2021 IEEE 28th International Conference on High Performance Computing, Data, and Analytics (HiPC) | 978-1-6654-1016-8/21/$31.00 ©2021 IEEE | DOI: 10.1109/HIPC53243.2021.00062

2021 IEEE 28th International Conference on High Performance Computing, Data, and Analytics (HiPC)

Exploring Thread Coarsening on FPGA

Mostafa Eghbali Zarch, Reece Neff, Michela Becchi
North Carolina State University
Raleigh, NC, USA
{meghbal,rwneff,mbecchi}@ncsu.edu

Abstract—Over the past few years, there has been an increased
interest in including FPGAs in data centers and high-performance
computing clusters along with GPUs and other accelerators. As a
result, it has become increasingly important to have a unified,
high-level programming interface for CPUs, GPUs and FPGAs.
This has led to the development of compiler toolchains to deploy
OpenCL code on FPGA. However, the fundamental architectural
differences between GPUs and FPGAs have led to performance
portability issues: it has been shown that OpenCL code optimized
for GPU does not necessarily map well to FPGA, often requiring
manual optimizations to improve performance.

In this paper, we explore the use of thread coarsening — a
compiler technique that consolidates the work of multiple threads
into a single thread — on OpenCL code running on FPGA. While
this optimization has been explored on CPU and GPU, the
architectural features of FPGAs and the nature of the parallelism
they offer lead to different performance considerations, making
an analysis of thread coarsening on FPGA worthwhile. Our
evaluation, performed on our microbenchmarks and on a set of
applications from open-source benchmark suites, shows that
thread coarsening can yield performance benefits (up to 3-4x
speedups) to OpenCL code running on FPGA at a limited
resource utilization cost.

Keywords— OpenCL, FPGA, high-level synthesis, compiler
techniques, thread-coarsening, performance optimization

1. INTRODUCTION

Demands for high throughput and energy efficiency have led to
an ever-increasing hardware heterogeneity in computer
systems. Many supercomputers contain general purpose CPUs,
GPUs and Intel many-core processors [1]. To further this trend,
in the past few years there has been an increasing interest in
using Field Programmable Gate Arrays (FPGAS) in data centers
and high-performance computing clusters. Today major cloud
computing services, such as Microsoft Azure [2] and Microsoft
Web Services [3], offer FPGA-based computing instances.

Despite their compute capabilities and power efficiency, the
wide adoption of FPGAs has been traditionally hindered by
programmability issues. Programming with hardware
description languages (HDL) is considered a specialized skill
and requires logic design expertise. Hence, there have been
significant efforts aimed to provide high-level synthesis (HLS)
frameworks for FPGAs. In recent years, there has been a push
towards the introduction of unified programming interfaces and
languages allowing deployment of the same code on different
hardware platforms seamlessly. This push has led to the
definition of the OpenCL standard, initially targeting CPUs and
GPUs, and of associated compilers and runtime libraries. Xilinx
and Intel, the major FPGA vendors, are now providing their own

OpenCL-to-FPGA toolchains, enabling programmers to deploy
OpenCL code also on FPGA devices.

While OpenCL offers programming productivity, there is
still a large performance gap between applications written in
OpenCL and custom HDL versions of the same applications.
This leaves room for much needed research and development
aimed to improve existing OpenCL toolchains to fill the
performance gap between OpenCL codes and custom HDL
designs. Besides providing ease of programming, OpenCL
allows easily porting applications from one hardware platform
to another. However, performance portability is still a
significant issue. Indeed, it has been shown that OpenCL code
designed and optimized for GPU often performs poorly on
FPGA [4]. To address this problem, several efforts have
explored best practice optimizations, platform-agnostic and
FPGA-specific compiler techniques operating directly on
OpenCL source code and aimed to improve its efficiency on
FPGA [4] [5][6] [7] [8] [9] [10] [11].

This performance portability issue is due to the different
architectural characteristics of GPUs and FPGAs and to the
different kinds of parallelism they offer. While GPUs rely on
their SIMD-like architecture to execute tens of thousands of
threads simultaneously, FPGAs leverage pipelining to allow
parallel execution of threads. In addition, synchronization
primitives such as barriers and atomics are more efficiently
supported on GPU than on FPGA, where barriers lead to
pipeline flushes. Furthermore, current OpenCL-enabled FPGA
boards have a lower global memory bandwidth than high-end
GPUs. These factors suggest that the performance of OpenCL
codes intended to run on FPGA can benefit from reducing the
number of threads while exposing increased instruction-level
parallelism, allowing the OpenCL-to-FPGA compiler to
generate deeper and more efficient pipelines performing the
work of multiple threads without requiring full logic replication.

In this work we explore thread coarsening — a compiler
technique that consolidates the work of multiple threads into a
single thread — on FPGA. Thread coarsening can be performed
at the OpenCL level, allowing portability across platforms and
compiler versions. This optimization allows reordering
independent instructions within the consolidated threads, thus
exposing instruction-level parallelism opportunities to the
compiler and enabling memory accesses reordering. This
technique has been extensively investigated on GPUs, CPU, and
Intel Phi devices [12][13][14][15][16], showing modest
performance benefits (1.1x-1.5x speedup). However, by
inherently transforming SIMD parallelism into pipeline
parallelism, thread coarsening can be more suitable for FPGAs.

2640-0316/21/$31.00 ©2021 IEEE 436
DOI 10.1109/HiPC53243.2021.00062

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 05,2022 at 14:22:46 UTC from IEEE Xplore. Restrictions apply.

Our study makes the following contributions. First, we
explore potential benefits and limitations or threads coarsening
on FPGA and evaluate it on applications from the Rodinia and
Pannotia benchmark suites [17][18]. We choose applications
exhibiting different computation and memory access patterns
and used in various domains. Our evaluation covers different
ways of consolidating the work of multiple threads as well as
different degrees of workload consolidation. Second, we
compare the performance of thread coarsening with that of two
other techniques to increase the amount of work performed
concurrently by an FPGA kernel, namely, pipeline replication
and SIMD vectorization. Third, to better understand the results,
we design microbenchmarks with different code patterns. Our
microbenchmarks allow exploring how factors such as memory
access patterns and control flow divergence impact the
performance of thread coarsening.

Our evaluation shows that, on FPGA, thread coarsening can
lead to substantial performance benefits (up to 3.5x speedup on
the benchmarks considered) at a limited resource utilization
cost. The most significant factor hindering the performance of
this optimization on FPGA is the presence of irregular memory
access patterns in the kernel code. Furthermore, thread
coarsening is more generally applicable than SIMD
vectorization, and leads to performance comparable to pipeline
replication at a reduced resource utilization cost. It is worth
noting that thread coarsening, pipeline replication and SIMD
vectorization are not mutually exclusive and can be combined.

II. BACKGROUND

OpenCL is an open, cross-platform standard widely used to
program heterogeneous platforms including multicore CPUs,
GPUs, and FPGAs [19]. OpenCL compilers for FPGA extract
pipeline parallelism from kernel code[20]. As an example, Fig.
1 shows a vector addition kernel and the corresponding
hardware pipeline. The built-in function get global id
returns the thread-specific identifier, which each thread then
uses to access a different element of arrays a, b and c. These
arrays are stored in global memory (_global address space
qualifier). The OpenCL-to-FPGA compiler instantiates load and
store units to perform memory accesses and breaks the
computation into stages. As can be seen, in this case, a 3-stage
pipeline is created, with two load units for arrays a and b and
one store unit for array c. At each clock cycle, a new thread will
enter the pipeline, and different threads will be operating in
parallel in different pipeline stages. Thus, the pipeline depth will
be an indicator of the degree of parallelism of the kernel. The
compiler can select different kinds of load-store units based on
the nature of the memory accesses performed.

SIMD vectorization and pipeline replication are two
mechanisms that can be used to increase hardware parallelism.
On Intel platforms, these two optimizations can be enabled
explicitly ~through the num simd work items and
num_compute units keywords, respectively. SIMD
vectorization allows multiple work-items (i.e., OpenCL threads)
to execute in a SIMD fashion. Pipeline replication allows
multiple work-groups to execute concurrently using different
hardware pipelines. While SIMD vectorization shares control
logic across SIMD vector lanes and allows the compiler to

437

__kernel void vadd(__global const float *a,
__global const float *b,
__global float *c) {

get_global_id (0);

= a[id] + b[id];

‘. . ‘ threads

stage 1

int id
clid]

Load Load

Unit (a) Unit (b)

$ stage 3

Fig. 1. Vector addition kernel and corresponding hardware pipeline.

coalesce memory accesses, pipeline replication is less resource
efficient and can lead to memory contention across hardware
pipelines. However, SIMD vectorizations have several
restrictions. Most notably, portions of a kernel in which work-
items take different control paths (for example, due to work-
item identifiers dependent branches) cannot be vectorized.

III. THREAD COARSENING ON FPGA

A. Introduction to Thread Coarsening

Thread coarsening is a compiler technique that reduces the
degree of multithreading of a parallel kernel by merging the
work of multiple work-items into one work-item. This
transformation increases the number of instructions each work-
item executes, introducing opportunities for the compiler to
apply additional optimizations to the code (such as instruction
reordering). [12][13][14][15][16] On recent GPU architectures,
the performance benefits of thread coarsening are modest, and
they are mostly due to a reduction in the multithreading cost
(e.g., kernel launch overhead) and to more efficient memory
access patterns enabled by instruction reordering. On FPGA, in
addition to allowing more efficient memory accesses, thread
coarsening has the potential for generating hardware code that
requires fewer load units, store units, arithmetic units, and
hardware resources to handle control flow instructions across
work-items. In addition, instructions belonging to different
work-items are independent. Therefore, by assigning
independent instructions to a single work-item, thread
coarsening can expose more instruction level parallelism and
lead to deeper hardware pipelines.

Despite its potential benefits, the use of thread coarsening is
subject to tradeoffs. One drawback of this technique is that it
can increase the number of resources used by the kernel, which
can harm performance. For example, on GPU thread coarsening
can lead to register pressure, thus limiting the number of active
threads and the potential for memory latency hiding through
multithreading. On FPGA, depending on the initial structure of
the memory accesses, thread coarsening can increase the
pressure on the memory units, resulting in more stalls for
memory accesses.

Thread coarsening can be configured using two parameters:
coarsening type and coarsening degree. The coarsening type
determines the distribution of work to work-items, while the
coarsening degree indicates the number of work-items
consolidated into a single work-item. We consider two types of
thread coarsening: consecutive and gapped coarsening. The
former merges instructions from consecutive work-items into

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 05,2022 at 14:22:46 UTC from IEEE Xplore. Restrictions apply.

waork item configuration before coarsening
[wo [wi [w2 [ws [wa [ws [we [wr [ws [wo]

consecutive coarsening (degree two)

‘ wo+wl l w2+w3] wa+w5 | wE+w7 [w8+w9 |
gapped coarsening (degree two)
‘ wO+w5 I wiltwé] W2+w7 | w3+w8 [wa+w9 |

Fig. 2. Distribution of work to work-items before and after coarsening
(coarsening degree of two).

one bigger work-item, while the latter divides the work-items
into smaller evenly distributed groups and picks instructions
from one work-item per group to form a larger work-item. Fig.
2 illustrates the work distribution resulting from these two types
of thread coarsening with a coarsening degree of two.

In Fig. 3 we show how thread coarsening can be applied to
an OpenCL kernel. The reference kernel (top of Fig. 3) is one-
dimensional. The kernel loads values from global memory using
global pointers (in0 and inl), performs an arithmetic operation
on them, and stores the results to a separate global memory
location (out0). The code in the middle and the bottom of Fig. 3
shows the kernel after applying consecutive and gapped
coarsening, respectively, with a degree of two. In both cases,
instructions from two work-items are consolidated into a single
work-item. In the code templates in Fig. 3, the handling of the
work-item identifiers required to distinguish instructions from
different work-items is highlighted in red. Instructions
belonging to different work-items in the original kernel are
highlighted using different colors (black and green). The names
of the variables are extended (through “ 0” or “ 17) to
distinguish the work-item of provenance in the original kernel.

B. FPGA-specific Considerations

As shown in Fig. 3, when performing thread coarsening,
instructions originating from different work-items are
interleaved. This has two implications. First, since instructions
belonging to different work-items are independent, this method
exposes instruction level parallelism, with the potential for
deeper pipelines on FPGA. Second, memory operations are
clustered together. Depending on the coarsening type and the
memory access patterns of the original code, this might increase
data locality, lead to better memory bandwidth utilization and,
more generally, to more efficient memory accesses.

To better understand the effect of thread coarsening on
kernel performance on FPGA, it is necessary to know how
OpenCL-to-FPGA compilers handle memory instructions.
Here, we refer to Intel’s FPGA SDK for OpenCL Offline
Compiler. Memory operations are handled through different
types of load-store units (LSUs); the two most relevant are
burst-coalesced and prefetching LSUs. The offline compiler
determines which LSU type to instantiate based on inferred
memory access patterns, types of memory available on the
target device, and locality of memory accesses. Burst-coalesced
LSUs buffer memory access requests until the largest possible
number of requests can be sent to global memory at once. This
type of LSUs can be instantiated with a separately assigned
cache with a default size of 512Kb. The cache is assigned based
on whether the memory access patterns are inferred to be data-
dependent or repetitive. The compiler instantiates prefetching
LSUs when it detects a contiguous read from a non-volatile
global pointer. Burst-coalesced LSUs are more resource-

438

__kernel void multiplication(__global float * inO,
__global float * in1,
int N, __global float * out0Q) {
for (int gid=get_global_id(0); gid < N; gid+=get_global_size(0)){
float rO= in1[gid]; float r1=inO[gid];
float r2=r1*r0;
outQ[gid] =r2;
}
}

__kernel void thc_multiplication_c(...) {
for (int gid=get_global_id(0)*2; gid < N; gid+=get_global_size(0)*2){
int gid_O=gid+0; int gid_1=gid+1;
float r0_0=inO[gid_0]; float rl_0=in1[gid_O];
float rO_1=in0[gid_1]; floatrl_1=inl[gid_1];
float r2_0=r1_0%r0_0; floatr2_1=r1_1*r0_1;
outO[gid_0]=r2_0; outO[gid_1]=r2_1;
}
}

__kernel void thc_multiplication_g(...) {

int gapped_length =N / 2;

for (int gid=get_global_id(0); gid < gapped_length; gid+=get_global_size(0){
gid_0= gid + gapped_length*0; gid_1= gid + gapped_length*1;
float r0_0= in0[gid_0]; float r1_0=in1[gid_0];
float r0_1=in0[gid_1]; float r1_1=in1[gid_1];
float r2_0=r1_0*r0_0; floatr2_1=r1_1%r0_1;
out0[gid_0] =r2_0; outO[gid_1]=r2_1;

}

}

Fig. 3. Simple microbenchmark kernel with regular memory accesses
before applying coarsening (top), with consecutive coarsening (middle)
and with gapped coarsening (bottom).

intensive as they require more look-up tables (ALUTs), flip-
flops (FFs), and possibly RAM blocks; however, they can
provide better performance than prefetching LSUs.

For example, for the code in Fig. 3, the offline compiler
assigns each load instruction a separate burst-coalesced LSU to
handle the global memory access in the baseline code. After
consecutive coarsening, the offline compiler makes all the
memory accesses to the same global pointer be handled at once
through a single 512-bit (8 floating-point values) width burst-
coalesced LSU. On the other hand, the memory access pattern
to the same pointer from gapped coarsening caused the offline
compiler to create eight 32-bit (1 floating-point value) width
burst-coalesced cached LSUs. This is because the offline
compiler cannot find a pattern to coalesce memory accesses in
the gapped coarsened kernel code and therefore it creates the
same number of LSUs for each global pointer as the coarsening
degree. Since one wider LSU is more efficient at accessing the
same number of values from global memory than eight smaller
LSUs, consecutive coarsening resulted in faster accesses to
global memory compared to gapped coarsening. The reduction
in the total number of memory accesses needed by the work-
items is one of the key reasons why thread coarsening can
improve the performance of kernels on the FPGA.

Another important factor that can affect the impact of thread
coarsening on FPGA is work-item divergence. Work-item
divergence prevents the offline compiler from coalescing
memory accesses, applying code reordering, and performing
other optimizations that require instructions being in the same
basic block. We distinguish two types of divergence: direct and

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 05,2022 at 14:22:46 UTC from IEEE Xplore. Restrictions apply.

for(int gid=get_global_id(0); gid < N; gid+=get_global_size(0)){ // if-id
// Begin memory operations if (get_global_id (0) %2 ==0) {
float rO= in7[gid];
float r1= in6[gid]; }
s { if-in
float r7=in0[gid]; if (get_global_id (0) %2 == 0) {
// Begin arithmetic operations
float r8= r7+r3; }
float r9= r8+r5; // it-id
e for (int i=0; i<5; i++) {
float r16= r15/r5; if (get_global_id (0) %2 ==0) {
out0[gid] = r16;
}) !

Fig. 4. (a) Microbenchmark kernel baseline (b) Work-item divergence

indirect. Direct divergence originates when the condition of a
control flow statement in the code depends on the work-item
identifier. For instance, branches with a condition depending on
the result of the get global id function call lead to direct
divergence. Indirect divergence originates when the condition
of a control flow statement or boundaries of a for-loop depend
on a value that is loaded from global memory and can differ
across work-items. In kernels with indirect work-item
divergence, the offline compiler is unable to simplify the control
flow graph for each work-item; therefore, it can result in fewer
optimizations from the offline compiler after applying
coarsening compared to direct divergence.

C. Methodology

We first evaluated the effect of thread coarsening on FPGA on
a set of applications with different computation and memory
access patterns from the Rodinia and Pannotia benchmark suites
[17], [18]. Our observations on these applications showed
several code features causing bottlenecks that warranted further
exploration. To accomplish this, we created several
microbenchmarks isolating each feature to gain further insight
on how they individually affect the performance and resource
utilization of consecutive and gapped coarsening. The main
kernel features isolated within these microbenchmarks were:
arithmetic intensity, nature of the memory access patterns (i.e.,
regular vs. irregular), memory access locality and divergence,
and work-item divergence (conditional statements, for loops,
and degree of divergence). When studying the effect of a
specific code feature on the performance of thread coarsening,
we kept all other features static by setting them to a default
value. To generate microbenchmarks with realistic features, we
determined each feature’s default value by averaging the values
observed for that feature in Rodinia and Pannotia benchmarks
considered. For space limitation, in this paper, we focus on two
aspects: memory access patterns and work-item divergence.

Baseline code — All microbenchmarks consist of a load
phase, a computation phase, and a store phase (see baseline code
in Fig. 4a). The load and store phases access the input and output
arrays using configurable memory access patterns.

Memory access types — The microbenchmarks include both
regular and irregular memory access patterns on arrays. For the
regular memory access patterns (Fig. 5a), the data array is
directly indexed using the work-item identifier. For the irregular
ones, the data array is instead indirectly indexed via another
array accessed using the work-item identifier. The indices in the
intermediate array are generated based on the irregularity

439

Input Array Input Array
‘u‘1|2 3|d|5‘6|7| |a|ar1|”, ao}(—l‘b b+l b»X—l‘
tid ﬁ u tid
X = Irregularity Degree
a) b)

Fig. 5. Memory access patterns with direct and indirect indexing — (a)
and (b), respectively.

degree parameter illustrated in Fig. 5b, where a and b (and,
depending on the size of the array, possibly other values) are
randomized starting indexes.

Work-Item Divergence — Work-item divergence
microbenchmarks cover conditional statements, for-loops, and
allow varying the degree of divergence among work-items.
Conditional statement benchmarks use either the work-item
identifier or a value in a data array, named if-id and if-in
respectively, to determining whether to take a branch. The for-
loop benchmarks use either an if-id configuration nested inside
a for-loop with a constant bound (for-constant + if-id) or an if-
in configuration nested inside a for loop with a bound reliant on
a value in a data array (for-in + if-in). Examples of these code
patterns are shown in Fig. 4b.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

Hardware — We run our experiments on an Intel programmable
acceleration card with an Arria® GX FPGA. This board is
equipped with two 4 GB DDR-4 SDRAM memory banks and
128 MB flash memory. The SDRAM memory can support a
peak bandwidth of 34.1 GB/s. This FPGA includes 65.7 Mb of
on-chip memory, 1150k logic elements (ALUTs), and 3036
digital signal processing (DSP) blocks. The host processor is an
Intel Xeon® CPU E5-1607 v4 with a peak clock frequency of
3.1 GHz. We used Intel FPGA SDK for OpenCL version 19.4
with Ubuntu 18.04.5 LTS on the host system.

Benchmarks — We evaluated thread coarsening on two sets of
benchmarks. The first set includes applications from Rodinia
and Pannotia [18] benchmark suites. Table I summarizes the
relevant characteristics of the applications and input datasets
used and reports the execution time and resource utilization (in
terms of logic elements, RAM blocks, and DSPs) of the baseline
code (i.e., the unmodified OpenCL implementations from the
benchmark suites). The second set includes our automatically
generated microbenchmark kernels to evaluate the effects of
different code features on thread coarsening performance.

Code variants — For all benchmarks, we generated thread-
coarsened kernels using consecutive and gapped coarsening and
coarsening degrees 2, 4, and 8. In addition, we tested pipeline
replication (2, 4 and 8 hardware pipelines) and, whenever
applicable, SIMD vectorization (with degrees 2, 4 and 8).

Evaluation metrics — For performance, we report the speedup
over the original un-coarsened kernel with a single hardware
pipeline (baseline). For resource utilization, we show the
increase in the number of ALUTs and RAM blocks required by
the thread-coarsened kernels over the baseline code.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 05,2022 at 14:22:46 UTC from IEEE Xplore. Restrictions apply.

TABLE I. CHARACTERISTICS OF RODINIA AND PANNOTIA BENCHMARKS USED IN THE EXPERIMENTS, INCLUDING EXECUTION TIME AND RESOURCE
UTILIZATION OF THE ORIGINAL CODE (BASELINE)
Suite Benchmark Dwarves Memory Access Pattern | Dataset Description Execution Time (ms) | ALUTs | RAMBlocks | DSPs
Breadth-First Search Input generator graph, #nodes=1M 172
(;; irstSearc Graph Traversal Irregular ! 31171 263 0
coPapersCiteseer (copcs) 294
Hotspot Structured Grid Regular Input generator, Size=2048 30300 14606 195 14
Pathfinder Dynamic Programming Irregular Input generator, Size=1000000x1000 567 13640 186 3
Rodi
LU Decomposition Dense Linear Algebra Regular Input generator, Size=2048 13980 13640 486 25
Back Propogation Unstructured Grid Regular Input generator, Size=1048576 792 33224 510 13
Gaussian Elimination Dense Linear Algebra Regular Input generator, Size=256 1330 19724 277 11
k-Nearest Neighbors Dense Linear Algebra Regular Input generator, Size=8.3M 918 7856 75 7
Floyd-Warshall Graph Traversal Irregular Pre generated, Size=512 1570 11457 168 3
Pannotia USA-road-d 627 11
Page rank Graph Traversal Irregular 29032 341
coPapersCiteseer (copcs) 3140

B. Experimental Results

Benchmark applications — Fig. 6 summarizes the performance
and hardware resource utilization results from gapped and
consecutive thread coarsening (Gap and Con, respectively),
pipeline replication (Pipe), and SIMD vectorization (SIMD) for
all considered benchmark applications. DSP utilization is not
shown in these graphs since it scales linearly with the degree for
all these optimizations. Additionally, Fig. 6 reports the average
of the best speedup and the respective resource utilization for
each method across all the benchmarks (rightmost bars). The
number above each column indicates the degree (among 2, 4,
and 8) that led to the best speedup. The missing results for SIMD
vectorization are due to the inability of the compiler to vectorize
kernels containing work-item identifier dependent branches
(hence, SIMD vectorization averages are not included).

We make the following observations. First, on average

pipeline replication performs slightly better than thread
coarsening but at the cost of significantly higher resource
utilization. Like SIMD vectorization, thread coarsening avoids
control logic duplication. Second, while on two benchmarks
(Hotspot and Backprop) SIMD vectorization yields the best
speedup and resource utilization, this optimization is applicable
only on kernels without complex control flows. Third, pipeline
replication can achieve a slightly higher speedup (1.91x) among
the tested benchmark applications compared to consecutive
coarsening (1.56x) and gapped coarsening (1.7x). Fourth, when
we compare the speedup from pipeline replication with the best
speedup that can be achieved from applying thread coarsening
(the best performing between gapped and consecutive), thread
coarsening can achieve on average a 2x speedup across these
benchmarks. In addition to a slightly better combined
coarsening speedup, consecutive/gapped coarsening on average
uses 34/41% fewer ALUTs and 22/32% fewer RAM blocks,
respectively, compared to pipeline

Pipe [l Gap [l Con [SIMD Vec

444

448, 845 84y 4y

Speedup

42,

2

CHUNWENO~®©

NN BFS BFS

(copcs)

PRK PRK

(copes)

Gaussian Hotspot Pathfinder LUD

Backprop

replication.

On benchmarks exhibiting irregular
memory access patterns (i.e., BFS and
PageRank), pipeline replication
outperforms thread coarsening, and gapped

Fw coarsening is preferable to consecutive

Average

coarsening. For these two algorithms, both

Pipe [l Gap [Con [SIMDVec

CanwBOO~N®

ALUT Usage over Baseline

NN BFS BFS

(copes)

PRK PRK

(copes)

Gaussian Hotspat Pathfinder LUD

Backprop

run on two graph datasets, the input graph
does not affect the performance trends.
While graph applications report limited
performance gains from pipeline
replication, Pathfinder’s performance scales
with the replication degree (not shown in the
graph). The low number of load/store units

FwW Average

and high arithmetic intensity of Pathfinder

Pipe [Gap [Con

B SMD Vec

NN BFS BFS

(copes)

PRK PRK

(copes)

LUD

Gaussian Hotspot Pathfinder

RAM Usage over Baseline

Backprop

keeps the memory bandwidth from being
saturated and lets the pipeline replication
speedup scale with the degree.

Regular applications exhibit different
behaviors. Dense linear algebra applications
(i.e., NN, LU decomposition, Gaussian

o Elimination) generally benefit from thread

Average

Fig. 6. Speedup increase (top), ALUT usage (middle), and RAM usage (bottom) compared to the baseline
kernel from the best performing coarsening or pipeline degree (degree listed above each column).

440

coarsening. For NN, gapped thread
coarsening is the most effective
optimization and provides a speedup up to

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 05,2022 at 14:22:46 UTC from IEEE Xplore. Restrictions apply.

Pipe [l Gap [l con
8

w

Speedup
canwaOON®
Speedup
P
N
N
~
-
9
~

Best of AI6 Bas‘llc‘lfMS Best of A6 Bestof Al6 Bestof Al &
d

IfIn ConslluFor If Forinifin Ifin

Pice W Gap [Con
4

Bestof A6 Bestof Al6 Bestof AIE Bestof Al6 Bestof Al
If Id Cuns‘ldFm I Forifin

accesses and gapped coarsening provides a better
performance improvement among kernels with
indirect memory accesses.

V. CONCLUSION
In this work, we studied the impact of thread

Fig. 7. Speedup comparison of microbenchmarks with regular (direct) memory accesses (left) and

~3x over the baseline code. On LU decomposition, thread
coarsening, and pipeline replication exhibit similar performance
and report a significant speedup (up to 3.5x). On Gaussian
Elimination, while thread coarsening is the most effective
implementation, it yields only a moderate speedup (about 30%)
since this benchmark is dominated by memory accesses. In all
three cases, going beyond coarsening/replication degree 4 does
not bring further performance gain.

We also observed that pipeline replication shows better
performance improvement than thread coarsening on kernels
that include barrier synchronization (Pathfinder, Hotspot, Back
Propagation, and LU decomposition) compared to the ones that
do not have a barrier. Finally, these three optimization
techniques are not mutually exclusive. For example, combining
consecutive coarsening with degree 4 and pipeline replication
with degree 2 on the Backprop kernel leads to a 3.2x speedup
over the baseline, while the best speedup achieved using thread
coarsening and pipeline replication alone are 2.1x and 2x (in
both cases with degree 4), respectively.

Microbenchmarks — Fig. 7 shows results reported on
microbenchmarks exhibiting different memory access patterns
and control-flow divergence. The x-axis shows different code
variants, where “Al n” means “Arithmetic Intensity with a
degree of n” and the following words specify the type of control
flow in the microbenchmark kernel (if-id, if-in, for-constant+if-
id, and for-in-+if-in). All these kernels access global memory
arrays containing 64M elements. We report the best speedup
for each optimization across the different degrees (2, 4, or 8).

Memory Access Type — In the presence of direct memory
access patterns, the simple microbenchmark without branches
and Al of six (AI6) achieves up to a 5.8x and a 2.1x speedup
with consecutive coarsening and pipeline replication,
respectively. We note that, as discussed in Section IIL.B,
consecutive coarsening uses fewer ALUTs and RAM blocks
than gapped coarsening of the same degree. When exploring the
same kernel but with indirect memory accesses, gapped
coarsening can only improve the performance of the kernel up
to a 1.34x speedup whereas pipeline replication was able to
achieve a 1.43x speedup. As for the benchmark applications,
however, gapped coarsening required a smaller increase in the
number of resources used to coarsen this kernel compared to
pipeline replication codes of the same degree.

Work-Item Divergence — Except for the if-in version, adding
control flow divergence resulted in a lower average speedup
from consecutive thread coarsening in kernels with direct
memory accesses. The offline compiler can take advantage of
having more information regarding the work-item divergence in
the constant-for+if-id kernel. Overall consecutive coarsening
provides a better speedup for kernels with regular memory

441

coarsening on the performance and resource
utilization of OpenCL kernels running on FPGA.
Our evaluation shows that thread coarsening can
lead to performance comparable to pipeline replication at a
reduced resource utilization cost, and is more generally
applicable than SIMD vectorization. However, the benefits of
thread coarsening can significantly decrease in the presence of
irregular memory access patterns and control-flow divergence.

VI. ACKNOWLEDGEMENTS

This work was supported through NSF awards CNS-1812727
and CCF-1741683.

References
REFERENCES
[1] Top 500 list. https://www.top500.org/
[2] Microsoft Azure FPGA. https://docs.microsoft.com/en-us/azure/machine-
learning/how-to-deploy-fpga-web-service.
[3] Amazon EC2 F1. https://aws.amazon.com/ec2/instance-types/f1/

[4] H. R. Zohouri et al, "Evaluating and optimizing OpenCL kernels for high
performance computing with FPGAs," in Proc. of SC16.

[5] K. Krommydas et al, "Bridging the performance-programmability gap for
FPGAs via OpenCL: A case study with OpenDwarfs," in Proc. of FCCM
2016.

[6] A. Sanaullah, R. Patel and M. Herbordt, "An empirically guided
optimization framework for FPGA OpenCL," in in Proc. of FTP 2018

[7]1 M. W. Hassan et al, "Exploring FPGA-specific optimizations for irregular
OpenCL applications," in Proc. of ReConFig 2018.

[8] Q. Jia and H. Zhou, "Tuning stencil codes in OpenCL for FPGAs " in
Proc. of ICCD 2016.

[9] K. Krommydas et al, "Opendwarfs: Characterization of dwarf-based
benchmarks on fixed and reconfigurable architectures," Journal of Signal
Processing Systems, vol. 85, (3), pp. 373-392, 2016.

[10] Y. Luo et al, "Evaluating irregular memory access on OpenCL FPGA
platforms: A case study with XSBench," in Proc. of FPL 2017.

[11] M. Nourian, M. E. Zarch and M. Becchi, "Optimizing complex OpenCL
code for FPGA: A case study on finite automata traversal," in Proc. of
ICPADS 2020.

[12] A. Magni, C. Dubach and M. F. P. O'Boyle, "A large-scale cross-
architecture evaluation of thread-coarsening," in Proc. of SC 2013.

[13] A. Magni, C. Dubach and M. O'Boyle, "Automatic optimization of
thread-coarsening for graphics processors," in Proc. of PACT 2014.

[14] V. Volkov and J. W. Demmel, "Benchmarking GPUs to tune dense
linear algebra," in Proc. of SC 2008.

[15] N. Stawinoga and T. Field, "Predictable thread coarsening," ACM
Transactions on Architecture and Code Optimization (TACO), vol. 15,
(2), pp. 1-26, 2018.

[16] H. Wu and M. Becchi, "Evaluating thread coarsening and low-cost
synchronization on intel xeon phi," in Proc. of IPDPS 2020.

[17] S. Che et al, "Rodinia: A benchmark suite for heterogeneous
computing," in Proc. of ISWC 2009.

[18] S. Che et al, "Pannotia: Understanding irregular GPGPU graph
applications,” in Proc. of ISWC 2013.

[19] OpenCL. https://www.khronos.org/opencl/.

[20] Intel FPGA SDK for OpenCL: Programming Guide.
https://www.intel.com/content/www/us/en/programmable/documentation
/mwh1391807965224 .html.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 05,2022 at 14:22:46 UTC from IEEE Xplore. Restrictions apply.

