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Abstract—Intelligently responding to a pandemic like Covid-19 requires sophisticated models
over accurate real-time data, which is typically lacking at the start, e.g., due to deficient
population testing. In such times, crowdsensing of spatially tagged disease-related symptoms
provides an alternative way of acquiring real-time insights about the pandemic. Existing
crowdsensing systems aggregate and release data for pre-fixed regions, e.g., counties. However,
the insights obtained from such aggregates do not provide useful information about smaller
regions — e.g., neighborhoods where outbreaks typically occur — and the aggregate-and-release
method is vulnerable to privacy attacks. Therefore, we propose a novel differentially private
method to obtain accurate insights from crowdsensed data for any number of regions specified
by the users (e.g., researchers and a policy makers) without compromising privacy of the data
contributors. Our approach, which has been implemented and deployed, informs the
development of the future privacy-preserving intelligent systems for longitudinal and spatial data
analytics.
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INTRODUCTION

At the heart of tracking Covid-19 (or other similar
infectious diseases) are spatiotemporal range
(SR) queries. An SR query asks for the number
of data points in a given region and a time period,
e.g., how many people got sick of Covid-19 in
Downtown Manhattan in the past 14 days? These
queries provide crucial information such as daily

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

cases, moving averages, and cumulative case
counts for sick people. Importantly, they are used
to identify and track new and emerging hotspots.
Thus, answering SR queries is vital to making
informed policy decisions to curb the spread of
the disease, e.g., by having smart-lockdowns
instead of locking down the country and its
economy.
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In the early months of the Covid-19
pandemic, testing was deficient, and there was
inadequate data about the actual Covid-19 case
counts to make any informed decisions.
Therefore, many symptom-tracking apps were
developed that crowdsensed location-tagged
Covid-19 related symptoms to estimate the
lacking information (e.g., region-wise case
counts). Such apps were adopted across the
world [1,2,3,4] to help track Covid-19.

However, all such existing apps are
rudimentary in their functionality. Firstly, they
aggregate and release insights, e.g., the count of
symptomatic people, for a fixed set of
administrative regions. For instance, the fixed
regions for “COVID Near You”, “How We Feel”,
and “Facebook” symptom-tracking apps are
respectively based on ZIP codes, towns, and
counties. Thus, these apps can only answer a
limited set of SR queries, and allow a user to only
access information for their respectively defined
pre-fixed administrative regions that arbitrarily
vary in sizes and population density. Hence, they
are unable to effectively track the emergence of
the virus since the outbreaks are typically more
localized and do not adhere to administrative
boundaries. Secondly, the aggregate-and-
release method — used by all the symptom-
tracking apps — fails to protect the privacy of all
the data-contributors as has been shown
numerous times by various attacks [5,6,7,8].
Indeed, even if these apps had allowed
aggregation over arbitrary regions, they would
have suffered from significant privacy problems —
in terms of the data used in our experimental
evaluation, upto 30% of the symptom reports
were individually identifiable, i.e., there were no
other reports within a radius of 0.5 sq. km. The
percentage of reports at risk would increase with
more sophisticated queries such as intersection
queries. Furthermore, we note that the use of
intelligent and Al systems in epidemiology is
recent, and so far, privacy-preserving solutions
are lacking [9,10].
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Therefore, to address the above
mentioned shortcomings, we propose a
crowdsensing system to develop symptom-
tracking apps that, compared to the existing
systems, can answer any number of SR queries
for any user-specified region, all the while
guaranteeing differential privacy [11] —a provable
guarantee — for all the data contributors. We have
also deployed this system via web and phone
apps under the Covid Nearby Project [12].

Here, the main problem to solve is: how
to enable users to ask any number of SR queries
(e.g., the number of symptomatic people) for any
region of their choice but without adversely
impacting privacy. We solve this problem under
the provable guarantee of differential privacy
(DP). DP provides state-of-the-art data-privacy
protection, wherein the risk to a data contributor’s
privacy is specified via a parameter € > 0: the
higher its value, the higher the risk. Our system
guarantees that its answers to the SR queries
remain statistically almost identical regardless of
whether any single user reported their information
or not. Furthermore, by design, the number of
queries and choices for the query regions are
unbounded. Thus, the main challenge is to
answer all the SR queries—for different regions
and at different or overlapping times— with DP
but without increasing the privacy risk (i.e., for a
reasonably small value of &) or degrading the
accuracy of the answers. Note that accuracy is
equally important here as one can achieve
perfect privacy by giving completely random
answers.

To solve the challenge mentioned above,
our system creates differentially private spatially
indexed hierarchical partitions of the space (e.g.,
the USA) using temporally partitioned data and
computes the DP count of the reports (e.g., the
number of symptomatic people) in each partition.
We then use these indexed partitions with their
corresponding DP counts to compute SR queries.
Fig. 1 gives the system-level overview.
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Figure 1. The system has three components. The Crowdsensing component collects and stores user reports. Private
quadtree builder dynamically partitions the space via a collection of DP quadtrees. Query computer uses the DP

quadtrees to compute SR queries.

This enables a privacy-preserving
crowdsensing based pandemic surveillance
system that: (1) generates insights about the
pandemic while guaranteeing privacy, in
particular, it guarantees e-DP over an unbounded
number of arbitrarily chosen SR queries; (2) can
be used to identify regions, for example within
counties, with higher cases/reports (by identifying
the child nodes with the highest depth); and (3) is
computationally efficient and accurate.

DIFFERENTIALLY PRIVATE SR
QUERIES VIA
SPATIOTEMPORAL
PARTITIONING

We consider the following setting:

1. The space (of possible locations) is two-
dimensional and bounded, with north-south
and east-west as two perpendicular axes
(e.g., obtained by Mercator).

2. The database contains the reports that:

i. are from within the USA and tagged with
location coordinates in the space,

ii. contain at least one Covid-19 symptom.

3. The database is stored with a trusted curator
who answers SR queries using a DP
algorithm.

4. There is only one report per user (this

assumption is relaxed and discussed later).
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5. Any SR query’s region is an axis parallel
rectangle, and for simplifying the exposition,
the time period for it at any given day is the
past d days, with d = 14.

Overview

To create spatially indexed partitions of the
space, we use a hybrid of data-agnostic and data-
dependent approaches. First, we partition the
space without looking at the data, based on
administrative units, e.g., counties—let us call
them divisions. Then, every day for each division,
we temporally partition the data reported from the
division into k groups and create k different data-
dependent partitions of the same division by
building k DP quadtrees over it; each of the
quadtrees uses the data from one of the k groups
and is guaranteed to be (¢/n)-DP (here k =
[d/n]). We use a covering algorithm to create
temporal partitions (every day); it ensures that no
report is included in more than n groups created
over time. Thus, the overall privacy risk remains
at most €. The details follow.

Spatial Partitioning

We first partition the space data-agnostically
(without looking at the data) using division as a
county. Then, on any given day, we partition the
division data-dependently by building a quadtree
[13], a hierarchical spatial data structure. For a
given rectangular space and the data lying in it,
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Figure 2. (a) shows a partition of space created by a quadtree; black points represent the data; (b) gives the
quadtree (max height = 3, count threshold = 1) for (a); (¢) shows how to compute SR queries via the quadtree’s
quadrants; the answer to the third query is 4 because a node only stores the count of its quadrant.

a quadtree recursively, level by level partitions
the space into rectangular regions (called
quadrants) by bisecting their sides. Each
quadrant represents a region of the division and
holds the DP count of the reports from the region
it represents (e.g., see Fig. 2(a)-(b)).

To build a quadtree over a division, we
use the smallest rectangle bounding the division
and use the length w (in Km) of its longest side to
compute the max height as h = |log, w|, i.e., the
maximum number of levels. This strategy
ensures that one of the quadrant’s sides will be 1
Km long, even in the smallest partition.
Furthermore, since the privacy budget is prefixed,
knowing h beforehand allows for a better
allocation of the privacy budget, ¢ and
significantly improves the accuracy. We set ¢’ =
1 at the root level, and divide the remaining
budget (i.e., ¢ — &') geometrically among the rest
of the levels as it provably reduces the error over
queries [13]. To stop partitioning zero or low
(symptomatic reports) count sub-regions and
focus on the sub-regions in the division with a
high count, we use a minimum count threshold, c,
as a prerequisite for dividing a sub-region. This
thresholding further improves the accuracy and
efficiency of the system. For Covid Nearby, we
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set ¢ = 10, and for the data, we use the past d
days’ data reported from the division — recall that
d = 14.

Temporal Partitioning

To reduce the error in achieving e-DP, we do not
build one (¢/d)-DP quadtree per day over the
past d days’ data. Instead, we temporally partition
the past d days’ data into k groups, called
acceptable partition (described below), and build
k-many (g/n)-DP quadtree (one over each group
with k = [d/n]). Note that ¢ is reduced (to £/n and
g/d) to make overall risk &, which follows from the
serial composition property of DP [11]; it bounds
the privacy risk of a data record used in N
independent e-DP queries by Ne. For instance,
building one £-DP quadtree (per day) over the
past 14 days’ data gives an overall privacy risk of
14¢' over time because each day’s data is used
in building 14 quadtrees (Fig. 3(a), where for
simplicity, we use d = 8 instead of d = 14).

For any given d consecutive days, an
acceptable partition divides the d days into k =
[d/n] groups of consecutive days such that: (1)
there are k — 1 groups of size n; (2) there is one
group of size r, where d = n(k — 1) + r; and (3)
each of the d days is present in exactly one group
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Figure 3. This figure shows three methods of creating acceptable partitions of 8 days, i.e., d = 3. For (b)-(d) n = 3.
Both rows and columns show the progression of time. The colored rectangles, together in each row, show the
acceptable partition for the day labeling the row. Rectangles in each row give the groups in the acceptable partition,
and each is uniquely identifiable by its color and pattern—therefore, any two rectangles with the same color and pattern
across rows refer to the one unique group of days. (a) shows the naive approach that groups all 8 days into one group
(i.e., n =d = 8), and each is unique. (b) shows acceptable partitions for n = 3 and k = 3. The vertical connections
explicitly show, as an example, the same unique group across different partitions. Similarly, (c) shows the acceptable
partitions by the covering algorithm [14] where the groups are reordered in a particular way; compared to (a) and (b),
this method produces a lesser number of unique groups. (d) explicitly shows reordering of the groups in terms of their
sizes done via a circular-shift after every n =3 days. (e) compares the three methods via boxplot of the noise
(generated over 100 iterations) at the root level of a quadtree corresponding to the three methods given in (a), (b), and
(c) for the same privacy risk.

(e.g., see Fig. 3(b)-(c), where each given groups from all the acceptable partitions created
temporal partition is acceptable, and d = 8 and over time. Thus, giving a privacy risk of ne. This
n = 3). Given an acceptable partition, P, of the approach reduces the magnitude of noise added
past d days, creating an acceptable partition of to achieve e-DP and improves the accuracy (Fig.
the data is straightforward: combine the data from 3(d)).
all the days in each group of P, which divides the For our case, i.e., d = 14, we specify k
data into k groups. by choosing and updating n over time. We use
Since we need to create an acceptable the following empirically supported heuristic see
partition of the data every day and build new [14] for this task. Set n =1 if the number of
quadtrees, naive methods incur a higher privacy reports, #R, from the division is less than 19 (we
risk even when we build only one quadtree per use DP counts to compute #R). When #R
one unique group of data. For instance, one such exceeds 19, we pick n based on #R and the max
naive method incurs (n + r)e privacy risk under height of the quadtree, h, for the division. When
DP when r#n, (e.g., see Fig. 3(b), where h<4and20 <#R <4* wesetn="7.Whenh =
privacy risk can be calculated by multiplying m, 6 and 20 < #R < 4*, we set n = 3. For the rest
i.e., the max number of unique groups a day is of the cases, we set n = 2.

included in, with ¢). Here, we use a covering
algorithm [14] for this task; it starts with a given
acceptable partition, P, (of the days) and shifts P
to the right every day with an additional circular-
shift after every n days (see Fig. 3(c)-(d); see [14]
for details). The covering algorithm guarantees
that every day will at max be present in n unique

Spatiotemporal Range Query

Computation

To compute an SR query, we find all the divisions
that intersect with the query region, then compute
the query over the quadtree for each such
division and aggregate their results to compute
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the final answer. To compute a query over a
quadtree, we traverse the tree to find all the
quadrants that intersect with the query region and
sum their counts to compute the result (e.g., see
Fig. 2(c)). To improve the accuracy, we use the
count of the parent node if all of its children are
selected [13].

Since the DP quadtrees do not store the
actual points, we get the count for the whole
quadrant, even when the query region partially
intersects the quadrant (3" query in Fig. 2(c)). In
such a case, one can improve the estimate by
employing uniformity assumption [13], and giving
the count proportional to the area, A(R n Q), of
the query region R that intersects with a quadrant
Q, i.e., cg XxARNQ))/AQ), where ¢, is the
count for Q and A(Q) is the area of Q. However,
in many instances, the actual region from a
division makes a small part of a quadrant’s
region. This is because we build quadtrees over
the bounding boxes of the divisions, and in such
instances, a quadrant’s area can be much larger
than the actual area of the region of the division it
contains; thus, proportional counts give a lower
estimate. We solve this problem by taking a
polygonal (shape) approximation of divisions and
using the intersection of the polygon with a
quadrant as the area of the quadrant and the
intersection of the query region with the polygon
and the quadrant as the area of the query region
in the quadrant to compute the proportional
count.

Data Inclusion Criterion and Privacy
Our approach protects every report with an e-DP
guarantee. However, when a user reports more
than once, the user’'s privacy risk increases
linearly with the number of reports the user
makes (due to serial composition of DP). To
control this risk, we limit a user’s reports that we
use to build quadtrees; this simple technique
works in practice effectively [15]. Let us say D is
the database in which we insert selected reports;
it will be used to build quadtrees. We restrict the
total number of reports (by a user) inserted in D,
to be N in the following way. At any day, any user
u can submit only one report, which we insert in
D if the following two conditions are met:
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1. If, in the past d days, no report from u was
inserted in D, and

2. The total number of reports by u that were
inserted in D is less than N.

This insertion mechanism will incur a privacy risk
of Ne for any data contributor. If one wants to limit
the privacy risk to eone can build quadtrees that
are ¢/(nN)-DP. In the case of Covid-19, where
d = 14, having N = 2, covers a one-month long
period for any user, covering most cases of
interest.

EMPIRICAL EVALUATION

Our method has been validated through an
empirical evaluation over spatially disaggregated
real data of confirmed Covid-19 cases [16]. The
original Covid-19 data was given as the
aggregate counts (of confirmed Covid-19 cases)
at the county level for each day. Therefore, we
first disaggregated the data for each county for
each day. To do this, we estimated the radius of
each county and used it to parameterize the scale
of the exponential distribution Q. We prepare as
many data points as the count of the county.
Then, for each data point, we sample the distance
r from the center of the county, and pick the
point’s location uniformly on the circle of radius r,
centered at the county’s center coordinate.

The results show that the DP answers,
computed via our method, are highly accurate
(Fig. 4(a)-(b) and Fig. 5(a), (c), (d)). This is true
even for the arbitrarily picked region within a
division (Fig. 4(b)). Further, our approach yields a
much lower error than a baseline approach with
the same privacy (Fig. 4(c)). As noted earlier, the
smaller the value of the privacy parameter, ¢, the
lower the privacy risk. Given the scale and
geographic scope of the system, we use e =6
following the US Census Bureau’s preliminary -
allocation in 2019 for the 2020 census [17]. We
note that the US Census Bureau has since
significantly increased € and set it to 19.61.
Besides computing SR queries for arbitrary
regions—which are used to compute a variety of
information to track the pandemic—the DP
quadtrees can be combined to compute accurate
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Figure 4. Private counts are DP answers to SR queries computed by our method from the actual Covid-19 case count.
(a) depicts the stacked bar-chart of the case counts of the 5 NY counties with the most Covid-19 cases. For each day:
(i) two stacked bars are given, the first for the actual counts, and the second for the private counts; and (ii) each bar
gives the total Covid-19 cases for the past 14 days. (b) juxtaposes the heatmaps of the actual and private 14-day case
counts (on a log scale) for NY state and Richmond County. (¢) compares our method to a method based on a naive
spatial partitioning approach (i.e., DP data aggregation over partitions created by a fixed grid base partitioning with a
cell-size of 1 Km?2), which guarantees the same level of privacy. Both the methods are probabilistic, and therefore the

boxplots are computed over 100 iterations.

cumulative case counts over time as well as rank
and identify hotspots at the state/county level
(Fig. 5(a)-(c)). The relative error for the
cumulative counts in the start is relatively high
(Fig. 5(b)) because in the early months of the
pandemic (e.g., March to May 2020), the actual
counts were very small for most of the states; for
this very reason the average relative error over
the 25 states with the most cases is always lower
than that over all the states.

We use SR queries to compute the
moving averages of the new cases (or
symptomatic reports) with a very low error (Fig.
5(d))—one can combine different quadtrees to
get a moving average different from 14-days.
Even in the case of moving average, if the count
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is sufficiently high, the error is negligible (Fig.
5(d)-(e)).

DISCUSSION

Our system relies on a hybrid of data-agnostic
and data-dependent spatial partitioning. Below,
we discuss why our hybrid approach is better
than any non-hybrid approach. Let one use a
data-agnostic scheme alone, e.g., by using a
fixed grid to partition the space—we refer to it as
the naive approach. To achieve ¢-DP, the naive
approach adds the noise (from Laplace
distribution of mean zero and scale 1/¢) to the
aggregate count of each grid cell. However, to
achieve the granularity supported by our system,
the naive approach must create grid cells of much
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Figure 5. Private counts refer to the counts computed by our method from the actual Covid-19 case count. (a)
juxtaposes the heatmaps of the cumulative counts at the state level, both actual and private, on 7/17/2020; (b) plots
the relative error in cumulative counts using our method for the top 25 states (by case count) and the entire US over
the period from 3/20/2020 — 9/1/2020. (c) plots Kendall's 7 (rank correlation coefficient [18]) of the two ranked lists of
states obtained from the private and the actual answers of SR queries for counties; T = 1 when the ranking is identical;
(d) plots the 14 days moving average of both the private and the actual counts for New York, Texas, and the entire US
over the same period as (b). Since our method is probabilistic, the private counts shown are the average over 100
iterations. (e) shows the box plot of the relative error of the moving average over these 100 iterations.

smaller sizes, about 1Km x 1Km. Thus, the naive
approach compared to the hybrid approach,
results in a huge number of cells and the data
to be stored and processed every day. Moreover,
although this approach gives a reasonable
estimate for each cell, the answers to the queries
that consist of many cells, e.g., for states,
counties, or even large enough regions within a
county have higher errors than the hybrid
approach. This is because most of these cells will
contain no repot but the noise introduced by the
DP mechanism.

On the other hand, if one uses the
quadtree approach alone, only one quadtree will
have to be built over the USA. Now, to create the
partitions with the level of granularity supported
by our system, the max height of the tree would
have to be much higher, which will lead to poor
accuracy. This is because, at every level, a
smaller privacy budget (i.e., the value of &) will be
available to compute the DP count for each
partition. Thus, the magnitude of added noise will
be higher. Note that while other data-dependent
spatial partitioning approaches (e.g., k-d trees)
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may provide better accuracy when privacy is not
considered, they perform worse when privacy has
to be taken into account since some privacy
budget will now be allocated for creating
partitions. This will further reduce the privacy
budget for computing DP counts, leading to
higher noise, and thus, higher error.

One limitation of our approach—and in general of
all privacy approaches—is the inability to limit the
privacy risk under continual data updates. For
instance, our approach incurs a privacy risk of ¢
for a single report. However, when a user reports
more than once and each of the reports is used
to build a quadtree, then the privacy risk
increases linearly with the number of reports. To
limit this increase in the privacy risk, we devised
a selection criterion to decide which reports by a
user should be included; this makes the system
usable for Covid-19 for practical purposes.
However, the following general problem remains
open: “How to limit the privacy risk and achieve
meaningful utility for an arbitrary number of SR
queries, when each user can potentially
contribute one report per day.” There is a need to
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conceptualize a new privacy notion and methods
specialized for this setting to solve this problem.
While we presented our approach specifically to
compute SR queries for 14 day long period, our
system can be used to compute other important
insights. For instance, we can identify hotspots
within a division (e.g., county in our case) by: 1)
identifying highest leaves in the corresponding
quadtrees; or 2) partitioning the division as per
one’s requirement and comparing the counts for
these partitions; a similar strategy can be used to
identify hotspots in terms of counties and states.
Since the system builds and keeps a series of
quadtrees over time, they can be used to
compute SR queries for time periods other than
14 days. Additionally, dividing any SR query’s
answer by its time range, d, gives the d-day
moving average for the query’s region, e.g., the
country, a state, a county, or a region within a
county. We note that the series of quadtrees built
by our system can be carefully combined to
compute other insights which we plan to explicate
in future work.

To use our approach in a similar future
pandemic/epidemic, one needs to find the
corresponding heuristic to select the parameter n
(for the covering algorithm). This can be done by
generating synthetic data for the new daily cases
by, for example, using the SIR model [19,20],
estimating d (which in the case of Covid-19 is 14
days), and then performing a similar evaluation
as has been done for Covid-19 in [14].
Furthermore, our approach is general and can be
used to privately and accurately crowdsense
other health symptoms, data, or adoption
behaviors (e.g., vaccination rates) by using the
corresponding data and following the approach
as outlined in this article.

CONCLUSION

The proposed privacy-preserving crowdsensing
approach enables intelligent pandemic
surveillance. It guarantees strong privacy for the
data contributors and allows for accurately
querying across arbitrary space and time bounds.
Since the lack of privacy guarantees has been
cited as a leading cause of concern by experts
and non-governmental organizations, the
proposed approach can be vital to allaying the
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concerns of experts and end-users alike for future
pandemic crowdsensing efforts. Its support for
tracking across administrative boundaries is
almost cognizant of the ground realities of the
pandemic. Furthermore, the approach is generic
and can be applied for reporting spatiotemporal
information about other health symptoms or
adoption behaviors (e.g., vaccination rates).
Overall, this approach paves a way forward for
countering pandemics without compromising on
individual privacy.
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