
Streaming Data Priority Scheduling Framework for
Autonomous Driving by Edge

Lingbing Yao
School of Computer Science and Engineering

South China University of Technology
Guangzhou, China

201821034002@mail.scut.edu.cn

Hang Zhao
School of Computer Science and Engineering

South China University of Technology
Guangzhou, China

i@hang.im

Jie Tang
School of Computer Science and Engineering

South China University of Technology
Guangzhou, China

cstangjie@scut.edu.cn

Shaoshan Liu
PerceptIn

Fremont, United States
shaoshan.liu@perceptin.io

Jean-Luc Gaudiot
Dept. of Electrical Engineering and Computer Science

University of California, Irvine
Irvine, United States

gaudiot@uci.edu

Abstract—In recent years, intelligent vehicles like autonomous
vehicles generate a huge amount of sensing data continuously. The
computations on those data streams are far beyond the processing
capacity of on-board computing. To deal with the streaming data
process in real-time, the deployment of streaming data processing
system by edge turns to the first choice in terms of performance.
However, the existing frameworks cannot satisfy the complicated
demands from autonomous driving tasks and lack the ability in
supporting the task priority scheduling. In this paper, we propose
a streaming data priority scheduling framework for autonomous
driving by edge on Spark Streaming and make an implementation
on Spark 2.3.0. The proposed framework can identify the
priorities among different data processing tasks and implement
the task scheduling based on non-preemptive priority queuing
theory. To meet differentiated service level requirements, the
proposed non-preemptive priority queuing scheduling mechanism
considers the priority category of tasks, the distance between
vehicles and edge nodes, and the priority weight of vehicles.
Experiments show that this mechanism can effectively identify the
priority information of different tasks from different vehicles and
reduce the end-to-end latency of high-priority tasks by up to 46%
than low-priority tasks.

Keywords—Autonomous driving, Streaming data processing,
Priority scheduling, Spark Streaming

I. INTRODUCTION
In recent years, modern vehicles have become increasingly

intelligent and lots of Advanced Driving Assistance technology
even autonomous driving begins the large-scale application.
These autonomous vehicles (AVs) deploy kinds of sensors, like
Radar, Camera, and Lidar for the full pipeline of on-vehicle
intelligence. These sensors are used to sense the environment,
output the captured data continuously, and work for the sensing/
perception/decision of autonomous driving. For instance,
Tesla’s Autopilot adopts 8 cameras and 12 ultrasonic sensors to
achieve L2-level automatic assisted driving [1]. However, these
streaming sensor data are generated at a tremendous rate. If all
these sensors are in a state of work, the total data rate can be up
to 750Mbps. If working 8 hours per day, some automatic vehicle
of hybrid scheme could generate about up to 2,700GB data.

The consequent huge amount of streaming data process
demands has far exceeded the computing capacity of on-board
computing devices. Therefore, researchers begin to employ the
distant cloud computing data-center and nearby edge computing
to take care of streaming data processing for autonomous driving.
However, the remote cloud inevitably brings about two
problems: First, massive streaming sensor data will be uploaded
at the same time, which may cause significant stress on the
existing bandwidth and lead to an unstable data transmission;
Second, for some delay-sensitive tasks like SLAM, the
instability and the high delay in data processing will put the
passengers and surrounding vehicles or pedestrians in danger.

Compared to the remote cloud, edge computing is deployed
closer to the data source, the on-board sensors [2]. With the
assistance of the computing and storage capacity by edge, the
massive streaming data of AVs can be processed in a more real-
time and low latency fashion. However, the existing streaming
data process frameworks are designed without considering the
deadline requirements and priority differences between tasks,
thus they are not engaging with a differentiated priority
scheduling pattern. Meanwhile, with the prosperity of on-
vehicle application ecosystem, rich types of tasks tend to have
kinds of priority demands on the data processing deadline,
payment, and resource sensitivity. The existing frameworks
meet great difficulties in processing streaming data from various
applications especially in multi-vehicle scenario.

To this end, in this paper we proposed a streaming data
priority scheduling mechanism and build a corresponding
streaming data processing framework by edge for autonomous
driving (Sec. III). This framework can identify the categories of
data processing tasks from multi-vehicles, generate the
corresponding priority information and conduct the task
scheduling based on the non-preemptive priority queuing theory.
The non-preemptive priority queuing scheduling mechanism
fully considers the information like the priority category of tasks,
the distance between vehicles and edges, and the priority weight
of vehicles. This mechanism is expected to make full use of the
limited computing and storage resources by edge to provide low
latency, high throughput, and task differentiated processing

37

2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC)

978-1-6654-2463-9/21/$31.00 ©2021 IEEE
DOI 10.1109/COMPSAC51774.2021.00017

20
21

 IE
EE

 4
5t

h
A

nn
ua

l C
om

pu
te

rs
, S

of
tw

ar
e,

 a
nd

 A
pp

lic
at

io
ns

 C
on

fe
re

nc
e

(C
O

M
PS

A
C

) |
 9

78
-1

-6
65

4-
24

63
-9

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
O

M
PS

A
C

51
77

4.
20

21
.0

00
17

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 05,2022 at 16:56:23 UTC from IEEE Xplore. Restrictions apply.

capability for large-scale and extensive deployment of
autonomous driving in the future. We also implemented the
proposed mechanism in Spark Streaming. and present out the
prototype in Sec. VI. Its evaluation in real scenarios in the
environment of Ubuntu 18.04 LTS is stated in Sec. VII.

The contribution of this paper includes:

 We have proposed a streaming data priority scheduling
framework by edge for autonomous driving. It is
designed to enable the identification and scheduling of
prioritized kinds of streaming data process by edge.

 We have modeled the multi-task scheduling based on
non-preemptive priority queuing theory and designed a
non-preemptive priority queuing scheduling mechanism
to meet the requirements of differentiated service.

 We implemented a streaming data processing framework
prototype in Spark 2.3.0. The experimental results reveal
that this mechanism can effectively improve the data
processing ability of edges. The end-to-end latency of
high-priority tasks was reduced by 46% than low-priority
tasks, thus it is proved to offer a differentiated service
provision for autonomous driving task processing.

II. BACKGROUND AND MOTIVATION

A. Spark and Spark Streaming
Spark is a distributed big data processing framework [3],

whose core abstraction is resilient distributed dataset (RDD) that
can be partitioned across the cluster nodes. A Spark application
runs on a cluster (including a driver program and several
executors). When running, the driver program defines a directed
acyclic graph (DAG) of RDDs for the job and then Spark’s
scheduler splits the DAG into stages. Next, tasks are assigned to
available executors for computation and storage.

Spark Streaming [4], as an extension of Spark, is a real-time
stream processing framework, whose key abstraction is
Discretized Stream (DStream), which is built on RDD. The core
idea of DStream is to split the real-time input data stream into
several small batches according to an assigned period time
called the batch interval. Then, batches are delivered to Spark’s
execution engine for processing. Finally, the result streaming
data are produced, which are also organized by batches.

B. Motivations
Considering the application background of the proposed

streaming data processing framework by edge, which has high
requirements for burst traffic, system stability, and fault
recovery capability, we consequently choose Spark Streaming
as the implementation basis and make modifications to it.

We notice that the existing streaming data processing
frameworks are mainly working for cloud computing and fail to
fully consider the features of data processing under the edge
computing environment. They have common limitations that: 1)
the low resource utilization rate and 2) no priority service
differentiation, etc. When faced with complex tasks of AVs, the
existing frameworks encounter difficulty in meeting the
diversified level of service demands of AVs.

III. SYSTEM OVERVIEW
The proposed framework is deployed in edge nodes and

regards the streaming data generated by AVs in a specific area,
whose architecture is as shown in Fig. 1. The framework
contains two layers: 1) the top layer, the job scheduling layer
based on non-preemptive priority queuing theory, and 2) the
bottom layer, the Spark engine execution layer.

In this study, we mainly focus on the design and
implementation of the job scheduling layer, which contains a
Priority Generator for job priority generation and a Priority
Scheduler for job priority scheduling. After the received data are
divided into different batches according to the batch interval, the
streaming job is generated and submitted to the Job Scheduler
for scheduling. The Job Priority Generator in the Job Scheduler
first scans the data in the batch, calculates the priority based on
the rules, and then assigns priority to the job. Priority Jobs are
submitted to the corresponding Priority Queue under the
management of the Queue Manager. When a Job Executor has
freed the computing resources, the Job Scheduler takes the job
with the highest priority from the Priority Queue and commits
it to execution.

To apply this streaming data priority scheduling mechanism,
we implement a corresponding streaming data processing
framework in virtue of Spark Streaming, which can fully satisfy
the streaming data processing requirements of AVs.

IV. TASK PRIORITY CALCULATION
Spark Streaming utilizes the First Come First Service

(FCFS) scheduling strategy for the received jobs by default.
Considering that our scenario of this study is autonomous
driving, different tasks may have different demands for priority.

When autonomous driving are promoted commercially, for
different vehicles, due to their different distances from base
stations, different payment levels of passengers and different

Fig. 1. The architecture of the proposed framework and the workflow of
our job scheduling mechanism.

38

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 05,2022 at 16:56:23 UTC from IEEE Xplore. Restrictions apply.

types of tasks to be processed, the uploaded data will also be
given different priorities. We assume that the data record
uploaded by an autonomous car to the Spark Streaming system
contains a group of metadata, including the car information and
on-board task information as shown in Table I and Table II.

As a streaming data processing framework for autonomous
driving, it should be able to distinguish the urgency and priority
of tasks among different AVs through this metadata information,
so that it can satisfy the urgent needs of high-priority vehicles or
high-priority delay-sensitive tasks. Assuming that we extract the
priority information needed: <c_prio, c_time, t_prio, t_time>,
and the priority of a record is defined as:

݌ = ܣ × ݋݅ݎ݌_ܿ + ܤ × ݋݅ݎ݌_ݐ
− min{ܥ × ,݁݉݅ݐ_ܿ ܦ × {݁݉݅ݐ_ݐ (1)

We set c_prio and t_prio to be 1 or 2 respectively, and let A
= 100, B = 100, C = 1, and D = 1. We constraint the lower bound
of priority p to be 0 and then ݌ is in the range of [0, 400]. Besides,
a greater ݌ indicates a higher priority. We define the priority of
a batch to be the average priority of the records within the batch.

When a job is scanned by Priority Generator and assigned a
priority, to facilitate the subsequent establishment of the priority
queue, we map the numerical priorities to five levels in
descending order as shown in Table III. Note that the high-
priority jobs run earlier than the low-priority jobs.

V. NON-PREEMPTIVE PRIORITY SCHEDULING

A. Non-preemptive Priority Queuing Theory Modeling
We introduce the queuing theory model to the job

scheduling system of Spark Streaming, in which the model used
is ܯଵ/ܯଶ/ܵ/∞. ܯଵ indicates that the successive arrival rate of
the job follows the negative exponential distribution with
parameter ߣ, where ߣ is the average number of arrived jobs per
unit time; ܯଶ is the distribution of the service rate follows the
negative exponential distribution with parameter ߤ, where ߤ is
the average number of jobs completed by the service per unit
time; ܵ is the number of resource pool service windows; ∞
represents unlimited system capacity. If Spark Streaming is
regarded as a random service system, the randomly arrived job
is similar to the customer in the queuing theory model, and the
queue is the computing slot in the scheduling system.

In this section, we discuss the FCFS scheduling scheme and
the non-preemptive priority-based scheduling scheme in turn.
To simplify the analysis, we only discuss the case of ܵ = 1.

a) Derivation of M/M/1 Model (FCFS): When the FCFS
scheduling scheme is adopted, jobs are queued in the queue
according to their arrival order and receive services in turn. We
define the service strength as ߩ = ఒ

ఓ
. If the service strength is

greater than 1, it means that the number of arrived jobs per unit
time is greater than the number of jobs that completed the
service, and the length of the queue in the system is getting
longer and longer, which causes system blocking. When 0 <
ߩ < 1, according to related principles of queuing theory, it is

easy to obtain the line length ܮௌ = ఘ
ଵିఘ

= ఒ
ఓିఒ

, the queue length

௤ܮ = ఘఒ
ఓିఒ

, the stay time ௌܹ = ௅ೄ
ఒ

, and the queue time ௤ܹ = ௅೜

ఒ
.

b) Derivation of Non-preemptive Priority M/M/1 Model:
In the priority queuing model, jobs are graded. Suppose that
tasks are divided into ܰ levels (ܰ = 5), the first level has the
highest priority, and the ܰth level has the lowest priority. For
the non-preemptive priority service model of 1/ܯ/ܯ queuing
theory, let ߣ௜ be the arrival rate of the job at level ݅, and then the
arrival rate of the system is ߣ = ∑ ௜ߣ

ே
௜ୀଵ ௜ߤ . is the average

service rate of the job at level ݅. ௜ܵ is the service time required
for the job at level ݅. ܵ is the system average service time.

Let ߩ௜ = ఒ೔
ఓ೔

= ௜ߣ ∗ ௜ܵ(1 ≤ ݅ ≤ ܰ) be the traffic of the
priority ݅ , and ߩ = ∑ ௜ߩ

ே
௜ୀଵ = ∑ ௜ߣ ௜ܵ

ே
௜ୀଵ be the traffic of the

system. Since the job at level 1 to N are all independent Poisson
flows, the probability that the job reaches the system at any time
belongs to level ݅ is ఒ೔

ఒ
.

c) The First-Priority Job: When the newly arrived job is
of the first priority, its average waiting time in the system is
composed of two parts:

One part is the sum of the average service time Tଵ of all the
first-priority jobs that are waiting in line for service. Note that
the average number of queued jobs is L୯ଵ, then:

ଵܶ = ܵ ∗ ௤ଵܮ =
௤ଵܮ

ߤ
= ଵߩ ∗ ௤ܹଵ (2)

TABLE I. THE CAR INFORMATION

 Parameters Note
c_id Car ID

c_type Car type

c_prio Car priority Two levels: high/low, corresponding
to 2/1.

c_dir Driving direction Two directions: approaching/leaving.

c_dist Distance from the
base station Unit: meter (m).

c_speed Driving speed Unit: kilometer per hour (km/h).

c_time
The remaining time
of the base station
coverage signal

Estimated by driving direction,
driving speed, and distance from the
base station. Unit: second(s).

TABLE II. THE ON-BOARD TASK INFORMATION

 Parameters Note
t_id Task ID

t_type Task type

t_prio Task priority Two levels: high/low, corresponding
to 2/1.

t_time The required time to
complete the task Unit: second (s).

TABLE III. QUANTIFICATION OF PRIORITIES

Priority Level Average Priority Range of Batch
VERY_HIGH [320,400]

HIGH [240,320)
NORMAL [160,240)

LOW [80, 160)
VERY_LOW [0, 80)

39

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 05,2022 at 16:56:23 UTC from IEEE Xplore. Restrictions apply.

Where ௤ܹଵ is the average queue waiting time.

The other part is the average time to wait for the service
desk to be vacated. Due to the memory lessness of the negative
exponential function, it should be

ଶܶ = ߩ ∗
1
ߤ

=
ߣ

ଶߤ (3)

Then, we get:

௤ܹଵ = ଵߩ ∗ ௤ܹଵ +
ߣ

ଶߤ (4)

So, the average waiting time is:

௤ܹଵ =
ߣ

ଶ(1ߤ − (ଵߩ =
ߣ

ߤ)ߤ − (ଵߣ
(5)

According to Little’s Law:

௦ܮ = ߣ ∗ ௦ܹ, ௤ܮ = ߣ ∗ ௤ܹ, ௦ܮ = ௤ܮ + ,ߩ ௦ܹ = ௤ܹ + ଵ
ఓ

 (6)

The first-priority job, namely the job of VERY_HIGH
priority, has the average length of stay in the system of:

௦ܹଵ = ௤ܹଵ +
1
ߤ

=
ߤ + ଶߣ + ଷߣ + ସߣ + ହߣ

ߤ)ߤ − (ଵߣ
(7)

The average waiting queue length is:

௤ଵܮ = ଵߣ ∗ ௤ܹଵ =
ߣ ∗ ଵߣ

ߤ)ߤ − (ଵߣ
(8)

The average line length is:

௦ଵܮ = ଵߣ ∗ ௦ܹଵ =
ߤ)ଵߣ + ଶߣ + ଷߣ + ସߣ + (ହߣ

ߤ − ߤ) − (ଵߣ
(9)

d) The Second-priority Job: When the newly arrived job
is of the second priority, its average waiting time in the system
is composed of three parts:

 The first part is the sum of the average service time Tଵ of the
first-priority and second-priority jobs waiting in line for service:

ଵܶ = ଵߩ ௤ܹଵ + ଶߩ ௤ܹଶ (10)

The second part is the average time Tଶ waiting for the service
desk to be vacated:

ଶܶ =
ߣ

ଶߤ (11)

The third part is the sum of the average delay time Tଷ caused
by the priority interruption of the first-priority job successively
arriving during the queue of the new second-priority job:

ଷܶ = ଵߩ ௤ܹଶ (12)

Accumulating the above three formulas, we get:

௤ܹଶ = ଵߩ ௤ܹଵ + ଶߩ ௤ܹଶ +
ߣ

ଶߤ + ଵߩ ௤ܹଶ (13)

Then we get the average waiting time:

௤ܹଶ =
ଵߩ ௤ܹଵ + ߣ

ଶߤ

1 − ଵߩ − ଶߩ
=

ߣ
ߤ) − ߤ)(ଵߣ − ଵߣ − (ଶߣ

(14)

According to Little’s Law, the average stay time of the
second-priority job in the system is:

௦ܹଶ = ௤ܹଶ +
1
ߤ

(15)

The average waiting queue length is

௤ଶܮ = ଶߣ ௤ܹଶ =
ଶߣߣ

ߤ) − ߤ)(ଵߣ − ଵߣ − (ଶߣ
(16)

The average line length (the waiting jobs and the jobs being
served by the service desk) is

௦ଶܮ = ଶߣ ௦ܹଶ (17)

e) The Third/Fourth/Fifth-priority Job: Similarly, the
average waiting time of the third/fourth/fifth-priority customers
can be obtained:

௤ܹଷ =
ߣ

ߤ) − ଵߣ − ߤ)(ଶߣ − ଵߣ − ଶߣ − (ଷߣ
(18)

௤ܹସ =
ߣ

ߤ) − ଵߣ − ଶߣ − ߤ)(ଷߣ − ଵߣ − ଶߣ − ଷߣ − (ସߣ
(19)

௤ܹହ =
ߣ

ߤ) − ଵߣ − ଶߣ − ଷߣ − ߤ)(ସߣ − ଵߣ − ଶߣ − ଷߣ − ସߣ − (ହߣ
 (20)

According to Little’s Law, we can get the other three running
indicators of the third/fourth/fifth-priority job.

B. Numerical Analysis
Based on the theoretical derivation, we can evaluate the

performance of the queuing model using FCFS and priority
scheduling through numerical analysis.

Assume that the Spark Streaming system processes multiple
jobs from multiple Receivers. The system receives 5 jobs per

TABLE IV. RUNNING RESULT AT μ = 6, = 5

Type Waiting
time/min

Stay
time/min

Waiting
line length

Line
length

FCFS 0.833 1 4.167 5
The 1st priority 0.167 0.333 0.167 0.333
The 2nd priority 0.250 0.417 0.250 0.417
The 3rd priority 0.417 0.583 0.417 0.583
The 4th priority 0.833 1 0.833 1
The 5th priority 2.500 2.667 2.500 2.667

(a) (b)

Fig. 2. The comparison of (a) average stay time and (b) average line length.

40

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 05,2022 at 16:56:23 UTC from IEEE Xplore. Restrictions apply.

minute and each priority job has the same frequency. At the
same time, the system can complete the processing of 6 jobs per
minute. Then we can get the available model parameters ߤ = 6
and ߣଵ = ଶߣ = ⋯ = ଺ߣ = 1. According to the above parameters,
the running indicators of each priority in the FCFS queue and
the non-preemptive priority queue are shown in Table IV. It can
be observed from Table IV that the average stay time of the
first-priority and second-priority jobs has decreased by 58.3%
and 66.7% respectively than the FCFS queue. The average line
length is much smaller than the FCFS queue, meeting the needs
of delay-sensitive tasks. Although the average stay time of the
fifth-priority job has increased by 166.7% relative to the FCFS
queue, considering that its priority is lower, it is within the
acceptable range of the system.

Let ߤ = 6 and we get the comparison of the average stay
time and average line length as Fig. 2 by changing ߣ.

VI. SYSTEM IMPLEMENTATION
The proposed framework is divided into two levels from top

to bottom: the job scheduling layer based on the non-preemptive
priority queuing theory, and the Spark engine execution layer.
We implement the top layer by modifying the source code of
Spark Streaming and directly use Spark Engine as the bottom.
Relying on the existing interface, we mainly realize two parts of
the top: Edge Receiver for user-defined data receiving; and
Priority Tracker for priority management, including Priority
Generator and Priority Queue.

Fig. 3 shows the execution flow of the job scheduling layer.
First, Edge Receiver receives the sensing data, which contains
metadata. Second, Edge Receiver gathers together the sensing
data with metadata, divides them into blocks, and then inputs
them into Receiver Tracker. Third, after batch generation and
job generation in sequence, a corresponding job is created and
becomes the input of the Priority Tracker module. Next, the
Priority Tracker identifies the job it receives, checks the block
and batch information, and extracts the corresponding metadata.
Then, Priority Tracker conducts metadata processing to
generate the corresponding priority information, Finally, the
jobs with priorities are added to the Priority Queue and then
executed in order of priorities from highest to lowest.

VII. EXPERIMENTAL EVALUATION

A. Experiment Setup
 We implement the streaming data priority scheduling

mechanism and conduct corresponding experiments. Our test
server is Intel(R) Xeon(R) CPU E5-2609 v4@1.70GHz with
32GB RAM and 4TB HDD hard disk. The operating system is

Ubuntu 18.04 LTS, and the software environment is built on
Spark 2.3.0, which relies on JDK 1.8 and Scala 2.11.12.

B. Non-preemptive Priority Queuing Theory Scheduling
To verify the scheduling effect, we construct an application

containing 5 data sources. Each application corresponds to
different priority data. Each data source has the same data
arrival rate. We set the number of Receiver nodes to 5 and the
number of Executor nodes to 1, and observe the execution of
jobs corresponding to data sources with different priorities in
the same batch. To facilitate observation, we set the batch
interval to 20s, and turn off the dynamic adjustment function of
batch interval. Fig. 4(a) shows the execution result of different
priority jobs when using FCFS. In Fig. 4(a), the abscissa
represents the running time since the application start, and the
ordinate represents the time from job creation to execution
completion. In Spark Streaming, the sequence of job generation
has a certain regularity (the order of occurrence in user code),
so jobs will be executed in a specific order. However, this order
does not conform to the user’s expected priority, which will
cause high-priority jobs to be executed after low-priority jobs.
Fig. 4(b) shows the execution of different priority jobs after
enabling non-preemptive priority scheduling. At this time, the
system schedules and executes jobs according to the priority of
jobs, and jobs with higher priorities are given priority execution,
effectively reducing the end-to-end delay of high-priority jobs.

C. Comprehensive Experiment
To examine the performance of this framework in the real

scenario, we test it based on the real traffic flow data about the
online-hailing cars of Didi Chuxing [5]. We extract the traffic
flow from 08:00 to 20:00 on Oct.1, 2016 in Fig. 5(a) as the input
data rat. At the same time, we set two task priorities of high and
low, and make their quantity ratio to 1:2. Fig. 5(b) shows the
latency of tasks with different priorities. We observe that a
high-priority task is always executed before a lower-priority
task. The average end-to-end delay of low priority is 5279ms,
while that of a high-priority task is only 2862ms. Through our
priority scheduling, the average end-to-end delay of high-
priority tasks is reduced by 46% compared to low priority tasks.

(a) (b)

Fig. 4. The total delay of jobs with different priorities under (a) FCFS and
(b) priority scheduling, respectively.

(a) (b)

Fig. 5. (a) The traffic flow of one day in the real scenario; (b) Comparison
of the end-to-end latency for tasks with different priorities.

Fig. 3. Execution flow of job scheduling layer based on non-preemptive
priority queuing theory.

41

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 05,2022 at 16:56:23 UTC from IEEE Xplore. Restrictions apply.

VIII. RELATED WORK
In Hadoop, Q. Sun introduced the M/G/1 queuing model

into the job scheduling system and proposed a non-preemptive
short-job-first scheduling scheme, which effectively shortened
the average waiting time of all jobs [6]. L. Gu proposed an
improved priority scheduling algorithm, which considered the
computing capacity of cluster nodes and the overall system load
level, and assigned tasks according to the job priority and the
computing capacity of nodes, ensuring the overall system load
falling into a reasonable range [7].

In Spark, K. Liu [8] studied the task scheduling strategy in
a heterogeneous environment and proposed a scheduling
scheme of assigning executing nodes for tasks based on node
performance and task complexity. J. Tang et al. [9] proposed a
DAG reuse scheme based on the genetic algorithm, which
sorted the execution order of DAG to reduce the total execution
time. Islam et al. [10] implemented a cost-efficient scheduling
strategy by centralizing the configuration of Executor as much
as possible to reduce the number of virtual machines (VMs) so
that it can reduce costs while satisfying task deadlines.

In Spark Streaming, T. Ajila et.al [11] proposed data-driven
priority scheduling for text processing tasks with priority,
which generates priority information by pre-scanning the input
data. R. Birke et al. [12] proposed Dslash, a latency-driven data
control strategy, which ensures the controllability of system
delay by adjusting the maximum data capacity of block. H. Jin
et al. [13] adopted the pre-scheduling method to identify
potential stragglers in Spark Streaming in advance, and they
improved the system resource utilization through reasonable
pre-assignment of tasks. Reference [14] proposed A-scheduler,
which divides tasks into data-dependent tasks and data-
independent tasks, and places them in two task queues for
scheduling. Meanwhile, they adopted reinforcement learning to
adaptively adjust the parallelism and weight of tasks.

IX. CONCLUSION
With the development of autonomous driving, on-board

sensors generate massive streaming data. Existing streaming
data processing frameworks based on cloud computing have
shortcomings of insufficient bandwidth and high transmission
delay, which are difficult to satisfy the demands of stability and
low latency for autonomous driving tasks. In contrast to clouds,
edge computing, which is limited in scale of computing and
storage capabilities, is more suitable for the processing of
delay-sensitive tasks for autonomous driving.

To satisfy the diverse task processing requirements of AVs,
we propose a streaming data priority scheduling mechanism by
edge and implement a streaming data processing framework on
Spark Streaming. It can distinguish the priority information of
different tasks and schedule the data processing tasks under the
guidance of the non-preemptive priority queuing theory.

Experiments have shown that the proposed streaming data
priority scheduling mechanism can: 1) effectively distinguish
different types of tasks and the task priority differences among
different vehicles; 2) achieve reasonable scheduling; and 3)
reduce the end-to-end latency of higher-priority tasks by up to

46% than low-priority tasks. Thereby, the proposed mechanism
meets the demands of differential service level for AVs.

ACKNOWLEDGMENT
Jie Tang is the corresponding author of this paper. This work

is supported by Guangdong R&D Key Project of China under
Grant No. 2018B010107003, by Guangdong Natural Science
Foundation under Grant No. 2018A030310408, 2021A1515011

755.

REFERENCES
[1] “Autopilot,” Tesla, https://www.tesla.com/autopilot.
[2] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision

and Challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637-
646, Oct. 2016, doi: 10.1109/JIOT.2016.2579198.

[3] “Spark Overview,” Apache Spark, https://spark.apache.org/docs/latest/
(accessed Feb. 12, 2021).

[4] “Spark Streaming,” Databricks, https://databricks.com/glossary/what-is-
spark-streaming (accessed Feb. 12, 2021).

[5] Didi Chuxing, GAIA Initiative, Chengdu, China, 2016, Accessed on: Feb.
12, 2021. [Online]. Available: https://gaia.didichuxing.com.

[6] Q. Sun, “Research and optimization of job scheduling algorithm based on
Hadoop,” M.S. thesis, Xi’an University of Technology, Xi’an, China,
2016, Accessed on: Feb. 12, 2021. [Online]. Available:
https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201801&fi
lename=1017853391.nh.

[7] L. Gu, “Research of Hadoop Job Scheduling Based on Priority and
Reliability in Cloud Computing Environment,” M.S. thesis, Hunan
University, Changsha, China, 2013, Accessed on: Feb. 12, 2021. [Online].
Available:https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD
201402&filename=1014167259.nh.

[8] K. Liu, “Research of Task Scheduling Strategy for Heterogeneous Cluster
in Spark Computing Environment,” M.S. thesis, Hunan University,
Changsha, China, 2018, Accessed on: Feb. 12, 2021. [Online]. Available:
https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201901&fi
lename=1018147704.nh.

[9] J. Tang, M. Xu, S. Fu, and K. Huang. “A scheduling optimization
technique based on reuse in spark to defend against apt attack,” in
Tsinghua Science and Technology, vol. 23, no. 5, pp. 550-560, Oct. 2018,
doi: https://doi.org/10.26599/TST.2018.9010022.

[10] M. T. Islam, S. Karunasekera, and R. Buyya, “dSpark: Deadline-Based
Resource Allocation for Big Data Applications in Apache Spark,” in 2017
IEEE 13th International Conference on e-Science (e-Science), Auckland,
Oct. 2017, pp. 89-98, doi: 10.1109/eScience.2017.21.

[11] T. Ajila and S. Majumdar, “Data Driven Priority Scheduling on a Spark
Streaming System,” 2019 19th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID), Larnaca, Cyprus, 2019,
pp. 561-568, doi: 10.1109/CCGRID.2019.00072.

[12] R. Birke, M. Bjöerkqvist, E. Kalyvianaki, and L. Y. Chen, “Meeting
Latency Target in Transient Burst: A Case on Spark Streaming,” 2017
IEEE International Conference on Cloud Engineering (IC2E), Vancouver,
BC, 2017, pp. 149-158, doi: 10.1109/IC2E.2017.17.

[13] H. Jin, F. Chen, S. Wu, Y. Yao, Z.Liu, L. Gu, and Y. Zhou, “Towards
Low-Latency Batched Stream Processing by Pre-Scheduling,” in IEEE
Transactions on Parallel and Distributed Systems, vol. 30, no. 3, pp. 710-
722, 2019, doi: https://doi.org/10.1109/TPDS.2018.2866581.

[14] D. Cheng, X. Zhou, Y. Wang and C. Jiang, “Adaptive Scheduling Parallel
Jobs with Dynamic Batching in Spark Streaming,” in IEEE Transactions
on Parallel and Distributed Systems, vol. 29, no. 12, pp. 2672-2685, 1
Dec. 2018, doi: 10.1109/TPDS.2018.284623.

42

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 05,2022 at 16:56:23 UTC from IEEE Xplore. Restrictions apply.

		2021-09-07T17:30:45-0400
	Preflight Ticket Signature

