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ABSTRACT
As one of the typical settings of Federated Learning (FL),
cross-silo FL allows organizations to jointly train an op-
timal Machine Learning (ML) model. In this case, some
organizations may try to obtain the global model without
contributing their local training, lowering the social welfare.
In this paper, we model the interactions among organizations
in cross-silo FL as a public goods game for the first time
and theoretically prove that there exists a social dilemma
where the maximum social welfare is not achieved in Nash
equilibrium. To overcome this social dilemma, we employ
the Multi-player Multi-action Zero-Determinant (MMZD)
strategy to maximize the social welfare. With the help of the
MMZD, an individual organization can unilaterally control
the social welfare without extra cost. Experimental results
validate that the MMZD strategy is effective in maximizing
the social welfare.

Index Terms— Federated learning, Public goods game,
Zero-determinant strategy, Social welfare, Game theory

I. INTRODUCTION

In Federated Learning (FL), clients cooperatively train
a Machine Learning (ML) model with their decentralized
datasets under the coordination of a central server [1]. One
of the typical settings of FL is cross-silo FL [2] where
a neutral third-party agent acts as the central server and
clients are a group of organizations, aiming to jointly train an
optimal ML model for their respective use. In this case, these
organizations are also the owners of the global model and
can utilize the well-trained global model to further process
tasks for their own interests.

An optimal global model with high performance requires
the organizations in cross-silo FL to collaborate efficiently
so as to bring considerable benefits to all participants, which
can be regarded as the maximization of the social welfare.
In fact, there are many studies on optimizing the social
welfare in cross-silo FL to directly improving the model
performance [3]–[6], increasing the convergence speed [7],
reducing the communication cost [8], protecting privacy [9]–
[11] and security [12], etc.

However, since every organization participating in cross-
silo FL can obtain the final global model regardless of
its contribution, the well-trained model becomes a public
good, which is non-excludable and non-rivalrous for all
organizations [13]. This leads to the emergence of selfish
behaviors that some organizations may only consider their
own interests via inactively participating in local training
while obtaining the final global model for free or at a lower
cost. The spread of this behavior can result in huge loss of
the social welfare, and then none of the organizations can
get the optimal model, which compromises the long-term
stability and sustainability of cross-silo FL.

The existing studies motivate organizations to fully con-
tribute to cross-silo FL by designing an incentive mechanism
[13]. However, this requires extra negotiation costs since
organizations need to reach a consensus on the mechanism
in advance, and demands additional running costs where
a distributed algorithm runs over all organizations, clearly
adding more burden to organizations.

In this paper, we take a brand-new approach using the
Multi-player Multi-action Zero-Determinant (MMZD) strat-
egy [14] to maximize the social welfare in cross-silo FL
without causing additional costs for organizations. Another
outstanding advantage of our method is that it can control the
social welfare and be applied to any cross-silo FL scenario
no matter what strategies or actions organizations perform.
In summary, our contributions include:
1) We model the interactions among organizations in cross-
silo FL as a public goods game for the first time, focusing
on the organization’s strategy rather than designing an extra
mechanism to solve the social welfare maximization prob-
lem.
2) We reveal the existence of the social dilemma in cross-
silo FL by mathematical proof for the first time, which
demonstrates the adverse effect of selfish behaviors in cross-
silo FL from the perspective of game theory. This can
be used as a theoretical basis for exploring organizations’
behaviors in cross-silo FL.
3) We overcome the social dilemma by employing the
MMZD strategy from view of an individual organization.
Specifically, any organization can unilaterally maximize the



social welfare, which ensures the social welfare in cross-silo
FL at a certain level and maintains the stability of the system.
This approach can also extend the application domains of the
MMZD.
4) Experiments prove the effectiveness of the MMZD strat-
egy in maximizing the social welfare.

II. SYSTEM MODEL

We consider a cross-silo FL scenario with a set of organi-
zations, denoted as N = {1, 2, ..., N}. All organizations rely
on a central server to collaboratively conduct global model
training for a specific task, where each of them has their
own data for local training. The goal of organizations is to
obtain an optimal global model, minimizing the loss with
all datasets. The central server collects the results of local
model updates from all organizations, aggregates to obtain
the global model, and then distributes it to everyone for the
next round of training.

In each round of local training, every organization per-
forms K iterations of model training. We denote the number
of global aggregations as r. For the current task, the strategy
of organization i ∈ N , denoted as yi ∈ {0, 1, ..., r},
represents the number of global aggregation rounds it partic-
ipates in the task. Then, y = (y1, ..., yi, ..., yN ) denotes the
strategy vector of all organizations. Here we assume that all
organizations in this cross-silo FL may participate in fewer
global aggregations due to laziness or selfishness, but they
do not carry out malicious attacks, such as model poisoning
attack.

According to the cross-silo FL model, all organizations
get the same model in return. Inspired by [13], we define
the revenue of organization i as

Φi(y) = mi(χ0 − χ(y)), (1)

where mi denotes the unit revenue of organization i by
using the returned final model, χ0 denotes the precision of
the untrained model, and χ(y) denotes the precision of the
trained global model with corresponding strategy vector y.
χ(y) can be modeled as χ(y) = θ0

θ1+K
∑

i∈N yi
, with positive

coefficients θ0 and θ1 [15] being derived based on the loss
function, neural network, and local datasets. In particular,
we have χ0 = θ0

θ1
. The revenue of each organization is

proportional to the difference between the expected loss after
r rounds aggregation (i.e.,χ(y)) and the minimum expected
loss (i.e.,χ0) [13]. As the number of total participation
rounds increases, the marginal decrease of the difference
reduces.

We define the cost of organization i as Ψi(yi) = Ci
p +

Ci
m. The cost is composed of the organization’s computation

cost Ci
p and its communication cost Ci

m. On the one hand,
the computation cost Ci

p = βiKyi, where βi is a positive
parameter, denoting the computation cost of each iteration

in organization i’s local training1. On the other hand, the
communication cost Ci

m is defined as a parameter since we
assume that every organization uploads its updates in each
global aggregation round. If it chooses not to participate in
global aggregation, it will submit a zero vector as updates.

Then the utility of organization i is defined as the differ-
ence between its revenue and cost:

U i(y) = Φi(y)−Ψi(yi). (2)

According to previous statements, we model the interactions
among organizations as a cross-silo FL game.

Definition 1. (Cross-silo FL game). In the cross-silo FL
game, organizations participating in cross-silo FL act as
players, where their actions and utilities are yi and U i(y),
respectively.

The cross-silo FL game can be iterative since these orga-
nizations in cross-silo FL usually cooperate for a long time
to finish multiple FL tasks. Each game round in the cross-
silo FL game corresponds to a certain FL task. Moreover,
the social welfare in cross-silo FL game can be denoted as
the total utility of all organizations i, namely ΣN

i=1U
i(y).

In the cross-silo FL game, we find that the social dilemma
occurs if Φi(y) − Ci

p < 0, which can be summarized as
below.

Theorem 1. (Social dilemma). If Φi(y) − Ci
p < 0, there

exists a social dilemma in the cross-silo FL game.

Proof. The social dilemma forms when the Nash equilibrium
is not the point of maximum social welfare. First, we
study the Nash equilibrium of the cross-silo FL game.
Referring to (2), we can derive the derivative of U i as
mi

Kθ0
(θ1+KΣyi)2

− βiK. Given Φi(y) − Ci
p < 0, we have

mi
Kyiθ0

(θ1+Kyi)θ1
−βiKyi < 0, which leads to mi

Kθ0
(θ1+KΣyi)2

<

mi
Kθ0

(θ1+Kyi)θ1
< βiK. Thus, the derivative of U i is negative,

and the utility function decreases monotonically with yi. The
Nash equilibrium strategy of each organization is yi = 0, so
the Nash equilibrium point is yNE = (0, 0, . . . , 0). Noted
that, there is a natural and necessary premise of FL that
the utility of the well-trained model must be positive. Thus,
we prove that the point yr = (yi = r, i ∈ N ) with
the social welfare ΣN

i=1U
i(yr) =

∑
Ψi(y

r) −
∑

Ci
p −∑

Ci
m > 0 higher than that in the Nash equilibrium point

ΣN
i=1U

i(yNE) = −
∑

Ci
m < 0. So the social dilemma

exists if Φi(y)− Ci
p < 0.

The condition Φi(y) − Ci
p < 0 in the above theorem

indicates that if any organization i ∈ N only trains the
local model using its local dataset, the utility is negative.

1As [16] shows, βi =
αi
2
f2
i DiSi, where αi

2
is the effective capacitance

coefficient of organization i’s computing chipset, fi denotes the calculation
processing capacity, Di denotes the number of data units, and Si denotes
the number of CPU cycles required by organization i to process one data
unit.



In fact, this condition strengthens organizations’ motivation
to participate in global training in cross-silo FL game.

III. SOCIAL WELFARE MAXIMIZATION
According to the analysis above, we can see that the

underlying cause of the social dilemma is selfishness, leading
to the loss of all organizations, namely the low social
welfare. Aiming to solve this problem, we resort to the
Multi-player Multi-action Zero-Determinant (MMZD) strat-
egy for the social welfare maximization in this section. In
each game round, any organization can choose the action
yi ∈ {0, 1, ..., r}, so there are (r + 1)N possible outcomes
for each game round. We assume that the organizations
have one-round-memory since a long-memory player has no
priority against others with short memory [14]. For arbitrary
organization i ∈ N , its mixed strategy pi is defined as:

pi = [pi1,0, p
i
1,1, ..., p

i
1,r, p

i
2,0, ..., p

i
j,g, ..., p

i
(r+1)N ,r]

T , (3)

where pij,g(j ∈ {1, 2, ..., (r + 1)N}, g ∈ {0, 1, ..., r}) rep-
resents the probability of organization i choosing action
yi = g in the current game round and other organizations’
choosing the same actions as j-th outcome of the previous
game round. In addition, the corresponding utility vector ui

is denoted as:

ui = [ui
1,0, u

i
1,1, ..., u

i
1,r, u

i
2,0, ..., u

i
j,g, ..., u

i
(r+1)N ,r]

T , (4)

where each utility ui
j,g of organization i choosing action yi =

g in the j-th outcome can be calculated by ui
j,g = U i(y(j,g)),

with y(j,g) denoting the action vector y corresponding to the
j-th outcome but yi = g.

In the cross-silo FL model, an organization’s current move
depends only on its last action and the strategy vector y in
the last game round. We can construct a Markov matrix M =
[Mvw](r+1)N×(r+1)N , with each element Mvw denoting the
one-step transition probability from state v to w.

As demonstrated in [14], a certain column p̂i of M′ ≡
M − I is only controlled by organization i’s strategy. We
assume the stationary vector of M is v, then organization
i’s expected utility in the stationary state is:

Ei =
v · ui

v · 1 =
det(p1, . . . ,pN ,ui)

det(p1, . . . ,pN ,1)
,

which makes a linear combination of all organizations’
expected utilities yielding the following equation:

N∑
x=1

αxE
x + α0 =

det(p1, . . . ,pN ,
∑N

x=1 αxu
x + α01)

det(p1, . . . ,pN ,1)
. (5)

In the above equation, α0 and αx(x ∈ N ) are constants.
Thus, when organization i chooses a strategy satisfying
p̂i = ϕ(

∑N
x=1 αxu

x + α01), where ϕ is a non-zero
constant and p̂i is under the control of organization i,
the corresponding column of p̂i and the last column of
det(p1, . . . ,pN ,

∑N
x=1 αxu

x + α01) will be proportional.
(5) becomes:

N∑
x=1

αxE
x + α0 = 0. (6)

We further study the social welfare maximization problem
with the help of the MMZD in this circumstance. Take or-
ganization 1 performing the MMZD strategy as an example.

According to (6), by setting αx = 1(x ∈ N ), the social
welfare can be calculated as

∑N
x=1 E

x = −α0. Thus, the
issue of maximizing the social welfare is equivalent to the
following optimization problem:
minα0,

s.t.


0 ≤ p1j,g ≤ 1, j ∈ {1, 2, ..., (r + 1)N}, g ∈ {0, ..., r},
p̂1 = ϕ(

∑N
x=1 u

x + α01),

ϕ ̸= 0.

We denote ux
k, k ∈ {1, 2, ..., (r+1)N+1} as the kth element

in ux, then we can solve the above optimization problem by
considering the following two cases:
1) ϕ > 0. To meet the constraint p1j,g ≥ 0, we can get the
lower bound of α0 as follows:
α0min = max(Λk), ∀k ∈ {1, 2, ..., (r + 1)N+1},

Λk =

{
−
∑N

x=1 u
x
k − 1

ϕ
, k = 1, 2, ...(r + 1)N−1,

−
∑N

x=1 u
x
k, k = (r + 1)N−1 + 1, ..., (r + 1)N+1.

To meet the constraint p1j,g ≤ 1, we can get the upper bound
of α0 as follows:
α0max = min(Λl), ∀l ∈ {(r + 1)N+1 + 1, ..., 2(r + 1)N+1},
Λl = Λk+(r+1)N

=

{
−
∑N

x=1 u
x
k, k = 1, 2, ...(r + 1)N−1,

−
∑N

x=1 u
x
k + 1

ϕ
, k = (r + 1)N−1 + 1, ..., (r + 1)N+1.

Only if α0min ≤ α0max, can α0 have a feasible solu-
tion, which is equivalent to max(Λk) ≤ min(Λl), ∀k ∈
{1, 2, ..., (r+1)N+1}, ∀l ∈ {(r+1)N +1, ..., 2(r+1)N+1}.
If there exists ϕ > 0 satisfying the above constraint, we can
obtain the minimum value of α0 as follow:

α0min = max{−
N∑

x=1

ux
1 − 1

ϕ
, ...,−

N∑
x=1

ux
(r+1)N−1 − 1

ϕ
,

−
N∑

x=1

ux
(r+1)N−1+1, ...,−

N∑
x=1

ux
(r+1)N+1}. (7)

2) ϕ < 0. Similarly, when p1j,g ≥ 0, we have α0min =
max(Λl), ∀l ∈ {(r + 1)N+1 + 1, ..., 2(r + 1)N+1}; con-
sidering p1j,g ≤ 1, we have α0max = min(Λk), ∀k ∈
{1, 2, ..., (r + 1)N+1}. In addition, α0 is feasible only
when α0min ≤ α0max, i.e., max(Λl) ≤ min(Λk), ∀k ∈
{1, 2, ..., (r+1)N+1}, ∀l ∈ {(r+1)N+1+1, ..., 2(r+1)N+1}.
Finally, we can get the following result:

α0min = max{−
N∑

x=1

ux
1 , ...,−

N∑
x=1

ux
(r+1)N−1 ,

−
N∑

x=1

ux
(r+1)N−1+1 +

1

ϕ
, ...,−

N∑
x=1

ux
(r+1)N+1 +

1

ϕ
}. (8)

In summary, by (7) and (8), organization 1 can unilaterally
set the expected social welfare

∑N
x=1 E

x with the MMZD
strategy p1 meeting p̂1 = ϕ(

∑N
x=1 u

x + α01), with each
element of p1 calculated by:

p1h =

{∑N
x=1 u

x
h + α0min + 1, h = 1, 2, ..., (r + 1)N−1,∑N

x=1 u
x
h + α0min, h = (r + 1)N−1 + 1, ..., (r + 1)N+1,

where p1h denotes the h-th element in p1.



IV. EXPERIMENTS
In this section, we evaluate the performance of the MMZD

strategy to maximize the social welfare based on simulation
experiments. All experiments are implemented using Matlab
R2021a on a laptop with 2.3 GHz Intel Core i5-8300H
processor. We set N = 10 since the number of organizations
in cross-silo FL is usually small. We consider that K = 200,
r = 33. θ0 = 23271.584 and θ1 = 50193.243 are derived
from the simulation dataset. In addition, we set ϕ = 0.01.
For every control group with different strategy settings, we
repeat the experiment for 100 times. In order to verify
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Fig. 1. The maximum social welfare under different strategy
combinations of organization 1 and others.

the effectiveness of the MMZD strategy on maximizing
the social welfare, we compare it with other five classical
strategies, by simulating the entire cross-silo FL process for
20 rounds of game. The numerical results of maximum social
welfare denote the sum of all organizations’ utilities. In Fig.
1, organization 1 adopts MMZD, all-defection (ALLD) [17],
all-cooperation (ALLC) [17], and random (Rand) strategies
[17]. Other organizations use ALLD, ALLC, Rand, Tit-
For-Tat (TFT) [18], and mixed (Mixed) strategies [17].
Specifically, ALLD strategy is defined as: the organization
does not perform local training at all, only submits a zero
vector in global aggregation. While ALLC strategy means
that the organization participates in all r global aggregation
with their local updates in every game round. Organizations
which adopt Rand strategy randomly participate in global
aggregation from 0 to r rounds with the probability of 1

r+1 .
TFT strategy is defined as the organizations randomly choose
the number of participating global aggregation from 0 to ⌊r⌋

2
when the sum of global aggregation rounds in last game
round is less than Nr

2 , otherwise they randomly choose the
number of participating global aggregation from ⌊r+1⌋

2 to r.
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Fig. 2. Evolution of the expected social welfare.

We define the mixed strategy as adopting a specific strategy
chosen from ALLC, ALLD, Rand, and TFT. By comparing
Fig. 1(a) with the other three figures, we can find that the
MMZD strategy can effectively control the social welfare.
This can prove that free-riding behavior is avoided in some
ways.

Fig. 2 plots the expected social welfare changes in each
game round, as the organization 1 adopts the MMZD strategy
and other organizations employ different strategies. Fig. 1(a)
displays the final result in Fig. 2, which indicates that no
matter what kind of strategies other organizations adopt, the
social welfare finally converges to a fixed value, verifying the
power of the proposed social welfare maximization game.

V. CONCLUSION
In this paper, we define the cross-silo FL game among

organizations as a public goods game, revealing the social
dilemma in cross-silo FL theoretically. In order to overcome
the social dilemma, we propose a brand-new method using
the MMZD to solve the social welfare maximization prob-
lem. By the means of the MMZD, an individual organization
can unilaterally control social welfare at a certain level,
regardless of other organizations’ strategies. Moreover, our
approach can maintain the stability and sustainability of the
system without extra cost. Simulation results prove that the
MMZD strategy can efficiently and effectively control social
welfare, which reduces the loss from selfish behaviors.
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