2021 IEEE 28th International Conference on High Performance Computing, Data, and Analytics (HiPC) | 978-1-6654-1016-8/21/$31.00 ©2021 IEEE | DOI: 10.1109/HIPC53243.2021.00063

2021 IEEE 28th International Conference on High Performance Computing, Data, and Analytics (HiPC)

PILOT: a Runtime System to Manage Multi-tenant
GPU Unified Memory Footprint

John Ravi, Tri Nguyen, Huiyang Zhou, Michela Becchi
NC State University
{jjravi,tmnguye7,hzhou, mbecchi} @ncsu.edu

Abstract—Concurrent kernel execution on GPU has proven an
effective technique to improve system throughput by maximizing
the resource utilization. In order to increase programmability and
meet the increasing memory requirements of data-intensive appli-
cations, current GPUs support Unified Virtual Memory (UVM),
which provides a virtual memory abstraction with demand
paging. By allowing applications to oversubscribe GPU memory,
UVM provides increased opportunities to share GPU resources
across applications. However, in the presence of applications
with competing memory requirements, GPU sharing can lead to
performance degradation due to thrashing. NVIDIA’s Multiple
Process Service (MPS) offers the capability to space share bare
metal GPUs, thereby enabling cluster workload managers, such
as Slurm, to share a single GPU across MPI ranks with limited
control over resource partitioning. However, it is not possible to
preempt, schedule, or throttle a running GPU process through
MPS. These features would enable new OS-managed scheduling
policies to be implemented for GPU kernels to dynamically
handle resource contention and offer consistent performance.

The contribution of this paper is two-fold. We first show
how memory oversubscription can impact the performance of
concurrent GPU applications. Then, we propose three methods
to transparently mitigate memory interference through kernel
preemption and scheduling policies. To implement our policies,
we develop our own runtime system (PILOT) to serve as an
alternative to NVIDIA’s MPS. In the presence of memory over-
subscription, we noticed a dramatic improvement in the overall
throughput when using our scheduling policies and runtime hints.

[. INTRODUCTION

In order to facilitate programming and meet the increasing
memory requirements of data-intensive workloads, NVIDIA
GPUs offer Unified Virtual Memory (UVM) support to appli-
cations through CUDA which is a general purpose computing
API for NVIDIA’s GPU. This feature provides a virtual
address space encompassing the physical memories of the
CPU and the GPUs on a compute node, as well as full virtual
memory support with demand paging since CUDA 8. Thanks
to demand paging and migration, programmers no longer need
to manually partition the application’s data set to fit it into the
available GPU memory, and explicitly stage memory transfers
between CPU and GPU. In addition, by relaxing memory
utilization constraints, this feature provides more opportunities
for sharing a GPU among processes and applications. This can
be particularly beneficial for iterative applications, with each
kernel invocation utilizing only a fraction of the application’s
data set. While in its early stages UVM had a non negligible
performance cost [1], UVM support has been progressively
improved, and nowadays on data sets fitting the GPU memory

capacity UVM offers performance comparable to explicit data
transfers between CPU and GPU, especially for applications
exhibiting regular memory access patterns [2]. However, GPU
memory oversubscription comes at a performance cost, in
some cases significant, even for kernels and applications
running in isolation on a GPU [3]-[6]. This problem can be
exacerbated in the presence of inter-application concurrency.
Indeed, our experiments show that a kernel can drastically
hinder performance of co-running kernels by triggering a large
number of page faults.

The goal of this work is to address memory oversubscrip-
tion issues in the presence of concurrency on current GPU
platforms. In particular, we aim to provide a software runtime
solution that allows multi-tenant kernel execution across work-
load processes while mitigating performance issues that affect
quality of service. In summary, this work makes the following
contributions:

o We propose a runtime system, called PILOT, that enables
GPU hardware space sharing with UVM.

o« We demonstrate concurrency problems that can result
from the oversubscription of device memory and propose
three scheduling policies aimed to share the GPU hard-
ware resources while mitigating performance degradation
due to device memory oversubscription. We incorporate
these mitigation schemes in PILOT. The first two schemes
proposed, MFit and AMFit, require kernel preemption
support while the third one, MAdvise, does not.

o We validate PILOT on applications from the Rodinia [7]
and PolyBench-GPU [8] benchmark suites using a Pascal
and a Volta GPU, and compare it with Nvidia MPS.

II. BACKGROUND AND MOTIVATION
A. The Case for GPU Multi-Tenancy

NVIDIA’s Multi-Process Service (MPS) is a runtime system
that enables multiple CPU processes to run kernels concur-
rently on a single GPU. MPS has been designed to enable
multi-process applications (e.g., MPI jobs) to share a GPU.
When running, this service transparently intercepts any CUDA
calls issued to the CUDA runtime. This avoids the need for
switching CUDA contexts when running multiple processes
(time sharing), and it allows processes to share GPU data
without performing IPC (space sharing).

Fig. 1 shows the performance benefit of MPS when multiple
processes issue work to a single GPU (Titan Xp for Pascal

2640-0316/21/$31.00 ©2021 IEEE 442
DOI 10.1109/HiPC53243.2021.00063

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 05,2022 at 14:16:47 UTC from IEEE Xplore. Restrictions apply.

MPS on Pascal [PILOT on Pascal EEE PILOT on Volta

1 5 10 15

Number of Instances

Fig. 1: Speedup offered by MPS and PILOT over the bare
CUDA runtime in the absence of memory oversubscription
(y-axis). We run a varying number of concurrent VectorAdd
programs (x-axis). Each VectorAdd instance has a 512MB
device memory footprint.

EESl MPS on Volta

20

Speedup over
default compute mode
@

(=)

architecture or Tesla v100 for Volta architecture) concurrently.
We run multiple instances of a simple VectorAdd CUDA
program, each instance allocating about 0.5 GB of memory
using UVM. We perform three sets of experiments: one using
MPS, one using our PILOT runtime, and one using the CUDA
runtime alone (baseline). This figure also plots the runtime
variance in the form of confidence intervals. By enabling
multiple processes to space share the GPU, in the presence
of multiple VectorAdd instances MPS and PILOT lead to a
noticeable speedup.

B. GPU Concurrency QoS Limitations

Volta GPUs enable enhanced MPS capabilities, such as
allowing processes to submit their work directly to the GPU
(rather than passing through the MPS server). Second, it
provides process isolation (i.e., each process has an own GPU
address space) and limited provisioning of GPU resources [9].
Volta MPS aims to implicitly throttle hardware resources by
capping the number of logical resources (threads) for each
CUDA context; however, it does not directly limit access to
physical resources such as memory and execution units.

On both the Pascal and Volta architectures, MPS does not
offer quality of service (QoS) guarantees. While often bene-
ficial, concurrent kernel execution can be prone to problems,
such as one process adversely affecting the performance of
other processes. Previous work [10], [11] has focused primar-
ily on contention on on-chip resources, such as registers and
shared memory. Here, we focus on device memory contention,
especially in the presence of UVM. With UVM, a memory-
intensive kernel causing a lot of page faults can dramatically
affect the performance of all other kernels sharing the GPU.

To test this behavior, we designed a memory-intensive
kernel that runs indefinitely and touches as many pages as it
can in a short amount of time. The specifics of this kernel are
described in detail in Section IV-A. Fig. 2 shows performance
results obtained when varying the memory footprint of the
memory-intensive kernel from 1GB to 5GB to 10GB, and
running it along with an instance of VectorAdd with a working
memory size of 512MB. The experiments are performed on a
Titan Xp GPU equipped with a 12GB device memory and a
Tesla v100 equipped with 32GB device memory. To demon-
strate oversubscription we reserve a fixed amount of GPU
memory using a cudaMalloc and cudaMemset. By reserving

443

BB MPS on Pascal HI PILOT on Pascal

9 o
129.2%129. 2/n101.6%101.6%

B MPS on Volta BBl PILOT on Volta

170.8%170.8%, 47 29,117.2%

=)
1S3

=)

Slowdown over
isolated execution

95.8% 95.8% gg 19, 89.1%
EZZAN N hesesesrrrrm

1 5
Working Memory Size of Memory-Intensive Kernel (GB)

10

Fig. 2: Slowdown of VectorAdd kernel when co-run with
a memory-intensive kernel over when running in isolation
(y-axis). Along the x-axis we vary the memory footprint
of the memory-intensive kernel. The memory subscription
percentage is indicated on top of each bar. In these experiments
PILOT mitigations are not enabled.

85% of the available 12GB device memory on the Titan Xp
and 32GB device memory on the Tesla v100, we were able
to achieve oversubscription with smaller working memory
sizes of our memory-intensive application and VectorAdd
application. With a memory-intensive kernel allocation of
5GB, the device memory is more than 100% subscribed on
both architectures. Thus, when the memory footprint of the
memory-intensive kernel increases beyond 5GB, there is a
noticeable slowdown in kernel execution time of VectorAdd
under NVIDIA MPS on Pascal, NVIDIA MPS on Volta, and
PILOT (with memory interference mitigation disabled).

III. PILOT’S DESIGN AND IMPLEMENTATION

To evaluate our memory management techniques, we im-
plemented a GPU runtime system, called PILOT. PILOT en-
ables concurrent kernel execution, provides UVM support, and
incorporates mechanisms to manage memory oversubscrip-
tion among GPU applications. PILOT extends our previously
proposed GPU virtualization system [10], [12] with UVM
and memory-aware scheduling support. Fig. 3 shows PILOT’s
high level architecture. PILOT includes two components:
a front-end library and a back-end daemon. The front-end
library (called libcudart.so) is shared and defines all the
function calls that PILOT intercepts; the back-end daemon is
a proxy process sitting between the running applications and
the CUDA runtime. CUDA API calls interception is done by
utilizing the LD_PRELOAD environment variable to override
calls to the CUDA runtime. At the start of each program, the
front-end establishes a connection to the back-end daemon
through UNIX sockets, and it then uses this connection to
redirect CUDA function calls to the back-end. The back-end
leverages the use of multiple CPU threads to concurrently
execute GPU applications. Specifically, it associates to each
GPU a set of CPU threads - called vGPUs - whose number
is configurable. vGPUs act as proxy threads: they issue to the
CUDA runtime function calls that have been intercepted by
the front-end and redirected to the back-end for scheduling
and dispatching. PILOT leverages CUDA streams [13] to
concurrently execute each program, and it associates a non-
blocking stream to each vGPU. This allows for a configurable
amount of parallelism. Mapping of GPU work to vGPUs is
performed by a Scheduling Thread, which implements the
scheduling policies described in Section III-C.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 05,2022 at 14:16:47 UTC from IEEE Xplore. Restrictions apply.

CPU

PU

G
|

L2 Cache

!

>
>

Scheduling
' Thread

t GDDR5X (547.6 GB/s) or HBM (900 GBY/s) tt

PCle 3.0
CUDA 16 GB/s
Runtime + —>

UVM Driver

Global Memory

Memory Controller |

Fig. 3: High-Level Design of the PILOT Runtime Framework

A. UVM Support

We note that, in our design, the PILOT back-end is the only
process exposed to the CUDA runtime. As a consequence,
the address spaces of the applications are decoupled from the
address space seen by the CUDA runtime (and the GPUs).
This, in turn, complicates the support of CUDA programs
utilizing UVM. In order to support UVM, PILOT must handle
the page tables across the CUDA applications’ and the back-
end process’s address spaces. With CPU memory allocations,
it is possible to share virtual memory references by using
mmap to create a shared memory. However, we have no
control over the implementation of the CUDA memory al-
locator. Since each memory address space is tied to a CUDA
context, and there is no CUDA API functionality to share a
CUDA context or its memory mappings between the runtime
process and the application processes, we need to maintain
a separate copy of the page tables content which needs to
be synced at certain times during execution. To accomplish
this, we incorporate in PILOT a functionality proposed by
Garg et al. [14] to provide checkpoint-restart support for GPU
applications. Specifically, they proposed using a shadow region
table (a software-managed page table that maps one or more
pages from one address space to another) to checkpoint UVM-
managed data and share memory pages with a proxy process.
Their approach utilizes the Linux segfault handler to track
which address space contains the “latest” copy of the data.

We designed the PILOT daemon to run on the same system
as the programs that it intercepts. This allows us to perform
more efficient data copies by using two Linux system calls:
process_vm_read and process_vm_write. These system calls
allow transfering data between the address spaces of the
intercepted application and the PILOT daemon without any in-
tervention from their respective remote process. Furthermore,
the data move directly between the address spaces of the two
processes without needing to pass through the kernel space.

B. Kernel Preemption

Kernel preemption allows implementation of more complex
scheduling policies at the software level. However, CUDA (as
of version 11.4) does not offer API functions to preempt a
running kernel short of killing the host process that made
the CUDA call. CUDA API calls such as cuStreamDestroy,
cuCtxDestroy and cudaDeviceReset result in a blocking stall
that causes applications to wait for the running kernel to finish
its execution. While GPU architectures since Pascal support

444

TABLE I: Overhead of coarse-grain software preemption using
the small, medium and large datasets of Table II. The data
indicate the slowdown over preemption-free execution.

Benchmark kernel | small | med. | large
backprop 4.36 1.43 1.17
bfs 2.02 1.44 1.40
hs3d 1.70 1.69 | 1.66
partfilter 375 3.66 | 294
lavamd 1.33 1.01 1.00
nn 2.23 1.26 | 1.22
gaussian 5.86 3.09 | 240
corr 1.53 1.14 1.08
gesummy 2.64 1.94 1.17
2dconvol 6.85 1.70 | 1.08
geomean 2.55 1.56 1.33

instruction-level preemption, this feature has not been exposed
through the CUDA runtime or driver APL

To achieve software preemption of kernels without manual
intervention, we leverage a dynamic instrumentation tool [15]
to dynamically inject code into CUDA kernels. We use a global
flag set by the PILOT runtime to indicate if the kernel should
stop running and inject in the kernel some code to check the
value of this flag and, if set, preempt the kernel’s execution.
We propose a coarse-grain preemption scheme which aims
to reduce preemption overhead for long running kernels.
Typically, long-running kernels include iterating loops. Thus,
the coarse-grain approach inserts preemption checks before
backward branches inside the kernel code. Since checking at
every back-edge inside a deeply nested loop might still be
too expensive, we only insert preemption-checks before the
back-edge of the outer-most loop inside the kernel.

Kernel preemption introduces two overheads: instrumenta-
tion and runtime overhead. The former can be ignored, since
the kernel code can be instrumented one time before running
the application. The runtime overhead depends on two factors:
the number of instructions injected in the kernel and the
location of those instructions. Table I shows the slowdown
in kernel execution caused by coarse-grain preemption when
utilizing a quarter of available SMs on an NVIDIA v100 GPU.
As can be seen, our coarse-grain method introduces a limited
overhead, which tends to decrease as the data set size and the
kernel runtime increase.

Kernel preemption is complicated by the need to
checkpoint-recover intermediate data which can introduce ad-
ditional latency. We observe that this overhead can be avoided
in certain cases. If we can determine that an application does
not modify any input data and has no side effects, our runtime
does not need to recover any input data after preemption. In
addition, some convergence-based applications can be tolerant
to interruptions even if they modify their input data. For
example, in BFS each kernel iteration assigns each node at
a level with its depth value. If that kernel iteration were
interrupted and only a subset of the nodes were assigned a
depth value, recomputing the depths will still result in the
same answer since it will override any values from the previous
iteration. In our experiments, when necessary, we modified the
benchmarks to avoid the need for checkpoint-recovery.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 05,2022 at 14:16:47 UTC from IEEE Xplore. Restrictions apply.

C. Mitigation Schemes

Here, we discuss the three mitigation schemes that we
designed and implemented in PILOT to address the memory
interference problem of concurrent GPU kernels.

1) Memory Fit (MFit): Our first scheme is a subscription-
based scheduler called Memory Fit which aims to limit the
oversubscription of the GPU memory by only scheduling a
kernel when there is enough free memory on GPU to satisty
the kernel’s estimated memory footprint. To achieve this, the
Scheduling Thread polls the GPU memory usage and only
invokes a kernel when there is enough space on the GPU
to accommodate all of its allocated memory buffers. If there
are no concurrent kernels running, then the kernel launch
request will be serviced immediately. To prevent starvation,
each application is associated a user-defined maximum wait
time. When this time is exceeded, PILOT preempts running
kernels (in descending order of memory allocated size) until
enough memory is freed. This approach has two limitations.
First, it does not support pointer-based data structures (such
as linked lists or nested structures with pointer fields). It is
worth noting that pointer-based data structures are rarely used
in CUDA applications, and they are not included in any of the
benchmarks used in our experiments. Second, demand paging
(supported on Pascal and later GPUs) allows CUDA kernels
to bring data in device memory only when required. Thus, the
memory usage estimate using this technique can significantly
exceed the actual memory footprint of the kernel and be too
conservative.

2) Active Memory Fit (AMFit): The shortcoming of the
MFit scheme is that an application might allocate more mem-
ory than it might actively use in a particular kernel launch. Our
Active Memory Fit scheme addresses this issue by monitoring
the active memory usage of each CUDA kernel. Since we
do not have direct access to the GPU driver information,
we identify and track the memory allocations made with the
CUDA UVM driver by monitoring the CPU page table. We
found that, when a page is sent to the GPU, it is marked
as clean in the CPU page table. So, our runtime forces all
CPU pages allocated by CUDA UVM to be marked as dirty
before any CUDA kernel invocation. This way, we can tell
exactly how many pages are used by a CUDA kernel at
runtime. When a CUDA kernel request is sent to PILOT,
the kernel is launched immediately. The Scheduling Thread
will keep track of the active memory usage, and, in case of
memory oversubscription, it will preempt kernels with the
most active memory usage. The preempted kernels will not
be re-executed until there is enough GPU memory available.
To prevent starvation, the system limits the wait time until
re-execution to a predefined threshold.

3) Memory Advise (MAdvise): Our Memory Advise
scheme mitigates memory-based interference by providing
memory hints to the CUDA runtime. In particular, this method
leverages the UVM cudaMemAdvise primitive, which allows
setting a preferred location (i.e., CPU or GPU memory)
for a particular range of memory addresses. In MAdvise,
the Scheduling Thread keeps track of the active memory

445

usage. Each process is allowed a predefined amount of device
memory to utilize. If a process’s active memory usage exceeds
its provisioned memory limit, then PILOT will invoke cud-
aMemAdovise to hint the CUDA runtime to keep the rest of that
process’s memory pinned in host memory. This approach could
be described as lazy or on-demand eviction. The cudaMemAd-
vise primitive will not evict pages explicitly; a separate event
must occur, such as the allocation of new pages from a
different process, to evict the pages of the throttled process
back into host memory. A significant advantage of MAdvise
is that it does not require kernel preemption, thus avoiding all
associated overheads. When a CUDA kernel finishes running
and there is enough device memory to unthrottle another
kernel, PILOT will unset the cudaMemAdvise hint to allow
any pages pinned to host memory to be brought to the GPU
device memory.

IV. EXPERIMENTAL EVALUATION
A. Experimental Setup

Benchmark applications: We used a set of programs from
the Rodinia [7] and PolyBench-GPU [8] benchmark suites and
ported them to utilize Unified Virtual Memory. In all cases, we
used three input datasets with varying size. The characteristics
of the applications and datasets used are summarized in Table
II. In order to explicitly control the GPU utilization of each
workload, we modified all CUDA kernels to use a configurable
number of thread-blocks and a configurable thread-block size.

Memory-intensive Kernel: To evaluate our memory in-
terference mitigation schemes, we wrote a memory-intensive
GPU kernel (see Listing 1) which we co-run with the bench-
mark applications above. Since we are focusing on unified
virtual memory with on-demand paging, this kernel sweeps
through all the allocated pages to bring them into the device
memory and keep them resident there. This execution pattern
serves to test the extreme case of memory intensive GPU
kernels. This kernel has a configurable memory allocation size
and a configurable number of CUDA threads. We encapsulate
its body in a forever running while-loop to ensure maximum
memory interference. With UVM, the page size is determined
by the driver, and the API provides no explicit control over
it. Since the smallest page size is 4KB, we define a stride of
4KB conservatively to touch as many pages as possible.

__global__
int tid
while (1)

for(int i=0; i < PAGES_PER_THREAD; i++)
A[tid +ELEMENTS_PER_PAGE + TOTAL_THREADS:
ELEMENTS_PER_PAGE:*i] += 1;

void pageDoS(float =A) {
blockDim.x * blockIdx.x + threadIdx .x;

Listing 1: Memory intensive CUDA kernel

System setup: We show the results reported on an NVIDIA
Tesla v100 GPU (Volta architecture) equipped with 80 SMs
and 32GB HBM. The system used has a Intel Xeon E5 CPU,
128GB memory, and runs Ubuntu 18.04 and CUDA 11.4. We
observed similar results on an NVIDIA Pascal GPU.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 05,2022 at 14:16:47 UTC from IEEE Xplore. Restrictions apply.

TABLE II

: Benchmark applications and dataset sizes

Suite # | Name | Description | SM Util. | Kern. Exec. | Prob. Size (sm/md/lg) | Mem. Req. (sm/md/lg)
1 backprop | Back Propogation 100% Long running | 65k/1M/3.4M 8.8MB/133.5MB/453MB
2 bfs Breath-First Search 100% Iterative 1M/26M/134M 39MB/1GB/4.9GB
3 hs3d Hotspot3D 75% Iterative 512/2048/4096 48MB/768MB/3GB
Rodinia 4 partfilter Particle Filter 63% Tterative 1024/4096/10240 10.2MB/160MB/1GB
5 lavamd N-Body 56% Long running | 10/50/100 7.5MB/936MB/3.3GB
6 nn k-Nearest Neighbor 100% Long running | 4M/40M/400M 45.8MB/457.8MB/4.5GB
7 gaussian Gaussian Elimination 100% Iterative 4096/8192/12288 128MB/512MB/1.1GB
8 corr Correlation compute 63% Long running | 2048/4096/8192 64.1MB/256.2MB/1GB
Polybench | 9 gesummv | Scalar, Vector, and Matrix multiply | 100% Long running | 4096/8192/16384 256MB/1GB/4GB
10 | 2dconvol | 2D Convolution 100% Long running | 252/8192/18432 IMB/IGB/5.1GB
B, Results EEN \VPS EEE PILOTbase WM PILOTMFit ESEE PILOTAMFit XX PILOT MAdvise

We perform two sets of experiments on NVIDIA MPS
and PILOT. In the first, we co-run each application with our
pageDoS memory-intensive kernel. In the second, we co-run
applications in pairs. In order to study the performance of
PILOT under different degrees of device memory subscrip-
tion, in each set of experiments we fix the dataset size of
the applications (large datasets in Table II) and block off
a varying amount of GPU memory (using cudaMalloc and
cudaMemset). We note that, since the GPU reserves some
device memory for internal use, 100% subscription is actually
a slight oversubscription scenario.

Memory intensive experiments: Fig. 4 shows how PILOT
performs when each benchmark application is co-run with the
memory-intensive kernel, both without memory oversubscrip-
tion mitigation (PILOT base) and with the proposed mitigation
schemes (PILOT MFit, PILOT AMFit, and PILOT MAdvise).
We plot, as a bar chart, the overall kernel execution time of
each benchmark on PILOT normalized to the execution time
on NVIDIA MPS. We also plot the total incurred GPU-sided
page faults as triangles on the secondary y-axis. In Fig. 4a, we
set the combined memory footprint of the memory-intensive
kernel and benchmark application to be around 75% of device
memory capacity. We show the memory oversubscription
cases in Fig. 4b and 4c (100% and 150% oversubscription,
respectively). Oversubscription leads to a substantial increase
in execution time and page faults, so for visibility we plot each
figure on a log scale for both y-axis. We make the following
observations. First, when GPU memory is under-subscribed,
MPS, PILOT baseline (i.e., no oversubscription mitigation)
and PILOT with mitigation enabled perform very similarly.
Second, under PILOT baseline, even slight oversubscription
causes a dramatic increase in kernel execution time for all
benchmarks. However, through the proposed memory oversub-
scription mitigation schemes, PILOT is capable of limiting,
and in some cases avoiding, the performance degradation,
significantly outperforming Nvidia MPS. All three mitigation
schemes allow a decrease in page faults.

Multi-tenancy experiments: To evaluate our mitigation
schemes in practical scenarios, we co-run pairs of benchmark
applications from Table II. We recall that MAdvise does not
require kernel preemption, and thus it does not incur any over-
heads associated with software kernel preemption, checkpoint
and recovery support. We measure performance of the fol-

446

A

A
a

Normalized Runtime
GPU Page Faults

hs3d gesummv backprop 2dconvol gaussian bfs lavamd corr

(a) 75% Memory Utilization

partfiter nn

EEN VPS W PILOTbase WM PILOTMFit [ISEN PILOTAMFit [ZX PILOT MAdvise

A A

A

Normalized Runtime
GPU Page Faults

hs3d gesummv backprop 2dconvol gaussian bfs lavamd corr

(b) 100% Memory Utilization

partfiter nn

EEN VPS EEE PILOTbase WM PILOTMFit SN PILOTAMFit [ZX PILOT MAdvise

A 4 4 A 4

Normalized Runtime
GPU Page Faults

hs3d gesummv backprop 2dconvol gaussian bfs

(c) 150% Memory Utilization

lavamd corr partfiter nn

Fig. 4: Each benchmark app. is co-run with the memory-
intensive pageDoS kernel. On the left y-axis we plot execution
time normalized to running with NVIDIA MPS. On the right
y-axis, we plot the total device-caused page faults.

lowing pairs: (i) corr+backprop, (ii) hs3d+2dconvol, and (iii)
bfs+kNN. Fig. 5 shows the slowdown experienced by each ker-
nel when co-running over standalone execution (i.e., without
inter-kernel concurrency) without and with oversubscription
mitigation (through MAdvise). We make the following ob-
servations. First, under 75% and 100% memory subscription,
all kernels experience little-to-no slowdown in execution time,
despite running concurrently. Second, oversubscription causes
a more pronounced slowdown, especially for hs3d when co-
run with 2dconvol and bfs when co-run with kNN. In this case,
MAdvise is effective in reducing memory contention and, as a
consequence, limiting the slowdown experienced. The worse
performance of hs3d and bfs is linked to its irregular memory

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 05,2022 at 14:16:47 UTC from IEEE Xplore. Restrictions apply.

E=S cor [ESE backprop W backprop MAdvise

] E E E

corr MAdvise

S \owdown

s 10 - 232 hs3d EEE 2dconvol EZEA hs3d MAdvise - 2dconvol MAdvise
H
8 -
2]
0 T RRRRA 77 = 7
75 100 150
10 - EEA bfs [EEEl nn EEZD bfs MAdvise B nnMAdvise

Slowdown
o

e U
150

100
% Memory Subscription

75

Fig. 5: Multi-tenancy experiments where benchmark applica-
tions are co-run in pairs: (i) corr+backprop, (ii) bfs+2dconvol,
(iii) bfs+kNN. The charts plot the slowdown experienced
by each kernel over standalone execution, without and with
memory interference mitigation (MAdvise policy).

access patterns (it has been shown that irregular applications
are more affected by memory oversubscription [5]). Not
included in this paper due to space limitation, MFit and AMFit
are even more effective than MAdvise in reducing contention;
however, they incur some additional overhead affecting the
total application time due to preemption and rescheduling.

V. RELATED WORK

NVIDIA vGPUs: While offering some performance guaran-
tees, NVIDIA vGPUs incur virtualization overhead and offer
limited features do not support all the features without pass-
through enabled, in which the entire GPU will be allocated for
a single user or context. Currently, missing features of vGPUs
include Unified Virtual Memory support, profiling, cuda-gdb,
and GPUDirect remote memory access [16].

GPU Runtime Systems: Previous works have proposed
runtime systems to support GPU virtualization and multite-
nancy [10]-[12], [17]-[19], in some cases offering support
for concurrent kernel execution [10], [11]. However, none of
these systems support UVM and provides memory interference
mitigation schemes.

Architectural enhancements: Recent research efforts have
proposed architectural enhancements to improve UVM per-
formance and alleviate inefficiencies due to memory oversub-
scription [3]-[6], as well as hardware preemption support for
GPU. [20], [21]. Due to their nature, these proposals have
been evaluated using cycle-accurate architectural simulators,
and they are complementary to this work.

Runtime optimization for UVM: Li and Chapman [22]
proposed a set of compiler-assisted runtime strategies to im-
prove performance of OpenMP applications performing GPU
offloading with UVM. Differently from PILOT, their focus is
on applications run in isolation. Thus, the proposed runtime
does not handle application concurrency and multiple address
spaces, and focuses on data placement for a single application.

VI. CONCLUSION

In this work, we have shown how concurrent execution of
applications on GPU can lead to memory oversubscription,

447

which can significantly affect the applications’ execution time.
We have proposed and implemented three policies that can
transparently mitigate performance degradation due to over-
subscription of on-device GPU memory. We have developed
PILOT, a runtime system similar to NVIDIA MPS that is
able to transparently serve as a middleware CUDA runtime.
PILOT supports concurrent multi-kernel execution, UVM,
active device memory monitoring, and kernel preemption.

VII. ACKNOWLEDGEMENT

This work was supported through NSF awards CNS-
1812727 and CCF-1741683.

REFERENCES

R. Landaverde et al., “An investigation of Unified Memory Access
performance in CUDA,” in Proc. of HPEC 2014.

N. Sakharnykh, Maximizing Unified Memory Performance in CUDA,
2017. [Online]. Available: https : // developer . nvidia . com / blog /
maximizing-unified-memory-performance-cuda/.

C. Li et al., “A framework for memory oversubscription management
in graphics processing units,” in Proc. of ASPLOS 2019.

D. Ganguly et al., “Interplay between hardware prefetcher and page
eviction policy in CPU-GPU Unified Virtual Memory,” in Proc. of
ISCA 2019.

D. Ganguly et al, “Adaptive page migration for irregular data-
intensive applications under GPU memory oversubscription,” in Proc.
of IPDPS 2020.

H. Kim er al., “Batch-aware unified memory management in GPUs
for irregular workloads,” in Proc. of ASPLOS 2020.

S. Che et al., “Rodinia: A benchmark suite for heterogeneous com-
puting,” in Proc. of IISWC 2009.

S. Grauer-Gray et al., “Auto-tuning a high-level language targeted to
gpu codes,” in Proc. of InPar 2012.

NVIDIA, Multi-Process Service, 2019. [Online]. Available: https://
docs.nvidia.com/deploy/pdf/CUDA % 5C_Multi % 5C_Process % 5C_
Service%20%5C_Overview.pdf.

V. T. Ravi et al., “Supporting GPU sharing in cloud environments with
a transparent runtime consolidation framework,” in Proc. of HPDC

2011.

D. Sengupta et al., “Scheduling multi-tenant cloud workloads on
accelerator-based systems,” in Proc. of SC 2014.

M. Becchi et al., “A virtual memory based runtime to support multi-
tenancy in clusters with GPUs,” in Proc. of HPDC 2012.

M. Harris, GPU Pro Tip: CUDA 7 streams simplify concurrency.
[Online]. Available: https://devblogs.nvidia.com/gpu-pro-tip-cuda-7-
streams-simplify-concurrency/.

R. Garg et al., “CRUM: Checkpoint-restart support for CUDA’s
Unified Memory,” in Proc. of CLUSTER 2018.

O. Villa et al., “NVBit: A dynamic binary instrumentation framework
for NVIDIA GPUs,” in Proc. of MICRO 2019, 2019.

NVIDIA, NVIDIA Virtual GPU Software Documentation v10.0
through 10.2, 2020. [Online]. Available: https://docs.nvidia.com/
grid/latest/index.html.

V. Gupta et al., “GViM: GPU-accelerated virtual machines,”
of HPCVirt 2009.

J. Duato et al., “rCUDA: Reducing the number of GPU-based
accelerators in high performance clusters,” in Proc. of HPCS 2010.
L. Shi et al., “vCUDA: Gpu-accelerated high-performance computing
in virtual machines,” IEEE Transactions on Computers, vol. 61, no. 6,
pp. 804-816, 2011.

J. J. K. Park et al., “Chimera: Collaborative preemption for multi-
tasking on a shared GPU,” in Proc. of ASPLOS 2015.

Z. Lin et al., “Enabling efficient preemption for simt architectures
with lightweight context switching,” in Proc. of SC 2016.

L. Li et al., “Compiler assisted hybrid implicit and explicit gpu
memory management under unified address space,” in Proc. of SC
2019.

[1]
[2]

[13]

in Proc.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 05,2022 at 14:16:47 UTC from IEEE Xplore. Restrictions apply.

