
PILOT: a Runtime System to Manage Multi-tenant
GPU Unified Memory Footprint

John Ravi, Tri Nguyen, Huiyang Zhou, Michela Becchi
NC State University

{jjravi,tmnguye7,hzhou, mbecchi}@ncsu.edu

Abstract—Concurrent kernel execution on GPU has proven an
effective technique to improve system throughput by maximizing
the resource utilization. In order to increase programmability and
meet the increasing memory requirements of data-intensive appli-
cations, current GPUs support Unified Virtual Memory (UVM),
which provides a virtual memory abstraction with demand
paging. By allowing applications to oversubscribe GPU memory,
UVM provides increased opportunities to share GPU resources
across applications. However, in the presence of applications
with competing memory requirements, GPU sharing can lead to
performance degradation due to thrashing. NVIDIA’s Multiple
Process Service (MPS) offers the capability to space share bare
metal GPUs, thereby enabling cluster workload managers, such
as Slurm, to share a single GPU across MPI ranks with limited
control over resource partitioning. However, it is not possible to
preempt, schedule, or throttle a running GPU process through
MPS. These features would enable new OS-managed scheduling
policies to be implemented for GPU kernels to dynamically
handle resource contention and offer consistent performance.

The contribution of this paper is two-fold. We first show
how memory oversubscription can impact the performance of
concurrent GPU applications. Then, we propose three methods
to transparently mitigate memory interference through kernel
preemption and scheduling policies. To implement our policies,
we develop our own runtime system (PILOT) to serve as an
alternative to NVIDIA’s MPS. In the presence of memory over-
subscription, we noticed a dramatic improvement in the overall
throughput when using our scheduling policies and runtime hints.

I. INTRODUCTION

In order to facilitate programming and meet the increasing

memory requirements of data-intensive workloads, NVIDIA

GPUs offer Unified Virtual Memory (UVM) support to appli-

cations through CUDA which is a general purpose computing

API for NVIDIA’s GPU. This feature provides a virtual

address space encompassing the physical memories of the

CPU and the GPUs on a compute node, as well as full virtual

memory support with demand paging since CUDA 8. Thanks

to demand paging and migration, programmers no longer need

to manually partition the application’s data set to fit it into the

available GPU memory, and explicitly stage memory transfers

between CPU and GPU. In addition, by relaxing memory

utilization constraints, this feature provides more opportunities

for sharing a GPU among processes and applications. This can

be particularly beneficial for iterative applications, with each

kernel invocation utilizing only a fraction of the application’s

data set. While in its early stages UVM had a non negligible

performance cost [1], UVM support has been progressively

improved, and nowadays on data sets fitting the GPU memory

capacity UVM offers performance comparable to explicit data

transfers between CPU and GPU, especially for applications

exhibiting regular memory access patterns [2]. However, GPU

memory oversubscription comes at a performance cost, in

some cases significant, even for kernels and applications

running in isolation on a GPU [3]–[6]. This problem can be

exacerbated in the presence of inter-application concurrency.

Indeed, our experiments show that a kernel can drastically

hinder performance of co-running kernels by triggering a large

number of page faults.

The goal of this work is to address memory oversubscrip-

tion issues in the presence of concurrency on current GPU

platforms. In particular, we aim to provide a software runtime

solution that allows multi-tenant kernel execution across work-

load processes while mitigating performance issues that affect

quality of service. In summary, this work makes the following

contributions:

• We propose a runtime system, called PILOT, that enables

GPU hardware space sharing with UVM.

• We demonstrate concurrency problems that can result

from the oversubscription of device memory and propose

three scheduling policies aimed to share the GPU hard-

ware resources while mitigating performance degradation

due to device memory oversubscription. We incorporate

these mitigation schemes in PILOT. The first two schemes

proposed, MFit and AMFit, require kernel preemption

support while the third one, MAdvise, does not.

• We validate PILOT on applications from the Rodinia [7]

and PolyBench-GPU [8] benchmark suites using a Pascal

and a Volta GPU, and compare it with Nvidia MPS.

II. BACKGROUND AND MOTIVATION

A. The Case for GPU Multi-Tenancy

NVIDIA’s Multi-Process Service (MPS) is a runtime system

that enables multiple CPU processes to run kernels concur-

rently on a single GPU. MPS has been designed to enable

multi-process applications (e.g., MPI jobs) to share a GPU.

When running, this service transparently intercepts any CUDA

calls issued to the CUDA runtime. This avoids the need for

switching CUDA contexts when running multiple processes

(time sharing), and it allows processes to share GPU data

without performing IPC (space sharing).

Fig. 1 shows the performance benefit of MPS when multiple

processes issue work to a single GPU (Titan Xp for Pascal

442

2021 IEEE 28th International Conference on High Performance Computing, Data, and Analytics (HiPC)

2640-0316/21/$31.00 ©2021 IEEE
DOI 10.1109/HiPC53243.2021.00063

20
21

 IE
EE

 2
8t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 H
ig

h
Pe

rf
or

m
an

ce
 C

om
pu

tin
g,

 D
at

a,
 a

nd
 A

na
ly

tic
s (

Hi
PC

) |
 9

78
-1

-6
65

4-
10

16
-8

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

HI
PC

53
24

3.
20

21
.0

00
63

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 05,2022 at 14:16:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Speedup offered by MPS and PILOT over the bare

CUDA runtime in the absence of memory oversubscription

(y-axis). We run a varying number of concurrent VectorAdd

programs (x-axis). Each VectorAdd instance has a 512MB

device memory footprint.

architecture or Tesla v100 for Volta architecture) concurrently.

We run multiple instances of a simple VectorAdd CUDA

program, each instance allocating about 0.5 GB of memory

using UVM. We perform three sets of experiments: one using

MPS, one using our PILOT runtime, and one using the CUDA

runtime alone (baseline). This figure also plots the runtime

variance in the form of confidence intervals. By enabling

multiple processes to space share the GPU, in the presence

of multiple VectorAdd instances MPS and PILOT lead to a

noticeable speedup.

B. GPU Concurrency QoS Limitations

Volta GPUs enable enhanced MPS capabilities, such as

allowing processes to submit their work directly to the GPU

(rather than passing through the MPS server). Second, it

provides process isolation (i.e., each process has an own GPU

address space) and limited provisioning of GPU resources [9].

Volta MPS aims to implicitly throttle hardware resources by

capping the number of logical resources (threads) for each

CUDA context; however, it does not directly limit access to

physical resources such as memory and execution units.

On both the Pascal and Volta architectures, MPS does not

offer quality of service (QoS) guarantees. While often bene-

ficial, concurrent kernel execution can be prone to problems,

such as one process adversely affecting the performance of

other processes. Previous work [10], [11] has focused primar-

ily on contention on on-chip resources, such as registers and

shared memory. Here, we focus on device memory contention,

especially in the presence of UVM. With UVM, a memory-

intensive kernel causing a lot of page faults can dramatically

affect the performance of all other kernels sharing the GPU.

To test this behavior, we designed a memory-intensive

kernel that runs indefinitely and touches as many pages as it

can in a short amount of time. The specifics of this kernel are

described in detail in Section IV-A. Fig. 2 shows performance

results obtained when varying the memory footprint of the

memory-intensive kernel from 1GB to 5GB to 10GB, and

running it along with an instance of VectorAdd with a working

memory size of 512MB. The experiments are performed on a

Titan Xp GPU equipped with a 12GB device memory and a

Tesla v100 equipped with 32GB device memory. To demon-

strate oversubscription we reserve a fixed amount of GPU

memory using a cudaMalloc and cudaMemset. By reserving

Fig. 2: Slowdown of VectorAdd kernel when co-run with

a memory-intensive kernel over when running in isolation

(y-axis). Along the x-axis we vary the memory footprint

of the memory-intensive kernel. The memory subscription

percentage is indicated on top of each bar. In these experiments

PILOT mitigations are not enabled.

85% of the available 12GB device memory on the Titan Xp

and 32GB device memory on the Tesla v100, we were able

to achieve oversubscription with smaller working memory

sizes of our memory-intensive application and VectorAdd

application. With a memory-intensive kernel allocation of

5GB, the device memory is more than 100% subscribed on

both architectures. Thus, when the memory footprint of the

memory-intensive kernel increases beyond 5GB, there is a

noticeable slowdown in kernel execution time of VectorAdd

under NVIDIA MPS on Pascal, NVIDIA MPS on Volta, and

PILOT (with memory interference mitigation disabled).

III. PILOT’S DESIGN AND IMPLEMENTATION

To evaluate our memory management techniques, we im-

plemented a GPU runtime system, called PILOT. PILOT en-

ables concurrent kernel execution, provides UVM support, and

incorporates mechanisms to manage memory oversubscrip-

tion among GPU applications. PILOT extends our previously

proposed GPU virtualization system [10], [12] with UVM

and memory-aware scheduling support. Fig. 3 shows PILOT’s

high level architecture. PILOT includes two components:

a front-end library and a back-end daemon. The front-end

library (called libcudart.so) is shared and defines all the

function calls that PILOT intercepts; the back-end daemon is

a proxy process sitting between the running applications and

the CUDA runtime. CUDA API calls interception is done by

utilizing the LD_PRELOAD environment variable to override

calls to the CUDA runtime. At the start of each program, the

front-end establishes a connection to the back-end daemon

through UNIX sockets, and it then uses this connection to

redirect CUDA function calls to the back-end. The back-end

leverages the use of multiple CPU threads to concurrently

execute GPU applications. Specifically, it associates to each

GPU a set of CPU threads - called vGPUs - whose number

is configurable. vGPUs act as proxy threads: they issue to the

CUDA runtime function calls that have been intercepted by

the front-end and redirected to the back-end for scheduling

and dispatching. PILOT leverages CUDA streams [13] to

concurrently execute each program, and it associates a non-

blocking stream to each vGPU. This allows for a configurable

amount of parallelism. Mapping of GPU work to vGPUs is

performed by a Scheduling Thread, which implements the

scheduling policies described in Section III-C.

443

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 05,2022 at 14:16:47 UTC from IEEE Xplore. Restrictions apply.

GPU

CPU

Memory Controller

Host
Memory

FE
Library

CUDA
Runtime +
UVM Driver

Global Memory

PCIe 3.0
16 GB/s

L2 Cache
PILOT

App 0
App 1
App 2

App 0
App 1
App 2

sync

FE
Library

GDDR5X (547.6 GB/s) or HBM (900 GB/s)

SM

L1 / SHEM

SM

L1 / SHEM

SM

L1 / SHEM

SM

L1 / SHEM

SM

L1 / SHEM

SM

L1 / SHEM

SM

L1 / SHEM

SM

L1 / SHEM

SMSM

L1 / SHEM

SM

L1 / SHEM

SM

L1 / SHEM

VGPU1
L1 / SHEM

SMSM

L1 / SHEM

SM

L1 / SHEM

SM

L1 / SHEM

VGPU2
L1 / SHEM

SM

L1 / SHEM

SM

L1 / SHEM

Apps
FE Library

Connection
Manager Scheduling

Thread

Fig. 3: High-Level Design of the PILOT Runtime Framework

A. UVM Support

We note that, in our design, the PILOT back-end is the only

process exposed to the CUDA runtime. As a consequence,

the address spaces of the applications are decoupled from the

address space seen by the CUDA runtime (and the GPUs).

This, in turn, complicates the support of CUDA programs

utilizing UVM. In order to support UVM, PILOT must handle

the page tables across the CUDA applications’ and the back-

end process’s address spaces. With CPU memory allocations,

it is possible to share virtual memory references by using

mmap to create a shared memory. However, we have no

control over the implementation of the CUDA memory al-

locator. Since each memory address space is tied to a CUDA

context, and there is no CUDA API functionality to share a

CUDA context or its memory mappings between the runtime

process and the application processes, we need to maintain

a separate copy of the page tables content which needs to

be synced at certain times during execution. To accomplish

this, we incorporate in PILOT a functionality proposed by

Garg et al. [14] to provide checkpoint-restart support for GPU

applications. Specifically, they proposed using a shadow region

table (a software-managed page table that maps one or more

pages from one address space to another) to checkpoint UVM-

managed data and share memory pages with a proxy process.

Their approach utilizes the Linux segfault handler to track

which address space contains the “latest” copy of the data.

We designed the PILOT daemon to run on the same system

as the programs that it intercepts. This allows us to perform

more efficient data copies by using two Linux system calls:

process vm read and process vm write. These system calls

allow transfering data between the address spaces of the

intercepted application and the PILOT daemon without any in-

tervention from their respective remote process. Furthermore,

the data move directly between the address spaces of the two

processes without needing to pass through the kernel space.

B. Kernel Preemption

Kernel preemption allows implementation of more complex

scheduling policies at the software level. However, CUDA (as

of version 11.4) does not offer API functions to preempt a

running kernel short of killing the host process that made

the CUDA call. CUDA API calls such as cuStreamDestroy,

cuCtxDestroy and cudaDeviceReset result in a blocking stall

that causes applications to wait for the running kernel to finish

its execution. While GPU architectures since Pascal support

TABLE I: Overhead of coarse-grain software preemption using

the small, medium and large datasets of Table II. The data

indicate the slowdown over preemption-free execution.

Benchmark kernel small med. large
backprop 4.36 1.43 1.17
bfs 2.02 1.44 1.40
hs3d 1.70 1.69 1.66
partfilter 3.75 3.66 2.94
lavamd 1.33 1.01 1.00
nn 2.23 1.26 1.22
gaussian 5.86 3.09 2.40
corr 1.53 1.14 1.08
gesummv 2.64 1.94 1.17
2dconvol 6.85 1.70 1.08
geomean 2.55 1.56 1.33

instruction-level preemption, this feature has not been exposed

through the CUDA runtime or driver API.

To achieve software preemption of kernels without manual

intervention, we leverage a dynamic instrumentation tool [15]

to dynamically inject code into CUDA kernels. We use a global

flag set by the PILOT runtime to indicate if the kernel should

stop running and inject in the kernel some code to check the

value of this flag and, if set, preempt the kernel’s execution.

We propose a coarse-grain preemption scheme which aims

to reduce preemption overhead for long running kernels.

Typically, long-running kernels include iterating loops. Thus,

the coarse-grain approach inserts preemption checks before

backward branches inside the kernel code. Since checking at

every back-edge inside a deeply nested loop might still be

too expensive, we only insert preemption-checks before the

back-edge of the outer-most loop inside the kernel.

Kernel preemption introduces two overheads: instrumenta-

tion and runtime overhead. The former can be ignored, since

the kernel code can be instrumented one time before running

the application. The runtime overhead depends on two factors:

the number of instructions injected in the kernel and the

location of those instructions. Table I shows the slowdown

in kernel execution caused by coarse-grain preemption when

utilizing a quarter of available SMs on an NVIDIA v100 GPU.

As can be seen, our coarse-grain method introduces a limited

overhead, which tends to decrease as the data set size and the

kernel runtime increase.

Kernel preemption is complicated by the need to

checkpoint-recover intermediate data which can introduce ad-

ditional latency. We observe that this overhead can be avoided

in certain cases. If we can determine that an application does

not modify any input data and has no side effects, our runtime

does not need to recover any input data after preemption. In

addition, some convergence-based applications can be tolerant

to interruptions even if they modify their input data. For

example, in BFS each kernel iteration assigns each node at

a level with its depth value. If that kernel iteration were

interrupted and only a subset of the nodes were assigned a

depth value, recomputing the depths will still result in the

same answer since it will override any values from the previous

iteration. In our experiments, when necessary, we modified the

benchmarks to avoid the need for checkpoint-recovery.

444

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 05,2022 at 14:16:47 UTC from IEEE Xplore. Restrictions apply.

C. Mitigation Schemes
Here, we discuss the three mitigation schemes that we

designed and implemented in PILOT to address the memory

interference problem of concurrent GPU kernels.
1) Memory Fit (MFit): Our first scheme is a subscription-

based scheduler called Memory Fit which aims to limit the

oversubscription of the GPU memory by only scheduling a

kernel when there is enough free memory on GPU to satisfy

the kernel’s estimated memory footprint. To achieve this, the

Scheduling Thread polls the GPU memory usage and only

invokes a kernel when there is enough space on the GPU

to accommodate all of its allocated memory buffers. If there

are no concurrent kernels running, then the kernel launch

request will be serviced immediately. To prevent starvation,

each application is associated a user-defined maximum wait

time. When this time is exceeded, PILOT preempts running

kernels (in descending order of memory allocated size) until

enough memory is freed. This approach has two limitations.

First, it does not support pointer-based data structures (such

as linked lists or nested structures with pointer fields). It is

worth noting that pointer-based data structures are rarely used

in CUDA applications, and they are not included in any of the

benchmarks used in our experiments. Second, demand paging

(supported on Pascal and later GPUs) allows CUDA kernels

to bring data in device memory only when required. Thus, the

memory usage estimate using this technique can significantly

exceed the actual memory footprint of the kernel and be too

conservative.
2) Active Memory Fit (AMFit): The shortcoming of the

MFit scheme is that an application might allocate more mem-

ory than it might actively use in a particular kernel launch. Our

Active Memory Fit scheme addresses this issue by monitoring

the active memory usage of each CUDA kernel. Since we

do not have direct access to the GPU driver information,

we identify and track the memory allocations made with the

CUDA UVM driver by monitoring the CPU page table. We

found that, when a page is sent to the GPU, it is marked

as clean in the CPU page table. So, our runtime forces all

CPU pages allocated by CUDA UVM to be marked as dirty

before any CUDA kernel invocation. This way, we can tell

exactly how many pages are used by a CUDA kernel at

runtime. When a CUDA kernel request is sent to PILOT,

the kernel is launched immediately. The Scheduling Thread

will keep track of the active memory usage, and, in case of

memory oversubscription, it will preempt kernels with the

most active memory usage. The preempted kernels will not

be re-executed until there is enough GPU memory available.

To prevent starvation, the system limits the wait time until

re-execution to a predefined threshold.
3) Memory Advise (MAdvise): Our Memory Advise

scheme mitigates memory-based interference by providing

memory hints to the CUDA runtime. In particular, this method

leverages the UVM cudaMemAdvise primitive, which allows

setting a preferred location (i.e., CPU or GPU memory)

for a particular range of memory addresses. In MAdvise,

the Scheduling Thread keeps track of the active memory

usage. Each process is allowed a predefined amount of device

memory to utilize. If a process’s active memory usage exceeds

its provisioned memory limit, then PILOT will invoke cud-

aMemAdvise to hint the CUDA runtime to keep the rest of that

process’s memory pinned in host memory. This approach could

be described as lazy or on-demand eviction. The cudaMemAd-

vise primitive will not evict pages explicitly; a separate event

must occur, such as the allocation of new pages from a

different process, to evict the pages of the throttled process

back into host memory. A significant advantage of MAdvise

is that it does not require kernel preemption, thus avoiding all

associated overheads. When a CUDA kernel finishes running

and there is enough device memory to unthrottle another

kernel, PILOT will unset the cudaMemAdvise hint to allow

any pages pinned to host memory to be brought to the GPU

device memory.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

Benchmark applications: We used a set of programs from

the Rodinia [7] and PolyBench-GPU [8] benchmark suites and

ported them to utilize Unified Virtual Memory. In all cases, we

used three input datasets with varying size. The characteristics

of the applications and datasets used are summarized in Table

II. In order to explicitly control the GPU utilization of each

workload, we modified all CUDA kernels to use a configurable

number of thread-blocks and a configurable thread-block size.

Memory-intensive Kernel: To evaluate our memory in-

terference mitigation schemes, we wrote a memory-intensive

GPU kernel (see Listing 1) which we co-run with the bench-

mark applications above. Since we are focusing on unified

virtual memory with on-demand paging, this kernel sweeps

through all the allocated pages to bring them into the device

memory and keep them resident there. This execution pattern

serves to test the extreme case of memory intensive GPU

kernels. This kernel has a configurable memory allocation size

and a configurable number of CUDA threads. We encapsulate

its body in a forever running while-loop to ensure maximum

memory interference. With UVM, the page size is determined

by the driver, and the API provides no explicit control over

it. Since the smallest page size is 4KB, we define a stride of

4KB conservatively to touch as many pages as possible.

g l o b a l void pageDoS (f l o a t *A) {
i n t t i d = blockDim . x * b l o c k I d x . x + t h r e a d I d x . x ;
whi le (1)

f o r (i n t i =0 ; i < PAGES PER THREAD ; i ++)
A[t i d *ELEMENTS PER PAGE + TOTAL THREADS*

ELEMENTS PER PAGE* i] += 1 ;
}

Listing 1: Memory intensive CUDA kernel

System setup: We show the results reported on an NVIDIA

Tesla v100 GPU (Volta architecture) equipped with 80 SMs

and 32GB HBM. The system used has a Intel Xeon E5 CPU,

128GB memory, and runs Ubuntu 18.04 and CUDA 11.4. We

observed similar results on an NVIDIA Pascal GPU.

445

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 05,2022 at 14:16:47 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Benchmark applications and dataset sizes

Suite # Name Description SM Util. Kern. Exec. Prob. Size (sm/md/lg) Mem. Req. (sm/md/lg)

Rodinia

1 backprop Back Propogation 100% Long running 65k/1M/3.4M 8.8MB/133.5MB/453MB
2 bfs Breath-First Search 100% Iterative 1M/26M/134M 39MB/1GB/4.9GB
3 hs3d Hotspot3D 75% Iterative 512/2048/4096 48MB/768MB/3GB
4 partfilter Particle Filter 63% Iterative 1024/4096/10240 10.2MB/160MB/1GB
5 lavamd N-Body 56% Long running 10/50/100 7.5MB/936MB/3.3GB
6 nn k-Nearest Neighbor 100% Long running 4M/40M/400M 45.8MB/457.8MB/4.5GB
7 gaussian Gaussian Elimination 100% Iterative 4096/8192/12288 128MB/512MB/1.1GB

Polybench
8 corr Correlation compute 63% Long running 2048/4096/8192 64.1MB/256.2MB/1GB
9 gesummv Scalar, Vector, and Matrix multiply 100% Long running 4096/8192/16384 256MB/1GB/4GB
10 2dconvol 2D Convolution 100% Long running 252/8192/18432 1MB/1GB/5.1GB

B. Results

We perform two sets of experiments on NVIDIA MPS

and PILOT. In the first, we co-run each application with our

pageDoS memory-intensive kernel. In the second, we co-run

applications in pairs. In order to study the performance of

PILOT under different degrees of device memory subscrip-

tion, in each set of experiments we fix the dataset size of

the applications (large datasets in Table II) and block off

a varying amount of GPU memory (using cudaMalloc and

cudaMemset). We note that, since the GPU reserves some

device memory for internal use, 100% subscription is actually

a slight oversubscription scenario.

Memory intensive experiments: Fig. 4 shows how PILOT

performs when each benchmark application is co-run with the

memory-intensive kernel, both without memory oversubscrip-

tion mitigation (PILOT base) and with the proposed mitigation

schemes (PILOT MFit, PILOT AMFit, and PILOT MAdvise).

We plot, as a bar chart, the overall kernel execution time of

each benchmark on PILOT normalized to the execution time

on NVIDIA MPS. We also plot the total incurred GPU-sided

page faults as triangles on the secondary y-axis. In Fig. 4a, we

set the combined memory footprint of the memory-intensive

kernel and benchmark application to be around 75% of device

memory capacity. We show the memory oversubscription

cases in Fig. 4b and 4c (100% and 150% oversubscription,

respectively). Oversubscription leads to a substantial increase

in execution time and page faults, so for visibility we plot each

figure on a log scale for both y-axis. We make the following

observations. First, when GPU memory is under-subscribed,

MPS, PILOT baseline (i.e., no oversubscription mitigation)

and PILOT with mitigation enabled perform very similarly.

Second, under PILOT baseline, even slight oversubscription

causes a dramatic increase in kernel execution time for all

benchmarks. However, through the proposed memory oversub-

scription mitigation schemes, PILOT is capable of limiting,

and in some cases avoiding, the performance degradation,

significantly outperforming Nvidia MPS. All three mitigation

schemes allow a decrease in page faults.

Multi-tenancy experiments: To evaluate our mitigation

schemes in practical scenarios, we co-run pairs of benchmark

applications from Table II. We recall that MAdvise does not

require kernel preemption, and thus it does not incur any over-

heads associated with software kernel preemption, checkpoint

and recovery support. We measure performance of the fol-

(a) 75% Memory Utilization

(b) 100% Memory Utilization

(c) 150% Memory Utilization

Fig. 4: Each benchmark app. is co-run with the memory-

intensive pageDoS kernel. On the left y-axis we plot execution

time normalized to running with NVIDIA MPS. On the right

y-axis, we plot the total device-caused page faults.

lowing pairs: (i) corr+backprop, (ii) hs3d+2dconvol, and (iii)

bfs+kNN. Fig. 5 shows the slowdown experienced by each ker-

nel when co-running over standalone execution (i.e., without

inter-kernel concurrency) without and with oversubscription

mitigation (through MAdvise). We make the following ob-

servations. First, under 75% and 100% memory subscription,

all kernels experience little-to-no slowdown in execution time,

despite running concurrently. Second, oversubscription causes

a more pronounced slowdown, especially for hs3d when co-

run with 2dconvol and bfs when co-run with kNN. In this case,

MAdvise is effective in reducing memory contention and, as a

consequence, limiting the slowdown experienced. The worse

performance of hs3d and bfs is linked to its irregular memory

446

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 05,2022 at 14:16:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Multi-tenancy experiments where benchmark applica-

tions are co-run in pairs: (i) corr+backprop, (ii) bfs+2dconvol,

(iii) bfs+kNN. The charts plot the slowdown experienced

by each kernel over standalone execution, without and with

memory interference mitigation (MAdvise policy).

access patterns (it has been shown that irregular applications

are more affected by memory oversubscription [5]). Not

included in this paper due to space limitation, MFit and AMFit

are even more effective than MAdvise in reducing contention;

however, they incur some additional overhead affecting the

total application time due to preemption and rescheduling.

V. RELATED WORK

NVIDIA vGPUs: While offering some performance guaran-

tees, NVIDIA vGPUs incur virtualization overhead and offer

limited features do not support all the features without pass-

through enabled, in which the entire GPU will be allocated for

a single user or context. Currently, missing features of vGPUs

include Unified Virtual Memory support, profiling, cuda-gdb,

and GPUDirect remote memory access [16].
GPU Runtime Systems: Previous works have proposed

runtime systems to support GPU virtualization and multite-

nancy [10]–[12], [17]–[19], in some cases offering support

for concurrent kernel execution [10], [11]. However, none of

these systems support UVM and provides memory interference

mitigation schemes.
Architectural enhancements: Recent research efforts have

proposed architectural enhancements to improve UVM per-

formance and alleviate inefficiencies due to memory oversub-

scription [3]–[6], as well as hardware preemption support for

GPU. [20], [21]. Due to their nature, these proposals have

been evaluated using cycle-accurate architectural simulators,

and they are complementary to this work.
Runtime optimization for UVM: Li and Chapman [22]

proposed a set of compiler-assisted runtime strategies to im-

prove performance of OpenMP applications performing GPU

offloading with UVM. Differently from PILOT, their focus is

on applications run in isolation. Thus, the proposed runtime

does not handle application concurrency and multiple address

spaces, and focuses on data placement for a single application.

VI. CONCLUSION

In this work, we have shown how concurrent execution of

applications on GPU can lead to memory oversubscription,

which can significantly affect the applications’ execution time.

We have proposed and implemented three policies that can

transparently mitigate performance degradation due to over-

subscription of on-device GPU memory. We have developed

PILOT, a runtime system similar to NVIDIA MPS that is

able to transparently serve as a middleware CUDA runtime.

PILOT supports concurrent multi-kernel execution, UVM,

active device memory monitoring, and kernel preemption.

VII. ACKNOWLEDGEMENT

This work was supported through NSF awards CNS-

1812727 and CCF-1741683.

REFERENCES

[1] R. Landaverde et al., “An investigation of Unified Memory Access
performance in CUDA,” in Proc. of HPEC 2014.

[2] N. Sakharnykh, Maximizing Unified Memory Performance in CUDA,
2017. [Online]. Available: https : / / developer . nvidia . com / blog /
maximizing-unified-memory-performance-cuda/.

[3] C. Li et al., “A framework for memory oversubscription management
in graphics processing units,” in Proc. of ASPLOS 2019.

[4] D. Ganguly et al., “Interplay between hardware prefetcher and page
eviction policy in CPU-GPU Unified Virtual Memory,” in Proc. of
ISCA 2019.

[5] D. Ganguly et al., “Adaptive page migration for irregular data-
intensive applications under GPU memory oversubscription,” in Proc.
of IPDPS 2020.

[6] H. Kim et al., “Batch-aware unified memory management in GPUs
for irregular workloads,” in Proc. of ASPLOS 2020.

[7] S. Che et al., “Rodinia: A benchmark suite for heterogeneous com-
puting,” in Proc. of IISWC 2009.

[8] S. Grauer-Gray et al., “Auto-tuning a high-level language targeted to
gpu codes,” in Proc. of InPar 2012.

[9] NVIDIA, Multi-Process Service, 2019. [Online]. Available: https:/ /
docs.nvidia.com/deploy/pdf/CUDA%5C Multi%5C Process%5C
Service%20%5C Overview.pdf.

[10] V. T. Ravi et al., “Supporting GPU sharing in cloud environments with
a transparent runtime consolidation framework,” in Proc. of HPDC
2011.

[11] D. Sengupta et al., “Scheduling multi-tenant cloud workloads on
accelerator-based systems,” in Proc. of SC 2014.

[12] M. Becchi et al., “A virtual memory based runtime to support multi-
tenancy in clusters with GPUs,” in Proc. of HPDC 2012.

[13] M. Harris, GPU Pro Tip: CUDA 7 streams simplify concurrency.
[Online]. Available: https://devblogs.nvidia.com/gpu-pro-tip-cuda-7-
streams-simplify-concurrency/.

[14] R. Garg et al., “CRUM: Checkpoint-restart support for CUDA’s
Unified Memory,” in Proc. of CLUSTER 2018.

[15] O. Villa et al., “NVBit: A dynamic binary instrumentation framework
for NVIDIA GPUs,” in Proc. of MICRO 2019, 2019.

[16] NVIDIA, NVIDIA Virtual GPU Software Documentation v10.0
through 10.2, 2020. [Online]. Available: https : / / docs . nvidia . com /
grid/latest/index.html.

[17] V. Gupta et al., “GViM: GPU-accelerated virtual machines,” in Proc.
of HPCVirt 2009.

[18] J. Duato et al., “rCUDA: Reducing the number of GPU-based
accelerators in high performance clusters,” in Proc. of HPCS 2010.

[19] L. Shi et al., “vCUDA: Gpu-accelerated high-performance computing
in virtual machines,” IEEE Transactions on Computers, vol. 61, no. 6,
pp. 804–816, 2011.

[20] J. J. K. Park et al., “Chimera: Collaborative preemption for multi-
tasking on a shared GPU,” in Proc. of ASPLOS 2015.

[21] Z. Lin et al., “Enabling efficient preemption for simt architectures
with lightweight context switching,” in Proc. of SC 2016.

[22] L. Li et al., “Compiler assisted hybrid implicit and explicit gpu
memory management under unified address space,” in Proc. of SC
2019.

447

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 05,2022 at 14:16:47 UTC from IEEE Xplore. Restrictions apply.

