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Abstract—The explosive amount of data generated at the network edge makes mobile edge computing an essential technology to
support real-time applications, calling for powerful data processing and analysis provided by machine learning (ML) techniques. In
particular, federated edge learning (FEL) becomes prominent in securing the privacy of data owners by keeping the data locally used to
train ML models. Existing studies on FEL either utilize in-process optimization or remove unqualified participants in advance. In this
paper, we enhance the collaboration from all edge devices in FEL to guarantee that the ML model is trained using all available local
data to accelerate the learning process. To that aim, we propose a collective extortion (CE) strategy under the imperfect-information
multi-player FEL game, which is proved to be effective in helping the server efficiently elicit the full contribution of all devices without
worrying about suffering from any economic loss. Technically, our proposed CE strategy extends the classical extortion strategy in
controlling the proportionate share of expected utilities for a single opponent to the swiftly homogeneous control over a group of
players, which further presents an attractive trait of being impartial for all participants. Moreover, the CE strategy enriches the game
theory hierarchy, facilitating a wider application scope of the extortion strategy. Both theoretical analysis and experimental evaluations
validate the effectiveness and fairness of our proposed scheme.

Index Terms—Edge computing, federated learning, game theory.
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1 INTRODUCTION

The ubiquitous deployment of Internet-connected mobile
devices leads to the amount of data generated at the net-
work edge increasing exponentially, fostering the transfor-
mative computing paradigm, namely mobile edge comput-
ing [1]. According to a recent report, the global market of
edge computing is $3.6 billion in 2020 and is anticipated
to reach $15.7 billion by 2025 [2]. Facilitated by faster
networking technologies such as 5G, edge computing be-
comes promising to support real-time applications, which
calls for vigorous data processing and analysis capability
at the edge. Thanks to the explosive growth of artificial
intelligence, edge computing becomes more intelligent via
implementing machine learning (ML) algorithms to achieve
various functions such as classification and prediction.

However, since the data generated at the edge devices
may be highly sensitive to the end users, it might be inap-
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propriate to deploy conventional centralized ML algorithms
which need to physically collect all training data from
the devices. Federated learning (FL), a representative of
distributed ML, turns into the aptest for edge computing,
based on which the edge server and all connected devices
accomplish training the same ML model in a collaborative
manner, and thus this paradigm is also termed federated edge
learning (FEL) [3], [4]. More specifically, no device explicitly
uploads the generated data in FEL, but their data can still
contribute to training the shared ML model by iterative local
learning, global aggregating, and updating [5].

Within this collaboration system, the most challenging
but critical issue is to guarantee that all participants co-
operate tacitly. To fulfill this goal, two lines of research
have been carried out, namely in-process [6]–[20] and in-
advance [21]–[27] FEL optimization, with the former im-
proving the FEL system performance via optimizing learn-
ing algorithms or communication configurations during
the FEL process, while the latter achieving the desirable
performance through designing effective schemes to bet-
ter establish and maintain the FEL system by avoiding
inefficiency before the FEL process begins. Usually, taking
precautions can enhance the FEL system as a preparative,
so in-advance optimization becomes more cost-efficient than
checking for the leaks during the working process. The
state-of-the-art accomplishes this objective via either device
selection [21]–[23], which directly filters out unqualified de-
vices, or incentive mechanism design [24]–[26], which relies on
a strong assumption of perfect information in the Stackel-
berg game [28]. Nevertheless, in practice, we may not have
enough devices that can afford the elimination, and the
devices may not own the full knowledge about each other.

In this paper, we consider that an edge server and
multiple devices collaborate in an FEL process repeatedly
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to optimize user experience in the long run. The server is
the coordinator in charge of the whole FL process while
the devices contribute their local learning results to obtain
the globally trained model as a compensation at the end
of each FL round1. Within the whole FL process, the local
training is only visible to and manageable by individual
devices, leaving the room for selfish behaviors of perfunc-
torily contributing to the FEL via training the ML model
using partial local datasets. To suppress this phenomenon,
we utilize the multi-player simultaneous game to model the
interactions between the edge server and devices in an FEL
system, where none of them has perfect information about
others, and aim at eliciting the full contribution of devices
from the perspective of the server, instead of intolerantly
eliminating malicious devices. However, the tight coupling
of action and utility in this game makes it a dilemma for the
server to play against devices because recklessly changing
behaviors can lead to the server a decreasing utility. This
brings us a question: is it possible for the server to entice full
contributions from the devices without concerning about its utility
loss?

To answer this question, we resort to the extortion
scheme which was first introduced as a special form of
the zero-determinant (ZD) strategy [29]. By employing the
extortion strategy, any player can independently control the
proportion between the expected utility of itself and that of
the opponent, which implies the potential to help the server
control the utility in playing against devices. Nonetheless,
the classical extortion strategy is derived for the two-player
game, which is not applicable to our problem involving
multiple players. In addition, it is clearly not efficient to
directly carry it out between the server and every device
in a one-by-one manner. To address this challenge, we put
forward a collective extortion (CE) strategy, which can achieve
the goal of effortlessly controlling the overall utility of all
devices with only one-time setting for the server. What’s
important, we comprehensively analyze the potential of the
proposed CE strategy on enforcing the full cooperation of
the devices, and further validate that it works impartially
for all players with respect to utilities.

The main contributions are summarized as follows:

• We model the interactions between the edge server
and devices in FEL as a multi-player simultaneous
game, based on which, for the first time, we derive
the powerful CE strategy to efficiently control the
relative utility proportion between the CE adopter
and a group of opponents.

• The proposed CE strategy can not only effectively
suppress the selfish behaviors of devices in FEL
via enforcing their full contributions, but also en-
rich the theoretical system of game theory through
extending the original two-player extortion strategy
to the multi-player situation, and thus enlarging its
application scope.

• We demonstrate the effectiveness and fairness of the
proposed CE strategy on driving the full cooperation
of the devices with both theoretical analysis and

1. We term the “round” in this paper as finishing a specific FL task
and obtaining a well-trained ML model, instead of one time of local
training in FL or an epoch in the traditional ML model training phase.

experimental evaluations, which benefits the long-
term system stability and liveness.

The rest of this paper comprises the following six sec-
tions. Section 2 investigates the most related work in im-
proving FEL performance and Section 3 introduces our
problem formulation. In Section 4, we deduce the CE strat-
egy for the multi-player situation, followed by the analysis
on its potential to enforce the full contribution from the
devices in Section 5. Experimental evaluations are presented
in Section 6. And we conclude this paper in Section 7.

2 RELATED WORK

Existing research focusing on enhancing the overall system
performance of FEL can be classified into in-process and in-
advance optimization, depending on whether the operation
steps lie in the FEL process or before that.

For the in-process optimization, researchers tried to im-
prove the FEL performance via designing advanced learning
algorithms [6]–[15] or optimizing communication configurations
[16]–[20]. In [6], Mills et al. proposed an adapting FedAvg
algorithm based on the Adam optimization, which over-
comes the shortcoming of the original FedAvg with longer
convergence time in dealing with the non-independent
identically distributed data generated in internet-of-things
(IoT). Considering about the constrained resources of edge
devices, Jiang et al. [7] proposed a scheme named PruneFL
to adaptively adjust the model size for reducing training
cost while maintaining comparable accuracy with the full
model. To better control the global aggregation frequency
in edge computing with limited resources, Wang et al. [8]
theoretically analyzed the gradient descent convergence
bound. Leveraging on the over-the-air computation, several
studies [9]–[12] achieved more efficient FL aggregation by
taking advantage of the superposition of signals in the
wireless multiple access channel. Tran et al. [13] consid-
ered the trade-off between computation and communication
latency and that between learning time and energy con-
sumption in FL for wireless networks via solving a non-
convex optimization problem. To deal with the straggler
concern in FEL, a framework named ELFISH was proposed
in [14] to achieve resource-aware learning via dynamically
masking computation-intensive neurons, while Prakash et
al. designed CodedFedL [15] based on coded computing
to inject structured redundancy in FL to compensate the
negative impacts of straggling updates. On the other hand,
aiming to facilitate the FEL from the perspective of commu-
nications, optimal resource allocation was investigated in
[16], [17], [30] and various transmission scheduling policies
were designed in [18]–[20], [31].

For the in-advance FEL performance optimization, there
are several recent studies which mainly focus on device
selection [21]–[23], [32] and incentive mechanism design [24]–
[27], [33]. In [21], to achieve the best learning result, a novel
protocol was devised to select qualified devices according
to their computational resource and communication con-
ditions. In [22], Kang et al. proposed a reputation based
mechanism for screening out reliable devices to obtain high-
quality model updates in FEL using the contract theory.
To facilitate vehicular edge learning, selectively collecting
good local model updates was considered in [23] using the
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two-dimension contract theory. Besides, Zhan et al. designed
deep reinforcement learning (DRL) based incentive mecha-
nisms for edge-based FL in [24], [25], where the optimal
pricing strategy of the aggregator and the best contribution
strategy of the participants can be derived based on the
hierarchical Stackelberg game. While Pandey et al. solved
the incentive problem in FL with communication efficiency
consideration using a crowdsourcing framework and the
two-stage Stackelberg game for equilibrium analysis, Le
et al. studied the incentive mechanism design for FL in
wireless scenario via an auction game.

Relying on the power of taking precautions in enhancing
the FEL performance, one can find that the existing studies
either rigidly filter out unsatisfied devices or assume the
availability of perfect information to implement, which can
be impractical as there is hardly redundant number of
participants or full knowledge about each other in FEL. To
overcome these shortcomings, we utilize the multi-player
simultaneous game to model the interactions between the
edge server and devices with nobody having perfect knowl-
edge of others, and then design an effective CE strategy to
enforce the full contribution of selfish devices with fairness
guaranteed.

3 PROBLEM FORMULATION

3.1 System Model
As illustrated in Fig. 1, we consider an FEL system con-
sisting of one edge server, denoted as s, and a set of edge
devices, denoted as N = {d1, · · · , dn}. The system aims
at providing better services to end users via conducting
collaborative machine learning based on the data generated
by all edge devices. Specifically, we assume that the FEL is
conducted in a round-by-round manner, where the round
is defined as accomplishing a certain learning task with the
objective of training a global ML model with good performance.
Each device joins a round of FEL task by contributing the
locally learned results obtained through training the initial
ML model using the local dataset for multiple iterations.
As a compensation, the server, who works as the FEL
coordinator, returns the final well-trained ML model to the
participating devices once the current round of FEL task
finishes.

However, some devices may behave selfishly by utilizing
partial of his2 local data to conduct the local training of ML
model, by which they can make extra profits, such as saving
computational resources and using the rest of the data to
further improve the final ML model only for themselves.
This sort of malicious behavior comes to be difficult for the
server to timely detect and prevent due to the following two
reasons. First, the server has no access to the local datasets
held by devices for directly acquiring their size information
or training efforts; second, the data distribution of devices
is usually skewed in FEL, making it impossible to infer the
size information, either. In this case, the server may behave
strategically via choosing to return or not return the final ML
model to the devices, thus helping suppress the selfishness
in an opportunistic way, which will be detailed in the next
subsection.

2. We use “he” and “she” to respectively represent anyone of the
devices and the server.

TABLE 1
Summary of Notations.

Notation Explanation
xi ∈ {C,D} The action of the server playing against device di
yi ∈ {C,D} The action of any device di

us The utility of the server
ui The utility of any device di
φ(·) The profit of the server
bi(·) The cost of the server sending the final model to di
ε(·) The error of the final model
ψ(·) The profit of the device di
mi(·) The extra income of the device di using partial data

For better understanding, we summarize major nota-
tions used in the following sections in Table 1.

Edge Sever

Devices

Fig. 1. The FEL system architecture.

3.2 Game Formulation
It is clear that neither the server nor any device can know the
action of each other when they make their own decisions,
which can be exactly modeled by a multi-player simulta-
neous game. Even though it seems that there are only two
types of players, i.e., the edge server and the device, the
number of players involved in the decision making and
outcome witnessing of this game is multiple. In particular,
the number of devices playing against the server in this
FEL scenario can be large, and every device has his own
preference on game strategy selection and operates with
independent system parameters related to their benefits and
costs.

Formally, we define the server’s action of returning the
final ML model to the device as cooperation (C) and the
action of not sharing the well-trained ML model as defection
(D). For the device, we regard the action of conducting
local learning using the full local dataset in a round of FEL
as cooperation (C), while the behavior of employing only
partial local data for FEL training can be viewed as defection
(D). For clarity, we utilize xi to denote the action of the
server playing against device di and yi to express the action
of device di in this game. Thus, we have xi, yi ∈ {C,D},
where i ∈ {1, 2, · · · , n}.

It is worth noting that in the case of yi = D, the specific
amount of data utilized by each device di during the FEL
process can be heterogeneous from other peering devices.
Here we treat any selfish behavior of not fully using the local
data for model training as defection no matter how severe or
slight this malicious action is. This qualitative consideration
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makes it easy for us to focus more on the elimination of de-
vices’ undesirable activities in the subsequent quantitative
modeling and algorithm design sections.

Given the above actions, we can define the utility func-
tion of device di as

ui = αiψi(xi) + βimi(yi), (1)

where αi, βi > 0 are scale parameters, ψi(xi) is the profit the
device can obtain according to the server’s action of whether
or not returning the final model, and mi(yi) represents the
extra income that the device can make by not fully using his
local data to train the model, such as the spared computa-
tion, communication, and energy resource consumption.

Here we have ψi(C) > ψi(D) because the server’s
returned final model can enable the device to provide
more efficient service to the end user so as to increase
the user’s satisfactory degree, which can be regarded as
a higher payoff for the device. For easy expression, we
use ψi and ψi to respectively represent ψi(C) and ψi(D).
Considering that the cooperation action of contributing to
FEL based on the full dataset leaves no extra room for the
device to make more profit, we assume mi(C) = 0. For the
selfish behavior of using only partial local data for training
the ML model, with δi ∈ [0, 1) denoting the percentage
of device di’s dataset contributed to FEL3, we can define
mi(D) = λi(1−δi), where λi is a device-dependent positive
constant indicating the heterogeneity of devices.

Next we define the utility of the server as

us = αsφ(y)− βs
n∑
i=1

bi(xi), (2)

where αs, βs > 0 are scalars; φ(y) refers to the profit of
the server gained from this round of FEL with the globally
trained ML model and y = (y1, y2, · · · , yn) denotes the
action vector of the devices; bi(xi) is the cost of the server to
send device di the final trained model. Since the final model
returned to all devices is the same, the main cost of sending
it to every device is assumed to be the same as an example
here4, with bi(C) = ρ

n , where ρ as a positive scalar denotes
the overall cost of the server, and bi(D) = 0.

The profit of the server obtained from the final model
can be relatively complicated to depict, which is generally
dependent on the specific ML model trained in the FEL sys-
tem. In this paper, taking the convolutional neural network
(CNN) based classifier as an example, we can describe φ(y)
as follows:

φ(y) =
w

1 + exp(rε(y)− t)
, (3)

where w, r, t are positive scalars, and ε(y) represents the
classification error of the final trained model, jointly deter-
mined by the actions of all devices. Specifically, the server’s
profit φ reaches the maximum if ε(y) approaches zero; and

3. As δi is a parameter related to the personal preference of each
device regarding being selfish, here we assume that δi is a relatively
stable value, not fluctuating drastically in the game rounds, which
can be approximately estimated by the edge server through historical
behaviors.

4. For different costs of the server to send the final model to devices,
the overall research methodology proposed in this paper can still be
applied although the derivation details may vary.

if the error is too large, φ becomes very small. Inspired by
the power-law function proposed in [34], [35], we can define
an exemplary ε(y) as

ε(y) = k(
∑
yi=C

Fi +
∑
yi=D

δiFi)
−a. (4)

In the above equation, Fi denotes the data size of device
di; and k, a ≥ 0 are tuning scalars to depict the non-linear
relationship between the classification error and the training
data size, where the larger the total data size used for
training, the smaller the error. Combining (3) and (4), one
can find that the less the number of defective devices, the
larger the effective global training dataset, the smaller the
error, which results in the larger profit for the server. In the
extreme case where all devices choose C (or D), ε can reach
the minimum (or maximum), and accordingly, φ turns to be
the maximum (or minimum), denoted as φ (or φ).

Note that for other ML model training tasks in FEL,
we may propose different formulas to describe the profit
function φ(y), but its main characteristics about all coopera-
tive devices producing φ while all defective devices leading
to φ will generally hold. Therefore, the overall analysis
framework, as well as the subsequent full contribution
enforcement scheme, can still work in a similar way.

Theorem 3.1. The FEL system can form to function only when
αi(ψi − ψi) > βiλi(1− δi) and αs(φ− φ) > βsρ.

Proof. To ensure that such an FEL system comprising one
server and multiple devices functions well, the basic re-
quirement is that all-cooperation behaviors can make it
more beneficial than the case of all defection for any player.
Otherwise, there is not enough motivation for any device or
server to collaboratively participate in this FEL.

For device di, the utility of the all-cooperation case is
αiψi and that of all-defection is αiψi + βiλi(1 − δi). The
above requirement leads to αiψi > αiψi + βiλi(1 − δi),
which is equivalent to αi(ψi − ψi) > βiλi(1− δi).

Similarly, for the server, the utility with cooperation
actions from all players is αsφ − βsρ, while all defection
results in the utility of αsφ. Thus the FEL system requires
that αsφ− βsρ > αsφ, which equals αs(φ− φ) > βsρ.

Based on the above definitions of utilities, we can for-
mally define an FEL game as follows.

Definition 3.1 (FEL Game). In the FEL system consisting of
one server and n devices, their interactions regarding whether
to return the final model and whether to fully contribute to the
learning process can be defined as a normal-form game G = ({s}∪
N , {C,D}, {us} ∪ {ui}) with i ∈ {1, · · · , n}.

3.3 Dilemma in the FEL Game
In fact, there exists a defection dilemma in the FEL game,
which can be summarized in the following theorem.

Theorem 3.2. In the FEL game defined in 3.1, D is the best
action for any player.

Proof. For any rational player, the best action can be derived
by comparing the utility values under situations of choosing
C and D. For any device di, the server’s action xi being C
or D clearly affects his utility, thus the device can consider
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these two cases separately. If xi = C , his utility is ui =
αiψi(C) + βimi(yi), and since mi(C) < mi(D), there exists
ui(yi = C) < ui(yi = D), which leads to his best action
of yi = D. If xi = D, the device’s utility becomes ui =
αiψi(D) + βimi(yi), where the function mi(·) enforces the
best action D for the device again. In other words, no matter
what action the server takes, the best action of the device is
to defect.

Similarly, for the server, no matter what the action vector
of the devices y is, the only factor affecting her utility that
she can control is xi. Referring to (2), it can be concluded
that only when the last item becomes zero can us be maxi-
mized, which corresponds to xi = D.

According to Theorem 3.2, one can observe that the
individual optimal action in the game among the server
and the devices is always D, which means that the device
always decides to take part in the FEL using partial dataset
and the server never shares the final well-trained model
to any device. This is obviously harmful for the overall
benefit of the FEL system where the global model cannot be
trained based on all generated data, leading to the reduced
model performance. Thus, it becomes critical to solve this
all-defection dilemma. Here we consider that the server
is in charge of driving the cooperation from the devices
due to the following two reasons. First, as the upper-level
controller of the FEL system, the server hopes to obtain an
optimal collaborative learning result, which becomes the
motivation for her to get rid of this undesired situation;
second, as the coordinator, the server can exert punishment
to defective devices via not returning the final model, which
indicates her capability to suppress malice.

To elicit full contributions from the devices, one intuitive
solution for the server is to design cooperation incentive
schemes, which usually costs more for the server to entice
profit-driven devices. Thus, it is imperative to design a new
scheme embedded in this multi-player game process while
preventing any interest loss for the server. Referring to (2),
one can observe that the utility of the server is collectively
affected by the actions of all devices as well as herself.
Thus, any reckless behavior change without a delicate plan
would lead to undesired damage for the server, making it
a critical challenge for the server to manage the behaviors of
the devices without concerning her own utility. Inspired by [29],
we find that the extortion mechanism, as a type of the zero-
determinant (ZD) strategy, presents the merit of enabling the
adopter to unilaterally control a proportional relationship
between the expected utilities of two players, which implies
the potential of helping solve the server’s challenge.

However, the conventional extortion strategy was orig-
inally developed for the two-player game, which is not
directly applicable to our problem. Although one possible
application idea is to carry it out between the server and
each device, we can clearly notice the low efficiency of this
one-by-one method. Thus, we resort to extending the extor-
tion strategy to the multi-player scenario and name it as the
collective extortion (CE) strategy, which will be elaborated in
the next section.

4 COLLECTIVE EXTORTION STRATEGY

As mentioned above, the classical extortion strategy derived
in the two-player game cannot effectively fit in the FEL
game scenario. In this section, we extend the two-player
extortion strategy to the multi-player version, namely the
CE strategy, which can solve the defection dilemma in the
FEL game without suffering from the inefficiency of directly
implementing the extortion strategy for each device.

To be specific, we aim to enable the server to collectively
control the overall utilities of all devices so as to further
drive their cooperation behaviors, so here we set the action
of the server playing against all devices to be homogeneous,
denoted as x. Since there exist n devices, the number of
players in our FEL game is n+ 1 with each player choosing
from two actions C and D. And thus there exist η = 2n+1

possible game results in total, which can be expressed as
follows,

xy1y2 · · · yn ∈ {C
n︷ ︸︸ ︷

CC · · ·C︸ ︷︷ ︸
g1

, C

n−1︷ ︸︸ ︷
CC · · ·D︸ ︷︷ ︸

g2

, · · · , D
n︷ ︸︸ ︷

DD · · ·D︸ ︷︷ ︸
gη

},

where gi denotes the i-th game result.
In light of the conclusion in [29] that it is not disad-

vantageous for the short-memory player compared to the
long-memory one, we assume that both the server and
the devices have one-step memory and select their actions
based on the game results in the last round. Thus, one can
introduce the definitions of their mixed strategies as follows.

Definition 4.1 (Mixed Strategy of the Server). The server’s
mixed strategy is defined as p = (p1, p2, · · · , pη) with pj
denoting her conditional probability of choosing cooperation given
the game result in the last round gj .

Definition 4.2 (Mixed Strategy of the Device di). The device
di’s mixed strategy is defined as qi = (qi1, q

i
2, · · · , qiη) with qij

denoting the conditional cooperation probability of device di given
the game result in the last round gj .

Accordingly, the defection probability of the server is 1−
pj and that of di is 1 − qij , where j ∈ {1, 2, · · · , η}. Then
the Markov state transition matrix of this FEL game can be
written as

M = [Muv]η×η,

where the element Muv is the probability of transiting from
the previous game result gu to the current one gv and can
be defined as

Muv = P
n∏
i=1

Qi.

In the above equation, P and Qi are calculated according to

P = (pu)z0(1− pu)1−z0 ,

Qi = (qiu)zi(1− qiu)1−zi ,

where z0 and zi, i ∈ {1, · · · , n}, denote the actions of
the server and device di in the round with game result gv ,
respectively. And they are assigned values according to

z0 =

{
1, x = C,

0, x = D,
zi =

{
1, yi = C,

0, yi = D.
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In other words, when the server’s behavior is x = C in the
current game result gv , it is the former part of P functioning
and thus P = pu; otherwise, P = 1−pu. Next, Qi is derived
in the same way according to the action of device di.

Then we define a non-negative vector v =
(v1, v2, · · · , vη) with the feature of v1+v2+ · · ·+vη = 1, de-
noting the probability distribution over all possible game re-
sults in the stable state. Since M is the transition matrix, we
know that when the Markov process reaches the stable state,
there exists vM = v, which equals v(M − I) = vM′ = 0
with I denoting the unit matrix and M′ = M− I.

Let Adj(·) and det(·) be the adjugate and determi-
nant operations on a matrix, respectively. According to the
Cramer’s rule, there exists Adj(M′)M′ = det(M′)I = 0.
Comparing it with the above equation, one can conclude
that v is proportional to every row of Adj(M′). Accordingly,
the dot product of v and any vector f = (f1, f2, · · · , fη)T

can be proportionally calculated by

v · f ≡ det[M1,M2, · · · ,Mη−1, f ], (5)

where Mi, i ∈ {1, · · · , η − 1}, denotes the i-th column of
M′, and “≡” represents the proportional relationship.

Next, in light of the fact that the elementary transforma-
tion on any matrix does not change its determinant value,
we conduct column transformations on the matrix in (5).
More specifically, we first locate that the η

2 -th column of this
matrix refers to the game result of the server’s cooperation
and all devices’ defection, i.e., xy1y2 · · · yn = CDD · · ·D,
and the i-th element in this column M η

2
can be expressed as

Mi η2
= pi

∏n
j=1(1−qji ); when adding all columns before the

η
2 -th column to M η

2
, we obtain the new form of this column

as follows:

M∗η
2

= [p1 − 1, p2 − 1, · · · , p η
2
− 1, p η

2+1, · · · , pη]T .

Then (5) can be written as

v · f ≡det[M1, · · · ,M∗η
2
, · · · ,Mη−1, f ]

=det



p1
∏n
i=1 q

i
1 − 1 · · · p1 − 1 · · · f1

...
. . .

...
. . .

...
p η

2

∏n
i=1 q

i
η
2

· · · p η
2
− 1 · · · f η

2

...
. . .

...
. . .

...
pη
∏n
i=1 q

i
η · · · pη · · · fη


.

It is clear that the η
2 -th column is only related to the strategy

of the server. Therefore, given any constant parameter γ 6=
0, the server can adjust the strategy p to meet the condition
M∗η

2
= γf so as to achieve

v · f = 0, (6)

because the η
2 -th column and the last one of the matrix are

proportional to each other.
In fact, the above proportional value can be converted to

a real value by normalizing on the value of v · 1, where 1
denotes the all-one vector with the size of η. In particular,

the expected utility of the server, denoted by Es, and that of
device di, denoted by Ei, can be calculated by

Es =
v · us
v · 1

=
det[M1, · · · ,Mη−1,us]

det[M1, · · · ,Mη−1,1]
,

Ei =
v · ui
v · 1

=
det[M1, · · · ,Mη−1,ui]

det[M1, · · · ,Mη−1,1]
,

where us = (u1s, · · · , uηs) and ui = (u1i , · · · , u
η
i ) are respec-

tively the utility vector of the server and that of device di
following the same order of game results (g1, · · · , gη) and
can be calculated according to (2) and (1).

Next, we can derive the CE strategy as follows.

Theorem 4.1. By setting the strategy p to satisfy

M∗η
2

= γ
(
(us − u1s1)− χ

n∑
i=1

(ui − u1i1)
)

(γ 6= 0), (7)

the server can enforce an extortionate relationship between their
expected utilities

Es − u1s = χ
n∑
i=1

(Ei − u1i ), (8)

with χ ≥ 1 being the extortion factor.

Proof. Given the expressions ofEs andEi, the server can en-
force a zero value for any linear combination of the expected
payoffs based on (6). Particularly, if the server hopes to real-
ize an extortionate share of expected utilities larger than the
all-cooperation payoffEs−u1s = χ

∑n
i=1(Ei−u1i ), the server

can set f = (us−u1s1)−χ
∑n
i=1(ui−u1i1) because the utility

relationship is equivalent to (Es−u1s)−χ
∑n
i=1(Ei−u1i ) = 0.

Accordingly, we can know that the server’s strategy p needs
to comply with M∗η

2
= γf = γ

(
(us − u1s1) − χ

∑n
i=1(ui −

u1i1)
)
.

With a feasible strategy satisfying the above condition,
the server can unilaterally control to ensure that her own
expected utility difference to u1s, i.e., the utility at all-
cooperation state, is always χ times of the sum of all devices’
expected utility differences to u1i . Based on the one-for-all
feature of this strategy, we name it the collective extortion
(CE) strategy. In fact, CE not only expands the application
scope of the original extortion strategy from the two-player
game to the multi-player game, but also is effective to solve
the problem of full contribution stimulation which will be
elaborated in the next section.

It is worth noting that the base values in the CE strategy,
i.e., the subtrahends u1s and u1i in (8), can be other values
as long as the strategy p has feasible solutions to satisfy
the corresponding condition similar to (7). For example, in
the two-player game scenario, the original extortion strategy
was proposed by using the payoffs at all-defection state as
the base values [29], where the feasibility of the extortion
strategy was analyzed accordingly; while in [36], the range
of base values are demonstrated to be between the payoffs
of all-defection and all-cooperation.
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5 FULL CONTRIBUTION ENFORCEMENT BASED
ON CE
As mentioned earlier, the server can fulfill an extortionate
relationship between the expected utilities of herself and
those of all devices via elaborately setting a CE strategy. In
this section, we further explore the potential of this strategy
in stimulating full cooperation of the devices so as to solve
our problem defined in Section 3.

5.1 Feasibility of the CE Strategy

According to (7), one can get the server’s strategy p as

pj =

{
γ(ujs − u1s − χ

∑n
i=1(uji − u1i )) + 1, j = 1, · · · , η2 ,

γ(ujs − u1s − χ
∑n
i=1(uji − u1i )), j = η

2 + 1, · · · , η.

Given a certain χ ≥ 1, its feasibility is dependent on
the utility vectors of the server and the devices. Denote
Aj = ujs − u1s and Bj =

∑n
i=1(uji − u1i ), j ∈ {1, · · · , η}.

Considering that γ 6= 0, the constraints of the utility vectors
vary in the following two cases:

Case 1: γ > 0.{
− 1
γ ≤ Aj − χBj ≤ 0, j = 1, · · · , η2 ,

0 ≤ Aj − χBj ≤ 1
γ , j = η

2 + 1, · · · , η.

Case 2: γ < 0.{
0 ≤ Aj − χBj ≤ − 1

γ , j = 1, · · · , η2 ,
1
γ ≤ Aj − χBj ≤ 0, j = η

2 + 1, · · · , η.

5.2 Potential of the CE Strategy to Drive Devices’ Co-
operation

Under a feasible CE strategy p adopted by the server, one
can analyze its potential of driving the devices to fully
utilize their local datasets in FEL. To that aim, we first
assume that each device in the FEL game searches for
the best response strategy in an evolutionary manner. The
reason is that the device lacks the global game information
compared to the server who can interact with all devices in
the game. Here we assume that a device adjusts his strategy
with the goal of improving his own utility regardless of the
strategy or utility of the server. Inspired by [37], we define
the following strategy evolving path for an evolutionary
device5 with qt ∈ [0, 1] denoting his cooperation probability
at round t,

qt+1 = qt
W t
C

W t
, (9)

where W t
C refers to the expected utility of cooperation, and

W t represents the total expected utility. With W t
D denoting

the expected utility of defection, the total expected utility
can be calculated by

W t = qtW t
C + (1− qt)W t

D. (10)

Referring to the right side of (9), we can find that the
numerator qtW t

C is a part of the denominator, resulting in
qt+1 ∈ [0, 1].

5. Here we discuss one of the devices as a representative and thus
omit the subscript i for brevity.

To investigate whether the proposed CE strategy can
drive the full cooperation of devices, we need to study the
condition of qt increasing. According to (9), we can find that
only when W t

C > W t can the cooperation probability of the
device increase in the next round. Combining it with (10),
we can derive the sufficient condition of the CE strategy
being able to enforce the device become more cooperative
as follows:

W t
C > W t ⇒W t

C > qtW t
C + (1− qt)W t

D,

⇒W t
C > W t

D,

for qt 6= 1. In fact, in the case of qt = 1, there exists W t =
W t
C according to (10) and thus qt+1 is always 1, which never

requires any function of the CE strategy.
Therefore, in the following, we focus on solving the

problem of when qt ∈ [0, 1), can the CE strategy function to
elicit the cooperation from the device? Referring to the above-
derived sufficient condition, we can find that this problem
turns to be whether the CE strategy can lead to W t

C > W t
D .

Recalling the power of the CE strategy presented in
Section 4, the server’s strategy works on the whole set of
devices according to (8) and (7). To study the effect of the CE
strategy on any individual device, we consider two possible
situations of devices in the FEL game:

S1: Devices are homogeneous using the same strategy
and receiving the same utility;

S2: Devices are heterogeneous with various strategies
and utilities.

Then, for both situations, we can demonstrate that the
device tends to cooperate under the server’s CE strategy,
which are respectively presented in the following theorems.

Theorem 5.1. In the case of all devices with the same strategy
and utility, the server utilizing the CE strategy can enforce any
evolutionary device to obtain the cooperation probability qt → 1.

Proof. For situation S1 where all devices involved in FEL
are homogeneous, since everyone uses the same strategy
and the server exerts one uniform strategy to all of them
as well, we study the cooperation probability of any device
here as an representative. According to (8), we can derive
the expected utility of the device as

Ei =
1

nχ
(Es − u1s) + u1i . (11)

Next, we analyze the expected utilities of the evolution-
ary device with different actions, i.e., W t

C and W t
D . More

specifically, when the device takes the cooperation action,
the server’s expected utility Es depends on her own action,
where C leads to u1s = αsφ − βsρ while D results in
u
η
2+1
s = αsφ according to (2). Based on the above equation

(11), one can find that the server’s expected utility brings
two possible payoffs for the device, which are

Ei(x = C | yi = C) = u1i ,

Ei(x = D | yi = C) =
1

nχ
(u

η
2+1
s − u1s) + u1i

=
1

nχ
βsρ+ u1i .
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Assuming that the cooperation of the server at round t is
pt, the expected cooperation payoff of the device can be
calculated by

W t
C =ptEi(x = C | yi = C)

+ (1− pt)Ei(x = D | yi = C). (12)

While the device chooses the action D, the expected
utility of the server Es would become u

η
2
s = αsφ− βsρ and

uηs = αsφ for x = C and D, respectively. And according to
(11), the device’s payoff can be

Ei(x = C | yi = D) =
1

nχ
(u

η
2
s − u1s) + u1i

=
1

nχ
(αsφ− αsφ) + u1i ,

Ei(x = D | yi = D) =
1

nχ
(uηs − u1s) + u1i

=
1

nχ
(αsφ− αsφ+ βsρ) + u1i .

Thus, the expected defection payoff of the device turns to be

W t
D =ptEi(x = C | yi = D)

+ (1− pt)Ei(x = D | yi = D). (13)

Since φ < φ, there clearly exists Ei(x = C | yi = D) <
Ei(x = C | yi = C) and Ei(x = D | yi = D) <
Ei(x = D | yi = C), which leads to W t

C > W t
D by

comparing (12) and (13), thus concluding the proof of the
theorem.

Theorem 5.2. In the case of all devices with different strategies
and utilities, the server’s CE strategy can drive an evolutionary
device to get qt → 1.

Proof. Given the heterogeneous devices in situation S2, to
focus on the behavior of (any) one specific device di, we
assume that the strategies of other devices are given fixed,
and thus their expected utilities are also certain values. To
comply with (8), we denote

∆−i = χ
∑

j∈N\{i}

(Ej − u1j ).

Then the expected utility of di in this case turns to be

Ei =
1

χ
(Es − u1s −∆−i) + u1i .

Similar to the proof of Theorem 5.1, we can calculate
W t
C according to W t

C = ptEi(x = C | yi = C) + (1 −
pt)Ei(x = D | yi = C), where

Ei(x = C | yi = C) =
∆−i
χ

+ u1i ,

Ei(x = D | yi = C) =
1

χ
(βsρ−∆−i) + u1i .

For the calculation ofW t
D = ptEi(x = C | yi = D)+(1−

pt)Ei(x = D | yi = D), we have

Ei(x = C | yi = D) =
1

χ
(αsφ− αsφ−∆−i) + u1i ,

Ei(x = D | yi = D) =
1

χ
(αsφ− αsφ+ βsρ−∆−i) + u1i .

Due to the same reason of φ < φ, we can
obtain Ei(x = C | yi = D) < Ei(x = C | yi = C) and
Ei(x = D | yi = D) < Ei(x = D | yi = C) in this situation
as well, resulting in W t

C > W t
D , which can lead to the

gradual increase of qt until approaching to 1.

From the above two theorems, we can tell that the CE
strategy can theoretically incentivize the final cooperation of
any device involving in the FEL game with an evolutionary
mindset no matter in the homogeneous or heterogeneous
device settings. In other words, devices can usually be
driven to participate in the FEL process with fully using
their local datasets and contributing to the global learning
without any reservation.

5.3 Fairness of the CE Strategy
Given the vigorous force of the CE strategy in stimulating
devices’ collaboration, one may concern about what if the
server behaves defectively via not returning the final well-trained
model to the devices so as to save sending cost for obtaining a
better utility? This question will be investigated in detail as
follows.

According to Theorems 5.1 and 5.2, the final actions of
the devices become cooperation as the number of game
rounds increases. Nevertheless, the server can still select her
action from C and D. However, according to the following
theorem, one can see that the best action for the server
with the CE strategy to keep the long-term stability is to
eventually choose C .

Theorem 5.3. The final action of the server adopting the CE
strategy is cooperation.

Proof. After enough number of FEL game rounds, devices
choose cooperation eventually. Then the server’s coopera-
tion can bring the cooperative device di the utility u1i = αiψi
with the game result g1 = CC · · ·C , and her defection
action can make the cooperative device obtain the utility
u
η
2+1
i = αiψi at the game result g η

2+1 = DC · · ·C .
Referring to (8), one can find that the cooperative server

forming the game state g1 can still make it hold stably since
the right side turns out to be zero with Ei = u1i in the
long run. However, if the server chooses to be defective
constantly, the right side of (8) would become negative
because the device’s utility in this case is Ei = u

η
2+1
i , which

is less than u1i due to ψi < ψi, and thus there exists Es < u1s.
This is clearly unfavorable for a reasonable server. Thus, the
best action for the server is also cooperation in the long
run.

Based on the above theorem, we can conclude that our
proposed CE strategy employed by the server is fair for all
players, which would result in all cooperation and bring the
same-level utility to the server and devices.

6 EXPERIMENTAL EVALUATION

In this section, we conduct a series of experiments to
demonstrate the effectiveness of the proposed CE strategy
in eliciting full cooperation from all devices in the FEL game
and other attractive features mentioned in the previous
section. The machine used for simulation experiments is
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a desktop computer with a 3.59 GHz 6-Core processor
and 16 GB memory. In all experiments, we fix the num-
ber of devices n = 8. Scalar parameters for devices are
randomly set following uniform distributions with αi ∈
[0, 3], βi ∈ [0, 2], ψi(C) ∈ (1, 2], ψi(D) ∈ [0, 1],mi(C) = 0,
and mi(D) ∈ (0, 1].

While for the server, the parameter values independent
of the ML model are firstly set as αs = 5, βs = 2, bi(C) =
1, bi(D) = 0. To appropriately set the parameters related
to the profit function φ(y) which is closely depending on
the specific ML task, we utilize the MNIST database [38]
using 6,000 data samples to train a 2-layer CNN classifier,
where each device is assumed to generate Fi =750 samples
in non-iid manner. The obtained fitting parameters in (4) are
k = 13.2 and a = 0.7 with 95% confidence, and δi = 0.018.
Further, we fix w = r = 10, t = 5 in (3) and obtain the
extreme values of φ(y) as φ = 10 and φ = 5. Note that
we also test other sets of parameter values satisfying the
requirements shown in Theorem 3.1 and Section 5.1, but we
obtain similar results which are omitted for brevity. Besides,
each experiment is repeated 20 times to obtain the average
for statistical confidence.

6.1 Effectiveness of the CE strategy to enforce full co-
operation

To figure out whether the proposed CE strategy adopted
by the server can enforce full cooperation from any evo-
lutionary device as theoretically proved in Section 5.2, we
compare it with four classical strategies, namely ALLC (all
cooperation), ALLD (all defection), TFT (tit-for-tat), and
WSLS (win-stay-lose-shift). The first two strategies are easy
to understand where the server stays constantly cooperative
or defective. The TFT strategy means that the server behaves
according to the device’s previous action while in WSLS the
server keeps on choosing an action if it brings a high utility
and switches to the other action otherwise.

Taking the first device as an example, we report the
comparative experiment results in Fig. 2, where his initial
cooperation probability varies as q0 = 0.10, 0.40, 0.60, 0.90
to indicate the robustness of our proposed CE strategy.
It is clear that no matter how cooperative the device is
at the beginning, the server adopting the CE strategy can
elicit the final cooperation of the evolutionary device. As
q0 increases, the time consumption to achieve the stable
state is less. This is because the more cooperative the device,
the easier to drive his full cooperation. It is clear that other
strategies cannot achieve this goal as all of them lead to the
cooperation probability approaching zero finally.

6.2 Fairness of the CE strategy

Next, we explore whether the CE strategy is fair for both
the server and the devices. We compare their utilities at
the stable state in five cases where the server adopts dif-
ferent strategies. Specifically, we set the initial cooperation
probability of a device as q0 = 0.4 in this experiment and
present the experimental results in Fig. 3. It is worth noting
that since the utility of the server and that of the device
are different in values according to the definitions in (1)
and (2), we utilize a metric termed relative utility, which is

20 40 60 80 100

Round

0

0.2

0.4

0.6

0.8

1

C
o

o
p

e
ra

ti
o

n
 P

ro
b

a
b

ili
ty

CE

ALLC

ALLD

TFT

WSLS

(a) q0 = 0.10.

20 40 60 80 100

Round

0

0.2

0.4

0.6

0.8

1

C
o

o
p

e
ra

ti
o

n
 P

ro
b

a
b

ili
ty

CE

ALLC

ALLD

TFT

WSLS

(b) q0 = 0.40.
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(c) q0 = 0.60.
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(d) q0 = 0.90.

Fig. 2. Cooperation probability dynamics of the evolutionary device given
different strategies adopted by the server.

calculated by the ratio of the actual utility to the utility at the
all-cooperation state, to study the fairness of each strategy.

According to Fig. 3, one can find that only the proposed
CE strategy can achieve almost the same relative utility level
for both the server and the device, which approximately
equals 1, indicating that both of them obtain the stable
utility with the value equivalent to the utility when all
cooperate, i.e., u1s and u1i . This clearly demonstrates the
fairness of the CE strategy in incentivizing the full coop-
eration of all devices. For other cases, one can find that the
ALLC strategy makes the server suffer from a severe loss
since the evolutionary device can strategically exploit her
friendliness and behave defectively to obtain a higher utility.
The ALLD and TFT strategies lead to similar results for them
where the server gains slightly less than the device. This
is because the server cannot be fully exploited with ALLD
and TFT strategies but the device in these cases will not be
driven to cooperate, and thus both of them obtain less profit
compared to the situation where the server adopts the CE
strategy. The WSLS strategy also makes the server acquire
less but performs better than the case of ALLC.

CE ALLC ALLD TFT WSLS
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Fig. 3. Stable relative utilities of the server and the device given different
strategies adopted by the server.

Knowing that the CE strategy can lead to full cooper-
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ation of any evolutionary device and achieve almost the
same level of stable utilities for both sides, we continue to
investigate the dynamics of utility changing with time. In
Figs. 4 and 5, we first plot both utilities at the stable state
with four initial device cooperation probabilities, and then
depict the dynamic change of the utilities in each round
with each reflecting one case of q0. It can be observed that
q0 brings no difference to the stable utilities as shown in
the bar graph, while the dynamics of utilities varies ac-
cording to the device’s initial cooperation probability. More
specifically, with the increase of q0, the utilities of both sides
can converge faster. In other words, the more cooperative
the devices at the beginning, the quicker they can reach
the stable state, which is coincident with the results of
cooperation probability’s evolution presented in Fig. 2.
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Fig. 4. Relative utilities of the server and the device at the stable state.
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(a) q0 = 0.10.
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(b) q0 = 0.40.
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(c) q0 = 0.60.
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Fig. 5. Relative utilities of the server and the device in dynamic.

Further, we study the dynamics of utilities with the
server adopting four other classical strategies and report
the experimental results in Fig. 6. One can find that four
classical strategies bring different evolution utility paths,
especially at the beginning, but all of them converge to the
stable result in which the server obtains less utility than the
device, which cannot meet the server’s expectation.
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Fig. 6. Dynamic relative utilities of the server and the device given
different strategies adopted by the server.

6.3 Impacts of the extortion factor
As can be observed in Section 4, the extortion factor χ in
(8) plays an important role in affecting the degree of utility
difference between the server and all devices. To uncover the
impact of χ on the FEL game, we investigate the changing
trend of the cooperation probability from any device and
the corresponding utility evolution dynamics with different
extortion factor in this section, where the initial cooperation
probability of the device is set as q0 = 0.5. Detailed experi-
mental results are respectively reported in Figs. 7 and 8.

According to Fig. 7, we can observe that the higher the
extortion factor, the longer time is needed for the device
becoming fully cooperative. Taking the case of χ = 1 as an
example, the convergence round of realizing qt = 1 is about
10; while for χ = 4, the cooperation probability of the device
converges to 1 after 50 rounds. This phenomenon suggests
that even though the server can relatively dominate in the
FEL game using the CE strategy, it is not a wise choice for
her to enforce severely imbalance expected utilities since the
time consumption for eliciting the cooperation from devices
can be large.

With respect to the impact of χ on the utilities of the
server and the device, we can have some clues from Fig. 8.
Although the specific evolution paths of the instant utilities
are different with varying χ, the stable results are the same
where each player obtains the utility of mutual cooperation.
This outcome implies that the extortion factor in the CE
strategy has few impact on the utilities that each player can
obtain at the stable state. The underlying reason is that the
power CE strategy can drive the device to fully collaborate
given any χ, which leads to mutual cooperation and thus
the same level of relative utilities for all players. In fact, this
consequence is also complying with the fairness feature of
the CE strategy as presented earlier.

7 CONCLUSION

In this paper, we investigate the problem of optimizing the
FEL system performance via eliminating the selfish device
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Fig. 7. Cooperation probability dynamics of the evolutionary device for
different χ.
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Fig. 8. Relative utilities of the server and the device in dynamic with
varying χ.

behaviors. Specifically, we model the interactions between
the edge server and the devices as a multi-player simulta-
neous game, based on which we derive a CE strategy to col-
lectively control the proportional relationship between the
utility of the server and that of the devices. Based on this CE
strategy, the server can efficiently enforce full contribution
of all devices without concerning about her utility, which is
both theoretically analyzed and experimentally evaluated.
Essentially, the proposed CE strategy is impartial for both
the adopter and the opponents, indicating its liveness to
maintain the stability of the FEL systems.

In the future, we plan to examine the efficiency and
scalability of the proposed game-theoretic scheme in play-
ing against selfish devices in FEL. Besides, we will explore
more intelligent solutions about countering other malicious
behaviors of devices in FEL, where dynamically joining and
leaving the learning process will be discussed to describe
more realistic scenarios.
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