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Abstract
While heterogeneous architectures are increasing popular with High Performance

Computing systems, their effectiveness depends on how efficient the scheduler is at

allocating workloads onto appropriate computing devices and how communication

and computation can be overlapped. With different types of resources integrated

into one system, the complexity of the scheduler correspondingly increases.

Moreover, for applications with varying problem sizes on different heterogeneous

resources, the optimal scheduling approach may vary accordingly. Thus, we

introduce a Profile-based AI-assisted Dynamic Scheduling approach to dynamically

and adaptively adjust workloads and efficiently utilize heterogeneous resources. It

combines online scheduling, application profile information, hardware mathemati-

cal modeling and offline machine learning estimation modeling to implement

automatic application-device-specific scheduling for heterogeneous architectures. A

hardware mathematical model provides coarse-grain computing resource selection

while the profile information and offline machine learning model estimates the

performance of a fine-grain workload, and an online scheduling approach dynam-

ically and adaptively distributes the workload. Our scheduling approach is tested on

control-regular applications, 2D and 3D Stencil kernels (based on a Jacobi Algo-

rithm), and a data-irregular application, Sparse Matrix-Vector Multiplication, in an

event-driven runtime system. Experimental results show that PDAWL is either on-

par or far outperforms whichever yields the best results (CPU or GPU).
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1 Introduction and Motivation

Nowadays, most High-Performance Computing (HPC) platforms feature heteroge-

neous hardware resources such as CPUs, GPUs, FPGAs, etc. [25]. In the future, the

nodes of such platforms are expected to be even more heterogeneous. They will

feature side-by-side, fast and slow computing units mixed with accelerators, I/O

nodes, quantum technology [13], among others. Heterogeneous platforms must

offer the promise of both better energy efficiency and performance. However, this

comes at a high cost in terms of code development and resource management.

Parallel computing models and architectures have all increased in usage and

importance since their emergence. The heterogeneity of actual platforms compli-

cates the task of optimizing parallel computing programs if done by hand. This is a

strong motivation for the development of automated tools and techniques for

program optimization.

Indeed, even with successive generations of large-scale scientific HPC systems,

data generation has grown faster than compute capabilities, which means that

dealing with data-intensive applications has become a crucial challenge in scientific

domains [6]. The integration of data analytics, e.g.,Machine Learning, and exascale

computing have been hailed as the fourth paradigm of science [33].

Meanwhile, whole sectors of scientific computing continue to rely on iterative

algorithms. In particular, Stencil-based computations are at the core of many

essential scientific applications: Stencils are used in image processing algorithms,

e.g., convolutions; partial differential equation solvers, Laplacian transforms, or

computational fluid dynamics [21], digital signal processing [15], linear alge-

bra [1], etc. More specifically, the Jacobi iterative method has been proposed to

solve sparse triangular systems arising from incomplete Cholesky precondition-

ing [39]. A diverse set of realistic symmetric positive definite test problems have

proved that Jacobi iterations are useful for an extensive range of problems [9].

Other kernels are also used in iterative algorithms, such as sparse matrix-vector

multiplications (SpMV). Unlike Stencil (regular computing per row/column), the

individual work-items of SpMV exhibits a different computational load profile since

the numbers of non-zero elements per row may vary significantly.

However, both Stencil and SpMV can be classified as co-running algorithms and

can be executed on heterogeneous systems. Co-running has been defined by Zhang

et al. [46] as follows: applications can be decomposed into multiple tasks and the

system allows these tasks to run on CPUs or general-purpose accelerators

simultaneously, e.g. GPU, to process different parts of the same input data. The

challenge lies in how multiple Stencil or SpMV tasks can be assigned to CPUs and

GPUs concurrently to increase performance.

Our research is based on the following observations: most work dealing with

accelerators—GPUs—has followed one of two paths: (1) most of the compute-

intensive parts of applications are fully offloaded to a GPU, or (2) the workload is

statically partitioned between CPUs and GPUs, with each partition running

independently. Some exceptions are listed in Sect. 5. This paper presents a novel

approach to the dynamic scheduling of tasks on heterogeneous systems. It is based
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on a profile-based Artificial Intelligence approach and explores parallelism on GPU-

based heterogeneous platforms.

The key contribution of our work is in providing a complete solution which

combines profile information, a hardware resource mathematical model, online

scheduling and offline machine learning to dynamically and adaptively distribute

tasks onto CPUs and/or GPU, and ultimately, increase performance and lower

energy consumption. Furthermore, we demonstrate how this solution can be utilized

for multiple applications running on different hardware platforms. Our Profile-based

Iterative Dynamic Adaptive WorkLoad Balance (PDAWL) approach for heteroge-

neous architectures has the following characteristics:

1. By leveraging an online scheduler, it can dynamically and adaptively adjust the

workload based on the (dynamic) run-time situation, (static) information about

the hardware platform, and a performance-workload estimation model (com-

munication vs. computation) provided by an offline machine learning approach.

Combining online and offline information improves flexibility and accuracy.

2. It follows an event-driven approach and employs multiple levels of granularity

for the synchronization to explore tasks parallelism and flexibility of

scheduling.

3. It employs a pure CPU and pure GPU machine learning estimation model to

predict the performance of the heterogeneous model.

4. It trains small workload tasks to predict the performance of middle or large

workload tasks.

5. It can be utilized to dynamically and adaptively schedule co-running

applications, such as Stencil (Jacobi algorithm) and SpMV discussed in this

paper, on heterogeneous platforms. Stencil has been selected for being a

representative of regular data processing, while SpMV corresponds to irregular

data processing.

6. It, and more specifically the Profile-based Machine learning (ML) estimation

model, provides optimization suggestions for specific applications on hetero-

geneous systems.

The rest of the paper is organized as follows: Sect. 2 reviews the main concepts of

this work; Sect. 3 describes our methodology; Sect. 4 focuses on our main

experimental results; in Sect. 5, we review the literature pertinent to our work and

related papers. Finally, Sect. 6 concludes this work and presents the planned future

work.

2 Background

To implement our profile-based dynamic and adaptive workload scheduling system

(PDAWL), we must leverage an efficient runtime system, presented in Sect. 2.1,

take advantage of the computing potential offered by heterogeneous hardware, and

in particular, GPUs, as described in Sect. 2.2, and explore the parallelism of

different types of applications based on hardware features, see Sect. 2.3.
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2.1 Codelet Model and Runtime System

The Codelet Model [48] is an event-driven execution model where a codelet is a

non-interruptible sequence of instructions that runs until completion. It is enabled
when all of its data dependencies are satisfied and ready when its resource

dependencies are also satisfied.

The Codelet Abstract Machine (CAM) describes the mechanism on which

codelets are allocated, stored, and scheduled. The CAM models an extensible,

scalable and hierarchical parallel many-core architecture with two types of units:

synchronization units (SUs), which perform resource management and scheduling,

and computation units (CUs), which carry out the computation. CUs and SUs are

grouped into several clusters where they can benefit from data locality.

DARTS [3, 37] is a runtime system implementing the CAM. It maps ‘‘abstract

cores,’’ CUs and SUs, to physical processing elements (PEs).1

We extended DARTS from the basic homogeneous system to a more general

heterogeneous many-core system. Heterogeneous DARTS specifies two types of

codelets: CPU_Codelets, and GPU_Codelets, which can run simultaneously.

CPU_Codelets are ‘‘regular’’ user-level data-driven tasks, destined to run on

general-purpose CPUs. GPU_Codelets, however, are meant to run on a GPU, and

as a result, must explicitly deal with not only computation but also data movement.

2.2 Heterogeneous Computing

In this work, we are considering CPU–GPU heterogeneous systems where GPU

devices are connected to a host machine via a PCI Express (PCIe) bus. Host and

devices have different memory address spaces. Data must be explicitly transferred

between the memory pools. The execution flow of a heterogeneous application can

be divided into three key stages. First, the host transfers data to the memory of the

GPU; second, the main program executed on the CPU (the host) is responsible for

starting threads in the GPU (the device) and launching a function (the kernel).

Finally, the device sends results back to the host. Since communication is typically

expensive in such systems, the main goal is to minimize the effect of the CPU–GPU

communication overhead by fostering an overlap between communications and

computations.

2.2.1 Heterogeneous Hardware Communication

Lee et al. [23] analyze a set of important high throughput computing kernels on

both CPUs and GPUs. They show the differences of optimization features

contributing to performance improvement on these architectures. The paper

concluded that CPUs can have comparable performance to GPUs if the application’s

code is properly optimized (e.g., loops are tiled, skewed, etc.). Further, GPUs and
CPUs are bridged by a PCIe bus, allowing high-throughput communications

between the host’s global memory and the accelerator’s local memory. Hence the

1 PEs can be either physical or logical cores, e.g., hardware threads in an SMT architecture.
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PCIe bandwidth is always a crucial performance bottleneck ripe for improvement.

Nvidia provides ways to use page-locked host memory to lower data transfer

latency [31]. However, performance may be degraded if the allocated pinned

memory is too large. Moreover, PCIe congestion behavior varies significantly

depending on the conflicts created by communication. Martinasso et al. have

explored the impact of the PCIe topology, a significant parameter affecting the

available bandwidth [29].

This work focuses only on a single GPU per machine, leaving any PCIe topology

aspects to future work.

2.2.2 Concurrent Streams on GPUs

CUDA provides stream-based constructs since version 7. This functionality allows

the programmer to schedule multiple computing kernels concurrently. It lets the

accelerator efficiently overlap computation and communication with the host.

Figure 1 illustrates the CUDA streaming model. We compare the sequential

computation of two different kernels with their respective data transfers: one single

stream vs. three different kernels with their respective data transfers using three

streams.2

2.3 Data-Regular and Data-Irregular Computations in Heterogeneous
Platforms

In co-running applications, the workloads can be decomposed into multiple tasks

and run on different Processing Elements (PEs for both CPUs and GPU). Typically,

GPUs run regular computations very efficiently, but perform poorly with irregular

 
 

Fig. 1 Concurrent streams overlap data transfer (Color figure online)

2 The second method is only possible in GPUs with at least two copy engines, one for host-to-device

transfers and another for device-to-host transfers. If four copy engines are involved, stream0 and stream1

can be run parallel.
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computations [10]. CPUs perform reasonably well for both, provided SIMD

instructions and thread parallelism are correctly exploited. For applications

containing both data-regular and data irregular computations, it will be preferable

to split regular and irregular computing and run them on suitable PEs: allocate the

regular parts to the GPU and the irregular/regular part to the CPU. More discussion

related to regular/irregular computing can be found in the discussion of SpMV

(Sects. 4.1.2 and 4.3 ).

3 Methodology

In this section, we start by providing the context of the problem, then describe our

scheduling approach for heterogeneous architectures. The latter is described in two

parts: DAWL, an adaptive workload scheduling approach; and PDAWL, which

builds on top of DAWL by combining a profile-based machine learning estimation

model with DAWL. DAWL is based on an online scheduling approach using a

hardware resource model, and follows a rather coarse-grain approach; PDAWL

builds on top of DAWL to allow for automatic fine-grain resource scheduling with

hardware-specific considerations to deliver higher performance.

3.1 Problem Analysis

In heterogeneous systems, accelerator devices3 (e.g., GPUs) and hosts (i.e., CPUs)
play different roles: the accelerator is often seen as the ‘‘main computational

power’’ of a compute node; and the host as either the ‘‘control unit’’ handling I/O

communications and tasks scheduling, or as the ‘‘processing unit’’ responding to

parallel computing requests. Currently, most systems work either by fully offloading

the workload to accelerators or by statically partitioning the workload between host

and accelerators, and running these partitions independently (more details can be

found in Sect. 5). However, these two approaches used to statically partition

workloads may cause multiple issues, e.g., synchronization and waiting times, low

resource utilization etc., at run time, which will incur a dramatic drop in

performance, and increase the total power consumption [14].

Several strategies have been proposed to overcome these issues: the first is to

build mathematical models that can estimate the execution time of tasks on different

computing resources and then statically allocate the corresponding workload onto

hosts and accelerators. However, multiple issues are in the way: (1) building an

accurate estimation model needs to consider both hardware devices and application

features, while the growing variety of hardware devices and their combinations

tremendously increases the difficulty. (2) It will be highly difficult to build such a

model for current high-performance hardware components, such as memory

hierarchy, prefetch mechanisms, Direct Memory Access (DMA), PCIe [2], [41],

etc.; (3) any change in the hardware configuration may cause great performance

variations, hence requiring the model to be rebuilt. (4) The complexity and

3 In this paper, we use interchangeably the terms ‘‘device’’ or ‘‘accelerator.’’

123

120 International Journal of Parallel Programming (2022) 50:115–151



fallibility of building a mathematical data transfer model of CUDA concurrent

streams [41] widely increases with the introduction of emerging hardware, the

synchronization method between host and device, etc. (5) A static model cannot

capture runtime situations, which is another important factor that affects the

accuracy of the performance estimation model. (6) Such a model may work well for

coarse-grain workload partitioning, but may not be useful for fine-grain workload

partitioning, which plays a pivotal role in attaining high performance on a

heterogeneous system.

The second approach employs dynamic workload partitioning, which theoreti-

cally can dynamically allocate workloads onto both accelerators and host at runtime.

However, synchronization and waiting time issues still occur if: (1) the synchro-

nization and partitioning mechanisms are not matched; (2) the partitioning is not

suitable for available computing resources; (3) the communication costs between

accelerator and host or among accelerators are too high; (4) we must run different

types of application (memory-intensive vs. compute-intensive) onto the different

hardware configuration, as described in the paragraph describing hardware resource

modeling, with unsuitable partitioning; (5) the granularity (coarse vs. fine grain) of

the workload partitioning may be unsuitable; etc.
To solve the issues we just listed when modeling resources and scheduling work

dynamically, the application behavior on both the host and accelerator must be

carefully analyzed [14, 17, 31, 47]. We propose our approach, DAWL, as well as an

optimized version, PDAWL, which will accommodate the features of both the

application and the hardware resources to ensure that an application can run

efficiently on heterogeneous systems. A dynamic adaptive workload (DAWL)

scheduler follows an adaptive and dynamic workload partitioning approach, based

on a coarse-grain model (see Sect. 3.2), while PDAWL follows a profile-based,

event-driven, dynamic workload partition approach to explore fine-grain task

parallelism and to maximize the throughput between resources. We evaluate our

approach on different heterogeneous platforms using two co-running applications,

Stencil and SpMV. In general, Stencil represents data regular computations, while

SpMV stands as a good exemplar for data-irregular computations.

3.2 Hardware Resource Baseline, Limitations and Usage

As we discussed in Sect. 3.1, mathematical models can yield useful information for

coarse-grain task scheduling. Our DAWL approach employs them to select

suitable computing resources: pure CPU (i.e., where only the host (CPUs) is

contributing to the computation), pure GPU (i.e., where only the accelerator is

contributing to the overall computation: the host only handles data movement and in

general I/O communications) or CPU–GPU co-running (i.e., both the host and the

accelerator(s) are contributing to the overall computation), to run different workload

sizes. Coarse-grain workload partition means the workload is split into big chunks,

such as big rows/columns chunks. It is totally different with the fine-grain workload

partition (see Sects. 4.1.1 and 4.1.2).
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3.2.1 Hardware Baseline Modeling

In this section, we present a baseline communication model, which is kept simple—

no communication-computation overlap—on purpose. Equation 1 models the GPU

execution time consisting of two types of costs: communication and computa-

tion.memcpyH!D (resp. memcpyDtoH) denotes communications from the host (resp.

the accelerator) to the accelerator (resp. the host), to load the initial data (resp. to

store the results back into the host), ComputeD is the time required to process a

given workload on the accelerator, and NumThreadsD is the number of available

processing elements.

GPUmodel ¼ memcpyH!D þ ComputeD
NumThreadsD

þmemcpyD!H ð1Þ

Equation 2 models the CPUs execution time. ComputeH and NumThreadsH are the

overall computation time on a general-purpose processing element on the host and

the number of available processing elements on the host, respectively.

CPUmodel ¼
ComputeH

NumThreadsH
ð2Þ

Equation 3 computes r, the ratio between GPUnaive and CPUnaive (these last two

parameters are computed in Eqs. 1 and 2 respectively). r is a ‘‘hardware resource

fitness’’ indicator of which part of the system should be favored. If r � 1, then the

workload will execute much faster if it is on an accelerator. Hence, most if not all of

the computation will be carried on the GPU. On the contrary, if r � 1, then the

amount of data transfers is saturating the PCIe bus when running it on a GPU or the

computing is not suitable for GPU processing, and in general, the overall compu-

tation is much faster using general-purpose processing elements. When r � 1, task

scheduling must enable co-running, so that both the host and the accelerator are

allocated their fair share of the work in order to complete the computation as fast as

possible.

r ¼ CPUmodel

GPUmodel
ð3Þ

3.2.2 Limitations and Usage

Section 2.2 shows that, due to the various DMA engines available on modern GPUs,

as well as the Stream technique in CUDA, it is possible to overlap communi-

cations and computations. Furthermore, it is quite hard to accurately estimate GPU

computation times since the GPU utilization rate depends on factors associated with

the GPU hardware and software architecture, such as the multi-level computing

(thread) hierarchy, the GPU inner scheduler for tasks allocation on Streaming

Multiprocessors (SMs), etc. Considering all the above factors, Eq. 1 is a worst-case

view of a single GPU’s performance. Conversely, it guarantees performance will be

maximal if GPUnaive is ‘‘small enough’’ (see below).
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Equation 2 is also rather naı̈ve: while data transfers with the DRAM are not

negligible, they take orders of magnitude less time than data transfers on a PCIe bus,

which cannot be neglected. Moreover, HPC processors embed very efficient and

aggressive data prefetching mechanisms, which tend to fully hide DRAM transfer

latencies—especially in the case of consecutive reads or writes. However, the risk

for cache conflicts in multicore systems (e.g., false sharing) may cause significant

drops in performance. Equation 2 is utilized to estimate the average performance of

multi-threaded computing.

In DAWL, Eq. 3 is employed to estimate the initial workload on computing

resources, CPUs and/or GPUs. At runtime, to allocate suitable workloads on the

(different) computing resources, all three equations and real-time execution

recording history, including the size of the workload and the corresponding

execution time, etc., should act in concert. The real-time recording history as an

optimization factor can help increase the accuracy of the naı̈ve mathematical model

to some extent (more details can be found in Sect. 3.3.)

3.3 The Dynamic Adaptive WorkLoad (DAWL) Scheduler

The Dynamic Adaptive Work-Load (DAWL) Scheduler is an online scheduler

where the workload distribution is based on a computation-communication model

(Eqs. 1, 2, and 3) and runtime situation (the real-time execution recording history).

It was created to decide what tasks should be scheduled and where to schedule the

workload (i.e., host or device) to minimize the load imbalance between

Fig. 2 The dynamic adaptive work-load scheduling algorithm (DAWL). Mathematical model (MM)
occurs in DAWL’s steps 1, 3, and 4. The dashed frame MM in step 4 stands for the optimized MM (Color
figure online)
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heterogeneous processing elements. It consists of seven main steps, illustrated in

Fig. 2. We detail each step below.

1. Set up the initial workload on the Processing Elements (PEs), namely CPUs

and/or GPU. PEs can be given different amounts of work based on their

modeled ‘‘throughput’’ (see Eqs. 1–3).

2. Configure PEs based on step 1. This configuration includes the number of CPUs

which will be put to work, whether the GPU will also be used, what portion of

the available space in the shared memory (for the host) and global memory (for

the accelerator) must be allocated, the number of streams on the GPU, among
other things.

3. Simultaneously run tasks on both CPUs and GPUs, and time each run for their

specific workloads. The current execution information will be recorded as

follows:

• For CPUs the number of running threads, the workload and corresponding

execution time on the single thread, and total workloads and total execution

time on all the threads.

• For GPUs the amount of data transfer between host and device, the

corresponding data transfer time, number of concurrent streams (if

applicable), the number of thread blocks used and the corresponding

computing time.4

4. Iteratively and adaptively adjust the workload based on the current run time

situation and mathematical model; this entails several sub-steps:

– Update recording history once the current allocated workload on the PE is

finished, the current execution information will be updated into the

recording history. If there are duplicates, the average execution time will

be recorded.

– Check the status of other PEs (running or waiting) as well as the

corresponding recording history to estimate the completion time of other

PE(s).

– Optimize model The optimized mathematical model combines the original

model (MM) with the history timing measurements. The new estimated

execution time formula will be Timenew ¼ a � TimeMM þ b � Timehis, where

aþ b ¼ 1 and the value of a will decrease with the number of iterations,

while b is just the opposite as it will increase with the number of iterations.

The other PEs status is also considered to allocate suitable sizes of workload

on current PEs.

– Allocate workload on currently available PEs based on collected informa-
tion and our optimized model in addition to the size of the allocated

workload, the number of threads (for CPU) and the number of concurrent

streams (for the GPU) may also be adjusted.

4 The information of concurrent stream and thread blocks are only for reference, as it cannot be

efficiently utilized by the coarse-grain baseline model.
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– Repeat the whole procedure until the remaining workload is within 10% of
the total workload this 10% of the workload (remaining workload) is for the

last step load balance optimization which is a fine-grain task scheduling

approach and to guarantee there is no busy waiting at least for the last 10%

of the total workload.

5. Schedule the last 10% of the total workload Calculate the value of ratio, where
ratio ¼ CPUcur=ðCPUcur þ GPUcurÞ. CPUcur and GPUcur are the amount of all

work finished on CPUs and GPU, respectively. The corresponding GPU ratio is

obtained using the same method. The CPUs or the GPU only take bratio�
remaining workloadc amount of work. The remaining workload is dynamically

allocated to whichever (set of) PE(s) is available after early completion. Note:

this is an application-based optimization.

6. Evaluate the load-balance metrics collected during the time step execution, in

particular, the execution time. Adjust (coarsen) the task granularity based on

available PEs and the metrics.

7. Free all resources PEs and memory.

3.4 Profile-Based Machine Learning Estimation Model

We have developed an optimized version of DAWL (PDAWL). PDAWL is a

Profile-based Dynamic Adaptive Workload balance (PDAWL) which combines

Machine Learning algorithms with runtime profiler information to solve the issues

raised by the coarse-grain baseline mathematical model. The PDAWL framework

consists of two components, illustrated in Fig. 3. On the left side of this figure, we

can see our DAWL approach and the ML process on the right side.

Here, DAWL is responsible for online scheduling, while the ML model is in

charge of providing performance estimation information. DAWL compares the

baseline model with the performance estimation of the ML techniques. The ML

component creates a performance prediction distribution for fine-grain workload

using run time profiler information. Once the ML-based model is built, it is utilized

in DAWL to replace and/or cooperate with the baseline model and then follow the

DAWL online scheduling strategies (see Sect. 3.3.)

A known weakness of offline ML models is that they cannot be adjusted once the

training process has completed [36]. With PDAWL, it is possible to compensate this

weakness and provide guidance to an online scheduler even with changes in

software or hardware. A combination of offline ML-based models with online

schedulers is required when dealing with real-time constraints. If there are no real-

time constraints, then online ML methods, e.g., a stochastic gradient algorithm, may

be used instead of offline methods.

As shown in Fig. 3, the heterogeneous ML model is built in two steps: first, CPU

and GPU ML models are built separately; second, they are combined to predict how

much workload to schedule in each type of PE(CPUs and GPU), building a

heterogeneous ML model. We used Oprofile [24] and Nvprof [31] to collect

runtine profile information from CPU and GPU executions. This data was used as
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input features for GPU and GPU ML models. Below, we describe in detail the steps

to create the heterogeneous ML model:

1. Collect information about the hardware of the host and devices. Table 1 and 2

list some of the parameters involved. In addition to these, we also include cache

hierarchy information, PCIe data transfer rates, and the GPU parameters;

including the maximum number of concurrent streams, the GPU thread

dimension information, the shared memory size, among others.
2. Collect runtime profile information from the application. The CPU and GPU

ML models are used to predict the heterogeneous performance in a co-running

mode.

• CPU Since collecting all the events provided by Oprofile [24] is extremely

time consuming, all the events are categorized into three groups: (1) cache

related events including cache hierarchy and cache misses events; (2) branch

Fig. 3 PDAWL—the profile-based dynamic adaptive work-load scheduling algorithm: DAWL (see the
bold hexagon DAWL, the left side) coupled with machine learning (see the bold octagon ML, the right
side). Machine learning occurs in DAWL’s steps 1, 3, and 4. The dashed frame ML in step 4 stands for
the optimized ML (Color figure online)

Table 1 CPU hardware features of the experimental platforms

Machines/Param. Hardware environment

CPU parameters

Cores Clock (GHz) # Socket L3 size (MB) CPU mem (GB)

Machine1 (K20) 32 2.6 2 20 64

Machine2 (K20) 40 3 2 25 256

Machine3 ( k40) 8 3.4 1 8 16

Machine4 (Titan) 12 3.4 1 12 31
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related events; (3) all the other events. Based on the different applications,

event groups 1 or 2 or all 3 can be activated. In this paper, we sample event

groups 1 and 2.

• GPU Nvprof [31] provides many options to collect CUDA run time

information. For our experiments we used two different categories. (1)

gpu-trace and api-trace (faster, fewer events); (2) nvprof-
metrics API (time consuming, more events). Using category 1 or 2

depends on the time constraints and accuracy requirements. To reduce the

training time, we collect only category 1 of events.

3. Normalize the collected data since the collected data refers to many aspects

such as cache miss rate, execution time, number of threads, ..., we need to

change the numeric columns values to a standard scale without distorting the

differences in the ranges of values.

4. Clusters of features since a high number of features are collected using

Oprofile and Nvprof, a Hierarchical Agglomerative Clustering algorithm

(HAC) is utilized to group correlation similarity features and finally obtain a

reduced set of features. We tested sets of 4–12 features. First, a threshold is

established with the correlation coefficients between the target variable

(execution times) and the other features. Then, a dendrogram is built, using

the correlation distance between the final features to clustering them by

similarity.

5. We use the gathered information to build a profiler-based ML estimation model

for CPU and GPU workloads. The CPU model focuses mainly on performance

(execution time), resource utilization and cache issues; the GPU model mainly

focuses on data transfers, computations time and the overlapping between them.

Especially for GPU, unsuitable workload allocation and the number of

concurrent streams will affect the host-device (CPU–GPU) communication-

computation ratio to drop down the performance dramatically.

The ML models utilizes the collected runtime profiler information to help the

scheduler distribute fine-grain tasks and improve the total performance. More

details can be found in Sect. 4, where we show how the fine-grain tasks are

Table 2 GPU hardware features of the experimental platforms with PCIe data transfer rate

Machines/Param. Hardware environment

GPU parameters PCIe (GB/s)

# SM Clock (GHz) L2 size (MB) GPU mem (GB)

Machine1 (K20) 13 0.71 1.25 4.8 6.1

Machine2 (K20) 13 0.71 1.25 4.8 6.1

Machine3 ( k40) 15 0.75 1.5 12 10.3

Machine4 (Titan) 14 0.88 1.5 6 11.5
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allocated with the help of ML-based models using two applications as

examples. Below, we describe how to create profile-based ML estimation

models for CPU and GPU workloads:

• Run a set of ML methods such as linear regression, Support Vector Machine,

and random forest model with the grouped features. Specifically, the linear

regression model can be shown in two forms: y and log2ðyÞ. We use G to

stand for the two forms: G ¼ y and G ¼ log2ðyÞÞ. G ¼
Pn

i¼1 wi/iðxiÞ.
Where /iðxÞ are functions from the set of x, x2, x3, x4, ex, log2 x, x � log2 x,
ln x, x � ln x; xi are features from last cluster step. Since y is our target

variable, transformation is necessary for the logarithm version using 2G. The

reason why we include the Logarithm function is to reduce the non-linearity

factors [4] and provide reasonable approximation with the target variable.

For the SVM model, we use polynomial and Gaussian kernels.

• Overfitting we use 10-fold cross validation and L2 regularity to reduce the

overfitting problems.

• Models evaluation to evaluate how well the model fits the data, a coefficient

of determination, R2, is used. It is defined as the percentage of the response

variation that is explained by a linear model: R2 ¼ Explained variation
Total variation

, with

0%�R2 � 100%. 0% indicates the model explains none of the variability of

the response data around its mean. In contrast, 100% says that the model

explains all the variability of the response data around its mean.

• ML estimation model building an estimation formula of the best matched

statistical model can be built to predict an applications performance on this

specific heterogeneous platform. The specific parameters used to construct

the formula are mentioned in Sect. 4.3.

6. Build a heterogeneous prediction model based on the pure CPU and GPU

model. The communication cost between CPUs and GPUs are included in the

GPU model. To improve the GPU utilization effectiveness, especially when the

workload memory footprint is much larger than the GPUs available global

memory, CUDAs concurrent streams are used on GPU, based on Eqs. 1 and 3.

4 Algorithm Implementation and Experiment Results

This section starts by introducing our heterogeneous platform, then presents the two

target applications, Stencil and SpMV, as well as their optimized co-running

workload partition approaches, finally concludes with the performance analysis of

these two applications employing different scheduling algorithms: CPU-Seq,
GPU-only, DARTS-CPU, DARTS-GPU, DARTS-DAWL, DARTS-Static and

DARTS-PDAWL. Specifically, CPU-Seq distributes the whole workload onto one

single thread (CPU). It is used as the baseline. GPU-only distributes all the
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workload on GPU using static fine-grain scheduling approach. If the whole

workload is less than the available GPU memory, the single-stream approach is

employed. If the whole workload is march larger than the available GPU memory,

the concurrent stream approach is employed. DARTS-CPU,DARTS-GPU, DARTS-
DAWL, DARTS-static and DARTS-PDAWL are implemented on DARTS runtime

system, see Sect. 2.1. Specifically, DARTS-CPU distributes the whole workload

onto CPUs (threads) using static coarse-grain scheduling approach that the whole

workload is evenly partitioned and allocated on each thread. DARTS-CPU stands

for homogeneous multi-thread computing. DARTS-GPU distributes all the workload

onto GPU using static fine-grain scheduling approach. Different from GPU-only,
DARTS-GPU employs concurrent stream approach all the time. DARTS-DAWL
distributes the workload onto CPUs and/or GPU based on DAWL, see Sect. 3.3,

which is a coarse-grain dynamic task scheduling approach. DARTS-Static also

distributes workload onto CPUs and/or GPU, but it employs the coarse-grain static

partition workloads approahch. DARTS-PDAWL distributes workload onto CPUs

and/or GPU based on PDAWL, see Sect. 3.4, which is a profile-based fine-grain

dynamic task scheduling approach. Aiming at different applications, the scheduling

approaches mentioned above may vary. More details will be discussed in the

corresponding experiments.

4.1 Experimental Testbed

DARTS already yields high performance on single-node homogeneous many-core

systems [3, 18, 37]. As explained in Sect. 2.1, we modified DARTS to be

heterogeneous and make it GPU-aware,. It is capable of scheduling CPU_-
codelets and GPU_codelets simultaneously. We ran the experiments on four

heterogeneous systems, as shown in Tables 1 and 2. The software environment of

these machine is shown in Table 3. Stencil-based computations and Sparse Matrix-

Vector multiplication using the Compressed Row Format (SpMV-CSR) were

selected to evaluate our DAWL and PDAWL.

4.1.1 Target Application: Stencil Computation

To emphasize a worst-case scenario, we used the Stencil kernels described in [18],

without ghost cells, which enhances the need for synchronization. Specifically, we

focused on two kernels: a 5-point 2D and a 7-point 3D Stencil, using double

Table 3 Software environment

Machines/Param. Software environment

GCC CUDA

Machine1 (K20) v6.2/v8.1 v8.0

Machine2 (K20) v4.8.5/v6.2 v8.0

Machine3 ( k40) v5.4 v9.0

Machine4 (Titan) v4.9.2 v9.1
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precision values. We fixed the number of time steps to 30, removing the

convergence test at the end of each time step for simplification and making it more

deterministic. Note that the CPU tasks and GPU tasks within one timestep were

independent and that a global barrier was inserted at the end of each iteration. We

repeated each experiment 20 times. There are no confidence intervals as the

standard deviations were small, the larger one being 5% and the average smaller

than 1%.

We follow two partitioning approaches: coarse-grain (DAWL) and fine-grain

(PDAWL) are implemented for Stencil computation. As mentioned in Sect. 3.2, the

naı̈ve mathematical model is utilized to provide coarse-grain workload partitioning

so the whole workload is split into large chunks of rows and/or columns, and then

distributed to processing elements. The fine-grain partitioning approach refers to

more parameters detailed below.

To implement the fine-grain task distribution between CPUs and GPUs, our

approach consists of two steps: ‘‘Slicing’’ and ‘‘Tiling,’’ respectively. ‘‘Slicing,’’

including 2D and 3D-Slicing, means that the workload is partitioned along one

dimension, as shown in Fig. 4. Within a slice, ‘‘Tiling’’ (i.e., L1-Tile (L1 cache) for

CPU tasks and Block-Tile for GPU tasks) can then be utilized. Figure 4 shows the

2D and 3D Stencil workload partitioning paradigm in the GPU/CPU co-running

situation. This paradigm also works for the pure CPU/GPU cases by removing the

GPU/CPU from the paradigm. In co-running situations, CPU and GPU ‘‘Slicing’’

may meet at some point.

Correctness and performance are the two main targets for our fine-grain task

scheduling and distribution system. The workload allocation parameters should be

carefully chosen to avoid computing errors and to avoid dramatically performance

fluctuation/declining. In particular, the communication-computation ratio plays a

pivotal role for GPU tasks. The parameters affect the ratio, including the number of

concurrent streams, the workload (including transformation and computation) for

single stream, the size of a block tile, the number of thread block within one block,

the total number of thread block, the synchronization between streams, etc. The

Fig. 4 GPU/CPU hybrid: stencil 2D/3D slicing and tiling
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model utilized in DAWL is a coarse-grain model which is incapable to provide

these fine-grain parameters. We instead employ an ML model in PDAWL to

automatically obtain the correctly matched parameters which can result in a near-

optimal compute-communication overlap and maximum both CPUs and GPU

utilization. As mentioned in Sect. 3, different systems architectures can yield

different parameters for our ML model.

Furthermore, the fine-grain task distribution helps us reduce the ML training

time. Combining ‘‘Slicing,’’ ‘‘Tiling,’’ and the concurrent streams approach can help

split the huge workload task into a set of small workload tasks. A small task, owning

the feature of fewer data transformation, which is one of the most time consuming

tasks, can converge to a near-optimal solution much faster. Since a very large

workload can be seen as the combination of small workloads, the ML model trained

by small tasks can be utilized to predict the performance of much larger ones on

GPUs.

Algorithm 1: Pseudo-code: Stencil (2D/3D) co-running approach
1 Function Stencil Main():
2 S0: init system();
3 S1: parameters = Estimation Func(); // MM/ML
4 for it = 0; it < total Iteration; it++ do
5 S2: Stencil CPU(parameters);
6 S2’: Stencil GPU(parameters);
7 S3: Sync All Resources();
8 S4: parameters = Obtain best parameters(history);
9 end

10 Function Stencil CPE(*parameters):
11 S20: Sync Remaining WL();
12 do
13 S21: Run CPE(parameters) ; //computing
14 S22: Update Recording History(parameters);
15 S23: ostatus = Check OPE Status(); //OPE
16 S24: Opt Estimation Func(history, ostatus, parameters); //MM/ML
17 S25: Sync Remaining WL();
18 while Remaining WL > Total WL ∗ 10%
19 S26: Run Remaining();

Algorithm 1 shows the Stencil pseudo-code co-running approach using DAWL

or PDAWL. It consists of two functions: Stencil_Main and Stencil_CPE. CPE

stands for the Current Processing Elements. OPE stands for the other Processing

Elements. If the code is currently run on CPUs, then the CPE stands for CPUs and

OPE stands for GPU, and vice-versa. We use one Stencil_CPE function to stand for

two Stencil computations, respectively running on CPUs (Stencil_CPU, homoge-

neous multi-threads computing) and GPU (Stencil_GPU). DAWL and PDAWL

share the same framework,5 see Sect. 3.3, but employs a different performance

estimation model corresponding to pseudo-code labels S1 (original model) and S24

(optimization model). The performance estimation model provides the necessary

5 The pseudo-code mainly shows the DAWL components from item 3 to item 6.
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parameters to the Stencil_CPE function. For DAWL, the parameter set is simple

which includes the number of CPU threads, the workload (the Rows/Columns

number) for each CPU threads, the number of GPU concurrent streams and the GPU

workload in one round. For PDAWL, the parameter set is complicated which at least

includes the number of CPU threads, the number of GPU concurrent streams, the

‘‘Slicing’’ and ‘‘ Tiling’’ size for CPU thread (the number and size of slice/L1-Tiles)

and GPU (the number and size of slice/block tiles, the number of thread block

within one tile, the total number of thread block). Label S2 (Stencil_CPU) and

S2’(Stencil_GPU) are run in parallel with (explicit and hidden) synchronization

operations. Label S21 (Run_CPE) is the Stencil computation following the

partitioning rules described in Fig. 4. The specific CPU multi-threads code can be

found in paper [18]. The GPU code is the concurrent stream version of the Stencil-

kernel code with the pipeline technique optimization. Label S22 (Update_Record-
ing_History) records and updates the CPE (history) information (see DAWL

item 3). Before starting the next computing task, it is necessary to check the OPE

status (Label S23, Check_OPE_Status), to estimate when the OPE computing will

be finished if the current status of OPE is running. With the history and the current

OPE status information, we can leverage the optimized estimation model (Label

S24,Opt_Estimation_func, DAWL item 4) to provide a new parameter set for the

next computing task. Label S26 (Run_Remaining) corresponds to the DAWL item 5

and the parallel computation is also involved in this step. When all the computations

within one iteration are finished, there is a an explicit synchronization operation

(label S3, Sync_All_Resources). It is prepared for the evaluation operation, Label

S4. Label S4 (Obtain_best_parameters) evaluates all the tasks running on different

PEs during this iteration, and then figure the best matched parameters set for PES

which can be utilized in the next iteration (corresponding to DAWL item 6).

4.1.2 Target Application: SpMV Computation

We used the SHOC benchmark suite’s implementation of SpMV-CSR (Scalar

version) [11] bluekernel functions, for both the CUDA and C?? sequential

versions. We converted the sequential code to parallel code where every CPU’s

processing element (PE) can calculate one or multiple rows. One PE is in charge of

communication and synchronization between the host (CPU) and the accelerator/

device (GPU). For the CUDA code, we utilize the concurrent stream technique as an

optimization. Just as with Stencil, SpMV has also been implemented in two

versions: coarse-grain and fine-grain. The coarse-grain version is the parallel

version of SHOC SpMV-CSR mentioned above. The fine-grain version is similar to

Stencil, in that it involves fine-grain partitioning of the current/selected workload,

the number of GPU concurrent streams, GPU Block-Tile size, etc. Furthermore,

considering the features of the SpMV algorithm, the SpMV fine-grain approach

entails one more step called pre-processing; more detail can be found below.

The performance profile of sparse matrix-based computations vary widely

depending on the sparsity of its matrices’ rows. A row is either ‘‘sparser’’ (i.e., it
contains more zeros than non-zero values) or ‘‘denser’’ (if it conversely contains

more non-zero elements). The execution time of tasks on ‘‘sparser’’ and ‘‘denser’’
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rows may vary enormously. If all the rows are evenly allocated on computing

resources (PEs), the execution time will depend on the heaviest task which is

allocated with the ‘‘densest’’ rows. Since the target application is a sparse matrix,

the majority of tasks are just waiting for the completion of the heaviest task. It

reduces the computation resource utilization and results in lower performance. We

propose to pre-process data at first: extract the ‘‘denser’’ rows as irregular

computation tasks. At this point, the majority of sparser rows that are left over can

be considered regular computing. Considering the features of CPUs and GPU, GPU

will be preferred to run regular computing tasks, while CPUs can run both regular

and irregular computing tasks. To split denser and sparser rows, we built up a SpMV
Co-running Model on SHOC SpMV-CSR. More specific steps are shown below:

1. Analyze and evaluate statistical information, as shown in Table 4, to estimate

the sparsity degree of the matrix. NNZ is the total number of non-zero elements.

l is the average number of non-zero elements per row. r is the variance of the

number of non-zero elements per row. CV stands for coefficient of variation per

row. MAX: the maximum number of non-zero elements per row.

2. Build priority groups based on collected information (see Fig. 5). The highest

priority level contains the maximum non-zero number per row(s); the lowest

priority level contains the minimal non-zero number per row(s). On the same

level, group members have similar non-zero numbers so they can run in parallel.

To simplify the model, we statically set the ratio (30%) [19] as the threshold.

The top 30% maximum non-zero number per row(s) will be extracted from the

matrix and added to CPUs priority groups.

3. Run irregular and regular computations on CPUs and GPU, in parallel. CPUs

will proceed from the highest to the lowest priority level, and GPU will proceed

from the lowest priority level. Here, a concurrent stream approach is also

utilized in the GPU.

4. Synchronize when all the CPUs and GPU computations are finished.

Matrices Used for Our Experiments We used 50 sparse matrices from the

University of Florida Sparse Matrix Collection (UFSMC) [12] to train and 5

matrices (see Table 4) to evaluate our DAWL/PDAWL.

Table 4 Matrices for SpMV

Name Dimension (M) NNZ (M) l r cv MAX

circuit5M 5.56 59.52 10.71 1356.62 126.68 1,290,501

eu-2005 0.86 19.24 22.30 29.33 1.32 6985

in-2004 1.38 16.92 12.23 37.23 3.04 7753

FullChip 2.99 26.62 8.91 1806.80 202.73 2,312,481

kmer_U1a 67.7 138.8 2.05 0.37 0.18 35

NNZ: total of non-zero elements
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Algorithm 2: Pseudo-code: SpMV co-running approach
1 Function SpMV Main():
2 S0: Spmv Config Info = Obtain SpMV Info();
3 S1: Priority Group = Build Priority Group(Spmv Config Info); // pre-process
4 s2: parameters = Estimation Func(Priority Group); // MM/ML
5 S3: SpMV CPU(parameters);
6 S3’: SpMV GPU(parameters);
7 S4: Sync All Resources();
8 Function SpMV CPE(*parameters):
9 do

10 S31: Run CPE(parameters) ;
11 S32: Update Recording History(parameters);
12 S33: ostatus = Check OPE Status(); //OPE
13 S34: Opt Estimation Func(history, ostatus, parameters); // MM/ML
14 while Remaining Rows > 0

Algorithm 2 shows the SpMV pseudo-code co-running approach using DAWL or

PDAWL. Just as with Stencil computing, it consists of two functions: SpMV_Main
and SpMV_CPE. SpMV_CPE stands for two parallel running functions, SpMV_CPU
and SpMV_GPU. Based on the features of SpMV, no iteration operation is involved

and no last step fine grain optimization (see DAWL item 5) is utilized. Label S0

(Obtain_SpMV_Info) is to obtain the configuration information of the current sparse

matrix and vector including the total number of rows and columns, the pointers to

the CSR format SpMV matrices and vector, NNZ, MAX, etc. listed in Table 4.

Label S1(Build_Priority_Group) is meant to build a priority group described in

SpMV Co-Running Model item 2 and Fig. 5. This is the pre-processing step whose

Fig. 5 SpMV: GPU/CPU priority groups
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purpose is to build two new matrices representing regular and irregular groups. The

performance estimation model is based on these new matrices. Label S3

(SpMV_CPU) and S3’(SpMV_GPU) are run in parallel on CPUs and GPU with

(explicit and hidden) synchronization operations. To avoid repetitions, we will not

describe the detail of the other functions since they are similar to those in the Stencil

pseudo-code.

4.1.3 Experiments Hardware Parameter Space Configuration

We used numactl to allocate memory in a round-robin fashion and avoid NUMA-

related issues.6 All systems were configured so that only 2 GB were seen as

available by the runtime system, which has the effect of reducing the parameters

space to explore. Figure 6 shows the same ‘‘drop-off’’ trend when using a 4 GB

memory threshold which indicated that the artificial constraint we put on the GPU

DRAM capacity does not impact the overall methodology nor its results. The initial

workload is important for our workload distributed algorithm (DAWL) running in

the co-running mode, as shown Fig. 6. The suffixes, ‘‘�1’’ and ‘‘�2,’’ stand for

different initial workloads. Even though the final speedup will converge when the

total workload is large enough, during the whole process, especially in the first stage

of co-running, an unsuitable initial workload will cause performance fluctuations.

We used two different mapping policies to pin DARTS threads to physical

processing elements: spread and compact which roughly behave as OpenMP

4.5’s spread and close thread configuration on the target device. The spread
policy attempts to map DARTS threads to processing elements as far apart as

possible physically on the underlying hardware. On the contrary, compact
attempts to map DARTS threads as closely as possible on the available processing

elements.

4.2 DAWL: Performance Analysis

To comprehensively characterize DAWL, we performed a series of workload

performance analysis. We compared the DARTS-DAWL performance with GPU-
Only, CPU-Seq, DARTS-CPU, and DARTS-GPU (see Table 5 for details).

Figure 7 shows the experimental results7 that the Stencil kernels do not always

scale well over multiple cores and nodes. Considering the Stencil features, such as

data dependence , and the communication cost between CPUs/sockets, using more

computing resources will not guarantee higher performance. The memory/cache

conflicts and synchronization [18] issues incur quite a large overhead. Matched

workload and computing resources is what is essential to obtain high performance.

6 This ensures a stable DRAM access latency, and thus allows us to remove one parameter from the

search space.
7 The four machines onto which we experimented behave similarly in that respect. Hence we only show

the machine 1 case.
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Figure 8 shows the speedup of different variants for the 2D Stencil.8 Here,

DARTS-GPU uses concurrent streams at all times. Whereas, GPU-Only is slightly

optimized comparing to the traditional way. When the problem size is smaller than

the GPU memory capacity, we use the single-stream method to avoid superfluous

synchronizations between the host and device. We use concurrent streams when the

problem size is larger than the GPU’s memory capacity to overlap communication

Fig. 6 Stencil 2D: speed up when GPU memory is 2 and 4 GB with different initial workload (GPU =
CPU): the performance vary with initial workload

Table 5 Stencil kernel implementation

Implementation Illustration

CPU-Seq Sequential c?? code

GPU-Only CUDA code

DARTS-CPU Multi-threads c?? code

DARTS-GPU CUDA code on DARTS (concurrent streams)

DARTS-DAWL DAWL hybrid code on DARTS

DARTS-Static DAWL hybrid static partition code on DARTS

8 The 2D and 3D cases behave similarly in that respect. Hence we only show the 2D case.
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and computation. For DARTS-DAWL, we tried different initial workloads and chose

the best set for CPUs and GPU.

Figure 8 verifies our baseline mathematical model. With 30 iterations constraints

on Stencil kernels, and when the workload’s memory footprint is smaller than the

available device memory, r � 1 as described in Eq. 3, and the application allocates

the full workload to the device to get maximum performance. When the memory

footprint is bigger than the available device memory, it is allocated to both the host

and the device. Considering the cost of communication and synchronization

between these two resource types, the total performance ultimately drops. The

speedup ratios are quite different on different systems, which is due to the

differences in hardware. e.g., the GPU of machine 3 is a Tesla-K40, which has a

higher clock and memory frequency than Tesla-K20.

DARTS-DAWL on machine 3 should run in pure GPU mode based on Eqs. 1–3.

Here, DARTS-DAWL is hard coded to use the co-running mode to prove that our ML

approach can still improve performance even in the worst case.

4.3 Profile-Based Estimation Model, Analysis and Results

In this section, we first discuss why we employ the profile-based dynamic fine-grain

workload partition approach instead of the simple static fine-grain workload

partition approach for our experiments. Then, we analyze in detail the results of the

experiments related to the Profile-based Estimation Model.

4.3.1 Dynamic Versus Static Workload Partition

As we discussed in Sect. 4.2, the coarse-grain tasks scheduling approach used in

DAWL presents essential weaknesses. In Sects. 4.1.1 and 4.1.2, we list the benefits

Fig. 7 Stencil 2D: performance with a varying number of HW threads. Time in nanoseconds
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of fine-grain task scheduling for the Stencil and SpMV applications. The next

question will be why we train the profile-based ML model to estimate the fine-grain

task performance and then dynamically and adaptively approach these tasks based

on the runtime situation? Why not just utilize a simple static fine-grain tasks

scheduling approach? Figure 9 provides the answers. It shows the dynamic and

static workload partitions onto the CPUs and GPU. The static fine-grain approach

can finally converge to an optimal state if the workload is large enough which

means it takes a long time to converge. Furthermore, the performance fluctuates

much during the whole process and it varies with different partitions size. On the

contrary, PDAWL , which employs a profile-based ML model and can dynamically

adjust the workload based on the runtime situation, always reaches the optimal

performance.

4.3.2 Profile-Based Estimation Model

Section 3.4 shows how we used the performance of pure CPU/GPU versions to

predict co-running executions. Our training/validation/test sets are split between

CPU and GPU.

The ‘‘CPU set’’ is to build a CPU performance-resource estimation model which

can provide the ‘‘best’’ scheduler using minimum computing resources to obtain the

maximum performance (shortest execution time) for a specific workload. As

described in Sect. 4.1.3, combining spread and compact mapping policies, we

b Fig. 8 Stencil 2D: speedup of the different versions

Fig. 9 Stencil 2D: dynamic and static workload partitions onto CPUs and GPU. 24 means CPU workload
is 2000� 2000, GPU workload is 4000� 4000
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run experiments with different active CPU threads number (e.g. 2, 4, 8, 16...) to
obtain the necessary run time information by using Oprofile [24]. Our experiments

(Fig. 7) show that when the CPU threads number reaches a given threshold,

increasing the number of threads does not improve performance—which is to be

expected because of memory conflicts. Furthermore, PDAWL utilizes this

information to provide an accurate prediction model even when e.g., some PEs

are suddenly turned off because of power issues.

The ‘‘GPU set’’ is used to build a GPU communication-computation overlap

model, to estimate data transfer and execution time. In particular, the right Block-

Tile size, the number of thread block, and the number of concurrent streams can

perfectly overlap communication and computation on a system; and yet, the overlap

ratio may be very low on other systems since the available SM, PCIe throughput,

etc., are totally different. This is particularly true if the Block-Tile size is too small

to cover the CUDA runtime API launching time: there will be no overlap between

computation and communication. Too many concurrent streams will increase the

pressure on the scheduler, the pre/post-processing time and even increase the

amount of data transfers. nvprof [31] can be employed to obtain related

information. Specifically, the estimation model consists of: API launching, events,

metrics, data transfer between host and device and device computation parts. We

run the two versions of the GPU code, with/without a different number of

concurrent streams, combining with different Block-Tile size.

The information collected by the runtime system helps gather more than two

hundreds features for each type of device. Features are computation and

communication metrics and events. To obtain a reasonable group of features, a

correlation analysis and cluster algorithm, Hierarchical Agglomerative Clustering

algorithm (HAC), was employed. For instance, Fig. 10 shows one dendrogram

describing a matrix correlation of different GPU parameters and a grouping of the

set of features. rows and columns share the same variables. Each cell in the

table shows the correlation between two variables. In this figure, blue and red are

minimum and maximum correlations, respectively. First, features with a high

correlation with the execution time are selected. Second, selected features are

analyzed with a hierarchical clustering and different sets of features are created.

Figure 11 shows 5 clusters. If the height of the threshold is increased (see red

dash line), then fewer clusters are created. This means that the threshold (the red

dashed line) in the dendrogram determines the number of clusters.

From the other side, these grouped features obtained from the Hierarchical

Agglomerative Clustering algorithm (HAC) point to the most important aspects

which affect the performance of applications on the heterogeneous system. For

example, if the feature is related to the threads number (CPU) or global_store_-

transactions (GPU), then the application will be more sensitive to computation

(CPU) or the communication between host and GPU (GPU). Based on this

information, the grouped features can provide optimization suggestions for current

application optimization.

After the data is collected, various ML algorithms see Sect. 3.4, PDAWL item 5

are run and the one that fits the model best is selected.

123

140 International Journal of Parallel Programming (2022) 50:115–151



Here, we use two simple linear regression functions as an example9 to explain

how ML algorithms were chosen (PDAWL item 5). If five features (x1 to x5) are
selected by the HAC clustering algorithm (PDAWL item 4), the two possible linear

regression functions (which are randomly picked from our linear regression model

set) can be: 1. G ¼ w1 	 ðx1Þ þ w2 	 ðx1Þ2 þ w3 	 ðx2Þ þ w4 	 ðx2Þ2 þ w5 	 ðx3Þ þ
w6 	 ðx3Þ2þ w7 	 ðx4Þ þ w8 	 ðx4Þ2 þ w9 	 log2 x5 þ w10 	 ðx5Þ 	 log2 x5; 2. G ¼
w1 	 ðx1Þ þ w2 	 ðx1Þ2 þ w3 	 ðx2Þþ w4 	 ðx2Þ2 þ w5 	 ðx3Þ þ w6 	 ðx3Þ2 þ w7 	
ðx4Þ þ w8 	 ðx4Þ2 þ w9 	 x5 þ w10 	 log2 x5; Then, traditional ML training and

Fig. 10 Built dendrogram from a matrix correlation of the set of GPU features coming from nvprof
(Color figure online)

Fig. 11 Dendrogram generated from a set of CPU features coming from OProfile. The numbers on the
x axis represent the features assigned by OProfile. The numbers on the y axis represent thresholds
(Color figure online)

9 Here we randomly pick two from the whole linear regression model set as an example. May neither one

be the best fit function in the experiment.
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validation methods, such as the use of 10-fold cross validation and L2 regulation to

avoid overfitting, can be utilized on these two linear regression models to obtain the

optimum weights (wi). When the weights for each function are obtained, we transfer

G to y, since y is our target function, as we described in PDAWL item 5. The two

forms are G ¼ y and G ¼ log2ðyÞ. Then the transformation will be y ¼ G and

y ¼ 2G. The reason why we include the logarithm function in our model is that

logarithmic scale function can reduce the non-linearity factors and provide

reasonable approximations [4]. R2 is utilized to evaluate which is the best fit

function and will be selected as our finally performance estimation model. Beside

the accuracy, the computation complexity of the model is considered when chosen

as the best fit function. For example, if one of the linear model and SVM model

have similar R2, such that the difference is less than 0.01%, then the linear model

will be chosen at the end since the computation complexity of SVM is much higher

than that of the linear model.

In our experiments, when training/validation all of our linear models, Random

Forest and Support Vector Machine (SVM) models on four machines, we find that

the majority of the best matches both for Stencil and SpMV computation is given by

linear regression , and that its R2 is 0:93�R2 � 0:94. Linear regression is also

highly efficient for training and testing evaluations. In the future, more ML models

and approaches will be added to our experiments.

The Mean Absolute Percentage Error (MAPE) is utilized to measure the accuracy

of our prediction model. Table 6 shows the MAPE of the linear model for each

machine in the Stencil 3D experiments.

Figures 12 and 13 show the results for PDAWL. Compared to DARTS-CPU, the
number of PEs changes with runtime. Our scheduler can reach up to 6� speedups

compared to sequential runs, 1:6� speedup compared to the multiple core version,

and 4:8� speedup compared to the pure GPU version in the 2D Stencil. In the 3D

Stencil, DARTS-PDAWL reaches speedups up to 9� compared to the sequential

version, 1:8� against multi-cores, and 3:6� against a pure GPU version. Figures 12

and 13 that profiling does not always yield significant speedups. This is especially

true around drop points, i.e., unstable points which are affected by multiple co-

running hardware/software conflicts parameters, which our machine learning

estimation model did not take into consideration.

Figure 14 compares the SpMV of the five Matrices listed in Table 4 on Machine

1. DARTS-CPU (pure CPU) employs the coarse-grain task scheduling approach

which evenly distributes all rows onto multheeads (CPUs). DARTS-GPU (pure

GPU) employs the fine-grain task scheduling approach which evenly distributes all

rows onto thread blocks (GPUs). Considering the features of sparse matrices, the

Table 6 Stencil 3D: mean absolute percentage error of the performance prediction with linear regression

models for each machine

Machines #1 #2 #3 #4

MAPE 6.43% 7.41% 3.45% 1.68%
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non-zeros number per rows varies enormously. If the workload is split in rows, then

the execution time of each partition will varies greatly. The totally execution time

depends on the partition with the maximum total of non-zeros elements. Resource

under utilization issues exist in both DARTS-CPU and DARTS-GPU. Compared to

Fig. 13 Stencil 3D: speedup (PDAWL)

b Fig. 12 Stencil 2D: speedup when matrices are larger than 17K � 17K (PDAWL)
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DARTS-GPU, the performance of DARTS-CPU is much higher than that for the

DARTS-GPU. This is because CPUs are better at processing complex data structure

which is the feature SpMV-CSR format. DARTS-DAWL is not shown in the

figure since it overlaps with DARTS-CPU with very tiny differences which are not

large enough to be visible. So, DARTS-CPU also stands for DARTS-DAWL in this

figure. DARTS-PDAWL first transforms sparse matrices into dense matrices using

the approach described in Fig. 5, and then utilize the ML model to find the best

matched parameter set for both CPU and GPU to improve computing resource

utilization. DARTS-PDAWL executes up to 30:5� faster than the GPU version and

1:37� faster than the multi CPU version. The speedup depends on the degree of

sparsity in the tested matrices. As shown in Fig. 14, the speedup of DARTS-
PDAWL/DARTS-GPU of Fullchip and circuit5M are far larger than the others.

Furthermore, our optimized SpMV approach, mentioned in Sect. 4.1.2, can run in

parallel a regular computation group on GPU and an irregular one, and perhaps also

include part of a regular, computation group on the CPU. 30% of threshold is a

reasonable value [19] for an SpMV computation. Choosing a more suitable thresh-

old, using ML algorithms, in order to further to improve the performance of

DARTS-PDAWL for sparse matrices computing will be one of our future tasks.

To summarize, based on the experiment results analysis (both Stencil and

SpMV), PDAWL can adaptively schedule regular and irregular workloads based on

the system hardware architecture. The reasons why PDAWL outperforms pure

GPU, pure CPU and DAWL are that it can fully utilize the available computing

resources, can find the suitable synchronization way to guarantee that all the

resources are co-running all the time, and can run on different architectures without

considering the differences of hardware architecture, initial workload allocation and

workload update ratio. Furthermore, PDAWL can also obtain relatively high

Fig. 14 SpMV performance(SpeedUP)
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performance when tasks are forced to a (not best matched) computing resources (see

machine 3 in Figs. 8 and 12). Even though, when facing the totally new applications

and hardware environments, it may take times to re-training profile-based ML

estimation model, where the re-training time depends on the complexity of system

architectures and applications, PDAWL can still be used as a general approach for

co-running applications, such as linear algebra applications, to obtain a relatively

better performance during the test for different systems. Furthermore, since we have

collected the important features based on the HAC algorithm, if the changes of

hardware do not effect the important features, there is no need to re-training for the

same/similar applications.

5 Related Works

The main challenge of the load-balancing mechanism is to divide the workload into

processing units precisely. A simple heuristics division approach may result in

worse performance than a simple uniform division. Machine-learning-based

prediction mechanism or/and online profiling-based scheduling algorithms have

been deployed to determine the workload partitioning decision on many-core

homogeneous/heterogeneous systems.

Luk et al. [26] proposes an empirical adaptive mapping, a fully automatic

technique to map computations to processing elements on heterogeneous multipro-

cessors. Wang et al [42] utilizes an ML approach to decide whether to parallelize a

loop and how to schedule candidates on multi-core platforms. Memeti and Pllana

[30] combined optimization and machine learning to statically distribute work

between the host and device of heterogeneous computing systems to minimize the

overall application execution time. Belviranli [5] performs a dynamic load-

balancing algorithm (Heterogeneous Dynamic Self-Scheduler-HDSS) for heteroge-

neous GPU clusters. Teodoro [38] performs a performance variation-aware

scheduling technique along with an estimation optimization model to collabora-

tively use CPUs and GPUs on parallel systems. Sant’Ana et al. [34, 35] implement

two profile-based load-balancing algorithms named PLB-Hec and PLB-HAC for

data-parallel applications in heterogeneous CPU–GPU clusters. The ML approach is

utilized to predict the best distribution of data block size among different processing

units. Zhang et al. [46] performs a series of workload characterization analysis to

understand the co-running behaviors on integrated CPU/GPU architecture. The

main factors affecting the co-running performance: the architectural differences

between CPUs and GPUs and the limited shared memory bandwidth. Based on this

information, an ML model can be built to predict coarse-grain workload partitioning

on a co-running device before porting the program. Zhang et al. [45] proposes a

fine-grain workload reshaping approach which combines performance prediction,

from an ML model, and partitioning threshold, from an online-turning model, to

partition the workload between CPU and GPU on integrated architectures. When the

workload is lower than the threshold, it will be executed on GPUs; otherwise, CPUs

will be employed. Margiolas et al. [28] and Boyle et al. [32] focus on the

accelerator sharing control for multiple kernels and propose to use ML to determine
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whether to run OpenCL code on GPU or OpenMP code on multi-core CPUs. Wen

et al. [43] use ML to decide whether to merge or to separate multi-user OpenCL

tasks running the most suitable devices in CPU–GPU systems.

To avoid extensive offline ML training, Laleem et al. [20] presents an adaptive

online profiling based scheduling technique. Cho et al. [8] reshapes the workload

on CPU/GPU based on online profile information generated at runtime. Zhang et al.
As with [45], a threshold is employed by Cho et al. [8].

Except for architectural differences, communication between CPUs, GPUs, and

the memory has a pivotal role. Chen et al. [7], Zhang et al. [46], Yang et al [44].

Van Craeynest et al. [40] and Garcia et al. [16] propose an analytical performance

model that includes PCIe transfers and overlapping computation and communica-

tion. Lutz et al. [27] proposes PARTANS, an autotuning framework for CPUs and

GPUs to execute Stencil computations over two nodes with multiple GPUs. Data

transfer on the PCIe bus plays a crucial role in determining the number of GPUs to

be utilized. To handle the communication-synchronization problem between CPUs

and GPUs, Lee et al. [22] proposes SKMD (Single Kernel Multiple devices) to

transparently orchestrate single kernel execution across asymmetric heterogeneous

devices regardless of memory access patterns.

Most of these are aimed at static, coarse-grain workload distribution, and loosely

synchronized parallel workloads where specific tasks are often run only a specific

type of processing element (e.g., CPU or GPU). Zhang et al. [45] works for fine-
grain partitioning, but employs an inherently rigid static workload partition.

Furthermore, the precision of the ML model determines the efficiency of the

workload partitioning approach. The hardware change during runtime may have a

catastrophic effect on the performance. At the same time, hardware changes during

runtime may happen frequently, and as much as half of the CPU cores may be

turned off because of power issues.

Our work focuses on dynamic, fine-grain workload distribution and tight

synchronization between CPUs and GPUs. To adapt to the real time hardware

situation, fully utilize the available computing resources and reduce the commu-

nication cost between CPUs and GPUs, we combine online scheduling and offline

machine learning.

6 Conclusions and Future Work

We have presented a profile-based AI-assisted dynamic scheduling approach for

heterogeneous architectures. To fully utilize the computing resources and improve

performance in the processing of scientific applications, we have focused on the

workload balance aspect. PDAWL, an iterative event-driven scheduling algorithm

has been designed to load balance better tasks in a heterogeneous system. It

leverages a naı̈ve hardware resources mathematical model, combining offline

profile-based machine learning and an online scheduling approach. Our model

determines how the workload should be allocated to the heterogeneous computing

resources. The profile-based Machine-Learning estimation model can help build an

estimation model in a heterogeneous resource context. It consists of a CPU model
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and a GPU model. We used ML to find the best workload-resource match to

improve the CPUs utilization rate, and the optimal estimation model to improve

GPU performance since building an accurate mathematical general-purpose GPU

performance model is nigh-impossible, as the search space is too large. Further-

more, the cluster algorithm (HAC) within the ML model can provide optimization

suggestions of the current application to improve the application performance on

heterogeneous systems. An online event-driven scheduling can make up for the

inflexibility of offline machine learning and increase accuracy of scheduling. Our

approach is suitable for a very dynamic hardware environments where the

computing resources can be turned off/on during run-time. Furthermore, our

approach can be used in the presence of huge workloads that exceed that capacity of

available device memory. The advantage of our approach is that the total machine

learning training time will not increase much since we train with small workloads to

predict the performance with very large workloads.

Two applications, Stencil and SpMV, have been chosen to evaluate our approach.

Experiments with Stencil 2D, Stencil 3D, and SpMV show that PDAWL yields

speedups up to 1:6�, 1:8�, and 1:37� for a multi-core baseline, 4:8�, 3:6�, and

30:5� for pure GPU execution.

Future work includes augmenting our model with power consumption parameters

to enrich PDAWL and determining the right trade-offs between performance and

power on heterogeneous architectures. Online learning algorithms, deep neural

networks and other Machine Learning algorithms will be integrated into PDAWL.

We will also employ meta-learning to reduce the training time when running our

PDAWL on other hardware environment configurations.
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