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Abstract—Intelligently responding to a pandemic like Covid-19 requires sophisticated models 
over accurate real-time data, which is typically lacking at the start, e.g., due to deficient 
population testing. In such times, crowdsensing of spatially tagged disease-related symptoms 
provides an alternative way of acquiring real-time insights about the pandemic. Existing 
crowdsensing systems aggregate and release data for pre-fixed regions, e.g., counties. However, 
the insights obtained from such aggregates do not provide useful information about smaller 
regions – e.g., neighborhoods where outbreaks typically occur – and the aggregate-and-release 
method is vulnerable to privacy attacks. Therefore, we propose a novel differentially private 
method to obtain accurate insights from crowdsensed data for any number of regions specified 
by the users (e.g., researchers and a policy makers) without compromising privacy of the data 
contributors. Our approach, which has been implemented and deployed, informs the 
development of the future privacy-preserving intelligent systems for longitudinal and spatial data 
analytics.  
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INTRODUCTION 

At the heart of tracking Covid-19 (or other similar 

infectious diseases) are spatiotemporal range 

(SR) queries. An SR query asks for the number 

of data points in a given region and a time period, 

e.g., how many people got sick of Covid-19 in 

Downtown Manhattan in the past 14 days? These 

queries provide crucial information such as daily 

cases, moving averages, and cumulative case 

counts for sick people. Importantly, they are used 

to identify and track new and emerging hotspots. 

Thus, answering SR queries is vital to making 

informed policy decisions to curb the spread of 

the disease, e.g., by having smart-lockdowns 

instead of locking down the country and its 

economy. 
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In the early months of the Covid-19 

pandemic, testing was deficient, and there was 

inadequate data about the actual Covid-19 case 

counts to make any informed decisions. 

Therefore, many symptom-tracking apps were 

developed that crowdsensed location-tagged 

Covid-19 related symptoms to estimate the 

lacking information (e.g., region-wise case 

counts). Such apps were adopted across the 

world [1,2,3,4] to help track Covid-19.  

However, all such existing apps are 

rudimentary in their functionality. Firstly, they 

aggregate and release insights, e.g., the count of 

symptomatic people, for a fixed set of 

administrative regions. For instance, the fixed 

regions for “COVID Near You”, “How We Feel”, 

and “Facebook” symptom-tracking apps are 

respectively based on ZIP codes, towns, and 

counties. Thus, these apps can only answer a 

limited set of SR queries, and allow a user to only 

access information for their respectively defined 

pre-fixed administrative regions that arbitrarily 

vary in sizes and population density. Hence, they 

are unable to effectively track the emergence of 

the virus since the outbreaks are typically more 

localized and do not adhere to administrative 

boundaries. Secondly, the aggregate-and-

release method – used by all the symptom-

tracking apps – fails to protect the privacy of all 

the data-contributors as has been shown 

numerous times by various attacks [5,6,7,8]. 

Indeed, even if these apps had allowed 

aggregation over arbitrary regions, they would 

have suffered from significant privacy problems – 

in terms of the data used in our experimental 

evaluation, upto 30% of the symptom reports 

were individually identifiable, i.e., there were no 

other reports within a radius of 0.5 sq. km. The 

percentage of reports at risk would increase with 

more sophisticated queries such as intersection 

queries. Furthermore, we note that the use of 

intelligent and AI systems in epidemiology is 

recent, and so far, privacy-preserving solutions 

are lacking [9,10].  

Therefore, to address the above 

mentioned shortcomings, we propose a 

crowdsensing system to develop symptom-

tracking apps that, compared to the existing 

systems, can answer any number of SR queries 

for any user-specified region, all the while 

guaranteeing differential privacy [11] – a provable 

guarantee – for all the data contributors. We have 

also deployed this system via web and phone 

apps under the Covid Nearby Project [12]. 

Here, the main problem to solve is: how 

to enable users to ask any number of SR queries 

(e.g., the number of symptomatic people) for any 

region of their choice but without adversely 

impacting privacy. We solve this problem under 

the provable guarantee of differential privacy 

(DP). DP provides state-of-the-art data-privacy 

protection, wherein the risk to a data contributor’s 

privacy is specified via a parameter 𝜀 > 0: the 

higher its value, the higher the risk.  Our system 

guarantees that its answers to the SR queries 

remain statistically almost identical regardless of 

whether any single user reported their information 

or not. Furthermore, by design, the number of 

queries and choices for the query regions are 

unbounded. Thus, the main challenge is to 

answer all the SR queries—for different regions 

and at different or overlapping times— with DP 

but without increasing the privacy risk (i.e., for a 

reasonably small value of 𝜀) or degrading the 

accuracy of the answers. Note that accuracy is 

equally important here as one can achieve 

perfect privacy by giving completely random 

answers. 

To solve the challenge mentioned above, 

our system creates differentially private spatially 

indexed hierarchical partitions of the space (e.g., 

the USA) using temporally partitioned data and 

computes the DP count of the reports (e.g., the 

number of symptomatic people) in each partition. 

We then use these indexed partitions with their 

corresponding DP counts to compute SR queries. 

Fig. 1 gives the system-level overview. 
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Figure 1. The system has three components. The Crowdsensing component collects and stores user reports. Private 

quadtree builder dynamically partitions the space via a collection of DP quadtrees. Query computer uses the DP 

quadtrees to compute SR queries. 

 

This enables a privacy-preserving 

crowdsensing based pandemic surveillance 

system that: (1) generates insights about the 

pandemic while guaranteeing privacy, in 

particular, it guarantees 𝜀-DP over an unbounded 

number of arbitrarily chosen SR queries; (2) can 

be used to identify regions, for example within 

counties, with higher cases/reports (by identifying 

the child nodes with the highest depth); and (3) is 

computationally efficient and accurate. 

 

DIFFERENTIALLY PRIVATE SR 

QUERIES VIA 

SPATIOTEMPORAL 

PARTITIONING 
We consider the following setting:  

1. The space (of possible locations) is two-

dimensional and bounded, with north-south 

and east-west as two perpendicular axes 

(e.g., obtained by Mercator). 

2. The database contains the reports that: 

i. are from within the USA and tagged with 

location coordinates in the space, 

ii. contain at least one Covid-19 symptom. 

3. The database is stored with a trusted curator 

who answers SR queries using a DP 

algorithm. 

4. There is only one report per user (this 

assumption is relaxed and discussed later). 

5. Any SR query’s region is an axis parallel 

rectangle, and for simplifying the exposition, 

the time period for it at any given day is the 

past 𝑑 days, with 𝑑 = 14. 

 

Overview 

To create spatially indexed partitions of the 

space, we use a hybrid of data-agnostic and data-

dependent approaches. First, we partition the 

space without looking at the data, based on 

administrative units, e.g., counties—let us call 

them divisions. Then, every day for each division, 

we temporally partition the data reported from the 

division into 𝑘 groups and create 𝑘 different data-

dependent partitions of the same division by 

building 𝑘 DP quadtrees over it; each of the 

quadtrees uses the data from one of the 𝑘 groups 

and is guaranteed to be (𝜀/𝑛)-DP (here 𝑘 =

⌈𝑑/𝑛⌉ ). We use a covering algorithm to create 

temporal partitions (every day); it ensures that no 

report is included in more than 𝑛 groups created 

over time. Thus, the overall privacy risk remains 

at most 𝜀. The details follow. 

 

Spatial Partitioning 

We first partition the space data-agnostically 

(without looking at the data) using division as a 

county. Then, on any given day, we partition the 

division data-dependently by building a quadtree 

[13], a hierarchical spatial data structure. For a 

given rectangular space and  the  data lying  in  it, 
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Figure 2. (a) shows a partition of space created by a quadtree; black points represent the data; (b) gives the 

quadtree (max height = 3, count threshold = 1) for (a); (c) shows how to compute SR queries via the quadtree’s 

quadrants; the answer to the third query is 4 because a node only stores the count of its quadrant. 

 

a quadtree recursively, level by level partitions 

the space into rectangular regions (called 

quadrants) by bisecting their sides. Each 

quadrant represents a region of the division and 

holds the DP count of the reports from the region 

it represents (e.g., see Fig. 2(a)-(b)). 

To build a quadtree over a division, we 

use the smallest rectangle bounding the division 

and use the length 𝑤 (in Km) of its longest side to 

compute the max height as ℎ = ⌊log2 𝑤⌋, i.e., the 

maximum number of levels. This strategy 

ensures that one of the quadrant’s sides will be 1 

Km long, even in the smallest partition. 

Furthermore, since the privacy budget is prefixed, 

knowing ℎ beforehand allows for a better 

allocation of the privacy budget, 𝜀, and 

significantly improves the accuracy. We set 𝜀′ =

1 at the root level, and divide the remaining 

budget (i.e., 𝜀 − 𝜀′) geometrically among the rest 

of the levels as it provably reduces the error over 

queries [13].  To stop partitioning zero or low 

(symptomatic reports) count sub-regions and 

focus on the sub-regions in the division with a 

high count, we use a minimum count threshold, 𝑐, 

as a prerequisite for dividing a sub-region. This 

thresholding further improves the accuracy and 

efficiency of the system. For Covid Nearby, we 

set 𝑐 = 10, and for the data, we use the past 𝑑 

days’ data reported from the division – recall that 

𝑑 = 14. 

 

Temporal Partitioning 

To reduce the error in achieving ε-DP, we do not 

build one (ε/𝑑)-DP quadtree per day over the 

past 𝑑 days’ data. Instead, we temporally partition 

the past 𝑑 days’ data into 𝑘 groups, called 

acceptable partition (described below), and build 

𝑘-many (ε/𝑛)-DP quadtree (one over each group 

with 𝑘 = ⌈𝑑/𝑛⌉). Note that ε is reduced (to ε/𝑛 and 

ε/𝑑) to make overall risk ε, which follows from the 

serial composition property of DP [11]; it bounds 

the privacy risk of a data record used in 𝑁 

independent ε-DP queries by 𝑁ε. For instance, 

building one ε′-DP quadtree (per day) over the 

past 14 days’ data gives an overall privacy risk of 

14ε′ over time because each day’s data is used 

in building 14 quadtrees (Fig. 3(a), where for 

simplicity, we use 𝑑 = 8 instead of 𝑑 = 14). 

For any given 𝑑 consecutive days, an 

acceptable partition divides the 𝑑 days into 𝑘 =

⌈𝑑/𝑛⌉  groups of consecutive days such that: (1) 

there are 𝑘 − 1 groups of size 𝑛; (2) there is one 

group of size 𝑟, where 𝑑 = 𝑛(𝑘 − 1) + 𝑟; and (3) 

each of the 𝑑 days is present in exactly one group
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Figure 3. This figure shows three methods of creating acceptable partitions of 8 days, i.e., 𝑑 = 3. For (b)-(d) 𝑛 = 3. 

Both rows and columns show the progression of time. The colored rectangles, together in each row, show the 

acceptable partition for the day labeling the row. Rectangles in each row give the groups in the acceptable partition, 

and each is uniquely identifiable by its color and pattern—therefore, any two rectangles with the same color and pattern 

across rows refer to the one unique group of days. (a) shows the naïve approach that groups all 8 days into one group 

(i.e., 𝑛 = 𝑑 = 8), and each is unique. (b) shows acceptable partitions for 𝑛 = 3 and 𝑘 = 3. The vertical connections 

explicitly show, as an example, the same unique group across different partitions. Similarly, (c) shows the acceptable 

partitions by the covering algorithm [14] where the groups are reordered in a particular way; compared to (a) and (b), 

this method produces a lesser number of unique groups.  (d) explicitly shows reordering of the groups in terms of their 

sizes done via a circular-shift after every 𝑛 = 3 days. (e) compares the three methods via boxplot of the noise 

(generated over 100 iterations) at the root level of a quadtree corresponding to the three methods given in (a), (b), and 

(c) for the same privacy risk. 

 

(e.g., see Fig. 3(b)-(c), where each given 

temporal partition is acceptable, and 𝑑 = 8 and 

𝑛 = 3). Given an acceptable partition, 𝑃,  of the 

past 𝑑 days, creating an acceptable partition of 

the data is straightforward: combine the data from 

all the days in each group of 𝑃, which divides the 

data into 𝑘 groups. 

Since we need to create an acceptable 

partition of the data every day and build new 

quadtrees, naïve methods incur a higher privacy 

risk even when we build only one quadtree per 

one unique group of data. For instance, one such 

naïve method incurs (𝑛 + 𝑟)𝜀 privacy risk under 

DP when 𝑟 ≠ 𝑛, (e.g., see Fig. 3(b), where 

privacy risk can be calculated by multiplying 𝑚, 

i.e., the max number of unique groups a day is 

included in, with 𝜀). Here, we use a covering 

algorithm [14] for this task; it starts with a given 

acceptable partition, 𝑃, (of the days) and shifts 𝑃 

to the right every day with an additional circular-

shift after every 𝑛 days (see Fig. 3(c)-(d); see [14] 

for details). The covering algorithm guarantees 

that every day will at max be present in 𝑛 unique 

groups from all the acceptable partitions created 

over time. Thus, giving a privacy risk of 𝑛ε. This 

approach reduces the magnitude of noise added 

to achieve ε-DP and improves the accuracy (Fig. 

3(d)).  

For our case, i.e., 𝑑 = 14, we specify 𝑘 

by choosing and updating 𝑛 over time. We use 

the following empirically supported heuristic see 

[14] for this task. Set 𝑛 = 1 if the number of 

reports, #𝑅, from the division is less than 19 (we 

use DP counts to compute #𝑅). When #𝑅  

exceeds 19, we pick 𝑛 based on #𝑅  and the max 

height of the quadtree, ℎ, for the division. When 

ℎ ≤ 4 and 20 ≤ #𝑅 ≤ 44, we set 𝑛 = 7. When ℎ =

6  and 20 ≤ #𝑅 ≤ 44, we set 𝑛 = 3. For the rest 

of the cases, we set 𝑛 = 2. 

 

Spatiotemporal Range Query 

Computation 

To compute an SR query, we find all the divisions 

that intersect with the query region, then compute 

the query over the quadtree for each such 

division and aggregate their results to compute 
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the final answer. To compute a query over a 

quadtree, we traverse the tree to find all the 

quadrants that intersect with the query region and 

sum their counts to compute the result (e.g., see 

Fig. 2(c)). To improve the accuracy, we use the 

count of the parent node if all of its children are 

selected [13].  

Since the DP quadtrees do not store the 

actual points, we get the count for the whole 

quadrant, even when the query region partially 

intersects the quadrant (3rd query in Fig. 2(c)). In 

such a case, one can improve the estimate by 

employing uniformity assumption [13], and giving 

the count proportional to the area, 𝐴(𝑅 ∩ 𝑄), of 

the query region 𝑅 that intersects with a quadrant 

𝑄, i.e., 𝑐𝑄 × 𝐴(𝑅 ∩ 𝑄))/𝐴(𝑄), where 𝑐𝑄 is the 

count for 𝑄 and 𝐴(𝑄) is the area of 𝑄. However, 

in many instances, the actual region from a 

division makes a small part of a quadrant’s 

region. This is because we build quadtrees over 

the bounding boxes of the divisions, and in such 

instances, a quadrant’s area can be much larger 

than the actual area of the region of the division it 

contains; thus, proportional counts give a lower 

estimate. We solve this problem by taking a 

polygonal (shape) approximation of divisions and 

using the intersection of the polygon with a 

quadrant as the area of the quadrant and the 

intersection of the query region with the polygon 

and the quadrant as the area of the query region 

in the quadrant to compute the proportional 

count. 

 

Data Inclusion Criterion and Privacy 

Our approach protects every report with an ε-DP 

guarantee. However, when a user reports more 

than once, the user’s privacy risk increases 

linearly with the number of reports the user 

makes (due to serial composition of DP). To 

control this risk, we limit a user’s reports that we 

use to build quadtrees; this simple technique 

works in practice effectively [15]. Let us say 𝐷 is 

the database in which we insert selected reports; 

it will be used to build quadtrees. We restrict the 

total number of reports (by a user) inserted in 𝐷, 

to be 𝑁 in the following way. At any day, any user 

𝑢 can submit only one report, which we insert in 

𝐷 if the following two conditions are met: 

1. If, in the past 𝑑 days, no report from 𝑢 was 

inserted in 𝐷, and 

2. The total number of reports by 𝑢 that were 

inserted in 𝐷 is less than 𝑁. 

 

This insertion mechanism will incur a privacy risk 

of 𝑁𝜀 for any data contributor. If one wants to limit 

the privacy risk to 𝜀one can build quadtrees that 

are 𝜀/(𝑛𝑁)-DP. In the case of Covid-19, where 

𝑑 = 14, having 𝑁 = 2, covers a one-month long 

period for any user, covering most cases of 

interest. 

 

 

EMPIRICAL EVALUATION  

Our method has been validated through an 

empirical evaluation over spatially disaggregated 

real data of confirmed Covid-19 cases [16]. The 

original Covid-19 data was given as the 

aggregate counts (of confirmed Covid-19 cases) 

at the county level for each day. Therefore, we 

first disaggregated the data for each county for 

each day. To do this, we estimated the radius of 

each county and used it to parameterize the scale 

of the exponential distribution Q. We prepare as 

many data points as the count of the county. 

Then, for each data point, we sample the distance 

r from the center of the county, and pick the 

point’s location uniformly on the circle of radius r, 

centered at the county’s center coordinate.  
The results show that the DP answers, 

computed via our method, are highly accurate 

(Fig. 4(a)-(b) and Fig. 5(a), (c), (d)). This is true 

even for the arbitrarily picked region within a 

division (Fig. 4(b)). Further, our approach yields a 

much lower error than a baseline approach with 

the same privacy (Fig. 4(c)). As noted earlier, the 

smaller the value of the privacy parameter, ε, the 

lower the privacy risk. Given the scale and 

geographic scope of the system, we use ε = 6 

following the US Census Bureau’s preliminary ε-

allocation in 2019 for the 2020 census [17]. We 

note that the US Census Bureau has since 

significantly increased ε and set it to 19.61. 

Besides computing SR queries for arbitrary 

regions—which are used to compute a variety of 

information to track the pandemic—the DP 

quadtrees can be combined to compute accurate  
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Figure 4. Private counts are DP answers to SR queries computed by our method from the actual Covid-19 case count. 

(a) depicts the stacked bar-chart of the case counts of the 5 NY counties with the most Covid-19 cases. For each day: 

(i) two stacked bars are given, the first for the actual counts, and the second for the private counts; and (ii) each bar 

gives the total Covid-19 cases for the past 14 days. (b) juxtaposes the heatmaps of the actual and private 14-day case 

counts (on a log scale) for NY state and Richmond County. (c) compares our method to a method based on a naïve 

spatial partitioning approach (i.e., DP data aggregation over partitions created by a fixed grid base partitioning with a 

cell-size of 1 Km2), which guarantees the same level of privacy. Both the methods are probabilistic, and therefore the 

boxplots are computed over 100 iterations. 

 

 

cumulative case counts over time as well as rank 

and identify hotspots at the state/county level 

(Fig. 5(a)-(c)). The relative error for the 

cumulative counts in the start is relatively high 

(Fig. 5(b)) because in the early months of the 

pandemic (e.g., March to May 2020), the actual 

counts were very small for most of the states; for 

this very reason the average relative error over 

the 25 states with the most cases is always lower 

than that over all the states. 

We use SR queries to compute the 

moving averages of the new cases (or 

symptomatic reports) with a very low error (Fig. 

5(d))—one can combine different quadtrees to 

get a moving average different from 14-days. 

Even in the case of moving average, if the count 

is sufficiently high, the error is negligible (Fig. 

5(d)-(e)). 

 

 

DISCUSSION 
Our system relies on a hybrid of data-agnostic 

and data-dependent spatial partitioning. Below, 

we discuss why our hybrid approach is better 

than any non-hybrid approach. Let one use a 

data-agnostic scheme alone, e.g., by using a 

fixed grid to partition the space—we refer to it as 

the naive approach. To achieve 𝜀-DP, the naïve 

approach adds the noise (from Laplace 

distribution of mean zero and scale 1/𝜀) to the 

aggregate count of each grid cell. However, to 

achieve the granularity supported by our system, 

the naïve approach must create grid cells of much 
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Figure 5. Private counts refer to the counts computed by our method from the actual Covid-19 case count. (a) 

juxtaposes the heatmaps of the cumulative counts at the state level, both actual and private, on 7/17/2020; (b) plots 

the relative error in cumulative counts using our method for the top 25 states (by case count) and the entire US over 

the period from 3/20/2020 – 9/1/2020. (c) plots Kendall’s 𝜏 (rank correlation coefficient [18]) of the two ranked lists of 

states obtained from the private and the actual answers of SR queries for counties; 𝜏 = 1 when the ranking is identical; 

(d) plots the 14 days moving average of both the private and the actual counts for New York, Texas, and the entire US 

over the same period as (b). Since our method is probabilistic, the private counts shown are the average over 100 

iterations. (e) shows the box plot of the relative error of the moving average over these 100 iterations.

smaller sizes, about 1Km x 1Km. Thus, the naïve 

approach compared to the hybrid approach, 

results in  a huge number of  cells  and  the data 

to be stored and processed every day. Moreover, 

although this approach gives a reasonable 

estimate for each cell, the answers to the queries 

that consist of many cells, e.g., for states, 

counties, or even large enough regions within a 

county have higher errors than the hybrid 

approach. This is because most of these cells will 

contain no repot but the noise introduced by the 

DP mechanism. 

On the other hand, if one uses the 

quadtree approach alone, only one quadtree will 

have to be built over the USA. Now, to create the 

partitions with the level of granularity supported 

by our system, the max height of the tree would 

have to be much higher, which will lead to poor 

accuracy. This is because, at every level, a 

smaller privacy budget (i.e., the value of 𝜀) will be 

available to compute the DP count for each 

partition. Thus, the magnitude of added noise will 

be higher. Note that while other data-dependent 

spatial partitioning approaches (e.g., k-d trees) 

may provide better accuracy when privacy is not 

considered, they perform worse when privacy has 

to be taken into account since some privacy 

budget will now be allocated for creating 

partitions. This will further reduce the privacy 

budget for computing DP counts, leading to 

higher noise, and thus, higher error.  

One limitation of our approach—and in general of 

all privacy approaches—is the inability to limit the 

privacy risk under continual data updates. For 

instance, our approach incurs a privacy risk of 𝜀 

for a single report. However, when a user reports 

more than once and each of the reports is used 

to build a quadtree, then the privacy risk 

increases linearly with the number of reports. To 

limit this increase in the privacy risk, we devised 

a selection criterion to decide which reports by a 

user should be included; this makes the system 

usable for Covid-19 for practical purposes. 

However, the following general problem remains 

open: “How to limit the privacy risk and achieve 

meaningful utility for an arbitrary number of SR 

queries, when each user can potentially 

contribute one report per day.” There is a need to 
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conceptualize a new privacy notion and methods 

specialized for this setting to solve this problem. 

While we presented our approach specifically to 

compute SR queries for 14 day long period, our 

system can be used to compute other important 

insights. For instance, we can identify hotspots 

within a division (e.g., county in our case) by: 1) 

identifying highest leaves in the corresponding 

quadtrees; or 2) partitioning the division as per 

one’s requirement and comparing the counts for 

these partitions; a similar strategy can be used to 

identify hotspots in terms of counties and states. 

Since the system builds and keeps a series of 

quadtrees over time, they can be used to 

compute SR queries for time periods other than 

14 days. Additionally, dividing any SR query’s 

answer by its time range, 𝑑, gives the 𝑑-day 

moving average for the query’s region, e.g., the 

country, a state, a county, or a region within a 

county. We note that the series of quadtrees built 

by our system can be carefully combined to 

compute other insights which we plan to explicate 

in future work. 

To use our approach in a similar future 
pandemic/epidemic, one needs to find the 
corresponding heuristic to select the parameter 𝑛 
(for the covering algorithm). This can be done by 
generating synthetic data for the new daily cases 
by, for example, using the SIR model [19,20], 
estimating 𝑑 (which in the case of Covid-19 is 14 
days), and then performing a similar evaluation 
as has been done for Covid-19 in [14]. 
Furthermore, our approach is general and can be 
used to privately and accurately crowdsense 
other health symptoms, data, or adoption 
behaviors (e.g., vaccination rates) by using the 
corresponding data and following the approach 
as outlined in this article. 

 

 

CONCLUSION 
The proposed privacy-preserving crowdsensing 

approach enables intelligent pandemic 

surveillance. It guarantees strong privacy for the 

data contributors and allows for accurately 

querying across arbitrary space and time bounds. 

Since the lack of privacy guarantees has been 

cited as a leading cause of concern by experts 

and non-governmental organizations, the 

proposed approach can be vital to allaying the 

concerns of experts and end-users alike for future 

pandemic crowdsensing efforts. Its support for 

tracking across administrative boundaries is 

almost cognizant of the ground realities of the 

pandemic. Furthermore, the approach is generic 

and can be applied for reporting spatiotemporal 

information about other health symptoms or 

adoption behaviors (e.g., vaccination rates). 

Overall, this approach paves a way forward for 

countering pandemics without compromising on 

individual privacy.  
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