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Abstract

The importance of transaction fees in maintaining blockchain security and
sustainability has been confirmed by extensive research, although they are
not mandatory in most current blockchain systems. To enhance blockchain in
the long term, it is crucial to design effective transaction pricing mechanisms.
Different from the existing schemes based on auctions with more consider-
ation about the profit of miners, we resort to game theory and propose a
correlated equilibrium based transaction pricing mechanism through solving
a pricing game among users with transactions, which can achieve both the
individual and global optimum. To avoid the computational complexity ex-
ponentially increasing with the number of transactions, we further improve
the game-theoretic solution with an approximate algorithm, which can de-
rive almost the same results as the original one but costs significantly reduced
time. We also propose a truthful assessment model for pricing mechanism to
collect the feedback of users regarding the price suggestion. Extensive exper-
imental results demonstrate the effectiveness and efficiency of our proposed
mechanism.
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1. Introduction

The world has witnessed a great deal of attention injected into the field
of blockchain technology from both academia and industry since Bitcoin was
introduced as a representative concept of blockchain in 2008. The most im-
portant contribution of blockchain is that it can achieve distributed trust
without any centralized coordination, which further highlights an attractive
feature of blockchain that all recorded information, such as transactions and
smart contracts, inside blocks on the main chain cannot be arbitrarily modi-
fied or repudiated. This delicately designed technology achieving distributed
security enables wide applications of blockchain in various directions, such
as blockchain-based database [1, 2], blockchain-witnessed trustworthy cloud
service [3, 4], blockchain-assisted admission control in cognitive radio network
[5], and blockchain-driven internet of things [6, 7, 8.

To maintain the aforementioned attractive feature, a large number of
nodes are involved to reach consensus on who should append the newly gen-
erated block to the main chain so as to guarantee the stability and security
of the whole blockchain network, which might incur massive costs for partici-
pated nodes [9], e.g., computation cost and communication cost, according to
specific consensus algorithms. As an incentive for their work, the node who
finally wins the accounting right will receive a reward, which usually comes
from two sources, including the blockchain system and the information-record
owners. The first part is generally predefined when the blockchain system
is initially designed, which is relatively stable. While the second part is de-
termined by the record owners as a sort of handling fee. As transaction is a
representative type of information record in blockchain, we study its pricing
problem as an example in this paper! and refer to its owner as a user. In most
prevailing blockchain systems, such as Bitcoin [10] and Ethereum [11], the
transaction fee is optional, thus making it unpredictable and seemingly triv-
ial. However, as pointed out in [12, 13, 14], transaction fees from users have
a significant influence on the system security of blockchain, which becomes
even more prominent in blockchain systems with decreasing block rewards.

Being aware of this, many researchers analyze specific relationships be-
tween transaction fees and various security metrics of blockchain systems

!Pricing of other sorts of information records can be tackled in a similar way.



with the help of game theory [15, 16, 17, 18]. Other existing work is devoted
to transaction pricing mechanism design based on auctions [14, 19, 20] from
the perspective of miners’ profit. In contrast, our paper designs a transaction
pricing mechanism from the perspective of users, providing price suggestions
to realize both global and individual rationality.

However, it is challenging to design such a transaction pricing mechanism
due to the following two reasons. First, from the perspective of users, the
ultimate goal of everyone is to get his transaction included in a valid block on
the main chain by paying the transaction fee as low as possible. This is hard
to achieve since they have to compete with each other on price with incom-
plete information about the offers from other competitors. Second, from the
perspective of the blockchain system, if malicious competitions among users
enforce an excessive pricing bar or extremely long waiting time, users who
cannot afford it will stop using it, which impedes the sustainable development
of blockchain.

To address the above challenges, we resort to game theory to model the
coexisted competition and collaboration among users and take advantage
of the concept of correlated equilibrium [21] to achieve both individual and
global optimum. To be specific, we consider a platform for price recommen-
dation with users inputting the sizes and time sensitivities of their trans-
actions, which can efficiently calculate the optimal pricing strategies for all
users with the best utilities, thus solving the first challenge. In addition, as
the recommended prices are derived according to the real-time parameters
of all transactions, the expenses of users will not increase uncontrollably for
the cumulative impact of malicious bidding, which therefore overcomes the
second challenge.

After the pricing mechanism design, a reliable assessment model reflect-
ing the users’ feedback can quantify the performance of our proposed scheme
and inspire the future design. One method is to collect the opinions of users
regarding whether he/she will take the suggested price or not. However,
collecting truthful feedback from users is not trivial, given the existence of
malicious users submitting unreliable information, which may seriously im-
pact the assessment accuracy and further hinder the implementation of the
proposed pricing mechanism. To address this issue, we design a truthful as-
sessment model for the pricing mechanism based on the private-prior peer
prediction theory. Instead of collecting the users’ opinions directly, our truth-
ful assessment model requires them to submit a random peer’s belief about
the price before and after the pricing game. Users’ trustworthiness can be



then calculated through the strictly proper scoring rule. To avoid the nega-
tive impact of unreliable reports, we design a scheme considering only honest
users’ feedback so as to guarantee the truthfulness of the assessment model.

In summary, our contributions in this paper are as follows (a preliminary
version of this paper is published in [22]):

e We propose a pricing game to sketch the transaction pricing compe-
tition among users in blockchain, where the possibility of each trans-
action being included is defined to help depict the individual utility of
each user.

e To achieve individual rationality with the maximized utility, we lever-
age correlated equilibrium to integrate it to the global optimal objective
for securing the interests of all users, which comes into an optimization
problem with exponential complexity in the number of transactions.

e To overcome the weakness on computational cost, we propose an ap-
proximate algorithm with divided optimum achieved parallelly for speed-
ing up the calculation process, which is numerically evaluated to demon-
strate its effectiveness and efficiency.

e We design a truthful assessment model for the pricing mechanism to
collect the feedback of users with respect to the price suggestion, which
is incentive compatible for encouraging users to behave honestly.

The rest of this paper is organized as follows. We investigate the most
related work on blockchain transaction pricing in Section 2. In Section 3, we
formulate the problem of transaction fee determination as a pricing game,
where all users hope to maximize their individual utility. To achieve the
goal, we take advantage of the correlated equilibrium to analyze the pricing
game from a global perspective in Section 4, which is summarized as an opti-
mization problem and approximately solved with higher efficiency in Section
5. In Section 6, we design an assessment model to collect the feedback of
the pricing mechanism. We evaluate our proposed solution in Section 7 and
conclude the whole paper in Section 8.

2. Related Work

Although paying transaction fees is not mandatory in most existing blockchian
systems, a large number of studies have indicated that it plays a major role
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in the security of blockchain. In [12], a financial reasoning was conducted
to demonstrate the unsustainability of blockchain with zero or infinitesimal
transaction fees. Further, as a counterintuitive conclusion, Carlsten et al.
[13] proved that whether rewards of miners are coming from blockchain sys-
tem or transaction fees significantly affects the system security since there
exists nearly no equilibrium with favorable security properties.

Besides, game theory is widely adopted to analyze the impact of trans-
action fees on blockchain. Correlating the issue with simple static partial
equilibrium, Houy [15] analyzed that it is equivalent to keep a fixed trans-
action fee or let the decentralized market to determine the unit price with a
fixed block size. He et al.[23] explored the interaction between security and
the decision of fees in the manner of equilibrium, proving that the primary
state of the system determines the result regarding the interplay of users and
miners. Focusing on the owner-less characteristic of blockchain, Huberman
et al. [16] provided closed form formulas on the relationship between the
transaction fees and waiting times through formulating user behavior as a
queuing game. Similarly, a queuing game with non-preemptive priority was
employed in [17] to depict the dynamics in memory pool of blockchain with
transactions flowing in and out, where five types of Nash equilibrium were
found. In [18], Easley et al. constructed a game-theoretic model to ana-
lyze the evolution of transaction fees in Bitcoin from a market perspective.
Based on Lyapunov optimization and large deviation theory, the transaction
selection mechanism is proposed in [24], which maximizes the utility of both
system and miners.

With knowing the importance of transaction fees, more research work
has been conducted to design various pricing schemes in recent. Most of the
existing pricing mechanisms take advantage of auction to find the optimal
price setting strategy, with a focus on maximizing the profit of miners. In
[14], Lavi et al. figured out two challenges in Bitcoin related to the decreas-
ing block reward and limited block size, based on which they analyzed the
applicability of monopolistic auction in this scenario due to its immunity to
untrusted auctioneers. In particular, all transactions included in a block pay
the same lowest bid instead of the current pay-your-bid approach in Bitcoin,
which can decouple the above two challenges. As a theoretical supplement to
the monopolistic auction mechanism in [14], Yao [19] proved its approximate
incentive-compatibility and further demonstrated its dominance compared
to a traditional auction mechanism named Random Sampling Optimal Price
auction (RSOP) [25]. Besides, Basu et al. [20] proposed a novel transac-



tion pricing mechanism based on the generalized second price auction, which
was demonstrated to be resistant to arbitrary manipulation as the derived
bidding satisfied truthfulness.

In summary, the existing work related to transaction fees in blockchain
have revealed its importance, most of which utilized game theory to conduct
analysis; other closely related work on pricing mechanism design mainly re-
lies on auctions, aiming at improving the efficiency and profit of miners. In
contrast, our work leverages game theory to model the competitive and col-
laborative relationships among users considering the size and time sensitivity
of each transaction, which can result in both global and individual optimum,
thus maintaining a more sustainable and lively blockchain ecosystem.

3. Problem Formulation

In this paper, we consider the mempool of a blockchain system with all
transactions from users, where the miners will select a set of transactions to
be included in their individual block. Since there will be only one valid block
at the end of each round of mining, we focus on the selection of transactions
in this single block from a global perspective?. As the blockchain network
prevails, increasingly large amount of transactions are generated, streaming
into the mempool to be included in the valid block. However, the size of a
block is limited, yielding the competition among transactions with respected
to the transaction fees.

To describe this competitive system, we denote all transactions in the
current mempool as {txy,txy, - -+, tx,}, where n is the total number of trans-
actions from users. Each transaction has a specific size as s;, which is fixed
once the transaction is appearing in the mempool. The total size of all
transactions included in one block cannot exceed the maximum limitation.
Considering that transactions can have different time sensitivity, we assume
that each transaction tx; come with a time tag 7; indicating its remaining
time to be included in a valid block; otherwise, the user launching this trans-
action will suffer from a big loss. In our paper, we aim to study how to design
a pricing mechanism to provide unit price suggestions for all transactions in

2Transactions included in different blocks owned by different miners might be hetero-
geneous due to the network transmission delay, which will be considered in our future
work.



the current mempool considering both competitive prices provided by other
transactions and their various emergency levels (i.e., time sensitivity).
Given a unit price v; for tx; with size s;, the miner will get the payment
of v;s; for including tx; in the valid block. In particular, we characterize the
miner’s behavior of including transactions in the valid block with a proba-
bilistic model which is inspired by the Discrete Choice Model presented in
[26]. Formally, we define the transaction inclusion probability as follows.

Defination 1 (Transaction Inclusion Probability). With the unit price vector
from all transactions in the current mempool, denoted as v, the probability
of tx; with unit price v; being included in the valid block is

exp(a;v; — b)

Zl exp(ajv; — b)
]:

pi(v) = : (1)

where a; > 0 and b > 0 are parameters related to each tx; and the block,
respectively.

The above definition based on discrete choice model can macroscopically
describe the transaction inclusion event from both the perspectives of the
miner (block) and the user (transaction). Generally, the probability of a
transaction tx; being included is positively proportional to its provided unit
price v;. In practical, the miner would be more willing to include those
transactions with higher unit price as they can bring more profit for a length-
limited block; and the transactions eager to be included are inclined to come
with higher unit price to attract the miner’s attention.

In addition, a; and b in (1) can reflect the randomness during the pro-
cess of including transactions in a block, which may come from both the
transaction side and the block side. For example, since the size of the block
is limited, the miner cannot always select the remaining highest unit price
provider in the current mempool especially when the size of the block left
cannot cover the length of this transaction with the highest unit price, which
can be captured by the parameter a; dependent on tx; at this point, denoted
by a; = ¥(s;); similarly, other factors of the block, such as the generation
location, can also impact the transaction inclusion results.

It is worth mentioning that the values of a; and b could be obtained
by querying the transaction and statistically calculating the historical block
information.



With the definition of inclusion probability, we can calculate the payoff
of the user, which is defined as individual utility in the following.

Defination 2 (Individual Utility). The expected individual utility of a user
publishing tx; with size s; and unit price p; can be calculated by

Ui(v) = pz(U)(Qﬁ(Tz) - UiSi), (2)

where T; is the time tag of tx; and ¢(-) is a non-decreasing function with T;.
In particular, ¢(-) can be defined as

Q;

where a;, B; > 0 are scalars for tx;.

(3)

In (2), the individual utility of a user is mainly dependent on two parts,
i.e., the profit of the transaction being successfully included before its dead-
line and the total cost that the user needs to pay for the transaction. The
cost part is obvious to be the unit price multiplying the size of the trans-
action. For the profit part defined in (3), we consider that, generally, the
sooner the transaction gets included, the higher profit the user can gain, so
the increasing remaining time to be included for a transaction can bring more
profit for this user; while this sort of advantage of time length left cannot last
forever, which is reflected in the upper limitation of ¢(7;) as a;. In addition,
the increasing speed of ¢(T;) with respect to T; is unique for each transaction
tx;, decided by g;.

Note that since the range of ¢(T;) is [F, ay], we assume that a; > 2v;s;
to guarantee the individual utility defined in (2) is non-negative.

According to the above definition, it can be seen that the individual utility
of each transaction is not only related to its own posted unit price but also
the unit prices provided by other transactions in the current mempool. In
order to depict this interdependent relationship among all transactions, we
take advantage of the non-cooperation game to further model this problem
as a Pricing Game.

Defination 3 (Pricing Game). All users with transactions® in the current
mempool form a pricing game where any user with tx; is a game player,

3Here we consider each user only has one transaction. For a user with multiple trans-
actions, we treat each transaction individually, regarding there is a corresponding user
behind each one.



exerting the strategy to provide a unit price v; and getting the payoff of the
individual utility U;(v).

As the individual utility of any user is collectively decided by all the unit

prices, we can specifically express it as U;(v;, v_;) where v_; = (vq, -+, v;_1,
Vit1, - ,Vpn) denotes the unit prices provided by other users for their transac-
tions {txy, -+ ,tx; 1, txipq, -, tx,}. As arational and utility-driven player,

any user wants to maximize the individual utility U;(v;, v_;). However, it is
not feasible for any user to achieve this goal without knowing the offers from
others. Therefore, in this paper, we start from a global perspective to help
all users make the decision on how to provide reasonable unit prices to their
transactions to get them included in the valid block before the deadline and
achieve maximum payoffs as well.

4. Game Theoretic Solution

In the previous section, we propose the pricing game to characterize the
unit price decision problem of transactions among all users, which leaves the
individual utility maximization as a challenge. In this section, we first derive
it as a correlated equilibrium, and then analyze this problem from a macro
perspective to achieve the global optimum for all users, followed by the final
solution.

Without loss of generality, we assume that the strategy space of users is
discrete, denoted by V), and with the size of V. According to the individual
utility maximization requirement of each user, we can get the correlated
equilibrium of the pricing game as follows.

Defination 4 (Correlated Equilibrium). For our proposed pricing game,
there exists a correlated equilibrium F(v), which is a unique probability dis-
tribution over the space V" denoting all possible combinations of unit prices
provided by all users, if and only if for any user with the strateqy v; € V, it
satisfies

3 F(Ui,v,i)(Ui(vi,v,i) Ui, v,i)> >0, (4)

v_;eyn—1

where v, € V is any strategy other than v;.

According to the above definition, one can see that under the correlated
equilibrium F'(v), any user has no motivation to deviate from the current



strategy v; when others are fixed to v_;. In other words, any user can thus
maximize the individual utility as long as each user sets v; according to v
sampled from F(v). Since F(v) is a probability distribution, we have the
constraints F'(v) > 0 and ) . F'(v) = 1. Combined with the above in-
equality (4), it is easy to calculate a correlated equilibrium through solving
a linear programming problem, which could generate a set of results as mul-
tiple correlated equilibria. In order to find the best one, we introduce the
following global objective of social welfare for the pricing game.

Defination 5 (Social Welfare). For a specific correlated equilibrium of the
pricing game F(v), the social welfare is defined as the expected total utilities

of all users, i.e., Y cpn F(0) >0 Ui(v).

Therefore, to derive the best pricing strategy for each user, we can solve
the best correlated equilibrium for the pricing game from a global perspective,
which can be summarized into the following optimization problem.

max: »_ F(v) Z Us(v) (5)

veYn
st F(v) >0, (6)
> Fw) =1, (7)
veyn
Z F(Ui, Ufi) <Ui(0i, U—i) - Ui(”é:”%‘)) > 0,
v_;eyn—1
Y, v € V. (8)

For simplicity, we refer this optimization problem as social welfare mazx-
imization problem as the objective function in (5) is to maximize the social
welfare of the pricing game. It is worth mentioning that the first two con-
straints (6) and (7) are coming from the definition of probability distribution,
and the last constraint (8) is to guarantee the individual utility maximization
presented in Definition 4. As mentioned above, this optimization problem is
exactly a linear programming problem, where the variable is the probability
distribution over all possible combinations of unit prices, i.e., F'(v). Thus
we can employ existing algorithms to solve it in an efficient manner, such as
dual-simplex and interior-point, which will cost polynomial time in the num-
bers of variables and constraints. However, it is not realistic to directly adopt
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the existing algorpaithms to solve our aforementioned optimization problem
because the computational cost in our case is non-polynomial, which can be
demonstrated by the following Theorem.

Theorem 6. Directly using the existing algorithms to solve the social welfare
mazximization problem has computational cost exponentially increasing with
the number of transactions n.

Proof. Given the number of transactions n and the size of strategy space
V', the number of variables in the social welfare maximization problem, i.e.,
F(v),v € V" is V" since the probability distribution is over all possible
combinations of unit prices. For the number of constraints, it is clear that
(7) is a single constraint, while constraint (6) is held for every variable F'(v),
so its total number is also V™; and the number of constraints according to (8)
is nV. Therefore, both the numbers of variables and constraints are O(V™).

In this case, even though the computational cost of the existing algo-
rithms for solving the linear programming problem is polynomial time in the
numbers of variables and constraints, directly applying them on our social
welfare maximization problem will lead to exponential computational com-
plexity in the number of transactions because the numbers of variables and
constraints are exponentially increasing with n as mentioned above. O]

As shown in the above Theorem, as the increase of the number of trans-
actions n, the number of variables will increase significantly, offsetting the
efficiency of employing existing algorithms with polynomial computational
complexity. To overcome this challenge, we propose an approximate algo-
rithm to maximize the social welfare of the pricing game based on the ex-
isting linear programming algorithms, which is introduced in the following
section.

5. An Approximate Algorithm

To decrease the computational cost of directly employing classical lin-
ear programming algorithms for solving our problem, we need to eliminate
the impact of exponential relationship between the numbers of variables and
constraints and the number of transactions. In this section, we achieve this
goal through proposing an approximate algorithm which controls the expo-
nentially increasing numbers of variables and constraints to an acceptable
level.
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In general, our main idea is to divide all the current transactions into small
sets where the social welfare is maximized locally in a smaller pricing game to
approximate the global optimization objective. Considering that transactions
coming with the same time tag will compete with each other more severely
as they have the same remaining time to be included in the valid block, we
divide all transactions in the current mempool into 7 sets, where 7 is the
number of different time tags of transactions. By this means, the original
social welfare maximization problem in (5)-(8) can be divided into 7 sub-
problems achieving local social welfare maximization for transactions with
the same time tag, where the number of transactions in each sub-problem is
defined as n; depending on the time tag. Formally, we can express the t-th
sub-problem as follows,

max: Y Ft(vt)iUt,i(vt) 9)

v EYNt
s.t.: Fy(vy) >0, (10)
> F(vw) =1, (11)

veEVE

Z Ft(vt,ia ’Ut,—z‘) (Ut,i(vt,i, ’Ut,—z‘)

vm_iGV"t*l

—Ut,z‘(U;i,’lJt,—z‘» > 0,Y vy, v;,; €V, (12)

where v; is the unit price vector of n; transactions; F,(v;) is a correlated
equilibrium of the small pricing game among them; U;; and v,; are respec-
tively the utility and unit price of the i-th transaction while v; _; is the unit
price vector except vy ;.

Obviously, the above sub-problem has the same components as the orig-
inal one, which will output the best correlated equilibrium F;(v;) for maxi-
mizing the local social welfare in each small set of transactions. Thus, after
solving all sub-problems with the existing linear programming algorithms,
we can derive an approximate solution through combining all the solutions
of sub-problems, which means F(v) = (Fy(v1), Fy(va), -, Fr(v;)). By this
means, the computational cost of solving the social welfare maximization
problem come into an acceptable level, which is demonstrated in the follow-
ing theorem.
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Theorem 7. Assuming that the number of transactions with the same time
tag has a maximum limitation as n, which is much less than n since the
time tags of transactions could be much diverse; and that the number of
different time tags T is polynomially increasing with n. Then our proposed
approximate solution can solve the social welfare maximization problem in
polynomial time.

Proof. Using the existing algorithms, we can solve the above sub-problem
with the computational cost of O(V™) according to Theorem 6. As we
assume that n; < n < n, we have O(V™) < O(V™) where the latter item can
be regarded as constant with respect to n. In addition, since 7 increases with
n in a polynomial manner, the overall computational cost of our proposed
approximate solution is 7O(V"™) which is polynomial in n. ]

6. Truthful Assessment Model of the Pricing Mechanism

To have a reliable assessment of the derived pricing mechanism, we design
a truthful scheme in this section to collect feedback from users with respect
to the received price suggestion.

6.1. Overview of the Truthful Assessment Model

With the pricing mechanism we proposed above, each user can get a
price suggestion in each pricing game. For such a price, it is not guaranteed
that it will be accepted by users. Therefore, it is necessary to design a
model to obtain the users‘ opinions of accepting the price suggestion or not.
However, it is nontrivial to collect users’ honest feedback since there may
exist malicious users submitting unreliable information which will heavily
affect the accuracy of assessment and further impede the implementation of
the proposed pricing mechanism.

To address the above issues, we utilize the private-prior peer prediction
theory [27, 28, 29] to build the truthful assessment model for the pricing
mechanism. On the one hand, we need to calculate the trustworthiness of
user i, which is denoted as H; (i € {1,2,---, N}, with N denoting the
number of users in total); on the other hand, we need to design a reasonable
scheme to determine the quality of the proposed pricing mechanism that is
defined as the acceptance rate of honest users, denoted as W. The main idea
of the peer prediction model is to require user ¢ to report both the prior and
posterior opinions (i.e., probability) of a random peering user j accepting
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the offered price. Based on the collected opinions, we can take advantage of
the strictly proper scoring rule to calculate the trustworthiness of users for
calculating the effective acceptance rate.

First, we define some parameters to describe the process of reporting
opinions. We term C' as the acceptance status of the pricing mechanism,
where C' = a means that this price will be accepted while C' = r refers to
a rejection. We define S; as the judgement of user ¢ towards the price, and
x; € {0,1} stands for the opinion of user i.

To describe whether users’ judgments are correct and reports are truth-
ful, we introduce the following four definitions. Let P.; and Py represent the
probability of correct judgement of users. More specifically, Pclj is the condi-
tional probability that user ¢ makes the positive judgement when the price is
accepted, i.e., P(S; = 1|C = a); and P means that user 7 makes the nega-
tive judgement when the price is rejected, i.e., P(S; = 0|C' = r). When user
¢ honestly reports the opinion, i.e., S; =1 given C =a or S; =0 for C' =r,
we define the probability of honestly reporting as P} = P(z; = 1|C' = a)
and P} = P(z; =0|C =r).

Besides, we define P(C' = a) as the probability of the price being accepted
from the perspective of historical records, which can be obtained by averaging
the sum of the probabilities of the price being accepted in all previous rounds.
The calculation of P(C' = a) is

P(C=a)=———> PF(C=a), (13)

where K is the total number of pricing rounds by now.

P(S; = 1) represents the judgment that the price being taken by user 4,
however, it is private information so we can’t get it directly from user i. In
our model, we use the historical choice records of user ¢ toward the prices,
denoted as z;, to estimate the value of P(S; = 1). When user i takes the
price, z; = 1; otherwise, z; = 0. Then, we can define P(S; = 1) as follows:

PS=1)=Pls=1)=——3 z=1 (14)

6.2. Private-prior Peer Prediction Model

We deploy the private-prior peer prediction model to get two different be-
lief reports before and after experiencing the pricing game. Then we calculate
any user’s trustworthiness through a strictly proper scoring rule.
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6.2.1. Prior Belief

Before the pricing game, user ¢ is required to report the opinion that
how likely user j will take the price based on his/her observation, which is
denoted as ¢;; and is calculated as follows:

0 = P(z; =1)
=P(z;=1|C=a)P(C=a)+ P(z; =1|C =r)P(C =r) (15)
=PL(i)P(C =a)+ (1 — Py(i))P(C =r).
6.2.2. Posterior Belief
After receiving the pricing suggestion derived from the correlated equi-
librium based pricing mechanism, user ¢ reports another opinion of user j
based on his/her own experience, thus there are two possible situations, i.e.,

Si =1 and S; = 0. First we denote the general form of the posterior report
52']‘2

= P(z; =1|C = a)P(C = alS;) + P(xz; = 1|C =1r)P(C =r|5;).
Then we calculate &j in two different situations. When S; = 1, the
posterior belief is calculated by
0;(1) = P(x; = 1|S; = 1)
= P(z; =1|C =a)P(C =alS; = 1)+
P(x; =1|1C =r)P(C =1|S; =1)
PL(G)P(C = a)
_ pl ol
- Phr(l> P(SZ _ )
PY(i)P(C =)
PO ()L Cd
(1= P 0) Lo (1)
When S; = 0, we have
0;;(0) = P(xz; = 1]5; = 0)
= P(z; = 1|C = a)P(C = alS; = 0)+
P(z; =1|C =r)P(C =r|S; =0)
(1= P;()P(C =a)
— Pl cj
h’r‘(Z> P(S@ — 0) _'_
(1= P5(i)P(C =)
1-P 2 1
(1= PO ) (15)



6.2.3. Opinion Inference

We can deduce the real opinion of user ¢ based on the two submitted
reports , i.e., d;; and 513 If 6;; < Sij, we believe that user ¢ will accept the
price since his/her experience of the pricing game is better than the prior
idea, i.e., z; = 1. Otherwise, user i will reject the price due to his/her worse
experience, i.e., x; = 0.

6.3. Strictly Proper Scoring Rule

We adopt the the quadratic scoring rule to calculate the trustworthiness of
each user, which is one of the strictly proper scoring rules utilized in [28, 29].
The general form of the quadratic scoring rule is:

L(y,x =1) =2y —y?,
L(y,.’L’ZO) - 1_y27

where y is the belief of a user, and x is the true opinion towards the price
suggestion of the user.

Based on our analysis about the procedure of reporting, we can calculate
Hz' via 61’]’ and 57?]' as

(19)

H; = 0L(8;5,x;) + (1 — 0)L(y, ;) + 1, (20)

where 6 is a parameter determining the weights of prior and posterior re-
ports to the trustworthiness, with 6 € [0, 1]; and 75 is a parameter to make
trustworthiness stable and can be calculated as

N = —% i (eL((sij, ;) +(1—0)L <5ij,xj)) . (21)

6.4. Assessment Result

After the calculation of H;, we can know whether users are honest and
their data can be further utilized to assess the proposed pricing mechanism.
Specifically, we can distinguish honest users and filter out dishonest users
based on their H;: when H; > h, user ¢ can be considered as honest; other-
wise, user ¢ is malicious. Here h is the threshold value and can be calculated
by averaging all H; of users in each round.

We let ‘H represent the set of honest users, and for each honest user,
where each has an opinion towards the price as x; = 1 or z; = 0; and we let
X as the set of honest users with opinions x; = 1. Then we define ¢ and &
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as the sizes of H and X respectively. The calculation of the acceptance rate
of the pricing mechanism is

W= (22)

Theorem 8. The above truthful assessment model for the pricing mechanism
18 1ncentive compatible.

Proof. According to (20), we can calculate the expectation of H; as
E(H;)= E (0L (63, ;)) + E(1 = )L (3,2,)) + E(n))
1
=0 <1 - N) E(L(6i, 2;))+

(1-10) (1—%)E(L (5;]-,1-]-))— (23)

% Y (0L Gy x)) + (1= 0) L (335 ).

n=1,n#i

We first set p; = P(x; = 1) and p, = P(z; = 1]5;), and by applying the
binary quadratic scoring rule to (23), we can have

B() =0 (1= ) (o (28 = ) + (L-p) (1-68)) +
10 (1) (- £ 120 (1-6) -
% i (0L (65 25) + (1= 0) L (55,5) )

n=1,n#i

Then we can calculate the partial derivatives with respect to ¢;; and Sij

aggfi) — 4 <1 -~ %) (2p1 — 20;5), (24)
OE(H;) B i oF
5 (1-6) (1 - N) (2p2 — 26;;). (25)
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To get the optimal value, we let %{#) = 0 and %H") = 0, and we can
ij ij

have 51’]’ = D1 and Sij = P2.
Then we take the second partial derivatives of E(H;) regarding d,; and
5ij:

O°F (H) 1
- —20 (1 - N) <0, (26)
O%E (H)

21— (1 - %) <0, (27)

Based on the above analysis, when ¢;; = p; and 5& = po are satisfied,
E(H;) can have the maximum value. It means that only if user i submits
his/her beliefs of the pricing mechanism honestly can he/she get the maxi-
mum value of trustworthiness. Here we consider that every user expects the
submitted opinion to be valued, leading them the motivation of getting get
higher trustworthiness. This proves that our proposed truthful assessment
model for the pricing mechanism is incentive-compatible to encourage users
to behave truthfully.

7. Experimental Evaluation

In this section, we evaluate our proposed pricing mechanism and its truth-
ful assessment model through simulation experiments.

7.1. Performance Evaluation of the Pricing Mechanism

We implement our experiments using MATLAB R2019a in Windows 10
running on Intel i7 processor with 16 GB RAM and 512 GB SSD. For pa-
rameters related to transactions, we randomly choose s; € [100, 300] KB and
T; € [10,30] min. Other parameters are set as n = 500, ;; = 3000, 3; = 0.01,
a; = 145, T = 200, and n; € {1,2, 3} unless otherwise specified. Note that all
our experiments are repeated 20 times to have the average results.

In order to demonstrate that our proposed approximate solution in Sec-
tion 5 can bring similar results for the optimization problem in a more efficient
manner, we compare the experimental results returned by traditional solu-
tion with the interior-point method and our proposed one. In detail, we set

the number of transactions n € {5,6,---,16} and run both the traditional

18



and approximate algorithms to obtain the computational efficiency and the
results of optimization problem, i.e., maximized social welfare and the unit
price vector with the highest probability as the correlated equilibrium.

As shown in Fig. 1, the computational cost of the traditional algorithm
solving the linear programming problem increases exponentially with the
number of transactions n, while that of our proposed approximate solution
is linearly changing with n, which is consistent with the analysis results pre-
sented in Theorems 6 and 7. Besides, we present the optimization results in
Tables 1 and 2, where only the results of n = 5 to 8 are reported to avoid
redundancy and the results in other cases have the similar trend. As can be
seen from Table 1, even though our proposed approximate solution cannot
obtain the exact same maximized social welfare compared to the traditional
one with the accurate constraints, we can have approximate values fluctuat-
ing around the accurate ones with lower computational cost in the long run.
Since the optimal correlated equilibrium for social welfare maximization is a
probability distribution over all possible combinations of unit price vector,
we regard that the combination with the highest probability is the most ap-
propriate one, which is presented in Table 2. One can see that all cases we
examined come with the same results.

From the above analysis on our numerical comparison results, we can
have the conclusion that our proposed approximate solution can solve the
social welfare maximization problem efficiently and obtain similar results to
the traditional one.

Then, we evaluate the performance of our proposed approximate solution
with respect to the maximized social welfare when n = 500 under different
parameter settings of a;, «;, 5;, and 7.

To begin with, we examine the impact of transaction inclusion probability
defined in Definition 1 on the maximized social welfare, especially the impact
of a;. As mentioned in Section 3, here we assume that a; is a function of s;,
i.e., the size of tx;, which is set as a; = ¥(s;) = % with X = s;/a; being a
parameter changing from 100 to 1000 with an interval of 100. As shown in
Fig. 2, we can obtain that the maximized social welfare changes with s;/a;

Table 1: Maximized social welfare.
Solution n=>5 n=>6 n="7 n=8
Traditional 709.25 | 1293.53 | 876.43 | 712.17
Approximate | 713.57 | 1284.19 | 916.59 | 692.05
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Figure 1: Computational cost comparison changing with n.

in a relatively complicated manner which seems like a combination of the
exponential and stable trend. This is reasonable since (1) indicates that the
relationship between probability and a; is exponent divided by the sum of
exponents, which could present this sort of complicated curve and further
affect the social welfare through the individual utility as defined in (2). It
is worth noting that the impact of b has also been checked but brings subtle
influence on the maximized social welfare, which is because this parameter
is block-related with an equivalent impact on all users, thus finally resulting
in an offsetting of its impact.

Table 2: Unit price vector with the highest probability.

Solution | Traditional Approximate

n=>5 (10, 5, 10, 10, 10) (10, 5, 10, 10, 10)

n=>6 (10, 5, 5, 10, 10, 5) (10, 5, 5, 10, 10, 5)

n="7 (10, 10, 5, 10, 5, 5, 10) (10, 10, 5, 10, 5, 5, 10)
n==8 (10, 5, 5, 5, 10, 10, 5, 10) | (10, 5, 5, 5, 10, 10, 5, 10)

Next, we explore the impact of individual utility on the maximized social
welfare. In particular, we inspect the influences of «; and beta; and report
the corresponding experimental results in Figs. 3 and 4, respectively.

For «;, we change it from 3000 to 8000 with an interval of 500. As can
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be seen from Fig. 3, the maximized social welfare increases linearly with «.
This is because individual utility in Definition 2 is linearly related to «; when
other parameters are fixed. Thus, the maximized social welfare denoting the
total utilities of all users has a linear relationship with «;.

And for f;, we set it as 0.01 to 0.1 with an interval of 0.01. According
to Fig. 4, one can see that the maximized social welfare increases with 3; in
a non-linear manner. In fact, it is a part of the “S”-shape curve. As shown
in definition 2, we define that the individual utility is linear to the profit
function ¢(-) which is a sigmoid function with respect to f; as shown in (3).
So the maximized social welfare also presents this trend with f;.

From the above two figures, we can get the conclusion that the maximized
social welfare will be affected by a; and ; in a similar way that the individual
utility U; gets influenced.

Finally, we study whether changing the number of transactions in subsets
will affect the optimization result or not. To be specific, we achieve this by
adjusting the number of different T; of transactions, i.e., 7. As presented
in Fig. 5, the maximized social welfare has no obvious changing trend with
respect to 7, which helps demonstrate the stability and robustness of our
proposed approximate solution.
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7.2. Evaluation of the Truthful Assessment Model

In this subsection, we design simulation experiments to evaluate our pro-
posed truthful assessment model and verify its incentive capability. We first
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examine the impacts of P(S; = 1) and 6 on H; in the similar experiment
setting, and then we calculate the accumulative trustworthiness of different
types of users.

As for the calculation of trustworthiness, the parameter 6 indicates the
importance of prior belief and that of posterior belief, so our first experiment
is to find how will H; change with 6. We consider two different users, i.e.,
honest user 7 and malicious user j . For user i, we let P)(i) = Pg(i) = 0.8,
Pl(i)=P2(i) =1, P(C =a) = 0.8 and P(S; = 1) = 0.6. As for user j,
we set PpL.(7) = P.(j) = 0.1, and the values of other parameters are set the
same as user 7. The above setting means that both user i and user j can make
the right judgement after the price suggestion is received, while user i will
report truthful opinions but user j will not. According to the results shown
in Fig. 6, we can see that the trustworthiness of user ¢ changes slightly with
0, while the trustworthiness of user j increases when 6 is larger. The reason
is that the posterior belief is submitted after the pricing game, so it contains
more information than the information prior belief. For honest user i, he/she
will report all the beliefs honestly, so both prior belief and posterior belief are
important and reliable to the calculation of trustworthiness. But for user j,
since the posterior belief is generated based on the experience of the pricing
mechanism, user j may submit the wrong posterior belief intentionally to
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obtain a higher trustworthiness.
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Figure 6: Trustworthiness changing with 6.

With a similar experimental setting to the above, we conduct experiments
to analyze the impact of a user’s judgment of the price on the trustworthi-
ness. According to the results in Fig. 7, we find that the trustworthiness of
honest user i does not fluctuate much as P(S; = 1) changes, while the trust-
worthiness of malicious user j is negative and increases when P(S; = 1) < 0.3
and then keeps stable. The results indicate that our model can adapt to the
situation of numerous users with different judgments. Besides, our model is
based on the assumption that P(S; = 1) € (0, 1] is randomly distributed, and
our experimental results effectively support the validity of this assumption.

Finally, we calculate the accumulative trustworthiness of multiple users.
We assume that there exist 80% honest users and 20% malicious users. As
for the honest users, they will submit their reports truthfully, hence we set
Pl (i), PP (i) ~ U[0.6,0.8] for them, with Uluy, us] representing the uniform
distribution between u; and us. While for malicious users, they usually won’t
report their real beliefs, so we set P} (i), P).(i) ~ U[0.1,0.2] for them. For
both honest users and malicious users, we assume that they can make the
right judgements with relatively high probability, so we set Pl (i), Py (i) ~
U[0.6,0.8]. As for P(S; = 1), we assume it is randomly selected from [0, 1] for
all users. We also set # = 0.5 and P(C = a) = 0.4. Then, we calculate the
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accumulative trustworthiness of 10 users in 100 rounds, and get the average
of accumulative trustworthiness in each round for both malicious and honest
users. The results reported in Fig. 8, which shows that the honest users’
accumulative trustworthiness is positive and goes up, while the accumulative
trustworthiness of malicious users is negative and goes down, proving that
our proposed assessment model is incentive capable and can encourage the
users to behave honestly according to the rules.

8. Conclusion

In this paper, we study the transaction pricing issue in blockchain with
the help of game theory from the perspective of users and propose a corre-
lated equilibrium based pricing mechanism for transactions. To be specific,
we first model the transaction inclusion competition among users as a pricing
game, and then utilize the concept of correlated equilibrium to maximize the
individual utility of each user through unifying it with achieving the global
optimum. To overcome the weakness of exponential complexity in the origi-
nal solution, we propose an approximate algorithm to yield polynomial time
cost. In addition, we design a truthful assessment model for our proposed
price mechanism to collect the feedback of users regarding the price sug-
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gestion. Finally, we conduct extensive simulations to evaluate our proposed
pricing mechanism and the corresponding truthful assessment model.
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