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Abstract

A large number of genetic variations have been identified to be associated with Alzheimer’s disease (AD) and related
quantitative traits. However, majority of existing studies focused on single types of omics data, lacking the power of
generating a community including multi-omic markers and their functional connections. Because of this, the immense
value of multi-omics data on AD has attracted much attention. Leveraging genomic, transcriptomic and proteomic data, and
their backbone network through functional relations, we proposed a modularity-constrained logistic regression model to
mine the association between disease status and a group of functionally connected multi-omic features, i.e.
single-nucleotide polymorphisms (SNPs), genes and proteins. This new model was applied to the real data collected from
the frontal cortex tissue in the Religious Orders Study and Memory and Aging Project cohort. Compared with other
state-of-art methods, it provided overall the best prediction performance during cross-validation. This new method helped
identify a group of densely connected SNPs, genes and proteins predictive of AD status. These SNPs are mostly expression
quantitative trait loci in the frontal region. Brain-wide gene expression profile of these genes and proteins were highly
correlated with the brain activation map of ‘vision’, a brain function partly controlled by frontal cortex. These genes and
proteins were also found to be associated with the amyloid deposition, cortical volume and average thickness of frontal
regions. Taken together, these results suggested a potential pathway underlying the development of AD from SNPs to gene
expression, protein expression and ultimately brain functional and structural changes.
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Introduction
Alzheimer’s disease (AD) is a progressive and irreversible neu-
rodegenerative disease characterized by gradual loss of memory
and other cognitive functions. Older age is one of the most
important risk factors for developing AD [14]. Based on this, the
number of people aged 65 and olderwith AD is projected to reach
13.8million [4]. Yet, our understanding of this complex disease is
still very limited. Up to now, there is no clinically proved drugs to
treat, slow down or prevent AD. Taken together, Alzheimer has
become an urging public health crisis,which requires immediate
attention and effort.

In the last decade, large-scale genome-wide association stud-
ies (GWASs) have tremendously advanced our understanding of
AD. A large number of genetic variations [e.g. single-nucleotide
polymorphism (SNP)] have been identified to be associated with
AD and related quantitative traits, such as SNPs from APOE,
TOMM40 and CLU genes [26]. Although enrichment analysis (e.g.
on pathways, networks and gene ontologies) has been widely
adopted to estimate their effect on the high-profile perturba-
tions [2, 43, 47], the downstream biology through which they
exert effect to the transcriptomic and proteomic levels and
ultimately to the development of AD remains unknown.

Fast growing multi-omic data collected by large AD cohorts,
like the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [29]
and the Religious Orders Study and Memory and Aging Project
(ROS/MAP) [1], provides great opportunity for a deeper insight
of the disease mechanism. Compared with single-omics data,
multi-omic data (e.g. genotype, gene expression and protein
expression) from coupled subjects are expected to have more
power in capturing the characteristics of AD patients frommulti-
ple distinct yet connected perspectives. One common strategy to
identifymulti-omicmarkers is to examine each omics layer indi-
vidually and then seek overlapped genetic markers across them
[16]. For example, a gene is of particular interest if it contains risk
genetic variant and its corresponding messenger RNA level and
protein expression are both altered in patients. In this case, this
gene is supported by evidences from multiple sources. Thus, it
is less likely to be a false positive and will potentially serve as
an ideal target for further experimental validation in the wet
laboratory. However, due to the hidden biological interactions
and environmental effects, biological system is so complicated
that risk genetic variants in gene A do not necessarily co-occur
with the expression change of gene A and its corresponding
proteins. Therefore, it is more ideal to search for multi-omic
markers (e.g. genetic variants, RNAs and proteins) with dense
functional connections (e.g. forming a network module). Novel
functionally connected biomarkers are recognized as potential
key for the future therapeutic interventions [16, 20].

Leveraging the genotype, gene expression and protein
expression data collected from the frontal cortex region in the
ROS/MAP cohort, we proposed a modularity-constrained logistic
regression model (M-Logistic) to identify functionally connected
SNPs, genes and proteins predictive of AD status. In addition
to different types of omics data, various biological networks
capturing the functional relationships between SNPs, genes and
proteins were collected, integrated and further incorporated
into the model. On top of this, a new regularization term is
introduced to enforce the modular structure of selected multi-
omic features in the prior network. In other words, instead of
individual features, this new method is expected to generate
a list of multi-omic features that not only are predictive of
disease status but also have dense functional connections as
shown in the prior network. Tested on the real data collected

in the ROS/MAP cohort, this new model yielded overall better
prediction performance compared with other state-of-the-art
methods. SNPs, genes and proteins selected by M-Logistic are
more connected than those selected by other methods. In
particular, we identified several trans-omic paths from SNPs
to genes and proteins, suggesting that AD could be partially
a result of genetic variations due to their cascade effect on
the downstream transcriptomic and proteomic level. Upon
further examination, these genes and proteins were found to
be significantly associated with amyloid deposition, cortical
volume and thickness of frontal cortex regions. Their brain-wide
expression profiles in the Allen Human Brain Atlas (AHBA) are
highly correlatedwith the brain activation patterns during vision
tasks, a brain function partly controlled by frontal cortex [15, 28].

Methods
Study sample

All the data analyzed were obtained from the ROS and MAP.
The ROS/MAP cohort was built by Rush University from reli-
gious communities tomeasure the progression of amnestic mild
cognitive impairment (MCI, a prodromal stage of AD) to early
probable AD. The combined ROS/MAP cohort includes around
600 participants under age 90, which constitute a very rich
repository of multi-modal data, including GWAS data, whole-
genome sequencing data, cognitive, behavioral and clinical data.
Themore detailed description could be found in [1]. In this paper,
GWAS genotype data, quality-controlled RNA sequencing (RNA-
Seq) gene expression and protein expression data collected from
prefrontal cortex tissue inside the brain were downloaded. To
perform the proposed joint analysis, only subjects with all three
types of data were included. In total, we have 179 subjects with
full set of data, including 77 cognitive normals (CNs), 46MCIs and
56 AD patients. The detailed demographic information can be
found in Table 1. We observed significantly higher female/male
ratio in AD group, and AD patients are on average 3 years older
than those in the CN group, consistent with existing findings
that age and gender are two prominent risk factors for AD. For
education years, although it has also been suspected as a con-
founding factor for AD, no significant difference was observed
across diagnosis groups, possibly due to our small sample size.

GWAS genotype data preparation

ROS/MAP samples were genotyped on the Affymetrix GeneChip
6.0 platform [8]. Samples and SNPs of GWAS data were quality
controlled with SNP call rate <95%,Hardy–Weinberg equilibrium
test P < 10−6 in controls and minor allele frequency (MAF)
<1%. After that, non-Hispanic Caucasian participants were
selected by clustering with CEU (Utah residents with Northern
and Western European ancestry from the Utah centre d’Etudes
du polymorhisme humain (CEPH) collection) + TSI (Toscani
in Italia) populations using HapMap 3 genotype data and the
multi-dimensional scaling analysis [19]. Un-genotyped SNPs
were imputed using Markov Chain framework for genotype
imputation and haplotyping (MaCH) with 1000 Genomes Project
as the reference panel [34]. Finally, we have the genotype data of
6 115 610 SNPs from 1709 subjects. All genotype data is coded as
the number of minor alleles for the subsequent analysis.

RNA-Seq gene expression preparation

We downloaded the RNA-Seq gene expression data in the
ROS/MAP cohort, which was collected from the prefrontal cortex
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Integrative-omics for discovery of network-level disease biomarkers 3

Table 1. Demographic information of the ROS/MAP participants included in this study

Diagnosis CN MCI AD

Subject Number 77 46 56
ROS/MAP 47/30 19/27 28/28
Male/Female 35/42 21/25 22/34
Education (mean ± std.) 16.7 ± 3.2 16.8 ± 3.3 16.8 ± 3.7
Age (mean ± std.) 83.0 ± 4.5 84.6 ± 4.5 86.3 ± 3.5

tissue in the brain. The RNA-Seq data were reprocessed in par-
allel with other accelerating medicines partnership Alzheimer’s
disease (AMP-AD) RNA-Seq datasets. This second version,
which is expected to have better quality, was downloaded
for our subsequent analysis. The input data for the RNA-Seq
reprocessing effort was aligned reads in bam files that were
converted to fastq using the Picard SamToFastq function. Fastq
files were re-aligned to the reference genome using STAR with
twopassMode set as Basic. Gene counts were computed for
each sample by STAR by setting quantMode as GeneCounts.
These gene level counts furtherwent through normalization and
adjustment to remove the effects of relevant factors such as age,
gender, education, batch,RNA integrity number and postmortem
interval (PMI). Detailed reprocessing and normalization steps
can be found in the AMP-AD knowledge portal (https://www.
synapse.org/#!Synapse:syn9702085/). In total, we have the
expression data of 15 582 genes from 632 subjects.

Protein expression data preparation

We downloaded the protein expression data from the same
cohort, which was also collected from the prefrontal cortex
tissue. Selected reaction monitoring (SRM) technique was used
to quantify the proteins in the frozen tissue. The samples were
prepared for liquid chromatography-selected reaction monitor-
ing (LC-SRM) analysis using standard protocol [3, 35]. All the data
weremanually inspected to ensure correct peak assignment and
peak boundaries. The abundance of endogenous peptides was
quantified as a ratio to spiked-in synthetic peptides contain-
ing stable heavy isotopes. The “light/heavy” ratios were log2-
transformed and shifted such that median log2-ratio is zero.
Normalization was performed to adjust for differences in pro-
tein amounts between the samples. During that normalization,
the log2-ratios were shifted for each sample to make sure the
median is set at zero. Detailed processing steps can be found
in the AMP-AD knowledge portal. Using the regression weights
derived from the CN participants, peptide abundance data were
further adjusted to remove the effects of age, gender, education,
PMI and batch. Finally, we have the expression data of 186
peptides (corresponding to 126 unique genes) from1227 subjects.

Selection of SNPs, genes and proteins

Given the difficulty of modeling all SNPs, genes and proteins, we
narrowed down the total number of omics features by selecting
only a subset of SNPs, genes and proteins with known functional
connections. Considering that we have genome-wide genotype
and transcriptome-wide gene expression data, the limited num-
ber of peptides measured made proteomic data a narrow bot-
tleneck for the proposed integrative omics analysis. To address
this problem, we took a bottom-up approach where proteins
measured in the prefrontal cortex were used as seeds to select
a subset of relevant SNPs and genes for subsequent analysis.

As shown in Figure 1, in the proteomic layer, abundance level
of 186 peptides, corresponding to 126 unique genes (gene set
A), were measured in the ROS/MAP cohort. In the functional
interaction network obtained from the REACTOME database,
these 126 genes were found to interact with 954 genes (gene
set B) and these interactions were all manually curated from
known pathways [9]. Among these 1080 (126+954) candidate
genes, 743 of themwithout missing RNA-seq data were included
to represent the transcriptomic level. Of note, we did not further
filter these genes based on their differential expression in AD. In
the genomic level, we identified SNPs located on the upstream
of these 743 genes within the boundary of 5K. To ensure the
functional connection of selected SNPs and their downstream
genes, we included only SNPs significantly affecting the tran-
scription factor-binding activity, based on the single nucleotide
polymorphisms to transcription factor binding sites (SNP2TFBS)
database [25]. These relationships between SNPs, genes and
proteins/peptides are used to build a trans-omic functional inter-
action network to guide the search of functionally connected
features related to AD.

Prediction outcome

Extracted genotype, gene expression and protein expression
data were used to classify AD patients from CNs. For all the
participants included in this study, their final clinical diagnosis
when the brain tissue was collected was used to indicate their
disease status. Since theMCI participants in the ROS/MAP cohort
were defined as nonsymptomatic group, we grouped MCI sub-
jects with CNs so that we can have a relatively balanced case
control dataset.

Modularity-constrained logistic regression

In this section, we denote matrices as boldface uppercase letters
and vectors as boldface lowercase letters. xj ∈ R

p is a concate-
nated feature vector of genotype, gene expression and protein
expression data for jth subject, and yj ∈ {1, 0} is the binary
diagnosis status for jth subject. Let X = [x1, x2, . . . , xn]T be the
predictors and y = [y1, y2, . . . , yn]T be the binary disease status as
outcome. The regression weight vector is denoted as w, where
w0 is the bias.

Traditional logistic regression is a supervised machine learn-
ing model dedicated for classification tasks. It aims to classify
two groups using a set of features. With the hypothesis P(yi = 1 |
xi,w) = hw(xTi ), where

hw(xTi ) = 1

1 + e−xTi w−w0
. (1)

It aims to find aw that canmaximize the log-likelihood function
as shown below:

�(w) =
n∑
i=1

[
yi log hw(xTi ) +

(
1 − yi

)
log

(
1 − hw(xTi )

)]
.
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4 Xie et al.

Figure 1. Major steps taken to pre-filter SNPs, genes and protein. (a) 186 peptides in the proteomic layer were used as seeds. (b) 186 peptides weremapped to 126 unique

genes (gene set A). (c) 954 genes were found to interact with gene set A in Reactome functional protein interaction database. (d) For gene set A and B, we extract SNPs

that are located within upstream 5K boundary and have potential effect on transcription factor binding activity according to SNP2TFBS database.

Later, to address the over-fitting problem, l1 norm was intro-
duced into logistic regression as an extra penalty term as

�(λ,w) = − 1
n

�(w) + λ‖w‖1.
This additional l1 norm penalty minimizes the usual sum

of the absolute values of the coefficients. With this constraint,
minimizing the cost function is expected to select only a small
set of relevant features without sacrificing the prediction per-
formance. Compared with traditional logistic regression, where
almost all features are considered to be outcome relevant, results
from this constrained logistic regression are much easier to
interpret. This l1 norm penalty is particularly helpful when the
predictors outnumbers the subjects/samples [33].

However, when dealing with a group of highly correlated
features, l1 norm penalty will result in a random selection of fea-
tures. That is,multiple runs of logistic regression on the same set
of data will possibly generate different set of selected features,
which presents challenges for replicating and interpreting the
results.

To address this problem, it was proposed to incorporate both
l1 and l2 norms together, known as elastic net penalty [10, 49].
Its penalized negative log-likelihood function is formulated as

�(λ,α,w) = − 1
n

�(w) + λα‖w‖1 + 1
2

λ(1 − α)‖w‖2, (2)

where ‖ · ‖1, ‖ · ‖2 indicate l1 and l2 regularization, respectively.
The l2 norm is the sum of squared values of the coefficients.
Compared with l1 norm alone, its combination with l2 norm
(a.k.a, elastic net penalty) helps relax the sparsity constraint and
encourage the selection of more correlated features.

Another strategy to handle the highly correlated predictors
is to explicitly incorporate the correlation structure into the
sparse prediction model. In this case, highly correlated features
are encouraged to be selected/excluded together [13, 21, 23, 46].
One example is Graph Laplacian logistic using GraphNet penalty,
where a graph G ⊆ R

p×p, indicating the correlation structure
between predictors is used as a priori to guide the feature

selection (Equation 3) [13].

�L(λ,α,w) = − 1
n

�(w) + λ‖w‖1 + 1
2

αwTLw. (3)

Here, L is the corresponding Laplacian matrix of graph G. With
this constraint, pairs of features that are highly correlated in the
prior network are expected to be selected or excluded together.
Although this partly addressed the stability problem of feature
selection, GraphNet penalty only accounts for the local topology
information with a focus on pairwise similarity. For multi-omic
analysis, this penalty may not be strong enough to enforce the
dense functional connection of selected features in the prior
network.

Inspired by the concept of network modularity [32], we
propose a new modularity-constrained logistic regression (M-
Logistic) that leverages a global network property to encourage
the selection of a subnetwork rather than individual features
scattered across the prior network. Given the trans-omic
network capturing the functional relationships between SNPs,
genes and proteins, we formulate it as a graph and its
corresponding adjacency matrix is denoted as G ⊆ R

p×p. The

modularity matrix is denoted as B, where Bij = Gij − hihj
2m [32]. It

evaluates whether the number of links between nodes i and j is
significantly more than expected. hi and hj are the degrees of the
ith and jth node in the prior network, andm is the total number of
links in the network. Following [7, 17], we propose a new penalty
term as PM(w,B) =< wwT,B > to impose a modular structure in
the selected features. Here, <> is the Frobenius inner product
defined by < A,B >= tr(ATB). Maximizing the Frobenius inner
product between wwT and the modularity matrix B encourages
the selection of features with dense functional connections
in the prior multi-omic network. Taken together, the objective
function of our new modularity-constrained logistic regression
model is formulated as in Equation 4,

�B(λ,α,w) = − 1
n

�(w) + λ‖w‖1 − 1
2

αwTBw. (4)
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With the modified quadratic regularization term, this model
aims to find functionally connected omics markers. Here, λ and
α are the parameters that control and balance the contribution
from two regularization terms. Note that the objective function
in Equation 4 is not convex because themodularitymatrixBused
in < wwT,B >= wTBw is indefinite. To make B negative-definite,
we introduced an auxiliary functionwhere B is replaced by B−λBI
and λB is the absolute maximum eigenvalue of B.

This new model can be solved using a modified coordinate
descent method. Following the algorithm in [10], which was
originally proposed to solve Equation 2, a coordinate descent
step can be taken to solve the proposed objective function. The
gradient of Equation 4 at wj is calculated as

∂

∂wj
�B(w) = − 1

n

n∑
i=1

xij
[
yi − hw

(
xTi

)] + λ−αBjjwj

− 1
n

∑
i=1

xij

⎡
⎣ 1
xij

∑
k�=j

(αBjkwk)

⎤
⎦.

Similarly as in [10], we applied the iterative reweighted least
squares method [18] to update the the regression weights as
shown below:

w̃j ←
S

{∑n
i=1 wixij

[
yi − hw

(
xTi

) + 1
xij

∑
k�=j(αBjkwk)

]
, λ

}
∑N

i=1 wix2ij + (−αBjj)
. (5)

Here, S{z, c} = sign(z)(|z|−c) is the soft-thresholding operator and
is defined as

S{z, c} =

⎧⎪⎨
⎪⎩

z − c if z > 0 and c < |z|
z + c if z < 0 and c < |z|
0 if c ≥ |z|.

On top of this, we introduced an iterative procedure to solve
the objective function (Equation 4). The procedure stops when
it satisfies a predefined stopping criterion. Algorithm 1 shows
the pseudocode of the M-Logistic algorithm.

1: Input: X ∈ R
n×p, Y ∈ R

n, B ∈ R
p×p, λ, α

2: Initialize w = [w1,w2, · · · ,wp] ∈ R
p.

3: while not converged do
4: for each wj in w do
5: Update wj using Equation∼∼??.
6: end for
7: Scale w so that ‖w‖1 = 1.
8: end while

Algorithm 1: The M-Logistic algorithm

Parameter Tuning

Due to the limited number of samples, we performed nested 10-
fold cross-validation (CV) to tune the parameters, where sam-
ples were split into training, validation and test datasets. More
specifically, in each outer loop, 161 participants were selected as
training and validation datasets and the rest 18 samples were
kept as test dataset. In each inner loop, 90% of 161 participants
were used to train the model and the rest 10% were used to
validate the performance. For each fold, the portion of AD andCN

participants was kept the same. We performed the grid search
method, and hyperparameters that yielded best prediction per-
formance on the validation dataset were selected as optimal
parameters.

Result
Performance comparison with competing methods

We compared the performance of our proposed model with
random forest and three state-of-the-art logistic-based classifi-
cation models, using GraphNet, elastic net and Lasso as penalty
terms, respectively. We focused on these three sparse logistic
regression models because they can perform classification and
feature selection at the same time. Classic classificationmodels,
such as support vector machine (SVM) and random forest, can
not select outcome-relevant features, and therefore are not
included for comparison. We denote our proposed modularity-
constrained logistic model as M-Logistic, GraphNet-constrained
logistic model as G-Logistic, elastic net-constrained logistic
model as Elastic Logistic and Lasso-constrained logisticmodel as
Lasso Logistic. Elastic Logistic and traditional Logistic regression
with L1 norm were both implemented using glmnet R package.
To provide an unbiased comparison of performance for each
method, partition of subjects during the CV procedure was
kept identical for all methods. After comparing the predicted
labels and actual labels of all test subjects, prediction accuracy
was calculated and used to compare the performance across
different methods.

The prediction performance of all five methods on test
dataset is shown in Table 2. We observed that, across all 10-
fold, M-Logistic largely outperforms all other state-of-the-art
logistic regression models. For the rest, it yielded the second
best performance. G-Logistic model achieved overall similar
classification accuracy as M-Logistic. Without the guidance of
explicit data correlation structure, Elastic Logistic, random forest
and Lasso Logistic models are not as accurate as other methods.
Particularly, Lasso Logistic model gives the worst average
prediction performance, which is expected considering its lack
of power in handling correlated features. The same experiment
was repeated with 5-fold nested CV, in which M-Logistic yielded
classification accuracy around 78% on test dataset and still
greatly outperformed other competingmethods (Supplementary
Table 1). It is worth noting that this performance is only based
on a small set of functionally connected SNPs, genes and
proteins, the number of which was further limited because of
the bottleneck in protein data of the ROS/MAP cohort. Therefore,
the classification performance shown here can not reflect the
true predictive power of these three types of multi-omic data,
which is expected to be much higher if more data is available.

Functional connections between selected multi-omic
features

For feature selection, M-Logistic identified around 305 features
predictive of disease status,which appeared in ¿6-fold, including
74 SNPs, 173 genes and 58 proteins. Similarly, G-Logistic identi-
fied 147 frequently selected omics features. Elastic Logistic and
Lasso Logistic identified 543 and 11 omics features, respectively.
When mapped to the prior functional connectivity network,
features selected by G-Logistic scatters across the network with
few connections (Supplementary Figure 1), which suggests that
the local topology information used in GraphNet penalty is not
strong enough to form subnetwork structure among selected
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6 Xie et al.

Table 2. Performance comparison on test set between M-Logistic and other methods

fold 1 fold 2 fold 3 fold 4 fold 5 fold 6 fold 7 fold 8 fold 9 fold 10 Mean

M-Logistic 0.7059 0.7222 0.8333 0.8333 0.7222 0.7778 0.7222 0.7778 0.7222 0.7222 0.7539
G-Logistic 0.6471 0.7222 0.8333 0.7778 0.6667 0.7059 0.7222 0.8333 0.7778 0.6667 0.7353
Elastic Logistic 0.7059 0.6111 0.7778 0.8333 0.6667 0.7222 0.8333 0.7778 0.6667 0.6667 0.7262
Random Forest 0.7059 0.7222 0.7222 0.7778 0.6667 0.7778 0.7222 0.6667 0.6667 0.7778 0.7206
Lasso Logistic 0.7647 0.7222 0.7222 0.7222 0.6667 0.6667 0.7222 0.6667 0.6111 0.5000 0.6765

Figure 2. 116 connected features selected by M-Logistic were mapped to the prior network..

features. For Lasso Logistic, no functional interactionwere found
among those 11 frequently selected features. For Elastic Logistic,
its selected multi-omic features are largely connected to each
other in the prior network (Supplementary Figure 2). Multi-omic
features selected by random forest also have a few functional
connections surrounding MAPT and APP proteins, but are not
as well connected as those selected by M-Logistic and Elastic-
Logistic models (Supplementary Figure 3).

Out of 305 multi-omic features (74 SNPs, 173 genes and 58
proteins) selected by at least 6-fold in M-Logistic, 116 of them
were found to have connections in the prior network and the
rest were not directly connected with any other selected fea-
tures. Shown in Figure 2 were all the subnetworks where 116
connected features were mapped back to the prior network. Size
of each node was made proportional to the number of their
connected edges. We observed three big subnetworks with ¿10
nodes. The largest connected network component involves 30
multi-omic features with 30 edges, including 5 SNPs, 20 genes
and 5 proteins. The rest of the connected features mostly form
small subnetworks, ranging in size from two to three. These fea-
tures, as well as those not connected ones, are found predictive
yet not well functionally connected, possibly due to the fact that

they are false positives or their functional connections have not
been previously studied yet.

Since we are particularly interested in the multi-omic fea-
tures that can potentially reveal the underlying functionalmech-
anism of AD, in the subsequent sections, we focus on the 30
multi-omic features in the largest connected subnetwork, which
are not only predictive of disease status but also functionally
connected with strong evidence from prior knowledge (i.e. sup-
ported by existing findings).

In the largest subnetwork, we observed multiple trans-
omic paths from SNPs to genes and then proteins, e.g. from
rs2147471 to NCSTN gene and APP protein. Note that these
SNPs were extracted from upstream of their connected genes
and has significant effect on the transcription factor-binding
activity. Thus, these SNPs are very likely to have an influence on
the expression of their connected genes. Also, the functional
interaction between genes and proteins are curated from
the REACTOME pathways with direction information (e.g.
activation and inhibition). Therefore, in this network, genes
have a regulatory role toward the expression of their connected
proteins. Taken together, these trans-omic paths suggest that
development of AD can partly be a result of genetic variations
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Figure 3. Pearson’s correlation coefficients between the absolute regression

weight obtained from M-Logistic across 10 folds and node degree. Left: correla-

tion is calculated using all selected features. Right: correlation is calculated using

a subset of selected features with degree ≥ 3. Red: node degree obtained from

the complete prior network. Blue: node degree obtained from the sub-network

of selected features.

(i.e. SNPs) due to their cascade effect on the expression
of downstream genes, which further regulate the protein
expression.

Association between degree and regression weights

Hub genes are known to be likely disease-associated genes.
Therefore, features with higher degree in the identified sub-
networks are expected to be more important with higher abso-
lute regression weights. Therefore, we further examined the
correlation between degree of selected multi-omic features and
their absolute regression weights derived from M-Logistic. For
the 30 omics features in the largest subnetwork, the average
Pearson’s correlation between node degree and absolute weight
is 0.5 across 10-fold (Figure 3). When we excluded the features
with degree ≤ 3, the average correlation across 10-fold increases
significantly to 0.69. This indicates that the importance of iden-
tified multi-omic features is more proportional to their degree
only when they have many known interactions in the prior net-
work. Upon further examination,we observed that features with
high degree have medium to high absolute regression weights,
whereas features with low degree can have very small or very
highweights.This is possibly due to the fact that their lowdegree
may be a result of few functional interaction or few known
interaction. That is, some genes/proteins may have interaction
with many others but have not been previously studied much,
leading to their low degree in the prior network. Therefore, the
importance of those low-degree features is less determined than
that of the hub ones.

It is also worth noting that this strong correlation between
degree and absolute regression weights was only observed using
the subnetwork connecting selected features by M-Logistic, i.e.
Figure 2. That is, the degree of selected features is calculated
after removing those features with zero regression weights and
their edges from prior network. The degree from the complete
prior network is not as strongly correlated with the absolute
regression weights. The correlation averages to 0.14 for all nodes
across 10-fold and 0.12 for nodes with degree ≥ 3 (Figure 3). This
suggests that the degree information in the prior network may
not be indicative of the features’ importance. Hub genes only
become importantwhenmany of their neighbors are also related
to the disease.

Figure 4. Top 10 pathways enriched by genes and proteins in the largest sub-

network, ranked by -log10(p).

Expression quantitative trait loci (eQTL) analysis
of frequently selected SNPs

eQTL mapping is a widely used tool for identifying genetic
variants that affect gene regulation [11]. SNPs significantly asso-
ciated with gene expression are named as eQTLs. Details of the
eQTL analysis can be found in [39]. For five SNPs in the largest
subnetwork, we examined whether they are eQTLS with poten-
tial regulatory role in the downstream transcriptomic level in the
Brain eQTL Almanac (BRAINEAC) database [39]. This database
provides the association between SNPs and gene expression
tested on 10 brain tissues of 134 neuropathologically confirmed
control individuals of European descent. We focused on the
frontal cortex brain region, where our gene and protein expres-
sion data were collected from. For five SNPs in the largest sub-
network, four of them (i.e. rs1886419, rs12413321, rs2147471 and
rs3766382) were found to be eQTLs in the frontal cortex tissue
(false discovery rate (FDR)-corrected P < 0.05).

Pathway enrichment analysis

For 20 genes, 5 proteins and 5 SNPs in the largest connected
subnetwork, we performed pathway enrichment analysis using
the Kyoto Encyclopedia of Genes and Genomes (KEGG) database
[22]. The enrichment analysis was performed using EnrichR web
server [6]. In total, 73 pathways were found to be significantly
enriched by our gene/protein set, with corrected P-value ¡ 0.05
(Supplementary Table 1). Shown in Figure 4 was top 10 enriched
KEGG pathways with smallest P-values after correction. Top
significant pathways include AD, pathways in cancer and a few
unexpected pathways involved with virus infection, e.g. hepati-
tis B and human immunodeficiency virus 1 infection. Though
not traditionally known to be associated with AD, these virus
infection pathways have been increasingly reported in recent
AD studies. For example, results from a recent study focusing
on microglia-specific expression changes suggested a potential
role of hepatitis B in the Alzheimer’s brain [27]. In a racially
diverse old population, cytomegalovirus infection was found to
be associated with an increased risk of AD and a faster rate of
cognitive decline [5].

Association with brain function

Since the gene and protein expression data were collected from
frontal cortex tissue, we further investigated whether identified
genes and proteins were associated with any function of frontal
cortex region using Neurosynth [45]. This platform takes thou-
sands of published articles reporting the results of functional
magnetic resonance imaging (fMRI) studies and performs large-
scale, automated synthesis of fMRI data. For each of 1340 brain
function terms, NeuroSynth provide an activation brain map by
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Figure 5. The correlation between brain activationmap of “vision” and the brain

wide expression profile of 20 genes in the largest sub-network.

Figure 6. Six bilateral frontal cortex regions in the ADNI cohort with amyloid

deposition, cortical volume and average thickness data. Left: ventral view. Top

right: lateral view. Bottom right: medial view.

integrating the findings from related publications. After map-
ping proteins to genes, 20 unique genes were identified. For
each of them, we performed individual query in the Neurosynth
platform to identify its brain-wide gene expression profile [45],
which is collected from the AHBA [42]. We then decoded these
brain-wide gene expression profiles by comparing them with
the brain activation map of 1340 brain function terms using
Pearson’s correlation. Ultimately, we found the brain function
term ‘vision’ to be highly correlated with most genes (Figure 5).
Particularly, for PRKCB and APP, their brain-wide expression pro-
files are found to be highly correlated with the ‘vision’ activation
map (≥ 0.4), a brain function term known to be impaired in AD,
in MCI and in individuals with cognitive complaints who do not
have performance deficits [12, 31, 40].

Although frontal cortex has been a traditionally disregarded
brain region in vision, recent studies observed the activation
of frontal cortex in specialized vision tests, which attributed
the brain’s focusing ability [38]. Prefrontal cortex is known to
help compress the visual space before eyemovements [48].More
specifically, the exact locationwhere the brain tissue is collected,
dorsal lateral prefrontal cortex, is also having a role in vision, i.e.

making eye movement at a memorized location and producing
sequences eye movements [36]. Other top brain function terms
enriched by these 20 genes are ‘information retrieval’, ‘recogni-
tion’, ‘memory’, all of which are well-known cognitive functions
impaired in AD patients [45].

Association with neuroimaging phenotype

In addition to brain function, we also examined the association
of those 20 genes in the largest subnetwork with neuroimag-
ing phenotype of frontal regions. We downloaded the amy-
loid deposition, volume and thickness measures of six bilateral
frontal cortex regions from the ADNI cohort (Figure 6) [30]. These
measurements were extracted from AV45 positron emission
tomography (PET) imaging and structural MRI imaging scans.
Preprocessed and quality-controlled data were readily available
(https://loni.usc.edu) . Using the regression weight derived from
CNs, amyloid deposition data were preadjusted with baseline
age, gender and education as covariates. Intracranial volume
was applied as an additional covariate for cortical volume and
average thickness. Finally, we have the amyloid deposition, cor-
tical volume and average thickness measures for six bilateral
frontal cortex regions, i.e. in total, 36 neuroimaging phenotypes.
After extracting SNPs from those 20 genes and their upstream
region (boundary: 5K), we performed the targeted association
analysis between 8833 SNPs and those 36 neuroimaging pheno-
types using PLINK [37].

Shown in Figure 7 is the heatmap for the FDR-corrected
significance of each association. SNPs from CASP8 are mostly
associated with the amyloid deposition of the frontal area. In
contrast, SNPs from PRKCQ, PRKCB and CTNNA1 largely con-
tribute to the changes in cortical volume and thickness, but not
amyloid deposition. APP is the only gene with SNPs associated
with both amyloid deposition and cortical thickness, but in
different frontal regions. It is also worth noting that identified
genetic association is not bilaterally symmetric, i.e. most SNPs
are associated with the phenotype from either left hemisphere
or right hemisphere, but not both. This is as expected consid-
ering the hemispheric asymmetry in both brain function and
structure [24].

Conclusion
We proposed a new modularity-constrained logistic model to
jointly analyze genotype, gene expression and protein expres-
sion data for identification of functionally connected omics
features related to AD. The newly introduced penalty termmaxi-
mizes the global modularity of selected features in the prior net-
work and encourages the selection of multi-omic features form-
ing network modules. With this new penalty term, M-Logistic
is advantageous in that features can be selected either because
they are predictive of AD themselves or because they are closely
connected with other predictive ones in the prior network. Com-
pared with the GraphNet penalty that enforces local pairwise
similarity,modularity-based penalty helps identify featureswith
significantly improved functional connectivity. In particular, we
found that some features form trans-omic paths from SNP to
gene and then protein. This suggests that AD may be partly a
result of genetic variation due to their potential cascade effect
on the downstream transcriptome and proteome level. AD is
the most significant pathway enriched by the genes and pro-
teins identified by M-Logistic model. Although gene and protein
expression data were collected from frontal cortex, AD-related
genes identified by M-Logistic were found to be associated with
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Figure 7. The association of SNPs from 20 genes in the largest sub-network with the phenotypes from 6 frontal cortex regions, including amyloid deposition (Left

Panel), cortical volume (Middle Panel) and average thickness (Right Panel). Top panel is for left brain and bottom panel is for right brain. The color inside the heatmap

indicates the -log10 transformed p-value (FDR corrected) of each association. Significant associations with corrected p ≤ 0.05 are highlighted with star.

both function and structure of frontal cortex. Taken together, it
indicates a potential pathway underlying the development of AD
from SNPs to gene expression, protein expression and ultimately
brain functional and structural changes.

Despite the promising findings, this integrative omics
approach is not capable in handling missing data, like many
existing multi-view prediction models. It requires the genotype,
gene expression and protein expression data collected from
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same set of subjects. As a result, a large portion of subjects had
to be excluded. Also, this type of multi-omic data is still very
limited, particularly in the brain tissues. We can hardly validate
these findings using data from independent cohorts for now.
This limitation can be addressed by solving the missing data
problem. Small pieces of missing data can be imputed using
methods such as singular value decomposition [41] and matrix
completion [44]. In case of subjects with large chunk of missing
data, one possible solution is to examine two types of data at
a time to maximize the number of available subjects. However,
none of these strategies will work in case ofmissing entire omics
type. For example, for disease research, most projects are small
scale and only collect one or two types of omics data. Our next
step is to further improve this model to enable the integrative
analysis of multi-omics data from decoupled subjects. In this
case, we can leverage the omics data collected from different
projects, which will give us access to more samples for external
validation.

Key Points
• The proposed model enables jointly analyze geno-
type, gene expression and protein expression data
and identification of functionally connected omics
features related to disease.

• Our method selected omics features that form trans-
omic paths from SNP to gene and then protein, when
evaluated on an Alzheimer dataset. This suggests that
Alzheimer may be partly a result of genetic variation
due to their potential cascade effect on the down-
stream transcriptome and proteome level.

• SNPs and genes selected to be predictive of AD are
associated with changes in both brain structure and
function.

Supplementary data

Supplementary data are available online at https://academic.
oup.com/bib.

Data Availability

The source code is available through GitHub (https://github.
com/linhui701/Modularity-Logistic) . Multi-omic data used
in this analysis is from the ROS/MAP project and is avail-
able after application through the AMP-AD knowledge portal
(https://adknowledgeportal.synapse.org).
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