

det(Λ1)
.

(
1 +O

(
n3

d

))
.

Therefore, the number of integer elements inside V is bounded from above by

(2d2)n

det(Λ1)
.

(
1 +O

(
n3

d

))
.
3.eπ.k

2.r2

2
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In turn, this implies that the number of integer elements on the space Wn(d2) \ V
is at least

(2d2)n − (2d2)n

det(Λ1)
.

(
1 +O

(
n3

d

))
.
3.eπ.k

2.r2

2

So the probability to draw an ~x in Wn(d2) \ V is at least

1− 3.eπ.k
2.r2

2 det(Λ1)
(1 + o(1)) = 1− 1

elog4 d(1+o(1))

because r = (2+ε) log d, n = L(d)z+o(1), k = 10(log n+2), and det(Λ1) ≥ elog4 d.

Note that we did not discuss the probability of success of the Las Vegas SNF
method used in Step 12 of Algorithm 3. The probability of success of the methods
described in [37, 17] is at least 1/2. Therefore, we can achieve a probability of
success of 1 − 1

elogc d
for any constant c > 0 without (asymptotically) increasing

the cost by repeating the procedure a polynomial amount of times. To assess the
overall success probability of Algorithm 3, we need to find a lower bound on the
probability of finding enough relations outside of Λ1 so that at the end of the

procedure det(Λ1) ≤ elog4 d.

Proposition 5. Under GRH, the probability of success of Algorithm 3 is at least
1− 1

d1+o(1)
.

Proof. We derive a conservative lower bound on the success probability of Algo-
rithm 3 by first noticing that according to the Hadamard inequality, det(Λ0) <
n5n/2dn. This means that the number of times a vector ~x − ~z /∈ Λ1 needs to be
added on Step 9 of Algorithm 3 is less than the number log2

(
n5n/2dn

)
= n1+o(1)

of relation collected. The probability of drawing enough random vectors ~z outside

of V in Step 4 is higher than
(

1− 1
elog4 d(1+o(1))

)n1+o(1)

. Combining this with the

probability 1 − 1
d1+o(1)

of success of Algorithm 1, we get that the probability of

finding enough relations to bring det(Λ1) below elog4 d is higher than(
1− 1

elog4 d(1+o(1))

)n1+o(1)

·
(

1− 1

d1+o(1)

)n1+o(1)

.

Since n = L(d)z+o(1), we have n1+o(1)

elog4 d(1+o(1))
� 1 and n1+o(1)

d1+o(1)
� 1 for very large d.

Therefore, we can use the binomial approximation (1+x)α ≈ 1+xα as in the proof

of Proposition 3. Moreover, we have n = do(1) and d = eo(1)·log4 d, therefore,(
1− 1

elog4 d(1+o(1))

)n1+o(1)

·
(

1− 1

d1+o(1)

)n1+o(1)

= 1− 1

d1+o(1)
.

6. Phase 3

The last phase or the relation search uses the exact same method described in [24,
Sec. 3]. In a nutshell, it consists in creating a tower of sublattices (Λi)2≤i≤m of the
lattice of relations such that

Λ0 ⊆ Λ1 ⊆ . . . ,⊆ Λm = Λ.

The key observation proved in [24, Lem. 2] is that when relations are obtained
simply by testing the B-smoothness of elements f =

∏
i f

xi
i for a vector ~x drawn
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uniformly at random in Wn(d2), the probability that they belong to a given coset in
Λ/Λ1 is essentially given by det(Λ)/ det(Λ1). This means that new relations have
somewhat comparable chances of landing in different cosets of Λ/Λ1. Once every
coset has been hit at least once, the relation collection is complete. What makes
Phase 3 less expensive than the analogue procedure in [24, Sec. 3] is the fact that

we start the procedure from Λ1 where |Λ/Λ1| ≤ elog4 d instead of starting from
Λ0 which is only known to satisfy the more pessimistic bound |Λ/Λ0| < n5n/2dn,
thus requiring the drawing of exponentially more vectors to complete the lattice of
relations.

Input : Fundamental discriminant −d < 0, B = (fi)i≤n for n = L(d)z,

ε > 0, and m = n1+o(1) generators of Λ1 ⊆ Λ of full rank with

det(Λ1) ≤ elog4 d

Output: Cl(−d), or FAILURE

1 B ← 4 · eu(log u+log log u+c(ε)) for c(.) as in [34, Th. 5.2] ;

2 for k ← 1 to log4 d+log d
log(1.5) do

3 Initiate an empty list Lforms;

4 for r ← 1 to dBe do
5 Choose ~x uniformly at random in Wn(d2). f ←

∏n
i=1 f

xi
i ;

6 Store f, ~x in Lforms;

7 end

8 Test the B-smoothness of all forms in Lforms using [4];

9 if there is f that is B-smooth in Lforms then
10 Let ~y ∈ Zn with f =

∏
i≤n f

yi
i . Λk+1 ← Λk + Z(~x− ~y);

11 else
12 return: FAILURE

13 end

14 end

15 Compute h∗ such that h∗ ≤ det(Λ) < 2h∗;

16 Compute d1, . . . , dn such that Λ/Λk =
∏
i Z/diZ using Lemma 5.1;

17 if
∏
i di ≥ 2h∗ then

18 return: FAILURE

19 else
20 return: Z/d1Z× . . .× Z/dnZ
21 end

Algorithm 4: Phase 3

Proposition 6. Under GRH, Algorithm 4 returns Cl(−d) with probability at least
1− 1

d1+o(1)
in time

L(d)3z+o(1) + L(d)z+1/4z+o(1)

Proof. We rely on [24, Lem. 3] which states that if we generate at least log |Λ/Λ1|+log d
log(2/α)

new relations stemming from a random choice of ~x ∈ Wn(d2) as in Step 5 with

α = 1+O
(
n3

d

)
, then we have a probability at least 1− 1

d of generating Cl(−d). For

d large enough, log(2/α) ≥ log(1.5), which ensures that if all attempts at finding
relations in the “for loop” of Steps 3 to 14 succeed then we have a probability 1− 1

d
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of obtaining Cl(−d). The probability of succeeding in finding these relations is at
least (

1− 1

d1+o(1)

) log4 d+log d
log(1.5)

= 1− 1

d1+o(1)
,

which proves the result on the probability of success. The evaluation of a product in
Step 5 takes time n1+o(1), The number dBe of attempts to generate a relation with
probability 1 − 1

d1+o(1)
is L(d)1/4z+o(1). This means that the loop between Step 2

and Step 14 costs L(d)z+1/4z+o(1). The computation of h∗ runs in polynomial time
under the ERH, and the computation of d1, . . . , dn via the SNF costs L(d)3z+o(1)

as seen before.

Corollary 1. Assuming GRH, there is a Las Vegas algorithm to compute Cl(−d)

in time L(d)3/
√

8+o(1) with probability at least 1− 1
d1+o(1)

.

Proof. The setup of the algorithm for computing Cl(−d) consists in computing B
in time L(d)z+o(1). The time of the subsequent phases is bounded by L(d)3z+o(1) +

L(d)z+1/4z+o(1). Therefore, the total run time is optimal for z = 1/
√

8.
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