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Abstract—Over the past few years, there has been an increased 
interest in including FPGAs in data centers and high-performance 
computing clusters along with GPUs and other accelerators. As a 
result, it has become increasingly important to have a unified, 
high-level programming interface for CPUs, GPUs and FPGAs. 
This has led to the development of compiler toolchains to deploy 
OpenCL code on FPGA. However, the fundamental architectural 
differences between GPUs and FPGAs have led to performance 
portability issues: it has been shown that OpenCL code optimized 
for GPU does not necessarily map well to FPGA, often requiring 
manual optimizations to improve performance.  

In this paper, we explore the use of thread coarsening – a 
compiler technique that consolidates the work of multiple threads 
into a single thread – on OpenCL code running on FPGA. While 
this optimization has been explored on CPU and GPU, the 
architectural features of FPGAs and the nature of the parallelism 
they offer lead to different performance considerations, making 
an analysis of thread coarsening on FPGA worthwhile. Our 
evaluation, performed on our microbenchmarks and on a set of 
applications from open-source benchmark suites, shows that 
thread coarsening can yield performance benefits (up to 3-4x 
speedups) to OpenCL code running on FPGA at a limited 
resource utilization cost. 

Keywords— OpenCL, FPGA, high-level synthesis, compiler 
techniques, thread-coarsening, performance optimization  

I. INTRODUCTION 
Demands for high throughput and energy efficiency have led to 
an ever-increasing hardware heterogeneity in computer 
systems. Many supercomputers contain general purpose CPUs, 
GPUs and Intel many-core processors [1]. To further this trend, 
in the past few years there has been an increasing interest in 
using Field Programmable Gate Arrays (FPGAs) in data centers 
and high-performance computing clusters. Today major cloud 
computing services, such as Microsoft Azure [2] and Microsoft 
Web Services [3], offer FPGA-based computing instances.  

Despite their compute capabilities and power efficiency, the 
wide adoption of FPGAs has been traditionally hindered by 
programmability issues. Programming with hardware 
description languages (HDL) is considered a specialized skill 
and requires logic design expertise. Hence, there have been 
significant efforts aimed to provide high-level synthesis (HLS) 
frameworks for FPGAs. In recent years, there has been a push 
towards the introduction of unified programming interfaces and 
languages allowing deployment of the same code on different 
hardware platforms seamlessly. This push has led to the 
definition of the OpenCL standard, initially targeting CPUs and 
GPUs, and of associated compilers and runtime libraries. Xilinx 
and Intel, the major FPGA vendors, are now providing their own 

OpenCL-to-FPGA toolchains, enabling programmers to deploy 
OpenCL code also on FPGA devices. 

While OpenCL offers programming productivity, there is 
still a large performance gap between applications written in 
OpenCL and custom HDL versions of the same applications. 
This leaves room for much needed research and development 
aimed to improve existing OpenCL toolchains to fill the 
performance gap between OpenCL codes and custom HDL 
designs. Besides providing ease of programming, OpenCL 
allows easily porting applications from one hardware platform 
to another. However, performance portability is still a 
significant issue. Indeed, it has been shown that OpenCL code 
designed and optimized for GPU often performs poorly on 
FPGA [4]. To address this problem, several efforts have 
explored best practice optimizations, platform-agnostic and 
FPGA-specific compiler techniques operating directly on 
OpenCL source code and aimed to improve its efficiency on 
FPGA [4] [5] [6] [7] [8] [9] [10] [11]. 

This performance portability issue is due to the different 
architectural characteristics of GPUs and FPGAs and to the 
different kinds of parallelism they offer. While GPUs rely on 
their SIMD-like architecture to execute tens of thousands of 
threads simultaneously, FPGAs leverage pipelining to allow 
parallel execution of threads. In addition, synchronization 
primitives such as barriers and atomics are more efficiently 
supported on GPU than on FPGA, where barriers lead to 
pipeline flushes. Furthermore, current OpenCL-enabled FPGA 
boards have a lower global memory bandwidth than high-end 
GPUs. These factors suggest that the performance of OpenCL 
codes intended to run on FPGA can benefit from reducing the 
number of threads while exposing increased instruction-level 
parallelism, allowing the OpenCL-to-FPGA compiler to 
generate deeper and more efficient pipelines performing the 
work of multiple threads without requiring full logic replication. 

In this work we explore thread coarsening – a compiler 
technique that consolidates the work of multiple threads into a 
single thread – on FPGA. Thread coarsening can be performed 
at the OpenCL level, allowing portability across platforms and 
compiler versions. This optimization allows reordering 
independent instructions within the consolidated threads, thus 
exposing instruction-level parallelism opportunities to the 
compiler and enabling memory accesses reordering. This 
technique has been extensively investigated on GPUs, CPU, and 
Intel Phi devices [12][13][14][15][16], showing modest 
performance benefits (1.1x-1.5x speedup). However, by 
inherently transforming SIMD parallelism into pipeline 
parallelism, thread coarsening can be more suitable for FPGAs. 
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Our study makes the following contributions. First, we 
explore potential benefits and limitations or threads coarsening 
on FPGA and evaluate it on applications from the Rodinia and 
Pannotia benchmark suites [17][18]. We choose applications 
exhibiting different computation and memory access patterns 
and used in various domains. Our evaluation covers different 
ways of consolidating the work of multiple threads as well as 
different degrees of workload consolidation. Second, we 
compare the performance of thread coarsening with that of two 
other techniques to increase the amount of work performed 
concurrently by an FPGA kernel, namely, pipeline replication 
and SIMD vectorization. Third, to better understand the results, 
we design microbenchmarks with different code patterns. Our 
microbenchmarks allow exploring how factors such as memory 
access patterns and control flow divergence impact the 
performance of thread coarsening.  

Our evaluation shows that, on FPGA, thread coarsening can 
lead to substantial performance benefits (up to 3.5x speedup on 
the benchmarks considered) at a limited resource utilization 
cost. The most significant factor hindering the performance of 
this optimization on FPGA is the presence of irregular memory 
access patterns in the kernel code. Furthermore, thread 
coarsening is more generally applicable than SIMD 
vectorization, and leads to performance comparable to pipeline 
replication at a reduced resource utilization cost. It is worth 
noting that thread coarsening, pipeline replication and SIMD 
vectorization are not mutually exclusive and can be combined. 

II. BACKGROUND 
OpenCL is an open, cross-platform standard widely used to 
program heterogeneous platforms including multicore CPUs, 
GPUs, and FPGAs [19]. OpenCL compilers for FPGA extract 
pipeline parallelism from kernel code[20]. As an example, Fig. 
1 shows a vector addition kernel and the corresponding 
hardware pipeline. The built-in function _get_global_id 
returns the thread-specific identifier, which each thread then 
uses to access a different element of arrays a, b and c. These 
arrays are stored in global memory (_global address space 
qualifier). The OpenCL-to-FPGA compiler instantiates load and 
store units to perform memory accesses and breaks the 
computation into stages. As can be seen, in this case, a 3-stage 
pipeline is created, with two load units for arrays a and b and 
one store unit for array c. At each clock cycle, a new thread will 
enter the pipeline, and different threads will be operating in 
parallel in different pipeline stages. Thus, the pipeline depth will 
be an indicator of the degree of parallelism of the kernel. The 
compiler can select different kinds of load-store units based on 
the nature of the memory accesses performed. 

SIMD vectorization and pipeline replication are two 
mechanisms that can be used to increase hardware parallelism. 
On Intel platforms, these two optimizations can be enabled 
explicitly through the num_simd_work_items and 
num_compute_units keywords, respectively. SIMD 
vectorization allows multiple work-items (i.e., OpenCL threads) 
to execute in a SIMD fashion. Pipeline replication allows 
multiple work-groups to execute concurrently using different 
hardware pipelines. While SIMD vectorization shares control 
logic across SIMD vector lanes and allows the compiler to 

coalesce memory accesses, pipeline replication is less resource 
efficient and can lead to memory contention across hardware 
pipelines. However, SIMD vectorizations have several 
restrictions. Most notably, portions of a kernel in which work-
items take different control paths (for example, due to work-
item identifiers dependent branches) cannot be vectorized.     

III. THREAD COARSENING ON FPGA 

A. Introduction to Thread Coarsening 
Thread coarsening is a compiler technique that reduces the 
degree of multithreading of a parallel kernel by merging the 
work of multiple work-items into one work-item. This 
transformation increases the number of instructions each work-
item executes, introducing opportunities for the compiler to 
apply additional optimizations to the code (such as instruction 
reordering). [12][13][14][15][16] On recent GPU architectures, 
the performance benefits of thread coarsening are modest, and 
they are mostly due to a reduction in the multithreading cost 
(e.g., kernel launch overhead) and to more efficient memory 
access patterns enabled by instruction reordering. On FPGA, in 
addition to allowing more efficient memory accesses, thread 
coarsening has the potential for generating hardware code that 
requires fewer load units, store units, arithmetic units, and 
hardware resources to handle control flow instructions across 
work-items. In addition, instructions belonging to different 
work-items are independent. Therefore, by assigning 
independent instructions to a single work-item, thread 
coarsening can expose more instruction level parallelism and 
lead to deeper hardware pipelines. 

Despite its potential benefits, the use of thread coarsening is 
subject to tradeoffs. One drawback of this technique is that it 
can increase the number of resources used by the kernel, which 
can harm performance. For example, on GPU thread coarsening 
can lead to register pressure, thus limiting the number of active 
threads and the potential for memory latency hiding through 
multithreading. On FPGA, depending on the initial structure of 
the memory accesses, thread coarsening can increase the 
pressure on the memory units, resulting in more stalls for 
memory accesses.  

Thread coarsening can be configured using two parameters: 
coarsening type and coarsening degree. The coarsening type 
determines the distribution of work to work-items, while the 
coarsening degree indicates the number of work-items 
consolidated into a single work-item. We consider two types of 
thread coarsening: consecutive and gapped coarsening. The 
former merges instructions from consecutive work-items into 

 
Fig. 1. Vector addition kernel and corresponding hardware pipeline. 
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__kernel void vadd(__global const float *a, 
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one bigger work-item, while the latter divides the work-items 
into smaller evenly distributed groups and picks instructions 
from one work-item per group to form a larger work-item. Fig. 
2 illustrates the work distribution resulting from these two types 
of thread coarsening with a coarsening degree of two.  

In Fig. 3 we show how thread coarsening can be applied to 
an OpenCL kernel. The reference kernel (top of Fig. 3) is one-
dimensional. The kernel loads values from global memory using 
global pointers (in0 and in1), performs an arithmetic operation 
on them, and stores the results to a separate global memory 
location (out0). The code in the middle and the bottom of Fig. 3 
shows the kernel after applying consecutive and gapped 
coarsening, respectively, with a degree of two. In both cases, 
instructions from two work-items are consolidated into a single 
work-item. In the code templates in Fig. 3, the handling of the 
work-item identifiers required to distinguish instructions from 
different work-items is highlighted in red. Instructions 
belonging to different work-items in the original kernel are 
highlighted using different colors (black and green). The names 
of the variables are extended (through “_0” or “_1”) to 
distinguish the work-item of provenance in the original kernel.  

B. FPGA-specific Considerations 
As shown in Fig. 3, when performing thread coarsening, 
instructions originating from different work-items are 
interleaved. This has two implications. First, since instructions 
belonging to different work-items are independent, this method 
exposes instruction level parallelism, with the potential for 
deeper pipelines on FPGA. Second, memory operations are 
clustered together. Depending on the coarsening type and the 
memory access patterns of the original code, this might increase 
data locality, lead to better memory bandwidth utilization and, 
more generally, to more efficient memory accesses. 

To better understand the effect of thread coarsening on 
kernel performance on FPGA, it is necessary to know how 
OpenCL-to-FPGA compilers handle memory instructions. 
Here, we refer to Intel’s FPGA SDK for OpenCL Offline 
Compiler. Memory operations are handled through different 
types of load-store units (LSUs); the two most relevant are 
burst-coalesced and prefetching LSUs. The offline compiler 
determines which LSU type to instantiate based on inferred 
memory access patterns, types of memory available on the 
target device, and locality of memory accesses. Burst-coalesced 
LSUs buffer memory access requests until the largest possible 
number of requests can be sent to global memory at once. This 
type of LSUs can be instantiated with a separately assigned 
cache with a default size of 512Kb. The cache is assigned based 
on whether the memory access patterns are inferred to be data-
dependent or repetitive. The compiler instantiates prefetching 
LSUs when it detects a contiguous read from a non-volatile 
global pointer. Burst-coalesced LSUs are more resource-

intensive as they require more look-up tables (ALUTs), flip-
flops (FFs), and possibly RAM blocks; however, they can 
provide better performance than prefetching LSUs.  

For example, for the code in Fig. 3, the offline compiler 
assigns each load instruction a separate burst-coalesced LSU to 
handle the global memory access in the baseline code. After 
consecutive coarsening, the offline compiler makes all the 
memory accesses to the same global pointer be handled at once 
through a single 512-bit (8 floating-point values) width burst-
coalesced LSU. On the other hand, the memory access pattern 
to the same pointer from gapped coarsening caused the offline 
compiler to create eight 32-bit (1 floating-point value) width 
burst-coalesced cached LSUs. This is because the offline 
compiler cannot find a pattern to coalesce memory accesses in 
the gapped coarsened kernel code and therefore it creates the 
same number of LSUs for each global pointer as the coarsening 
degree.  Since one wider LSU is more efficient at accessing the 
same number of values from global memory than eight smaller 
LSUs, consecutive coarsening resulted in faster accesses to 
global memory compared to gapped coarsening. The reduction 
in the total number of memory accesses needed by the work-
items is one of the key reasons why thread coarsening can 
improve the performance of kernels on the FPGA. 

Another important factor that can affect the impact of thread 
coarsening on FPGA is work-item divergence. Work-item 
divergence prevents the offline compiler from coalescing 
memory accesses, applying code reordering, and performing 
other optimizations that require instructions being in the same 
basic block. We distinguish two types of divergence: direct and 

 

 

 
Fig. 3. Simple microbenchmark kernel with regular memory accesses 
before applying coarsening (top), with consecutive coarsening (middle) 
and with gapped coarsening (bottom). 

 
Fig. 2. Distribution of work to work-items before and after coarsening 
(coarsening degree of two). 
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indirect. Direct divergence originates when the condition of a 
control flow statement in the code depends on the work-item 
identifier. For instance, branches with a condition depending on 
the result of the get_global_id function call lead to direct 
divergence. Indirect divergence originates when the condition 
of a control flow statement or boundaries of a for-loop depend 
on a value that is loaded from global memory and can differ 
across work-items. In kernels with indirect work-item 
divergence, the offline compiler is unable to simplify the control 
flow graph for each work-item; therefore, it can result in fewer 
optimizations from the offline compiler after applying 
coarsening compared to direct divergence.  

C. Methodology 

We first evaluated the effect of thread coarsening on FPGA on 
a set of applications with different computation and memory 
access patterns from the Rodinia and Pannotia benchmark suites 
[17], [18]. Our observations on these applications showed 
several code features causing bottlenecks that warranted further 
exploration. To accomplish this, we created several 
microbenchmarks isolating each feature to gain further insight 
on how they individually affect the performance and resource 
utilization of consecutive and gapped coarsening. The main 
kernel features isolated within these microbenchmarks were: 
arithmetic intensity, nature of the memory access patterns (i.e., 
regular vs. irregular), memory access locality and divergence, 
and work-item divergence (conditional statements, for loops, 
and degree of divergence). When studying the effect of a 
specific code feature on the performance of thread coarsening, 
we kept all other features static by setting them to a default 
value. To generate microbenchmarks with realistic features, we 
determined each feature’s default value by averaging the values 
observed for that feature in Rodinia and Pannotia benchmarks 
considered. For space limitation, in this paper, we focus on two 
aspects: memory access patterns and work-item divergence. 

Baseline code – All microbenchmarks consist of a load 
phase, a computation phase, and a store phase (see baseline code 
in Fig. 4a). The load and store phases access the input and output 
arrays using configurable memory access patterns.  

 Memory access types – The microbenchmarks include both 
regular and irregular memory access patterns on arrays. For the 
regular memory access patterns (Fig. 5a), the data array is 
directly indexed using the work-item identifier. For the irregular 
ones, the data array is instead indirectly indexed via another 
array accessed using the work-item identifier. The indices in the 
intermediate array are generated based on the irregularity 

degree parameter illustrated in Fig. 5b, where a and b (and, 
depending on the size of the array, possibly other values) are 
randomized starting indexes.  

Work-Item Divergence – Work-item divergence 
microbenchmarks cover conditional statements, for-loops, and 
allow varying the degree of divergence among work-items. 
Conditional statement benchmarks use either the work-item 
identifier or a value in a data array, named if-id and if-in 
respectively, to determining whether to take a branch. The for-
loop benchmarks use either an if-id configuration nested inside 
a for-loop with a constant bound (for-constant + if-id) or an if-
in configuration nested inside a for loop with a bound reliant on 
a value in a data array (for-in + if-in). Examples of these code 
patterns are shown in Fig. 4b.  

IV. EXPERIMENTAL EVALUATION 

A. Experimental Setup 
Hardware – We run our experiments on an Intel programmable 
acceleration card with an Arria® GX FPGA. This board is 
equipped with two 4 GB DDR-4 SDRAM memory banks and 
128 MB flash memory. The SDRAM memory can support a 
peak bandwidth of 34.1 GB/s. This FPGA includes 65.7 Mb of 
on-chip memory, 1150k logic elements (ALUTs), and 3036 
digital signal processing (DSP) blocks. The host processor is an 
Intel Xeon® CPU E5-1607 v4 with a peak clock frequency of 
3.1 GHz. We used Intel FPGA SDK for OpenCL version 19.4 
with Ubuntu 18.04.5 LTS on the host system.  

Benchmarks – We evaluated thread coarsening on two sets of 
benchmarks. The first set includes applications from  Rodinia 
and Pannotia [18] benchmark suites. Table I summarizes the 
relevant characteristics of the applications and input datasets 
used and reports the execution time and resource utilization (in 
terms of logic elements, RAM blocks, and DSPs) of the baseline 
code (i.e., the unmodified OpenCL implementations from the 
benchmark suites). The second set includes our automatically 
generated microbenchmark kernels to evaluate the effects of 
different code features on thread coarsening performance.  

Code variants – For all benchmarks, we generated thread-
coarsened kernels using consecutive and gapped coarsening and 
coarsening degrees 2, 4, and 8. In addition, we tested pipeline 
replication (2, 4 and 8 hardware pipelines) and, whenever 
applicable, SIMD vectorization (with degrees 2, 4 and 8). 

Evaluation metrics – For performance, we report the speedup 
over the original un-coarsened kernel with a single hardware 
pipeline (baseline). For resource utilization, we show the 
increase in the number of ALUTs and RAM blocks required by 
the thread-coarsened kernels over the baseline code.  

 
Fig. 5. Memory access patterns with direct and indirect indexing – (a) 
and (b), respectively.  

 
Fig. 4. (a) Microbenchmark kernel baseline        (b) Work-item divergence 

439

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on May 05,2022 at 14:22:46 UTC from IEEE Xplore.  Restrictions apply. 



 

B. Experimental Results 
Benchmark applications – Fig. 6 summarizes the performance 
and hardware resource utilization results from gapped and 
consecutive thread coarsening (Gap and Con, respectively), 
pipeline replication (Pipe), and SIMD vectorization (SIMD) for 
all considered benchmark applications. DSP utilization is not 
shown in these graphs since it scales linearly with the degree for 
all these optimizations. Additionally, Fig. 6 reports the average 
of the best speedup and the respective resource utilization for 
each method across all the benchmarks (rightmost bars). The 
number above each column indicates the degree (among 2, 4, 
and 8) that led to the best speedup. The missing results for SIMD 
vectorization are due to the inability of the compiler to vectorize 
kernels containing work-item identifier dependent branches 
(hence, SIMD vectorization averages are not included). 

We make the following observations. First, on average 

pipeline replication performs slightly better than thread 
coarsening but at the cost of significantly higher resource 
utilization. Like SIMD vectorization, thread coarsening avoids 
control logic duplication. Second, while on two benchmarks 
(Hotspot and Backprop) SIMD vectorization yields the best 
speedup and resource utilization, this optimization is applicable 
only on kernels without complex control flows. Third, pipeline 
replication can achieve a slightly higher speedup (1.91x) among 
the tested benchmark applications compared to consecutive 
coarsening (1.56x) and gapped coarsening (1.7x). Fourth, when 
we compare the speedup from pipeline replication with the best 
speedup that can be achieved from applying thread coarsening 
(the best performing between gapped and consecutive), thread 
coarsening can achieve on average a 2x speedup across these 
benchmarks. In addition to a slightly better combined 
coarsening speedup, consecutive/gapped coarsening on average 
uses 34/41% fewer ALUTs and 22/32% fewer RAM blocks, 

respectively, compared to pipeline 
replication.  

On benchmarks exhibiting irregular 
memory access patterns (i.e., BFS and 
PageRank), pipeline replication 
outperforms thread coarsening, and gapped 
coarsening is preferable to consecutive 
coarsening. For these two algorithms, both 
run on two graph datasets, the input graph 
does not affect the performance trends. 
While graph applications report limited 
performance gains from pipeline 
replication, Pathfinder’s performance scales 
with the replication degree (not shown in the 
graph). The low number of load/store units 
and high arithmetic intensity of Pathfinder 
keeps the memory bandwidth from being 
saturated and lets the pipeline replication 
speedup scale with the degree.    

Regular applications exhibit different 
behaviors. Dense linear algebra applications 
(i.e., NN, LU decomposition, Gaussian 
Elimination) generally benefit from thread 
coarsening. For NN, gapped thread 
coarsening is the most effective 
optimization and provides a speedup up to 

 

 

 
Fig. 6. Speedup increase (top), ALUT usage (middle), and RAM usage (bottom) compared to the baseline 
kernel from the best performing coarsening or pipeline degree (degree listed above each column).  

TABLE I.  CHARACTERISTICS OF RODINIA AND PANNOTIA BENCHMARKS USED IN THE EXPERIMENTS, INCLUDING EXECUTION TIME AND RESOURCE 
UTILIZATION OF THE ORIGINAL CODE (BASELINE)  
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~3x over the baseline code. On LU decomposition, thread 
coarsening, and pipeline replication exhibit similar performance 
and report a significant speedup (up to 3.5x). On Gaussian 
Elimination, while thread coarsening is the most effective 
implementation, it yields only a moderate speedup (about 30%) 
since this benchmark is dominated by memory accesses. In all 
three cases, going beyond coarsening/replication degree 4 does 
not bring further performance gain.   

 We also observed that pipeline replication shows better 
performance improvement than thread coarsening on kernels 
that include barrier synchronization (Pathfinder, Hotspot, Back 
Propagation, and LU decomposition) compared to the ones that 
do not have a barrier. Finally, these three optimization 
techniques are not mutually exclusive. For example, combining 
consecutive coarsening with degree 4 and pipeline replication 
with degree 2 on the Backprop kernel leads to a 3.2x speedup 
over the baseline, while the best speedup achieved using thread 
coarsening and pipeline replication alone are 2.1x and 2x (in 
both cases with degree 4), respectively. 

Microbenchmarks – Fig. 7 shows results reported on 
microbenchmarks exhibiting different memory access patterns 
and control-flow divergence. The x-axis shows different code 
variants, where “AI n” means “Arithmetic Intensity with a 
degree of n” and the following words specify the type of control 
flow in the microbenchmark kernel (if-id, if-in, for-constant+if-
id, and for-in+if-in). All these kernels access global memory 
arrays containing 64M elements.  We report the best speedup 
for each optimization across the different degrees (2, 4, or 8). 

Memory Access Type – In the presence of direct memory 
access patterns, the simple microbenchmark without branches 
and AI of six (AI6) achieves up to a 5.8x and a 2.1x speedup 
with consecutive coarsening and pipeline replication, 
respectively. We note that, as discussed in Section III.B, 
consecutive coarsening uses fewer ALUTs and RAM blocks 
than gapped coarsening of the same degree. When exploring the 
same kernel but with indirect memory accesses, gapped 
coarsening can only improve the performance of the kernel up 
to a 1.34x speedup whereas pipeline replication was able to 
achieve a 1.43x speedup.  As for the benchmark applications, 
however, gapped coarsening required a smaller increase in the 
number of resources used to coarsen this kernel compared to 
pipeline replication codes of the same degree.     

Work-Item Divergence – Except for the if-in version, adding 
control flow divergence resulted in a lower average speedup 
from consecutive thread coarsening in kernels with direct 
memory accesses. The offline compiler can take advantage of 
having more information regarding the work-item divergence in 
the constant-for+if-id kernel. Overall consecutive coarsening 
provides a better speedup for kernels with regular memory 

accesses and gapped coarsening provides a better 
performance improvement among kernels with 
indirect memory accesses.  

V. CONCLUSION 
In this work, we studied the impact of thread 
coarsening on the performance and resource 
utilization of OpenCL kernels running on FPGA. 
Our evaluation shows that thread coarsening can 

lead to performance comparable to pipeline replication at a 
reduced resource utilization cost, and is more generally 
applicable than SIMD vectorization. However, the benefits of 
thread coarsening can significantly decrease in the presence of 
irregular memory access patterns and control-flow divergence.  
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Fig. 7. Speedup comparison of microbenchmarks with regular (direct) memory accesses (left) and 

441

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on May 05,2022 at 14:22:46 UTC from IEEE Xplore.  Restrictions apply. 


