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Abstract—In recent years, intelligent vehicles like autonomous 
vehicles generate a huge amount of sensing data continuously. The 
computations on those data streams are far beyond the processing 
capacity of on-board computing. To deal with the streaming data 
process in real-time, the deployment of streaming data processing 
system by edge turns to the first choice in terms of performance. 
However, the existing frameworks cannot satisfy the complicated 
demands from autonomous driving tasks and lack the ability in 
supporting the task priority scheduling. In this paper, we propose 
a streaming data priority scheduling framework for autonomous 
driving by edge on Spark Streaming and make an implementation 
on Spark 2.3.0. The proposed framework can identify the 
priorities among different data processing tasks and implement 
the task scheduling based on non-preemptive priority queuing 
theory. To meet differentiated service level requirements, the 
proposed non-preemptive priority queuing scheduling mechanism 
considers the priority category of tasks, the distance between 
vehicles and edge nodes, and the priority weight of vehicles. 
Experiments show that this mechanism can effectively identify the 
priority information of different tasks from different vehicles and 
reduce the end-to-end latency of high-priority tasks by up to 46% 
than low-priority tasks.  

Keywords—Autonomous driving, Streaming data processing, 
Priority scheduling, Spark Streaming 

I. INTRODUCTION 
In recent years, modern vehicles have become increasingly 

intelligent and lots of Advanced Driving Assistance technology 
even autonomous driving begins the large-scale application. 
These autonomous vehicles (AVs) deploy kinds of sensors, like 
Radar, Camera, and Lidar for the full pipeline of on-vehicle 
intelligence. These sensors are used to sense the environment, 
output the captured data continuously, and work for the sensing/ 
perception/decision of autonomous driving. For instance, 
Tesla’s Autopilot adopts 8 cameras and 12 ultrasonic sensors to 
achieve L2-level automatic assisted driving [1]. However, these 
streaming sensor data are generated at a tremendous rate. If all 
these sensors are in a state of work, the total data rate can be up 
to 750Mbps. If working 8 hours per day, some automatic vehicle 
of hybrid scheme could generate about up to 2,700GB data. 

The consequent huge amount of streaming data process 
demands has far exceeded the computing capacity of on-board 
computing devices. Therefore, researchers begin to employ the 
distant cloud computing data-center and nearby edge computing 
to take care of streaming data processing for autonomous driving. 
However, the remote cloud inevitably brings about two 
problems: First, massive streaming sensor data will be uploaded 
at the same time, which may cause significant stress on the 
existing bandwidth and lead to an unstable data transmission; 
Second, for some delay-sensitive tasks like SLAM, the 
instability and the high delay in data processing will put the 
passengers and surrounding vehicles or pedestrians in danger.  

Compared to the remote cloud, edge computing is deployed 
closer to the data source, the on-board sensors [2]. With the 
assistance of the computing and storage capacity by edge, the 
massive streaming data of  AVs can be processed in a more real-
time and low latency fashion. However, the existing streaming 
data process frameworks are designed without considering the 
deadline requirements and priority differences between tasks, 
thus they are not engaging with a differentiated priority 
scheduling pattern. Meanwhile, with the prosperity of on-
vehicle application ecosystem, rich types of tasks tend to have 
kinds of priority demands on the data processing deadline, 
payment, and resource sensitivity. The existing frameworks 
meet great difficulties in processing streaming data from various 
applications especially in multi-vehicle scenario. 

To this end, in this paper we proposed a streaming data 
priority scheduling mechanism and build a corresponding 
streaming data processing framework by edge for autonomous 
driving (Sec. III). This framework can identify the categories of 
data processing tasks from multi-vehicles, generate the 
corresponding priority information and conduct the task 
scheduling based on the non-preemptive priority queuing theory. 
The non-preemptive priority queuing scheduling mechanism 
fully considers the information like the priority category of tasks, 
the distance between vehicles and edges, and the priority weight 
of vehicles. This mechanism is expected to make full use of the 
limited computing and storage resources by edge to provide low 
latency, high throughput, and task differentiated processing 
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capability for large-scale and extensive deployment of 
autonomous driving in the future. We also implemented the 
proposed mechanism in Spark Streaming. and present out the 
prototype in Sec. VI. Its evaluation in real scenarios in the 
environment of Ubuntu 18.04 LTS is stated in Sec. VII.  

The contribution of this paper includes: 

 We have proposed a streaming data priority scheduling 
framework by edge for autonomous driving. It is 
designed to enable the identification and scheduling of 
prioritized kinds of streaming data process by edge.  

 We have modeled the multi-task scheduling based on 
non-preemptive priority queuing theory and designed a  
non-preemptive priority queuing scheduling mechanism 
to meet the requirements of differentiated service. 

 We implemented a streaming data processing framework 
prototype in Spark 2.3.0. The experimental results reveal 
that this mechanism can effectively improve the data 
processing ability of edges. The end-to-end latency of 
high-priority tasks was reduced by 46% than low-priority 
tasks, thus it is proved to offer a differentiated service 
provision for autonomous driving task processing. 

 

II. BACKGROUND AND MOTIVATION 

A. Spark and Spark Streaming 
Spark is a distributed big data processing framework [3], 

whose core abstraction is resilient distributed dataset (RDD) that 
can be partitioned across the cluster nodes. A Spark application 
runs on a cluster (including a driver program and several 
executors). When running, the driver program defines a directed 
acyclic graph (DAG) of RDDs for the job and then Spark’s 
scheduler splits the DAG into stages. Next, tasks are assigned to 
available executors for computation and storage. 

Spark Streaming [4], as an extension of Spark, is a real-time 
stream processing framework, whose key abstraction is 
Discretized Stream (DStream), which is built on RDD. The core 
idea of DStream is to split the real-time input data stream into 
several small batches according to an assigned period time 
called the batch interval. Then, batches are delivered to Spark’s 
execution engine for processing. Finally, the result streaming 
data are produced, which are also organized by batches. 

B. Motivations 
Considering the application background of the proposed 

streaming data processing framework by edge, which has high 
requirements for burst traffic, system stability, and fault 
recovery capability, we consequently choose Spark Streaming 
as the implementation basis and make modifications to it.   

We notice that the existing streaming data processing 
frameworks are mainly working for cloud computing and fail to 
fully consider the features of data processing under the edge 
computing environment. They have common limitations that: 1) 
the low resource utilization rate and 2) no priority service 
differentiation, etc. When faced with complex tasks of AVs, the 
existing frameworks encounter  difficulty in meeting the 
diversified level of service demands of AVs. 

III. SYSTEM OVERVIEW 
The proposed framework is deployed in edge nodes and 

regards the streaming data generated by AVs in a specific area, 
whose architecture is as shown in Fig. 1. The framework 
contains two layers: 1) the top layer, the job scheduling layer 
based on non-preemptive priority queuing theory, and 2) the 
bottom layer, the Spark engine execution layer. 

In this study, we mainly focus on the design and 
implementation of the job scheduling layer, which contains a 
Priority Generator for job priority generation and a Priority 
Scheduler for job priority scheduling. After the received data are 
divided into different batches according to the batch interval, the 
streaming job is generated and submitted to the Job Scheduler 
for scheduling. The Job Priority Generator in the Job Scheduler 
first scans the data in the batch, calculates the priority based on 
the rules, and then assigns priority to the job. Priority Jobs are 
submitted to the corresponding Priority Queue under the 
management of the Queue Manager. When a Job Executor has 
freed the computing resources, the Job Scheduler takes the job 
with the highest priority from the Priority Queue and commits 
it to execution. 

To apply this streaming data priority scheduling mechanism, 
we implement a corresponding streaming data processing 
framework in virtue of Spark Streaming, which can fully satisfy 
the streaming data processing requirements of AVs. 

 

IV. TASK PRIORITY CALCULATION 
Spark Streaming utilizes the First Come First Service 

(FCFS) scheduling strategy for the received jobs by default. 
Considering that our scenario of this study is autonomous 
driving, different tasks may have different demands for priority.  

When autonomous driving are promoted commercially, for 
different vehicles, due to their different distances from base 
stations, different payment levels of passengers and different 

 
Fig. 1.  The architecture of the proposed framework and the workflow of 
our job scheduling mechanism. 
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types of tasks to be processed, the uploaded data will also be 
given different priorities. We assume that the data record 
uploaded by an autonomous car to the Spark Streaming system 
contains a group of metadata, including the car information and 
on-board task information as shown in Table I and Table II. 

As a streaming data processing framework for autonomous 
driving, it should be able to distinguish the urgency and priority 
of tasks among different AVs through this metadata information, 
so that it can satisfy the urgent needs of high-priority vehicles or 
high-priority delay-sensitive tasks. Assuming that we extract the 
priority information needed: <c_prio, c_time, t_prio, t_time>, 
and the priority of a record is defined as: 

݌ = ܣ × ݋݅ݎ݌_ܿ + ܤ × ݋݅ݎ݌_ݐ
− min{ܥ × ,݁݉݅ݐ_ܿ ܦ × {݁݉݅ݐ_ݐ (1) 

We set c_prio and t_prio to be 1 or 2 respectively, and let A 
= 100, B = 100, C = 1, and D = 1. We constraint the lower bound 
of priority p to be 0 and then ݌ is in the range of [0, 400]. Besides, 
a greater ݌ indicates a higher priority. We define the priority of 
a batch to be the average priority of the records within the batch.  

When a job is scanned by Priority Generator and assigned a 
priority, to facilitate the subsequent establishment of the priority 
queue, we map the numerical priorities to five levels in 
descending order as shown in Table III. Note that the high-
priority jobs run earlier than the low-priority jobs. 

 

V. NON-PREEMPTIVE PRIORITY SCHEDULING 

A. Non-preemptive Priority Queuing Theory Modeling 
We introduce the queuing theory model to the job 

scheduling system of Spark Streaming, in which the model used 
is ܯଵ/ܯଶ/ܵ/∞. ܯଵ indicates that the successive arrival rate of 
the job follows the negative exponential distribution with 
parameter ߣ, where ߣ is the average number of arrived jobs per 
unit time; ܯଶ is the distribution of the service rate follows the 
negative exponential distribution with parameter ߤ, where ߤ is 
the average number of jobs completed by the service per unit 
time; ܵ  is the number of resource pool service windows; ∞ 
represents unlimited system capacity. If Spark Streaming is 
regarded as a random service system, the randomly arrived job 
is similar to the customer in the queuing theory model, and the 
queue is the computing slot in the scheduling system. 

In this section, we discuss the FCFS scheduling scheme and 
the non-preemptive priority-based scheduling scheme in turn. 
To simplify the analysis, we only discuss the case of ܵ = 1. 

a) Derivation of M/M/1 Model (FCFS): When the FCFS 
scheduling scheme is adopted, jobs are queued in the queue 
according to their arrival order and receive services in turn. We 
define the service strength as ߩ = ఒ

ఓ
. If the service strength is 

greater than 1, it means that the number of arrived jobs per unit 
time is greater than the number of jobs that completed the 
service, and the length of the queue in the system is getting 
longer and longer, which causes system blocking. When 0 <
ߩ < 1, according to related principles of queuing theory, it is 

easy to obtain the line length ܮௌ = ఘ
ଵିఘ

= ఒ
ఓିఒ

, the queue length 

௤ܮ = ఘఒ
ఓିఒ

, the stay time ௌܹ = ௅ೄ
ఒ

, and the queue time ௤ܹ = ௅೜

ఒ
. 

b) Derivation of Non-preemptive Priority M/M/1 Model: 
In the priority queuing model, jobs are graded. Suppose that 
tasks are divided into ܰ levels (ܰ = 5), the first level has the 
highest priority, and the ܰth level has the lowest priority. For 
the non-preemptive priority service model of 1/ܯ/ܯ queuing 
theory, let ߣ௜ be the arrival rate of the job at level ݅, and then the 
arrival rate of the system is ߣ = ∑ ௜ߣ

ே
௜ୀଵ ௜ߤ .  is the average 

service rate of the job at level ݅. ௜ܵ is the service time required 
for the job at level ݅. ܵ is the system average service time. 

Let ߩ௜ = ఒ೔
ఓ೔

= ௜ߣ ∗ ௜ܵ(1 ≤ ݅ ≤ ܰ)  be the traffic of the 
priority ݅ , and ߩ = ∑ ௜ߩ

ே
௜ୀଵ = ∑ ௜ߣ ௜ܵ

ே
௜ୀଵ  be the traffic of the 

system. Since the job at level 1 to N are all independent Poisson 
flows, the probability that the job reaches the system at any time 
belongs to level ݅ is ఒ೔

ఒ
. 

c) The First-Priority Job: When the newly arrived job is 
of the first priority, its average waiting time in the system is 
composed of two parts: 

One part is the sum of the average service time Tଵ of all the 
first-priority jobs that are waiting in line for service. Note that 
the average number of queued jobs is L୯ଵ, then: 

ଵܶ = ܵ ∗ ௤ଵܮ =
௤ଵܮ

ߤ
= ଵߩ ∗ ௤ܹଵ (2) 

TABLE I.    THE CAR INFORMATION 

 Parameters Note 
c_id Car ID  

c_type Car type  

c_prio Car priority Two levels: high/low, corresponding 
to 2/1. 

c_dir Driving direction Two directions: approaching/leaving. 

c_dist Distance from the 
base station Unit: meter (m). 

c_speed Driving speed Unit: kilometer per hour (km/h). 

c_time 
The remaining time 
of the base station 
coverage signal 

Estimated by driving direction, 
driving speed, and distance from the 
base station. Unit: second(s). 

TABLE II.    THE ON-BOARD TASK INFORMATION 

 Parameters Note 
t_id Task ID  

t_type Task type  

t_prio Task priority Two levels: high/low, corresponding 
to 2/1. 

t_time The required time to 
complete the task Unit: second (s). 

TABLE III.    QUANTIFICATION OF PRIORITIES 

Priority Level Average Priority Range of Batch 
VERY_HIGH [320,400] 

HIGH [240,320) 
NORMAL [160,240) 

LOW [80, 160) 
VERY_LOW [0, 80) 
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Where ௤ܹଵ is the average queue waiting time. 

The other part is the average time to wait for the service 
desk to be vacated. Due to the memory lessness of the negative 
exponential function, it should be 

ଶܶ = ߩ ∗
1
ߤ

=
ߣ

ଶߤ  (3) 

Then, we get: 

௤ܹଵ = ଵߩ ∗ ௤ܹଵ +
ߣ

ଶߤ (4) 

So, the average waiting time is: 

௤ܹଵ =
ߣ

ଶ(1ߤ − (ଵߩ =
ߣ

ߤ)ߤ − (ଵߣ
(5) 

According to Little’s Law: 

௦ܮ = ߣ ∗ ௦ܹ, ௤ܮ = ߣ ∗ ௤ܹ, ௦ܮ = ௤ܮ + ,ߩ ௦ܹ = ௤ܹ + ଵ
ఓ

 (6)  

The first-priority job, namely the job of VERY_HIGH 
priority, has the average length of stay in the system of: 

௦ܹଵ = ௤ܹଵ +
1
ߤ

=
ߤ + ଶߣ + ଷߣ + ସߣ + ହߣ

ߤ)ߤ − (ଵߣ
(7) 

The average waiting queue length is: 

௤ଵܮ = ଵߣ ∗ ௤ܹଵ =
ߣ ∗ ଵߣ

ߤ)ߤ − (ଵߣ
(8) 

The average line length is: 

௦ଵܮ = ଵߣ ∗ ௦ܹଵ =
ߤ)ଵߣ + ଶߣ + ଷߣ + ସߣ + (ହߣ

ߤ − ߤ) − (ଵߣ
(9) 

d) The Second-priority Job: When the newly arrived job 
is of the second priority, its average waiting time in the system 
is composed of three parts:  

 The first part is the sum of the average service time Tଵ of the 
first-priority and second-priority jobs waiting in line for service: 

ଵܶ = ଵߩ ௤ܹଵ + ଶߩ ௤ܹଶ (10) 

The second part is the average time Tଶ waiting for the service 
desk to be vacated: 

ଶܶ =
ߣ

ଶߤ (11) 

The third part is the sum of the average delay time Tଷ caused 
by the priority interruption of the first-priority job successively 
arriving during the queue of the new second-priority job: 

ଷܶ = ଵߩ ௤ܹଶ (12) 

Accumulating the above three formulas, we get: 

௤ܹଶ = ଵߩ ௤ܹଵ + ଶߩ ௤ܹଶ +
ߣ

ଶߤ + ଵߩ ௤ܹଶ (13) 

Then we get the average waiting time: 

௤ܹଶ =
ଵߩ ௤ܹଵ + ߣ

ଶߤ

1 − ଵߩ − ଶߩ
=

ߣ
ߤ) − ߤ)(ଵߣ − ଵߣ − (ଶߣ

(14) 

According to Little’s Law, the average stay time of the 
second-priority job in the system is: 

௦ܹଶ = ௤ܹଶ +
1
ߤ

(15) 

The average waiting queue length is  

௤ଶܮ = ଶߣ ௤ܹଶ =
ଶߣߣ

ߤ) − ߤ)(ଵߣ − ଵߣ − (ଶߣ
(16) 

The average line length (the waiting jobs and the jobs being 
served by the service desk) is  

௦ଶܮ = ଶߣ ௦ܹଶ (17) 

e) The Third/Fourth/Fifth-priority Job: Similarly, the 
average waiting time of the third/fourth/fifth-priority customers 
can be obtained:  

௤ܹଷ =
ߣ

ߤ) − ଵߣ − ߤ)(ଶߣ − ଵߣ − ଶߣ − (ଷߣ
(18) 

௤ܹସ =
ߣ

ߤ) − ଵߣ − ଶߣ − ߤ)(ଷߣ − ଵߣ − ଶߣ − ଷߣ − (ସߣ
(19) 

௤ܹହ =
ߣ

ߤ) − ଵߣ − ଶߣ − ଷߣ − ߤ)(ସߣ − ଵߣ − ଶߣ − ଷߣ − ସߣ − (ହߣ
                                                                                                         (20)

 

According to Little’s Law, we can get the other three running 
indicators of the third/fourth/fifth-priority job.  

B. Numerical Analysis 
Based on the theoretical derivation, we can evaluate the 

performance of the queuing model using FCFS and priority 
scheduling through numerical analysis. 

Assume that the Spark Streaming system processes multiple 
jobs from multiple Receivers. The system receives 5 jobs per 

TABLE IV.    RUNNING RESULT AT μ = 6, = 5 

Type Waiting 
time/min 

Stay 
time/min 

Waiting 
line length 

Line 
length 

FCFS 0.833 1 4.167 5 
The 1st priority 0.167 0.333 0.167 0.333 
The 2nd priority 0.250 0.417 0.250 0.417 
The 3rd priority 0.417 0.583 0.417 0.583 
The 4th priority 0.833 1 0.833 1 
The 5th priority 2.500 2.667 2.500 2.667 

  
(a) (b) 

Fig. 2.  The comparison of (a) average stay time and (b) average line length. 
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minute and each priority job has the same frequency. At the 
same time, the system can complete the processing of 6 jobs per 
minute. Then we can get the available model parameters ߤ = 6 
and ߣଵ = ଶߣ = ⋯ = ଺ߣ = 1. According to the above parameters, 
the running indicators of each priority in the FCFS queue and 
the non-preemptive priority queue are shown in Table IV. It can 
be observed from Table IV that the average stay time of the 
first-priority and second-priority jobs has decreased by 58.3% 
and 66.7% respectively than the FCFS queue. The average line 
length is much smaller than the FCFS queue, meeting the needs 
of delay-sensitive tasks. Although the average stay time of the 
fifth-priority job has increased by 166.7% relative to the FCFS 
queue, considering that its priority is lower, it is within the 
acceptable range of the system. 

Let ߤ = 6 and we get the comparison of the average stay 
time and average line length as Fig. 2 by changing ߣ. 

 

VI. SYSTEM IMPLEMENTATION 
The proposed framework is divided into two levels from top 

to bottom: the job scheduling layer based on the non-preemptive 
priority queuing theory, and the Spark engine execution layer. 
We implement the top layer by modifying the source code of 
Spark Streaming and directly use Spark Engine as the bottom. 
Relying on the existing interface, we mainly realize two parts of 
the top: Edge Receiver for user-defined data receiving; and 
Priority Tracker for priority management, including Priority 
Generator and Priority Queue. 

Fig. 3 shows the execution flow of the job scheduling layer. 
First, Edge Receiver receives the sensing data, which contains 
metadata. Second, Edge Receiver gathers together the sensing 
data with metadata, divides them into blocks, and then inputs 
them into Receiver Tracker. Third, after batch generation and 
job generation in sequence, a corresponding job is created and 
becomes the input of the Priority Tracker module. Next, the 
Priority Tracker identifies the job it receives, checks the block 
and batch information, and extracts the corresponding metadata. 
Then, Priority Tracker conducts metadata processing to 
generate the corresponding priority information, Finally, the 
jobs with priorities are added to the Priority Queue and then 
executed in order of priorities from highest to lowest. 

 

VII. EXPERIMENTAL EVALUATION 

A. Experiment Setup 
 We implement the streaming data priority scheduling 

mechanism and conduct corresponding experiments. Our test 
server is Intel(R) Xeon(R) CPU E5-2609 v4@1.70GHz with 
32GB RAM and 4TB HDD hard disk. The operating system is 

Ubuntu 18.04 LTS, and the software environment is built on 
Spark 2.3.0, which relies on JDK 1.8 and Scala 2.11.12. 

B. Non-preemptive Priority Queuing Theory Scheduling 
To verify the scheduling effect, we construct an application 

containing 5 data sources. Each application corresponds to 
different priority data. Each data source has the same data 
arrival rate. We set the number of Receiver nodes to 5 and the 
number of Executor nodes to 1, and observe the execution of 
jobs corresponding to data sources with different priorities in 
the same batch. To facilitate observation, we set the batch 
interval to 20s, and turn off the dynamic adjustment function of 
batch interval. Fig. 4(a) shows the execution result of different 
priority jobs when using FCFS. In Fig. 4(a), the abscissa 
represents the running time since the application start, and the 
ordinate represents the time from job creation to execution 
completion. In Spark Streaming, the sequence of job generation 
has a certain regularity (the order of occurrence in user code), 
so jobs will be executed in a specific order. However, this order 
does not conform to the user’s expected priority, which will 
cause high-priority jobs to be executed after low-priority jobs. 
Fig. 4(b) shows the execution of different priority jobs after 
enabling non-preemptive priority scheduling. At this time, the 
system schedules and executes jobs according to the priority of 
jobs, and jobs with higher priorities are given priority execution, 
effectively reducing the end-to-end delay of high-priority jobs. 

C. Comprehensive Experiment 
To examine the performance of this framework in the real 

scenario, we test it based on the real traffic flow data about the 
online-hailing cars of Didi Chuxing [5]. We extract the traffic 
flow from 08:00 to 20:00 on Oct.1, 2016 in Fig. 5(a) as the input 
data rat. At the same time, we set two task priorities of high and 
low, and make their quantity ratio to 1:2. Fig. 5(b) shows the 
latency of tasks with different priorities. We observe that a 
high-priority task is always executed before a lower-priority 
task. The average end-to-end delay of low priority is 5279ms, 
while that of a high-priority task is only 2862ms. Through our 
priority scheduling, the average end-to-end delay of high-
priority tasks is reduced by 46% compared to low priority tasks. 

 
(a) (b) 

Fig. 4.  The total delay of jobs with different priorities under (a) FCFS and  
(b) priority scheduling, respectively. 

  
(a) (b) 

Fig. 5.  (a) The traffic flow of one day in the real scenario; (b) Comparison 
of the end-to-end latency for tasks with different priorities. 

 
Fig. 3.  Execution flow of job scheduling layer based on non-preemptive 
priority queuing theory. 
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VIII. RELATED WORK 
In Hadoop, Q. Sun introduced the M/G/1 queuing model 

into the job scheduling system and proposed a non-preemptive 
short-job-first scheduling scheme, which effectively shortened 
the average waiting time of all jobs [6]. L. Gu proposed an 
improved priority scheduling algorithm, which considered the 
computing capacity of cluster nodes and the overall system load 
level, and assigned tasks according to the job priority and the 
computing capacity of nodes, ensuring the overall system load 
falling into a reasonable range [7]. 

In Spark, K. Liu [8] studied the task scheduling strategy in 
a heterogeneous environment and proposed a scheduling 
scheme of assigning executing nodes for tasks based on node 
performance and task complexity. J. Tang et al. [9] proposed a 
DAG reuse scheme based on the genetic algorithm, which 
sorted the execution order of DAG to reduce the total execution 
time. Islam et al. [10] implemented a cost-efficient scheduling 
strategy by centralizing the configuration of Executor as much 
as possible to reduce the number of virtual machines (VMs) so 
that it can reduce costs while satisfying task deadlines. 

In Spark Streaming, T. Ajila et.al [11] proposed data-driven 
priority scheduling for text processing tasks with priority, 
which generates priority information by pre-scanning the input 
data. R. Birke et al. [12] proposed Dslash, a latency-driven data 
control strategy, which ensures the controllability of system 
delay by adjusting the maximum data capacity of block. H. Jin 
et al. [13] adopted the pre-scheduling method to identify 
potential stragglers in Spark Streaming in advance, and they 
improved the system resource utilization through reasonable 
pre-assignment of tasks. Reference [14] proposed A-scheduler, 
which divides tasks into data-dependent tasks and data-
independent tasks, and places them in two task queues for 
scheduling. Meanwhile, they adopted reinforcement learning to 
adaptively adjust the parallelism and weight of tasks. 

 

IX. CONCLUSION 
With the development of autonomous driving, on-board 

sensors generate massive streaming data. Existing streaming 
data processing frameworks based on cloud computing have 
shortcomings of insufficient bandwidth and high transmission 
delay, which are difficult to satisfy the demands of stability and 
low latency for autonomous driving tasks. In contrast to clouds, 
edge computing, which is limited in scale of computing and 
storage capabilities, is more suitable for the processing of 
delay-sensitive tasks for autonomous driving.  

To satisfy the diverse task processing requirements of AVs, 
we propose a streaming data priority scheduling mechanism by 
edge and implement a streaming data processing framework on 
Spark Streaming. It can distinguish the priority information of 
different tasks and schedule the data processing tasks under the 
guidance of the non-preemptive priority queuing theory. 

Experiments have shown that the proposed streaming data 
priority scheduling mechanism can: 1) effectively distinguish 
different types of tasks and the task priority differences among 
different vehicles; 2) achieve reasonable scheduling; and 3) 
reduce the end-to-end latency of higher-priority tasks by up to 

46% than low-priority tasks. Thereby, the proposed mechanism 
meets the demands of differential service level for AVs. 

 

ACKNOWLEDGMENT 
Jie Tang is the corresponding author of this paper. This work 

is supported by Guangdong R&D Key Project of China under 
Grant No. 2018B010107003, by Guangdong Natural Science 
Foundation under Grant No. 2018A030310408, 2021A1515011 

755. 

 

REFERENCES 
[1] “Autopilot,” Tesla, https://www.tesla.com/autopilot. 
[2] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision 

and Challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637-
646, Oct. 2016, doi: 10.1109/JIOT.2016.2579198. 

[3] “Spark Overview,” Apache Spark, https://spark.apache.org/docs/latest/ 
(accessed Feb. 12, 2021).   

[4]  “Spark Streaming,” Databricks, https://databricks.com/glossary/what-is-
spark-streaming (accessed Feb. 12, 2021). 

[5] Didi Chuxing, GAIA Initiative, Chengdu, China, 2016, Accessed on: Feb. 
12, 2021. [Online]. Available: https://gaia.didichuxing.com. 

[6] Q. Sun, “Research and optimization of job scheduling algorithm based on 
Hadoop,” M.S. thesis, Xi’an University of Technology, Xi’an, China, 
2016, Accessed on: Feb. 12, 2021. [Online]. Available: 
https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201801&fi
lename=1017853391.nh. 

[7] L. Gu, “Research of Hadoop Job Scheduling Based on Priority and 
Reliability in Cloud Computing Environment,” M.S. thesis, Hunan 
University, Changsha, China, 2013, Accessed on: Feb. 12, 2021. [Online]. 
Available:https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD
201402&filename=1014167259.nh.  

[8] K. Liu, “Research of Task Scheduling Strategy for Heterogeneous Cluster 
in Spark Computing Environment,” M.S. thesis, Hunan University, 
Changsha, China, 2018, Accessed on: Feb. 12, 2021. [Online]. Available: 
https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201901&fi
lename=1018147704.nh. 

[9] J. Tang, M. Xu, S. Fu, and K. Huang. “A scheduling optimization 
technique based on reuse in spark to defend against apt attack,” in 
Tsinghua Science and Technology, vol. 23, no. 5, pp. 550-560, Oct. 2018, 
doi: https://doi.org/10.26599/TST.2018.9010022. 

[10] M. T. Islam, S. Karunasekera, and R. Buyya, “dSpark: Deadline-Based 
Resource Allocation for Big Data Applications in Apache Spark,” in 2017 
IEEE 13th International Conference on e-Science (e-Science), Auckland, 
Oct. 2017, pp. 89-98, doi: 10.1109/eScience.2017.21. 

[11] T. Ajila and S. Majumdar, “Data Driven Priority Scheduling on a Spark 
Streaming System,” 2019 19th IEEE/ACM International Symposium on 
Cluster, Cloud and Grid Computing (CCGRID), Larnaca, Cyprus, 2019, 
pp. 561-568, doi: 10.1109/CCGRID.2019.00072. 

[12] R. Birke, M. Bjöerkqvist, E. Kalyvianaki, and L. Y. Chen, “Meeting 
Latency Target in Transient Burst: A Case on Spark Streaming,” 2017 
IEEE International Conference on Cloud Engineering (IC2E), Vancouver, 
BC, 2017, pp. 149-158, doi: 10.1109/IC2E.2017.17. 

[13] H. Jin, F. Chen, S. Wu, Y. Yao, Z.Liu, L. Gu, and Y. Zhou, “Towards 
Low-Latency Batched Stream Processing by Pre-Scheduling,” in IEEE 
Transactions on Parallel and Distributed Systems, vol. 30, no. 3, pp. 710-
722, 2019, doi: https://doi.org/10.1109/TPDS.2018.2866581. 

[14] D. Cheng, X. Zhou, Y. Wang and C. Jiang, “Adaptive Scheduling Parallel 
Jobs with Dynamic Batching in Spark Streaming,” in IEEE Transactions 
on Parallel and Distributed Systems, vol. 29, no. 12, pp. 2672-2685, 1 
Dec. 2018, doi: 10.1109/TPDS.2018.284623.

42

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 05,2022 at 16:56:23 UTC from IEEE Xplore.  Restrictions apply. 


		2021-09-07T17:30:45-0400
	Preflight Ticket Signature




